]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
eb36e9f145f4994dd44cc0a12aa21ee8b3c8e809
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 #define MSR_KVM_WALL_CLOCK 0x11
44 #define MSR_KVM_SYSTEM_TIME 0x12
45
46 #ifndef BUS_MCEERR_AR
47 #define BUS_MCEERR_AR 4
48 #endif
49 #ifndef BUS_MCEERR_AO
50 #define BUS_MCEERR_AO 5
51 #endif
52
53 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
58 };
59
60 static bool has_msr_star;
61 static bool has_msr_hsave_pa;
62 static bool has_msr_async_pf_en;
63 static int lm_capable_kernel;
64
65 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
66 {
67 struct kvm_cpuid2 *cpuid;
68 int r, size;
69
70 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
71 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
72 cpuid->nent = max;
73 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
74 if (r == 0 && cpuid->nent >= max) {
75 r = -E2BIG;
76 }
77 if (r < 0) {
78 if (r == -E2BIG) {
79 qemu_free(cpuid);
80 return NULL;
81 } else {
82 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
83 strerror(-r));
84 exit(1);
85 }
86 }
87 return cpuid;
88 }
89
90 struct kvm_para_features {
91 int cap;
92 int feature;
93 } para_features[] = {
94 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
95 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
96 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
97 #ifdef KVM_CAP_ASYNC_PF
98 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
99 #endif
100 { -1, -1 }
101 };
102
103 static int get_para_features(CPUState *env)
104 {
105 int i, features = 0;
106
107 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
108 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
109 features |= (1 << para_features[i].feature);
110 }
111 }
112
113 return features;
114 }
115
116
117 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
118 uint32_t index, int reg)
119 {
120 struct kvm_cpuid2 *cpuid;
121 int i, max;
122 uint32_t ret = 0;
123 uint32_t cpuid_1_edx;
124 int has_kvm_features = 0;
125
126 max = 1;
127 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
128 max *= 2;
129 }
130
131 for (i = 0; i < cpuid->nent; ++i) {
132 if (cpuid->entries[i].function == function &&
133 cpuid->entries[i].index == index) {
134 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
135 has_kvm_features = 1;
136 }
137 switch (reg) {
138 case R_EAX:
139 ret = cpuid->entries[i].eax;
140 break;
141 case R_EBX:
142 ret = cpuid->entries[i].ebx;
143 break;
144 case R_ECX:
145 ret = cpuid->entries[i].ecx;
146 break;
147 case R_EDX:
148 ret = cpuid->entries[i].edx;
149 switch (function) {
150 case 1:
151 /* KVM before 2.6.30 misreports the following features */
152 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
153 break;
154 case 0x80000001:
155 /* On Intel, kvm returns cpuid according to the Intel spec,
156 * so add missing bits according to the AMD spec:
157 */
158 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
159 ret |= cpuid_1_edx & 0x183f7ff;
160 break;
161 }
162 break;
163 }
164 }
165 }
166
167 qemu_free(cpuid);
168
169 /* fallback for older kernels */
170 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
171 ret = get_para_features(env);
172 }
173
174 return ret;
175 }
176
177 typedef struct HWPoisonPage {
178 ram_addr_t ram_addr;
179 QLIST_ENTRY(HWPoisonPage) list;
180 } HWPoisonPage;
181
182 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
183 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
184
185 static void kvm_unpoison_all(void *param)
186 {
187 HWPoisonPage *page, *next_page;
188
189 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
190 QLIST_REMOVE(page, list);
191 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
192 qemu_free(page);
193 }
194 }
195
196 #ifdef KVM_CAP_MCE
197 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198 {
199 HWPoisonPage *page;
200
201 QLIST_FOREACH(page, &hwpoison_page_list, list) {
202 if (page->ram_addr == ram_addr) {
203 return;
204 }
205 }
206 page = qemu_malloc(sizeof(HWPoisonPage));
207 page->ram_addr = ram_addr;
208 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
209 }
210
211 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212 int *max_banks)
213 {
214 int r;
215
216 r = kvm_check_extension(s, KVM_CAP_MCE);
217 if (r > 0) {
218 *max_banks = r;
219 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220 }
221 return -ENOSYS;
222 }
223
224 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
225 {
226 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228 uint64_t mcg_status = MCG_STATUS_MCIP;
229
230 if (code == BUS_MCEERR_AR) {
231 status |= MCI_STATUS_AR | 0x134;
232 mcg_status |= MCG_STATUS_EIPV;
233 } else {
234 status |= 0xc0;
235 mcg_status |= MCG_STATUS_RIPV;
236 }
237 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238 (MCM_ADDR_PHYS << 6) | 0xc,
239 cpu_x86_support_mca_broadcast(env) ?
240 MCE_INJECT_BROADCAST : 0);
241 }
242 #endif /* KVM_CAP_MCE */
243
244 static void hardware_memory_error(void)
245 {
246 fprintf(stderr, "Hardware memory error!\n");
247 exit(1);
248 }
249
250 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
251 {
252 #ifdef KVM_CAP_MCE
253 ram_addr_t ram_addr;
254 target_phys_addr_t paddr;
255
256 if ((env->mcg_cap & MCG_SER_P) && addr
257 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
258 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
259 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
260 &paddr)) {
261 fprintf(stderr, "Hardware memory error for memory used by "
262 "QEMU itself instead of guest system!\n");
263 /* Hope we are lucky for AO MCE */
264 if (code == BUS_MCEERR_AO) {
265 return 0;
266 } else {
267 hardware_memory_error();
268 }
269 }
270 kvm_hwpoison_page_add(ram_addr);
271 kvm_mce_inject(env, paddr, code);
272 } else
273 #endif /* KVM_CAP_MCE */
274 {
275 if (code == BUS_MCEERR_AO) {
276 return 0;
277 } else if (code == BUS_MCEERR_AR) {
278 hardware_memory_error();
279 } else {
280 return 1;
281 }
282 }
283 return 0;
284 }
285
286 int kvm_arch_on_sigbus(int code, void *addr)
287 {
288 #ifdef KVM_CAP_MCE
289 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
290 ram_addr_t ram_addr;
291 target_phys_addr_t paddr;
292
293 /* Hope we are lucky for AO MCE */
294 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
295 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
296 &paddr)) {
297 fprintf(stderr, "Hardware memory error for memory used by "
298 "QEMU itself instead of guest system!: %p\n", addr);
299 return 0;
300 }
301 kvm_hwpoison_page_add(ram_addr);
302 kvm_mce_inject(first_cpu, paddr, code);
303 } else
304 #endif /* KVM_CAP_MCE */
305 {
306 if (code == BUS_MCEERR_AO) {
307 return 0;
308 } else if (code == BUS_MCEERR_AR) {
309 hardware_memory_error();
310 } else {
311 return 1;
312 }
313 }
314 return 0;
315 }
316
317 static int kvm_inject_mce_oldstyle(CPUState *env)
318 {
319 #ifdef KVM_CAP_MCE
320 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
321 unsigned int bank, bank_num = env->mcg_cap & 0xff;
322 struct kvm_x86_mce mce;
323
324 env->exception_injected = -1;
325
326 /*
327 * There must be at least one bank in use if an MCE is pending.
328 * Find it and use its values for the event injection.
329 */
330 for (bank = 0; bank < bank_num; bank++) {
331 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
332 break;
333 }
334 }
335 assert(bank < bank_num);
336
337 mce.bank = bank;
338 mce.status = env->mce_banks[bank * 4 + 1];
339 mce.mcg_status = env->mcg_status;
340 mce.addr = env->mce_banks[bank * 4 + 2];
341 mce.misc = env->mce_banks[bank * 4 + 3];
342
343 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
344 }
345 #endif /* KVM_CAP_MCE */
346 return 0;
347 }
348
349 static void cpu_update_state(void *opaque, int running, int reason)
350 {
351 CPUState *env = opaque;
352
353 if (running) {
354 env->tsc_valid = false;
355 }
356 }
357
358 int kvm_arch_init_vcpu(CPUState *env)
359 {
360 struct {
361 struct kvm_cpuid2 cpuid;
362 struct kvm_cpuid_entry2 entries[100];
363 } __attribute__((packed)) cpuid_data;
364 uint32_t limit, i, j, cpuid_i;
365 uint32_t unused;
366 struct kvm_cpuid_entry2 *c;
367 uint32_t signature[3];
368
369 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
370
371 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
372 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
373 env->cpuid_ext_features |= i;
374
375 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
376 0, R_EDX);
377 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
378 0, R_ECX);
379 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
380 0, R_EDX);
381
382
383 cpuid_i = 0;
384
385 /* Paravirtualization CPUIDs */
386 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
387 c = &cpuid_data.entries[cpuid_i++];
388 memset(c, 0, sizeof(*c));
389 c->function = KVM_CPUID_SIGNATURE;
390 c->eax = 0;
391 c->ebx = signature[0];
392 c->ecx = signature[1];
393 c->edx = signature[2];
394
395 c = &cpuid_data.entries[cpuid_i++];
396 memset(c, 0, sizeof(*c));
397 c->function = KVM_CPUID_FEATURES;
398 c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(env,
399 KVM_CPUID_FEATURES, 0, R_EAX);
400
401 #ifdef KVM_CAP_ASYNC_PF
402 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
403 #endif
404
405 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
406
407 for (i = 0; i <= limit; i++) {
408 c = &cpuid_data.entries[cpuid_i++];
409
410 switch (i) {
411 case 2: {
412 /* Keep reading function 2 till all the input is received */
413 int times;
414
415 c->function = i;
416 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
417 KVM_CPUID_FLAG_STATE_READ_NEXT;
418 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
419 times = c->eax & 0xff;
420
421 for (j = 1; j < times; ++j) {
422 c = &cpuid_data.entries[cpuid_i++];
423 c->function = i;
424 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
425 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
426 }
427 break;
428 }
429 case 4:
430 case 0xb:
431 case 0xd:
432 for (j = 0; ; j++) {
433 c->function = i;
434 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 c->index = j;
436 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
437
438 if (i == 4 && c->eax == 0) {
439 break;
440 }
441 if (i == 0xb && !(c->ecx & 0xff00)) {
442 break;
443 }
444 if (i == 0xd && c->eax == 0) {
445 break;
446 }
447 c = &cpuid_data.entries[cpuid_i++];
448 }
449 break;
450 default:
451 c->function = i;
452 c->flags = 0;
453 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
454 break;
455 }
456 }
457 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
458
459 for (i = 0x80000000; i <= limit; i++) {
460 c = &cpuid_data.entries[cpuid_i++];
461
462 c->function = i;
463 c->flags = 0;
464 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
465 }
466
467 /* Call Centaur's CPUID instructions they are supported. */
468 if (env->cpuid_xlevel2 > 0) {
469 env->cpuid_ext4_features &=
470 kvm_arch_get_supported_cpuid(env, 0xC0000001, 0, R_EDX);
471 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
472
473 for (i = 0xC0000000; i <= limit; i++) {
474 c = &cpuid_data.entries[cpuid_i++];
475
476 c->function = i;
477 c->flags = 0;
478 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
479 }
480 }
481
482 cpuid_data.cpuid.nent = cpuid_i;
483
484 #ifdef KVM_CAP_MCE
485 if (((env->cpuid_version >> 8)&0xF) >= 6
486 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
487 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
488 uint64_t mcg_cap;
489 int banks;
490 int ret;
491
492 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
493 if (ret < 0) {
494 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
495 return ret;
496 }
497
498 if (banks > MCE_BANKS_DEF) {
499 banks = MCE_BANKS_DEF;
500 }
501 mcg_cap &= MCE_CAP_DEF;
502 mcg_cap |= banks;
503 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
504 if (ret < 0) {
505 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
506 return ret;
507 }
508
509 env->mcg_cap = mcg_cap;
510 }
511 #endif
512
513 qemu_add_vm_change_state_handler(cpu_update_state, env);
514
515 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
516 }
517
518 void kvm_arch_reset_vcpu(CPUState *env)
519 {
520 env->exception_injected = -1;
521 env->interrupt_injected = -1;
522 env->xcr0 = 1;
523 if (kvm_irqchip_in_kernel()) {
524 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
525 KVM_MP_STATE_UNINITIALIZED;
526 } else {
527 env->mp_state = KVM_MP_STATE_RUNNABLE;
528 }
529 }
530
531 static int kvm_get_supported_msrs(KVMState *s)
532 {
533 static int kvm_supported_msrs;
534 int ret = 0;
535
536 /* first time */
537 if (kvm_supported_msrs == 0) {
538 struct kvm_msr_list msr_list, *kvm_msr_list;
539
540 kvm_supported_msrs = -1;
541
542 /* Obtain MSR list from KVM. These are the MSRs that we must
543 * save/restore */
544 msr_list.nmsrs = 0;
545 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
546 if (ret < 0 && ret != -E2BIG) {
547 return ret;
548 }
549 /* Old kernel modules had a bug and could write beyond the provided
550 memory. Allocate at least a safe amount of 1K. */
551 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
552 msr_list.nmsrs *
553 sizeof(msr_list.indices[0])));
554
555 kvm_msr_list->nmsrs = msr_list.nmsrs;
556 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
557 if (ret >= 0) {
558 int i;
559
560 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
561 if (kvm_msr_list->indices[i] == MSR_STAR) {
562 has_msr_star = true;
563 continue;
564 }
565 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
566 has_msr_hsave_pa = true;
567 continue;
568 }
569 }
570 }
571
572 qemu_free(kvm_msr_list);
573 }
574
575 return ret;
576 }
577
578 int kvm_arch_init(KVMState *s)
579 {
580 uint64_t identity_base = 0xfffbc000;
581 int ret;
582 struct utsname utsname;
583
584 ret = kvm_get_supported_msrs(s);
585 if (ret < 0) {
586 return ret;
587 }
588
589 uname(&utsname);
590 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
591
592 /*
593 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
594 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
595 * Since these must be part of guest physical memory, we need to allocate
596 * them, both by setting their start addresses in the kernel and by
597 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
598 *
599 * Older KVM versions may not support setting the identity map base. In
600 * that case we need to stick with the default, i.e. a 256K maximum BIOS
601 * size.
602 */
603 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
604 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
605 /* Allows up to 16M BIOSes. */
606 identity_base = 0xfeffc000;
607
608 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
609 if (ret < 0) {
610 return ret;
611 }
612 }
613 #endif
614 /* Set TSS base one page after EPT identity map. */
615 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
616 if (ret < 0) {
617 return ret;
618 }
619
620 /* Tell fw_cfg to notify the BIOS to reserve the range. */
621 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
622 if (ret < 0) {
623 fprintf(stderr, "e820_add_entry() table is full\n");
624 return ret;
625 }
626 qemu_register_reset(kvm_unpoison_all, NULL);
627
628 return 0;
629 }
630
631 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
632 {
633 lhs->selector = rhs->selector;
634 lhs->base = rhs->base;
635 lhs->limit = rhs->limit;
636 lhs->type = 3;
637 lhs->present = 1;
638 lhs->dpl = 3;
639 lhs->db = 0;
640 lhs->s = 1;
641 lhs->l = 0;
642 lhs->g = 0;
643 lhs->avl = 0;
644 lhs->unusable = 0;
645 }
646
647 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
648 {
649 unsigned flags = rhs->flags;
650 lhs->selector = rhs->selector;
651 lhs->base = rhs->base;
652 lhs->limit = rhs->limit;
653 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
654 lhs->present = (flags & DESC_P_MASK) != 0;
655 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
656 lhs->db = (flags >> DESC_B_SHIFT) & 1;
657 lhs->s = (flags & DESC_S_MASK) != 0;
658 lhs->l = (flags >> DESC_L_SHIFT) & 1;
659 lhs->g = (flags & DESC_G_MASK) != 0;
660 lhs->avl = (flags & DESC_AVL_MASK) != 0;
661 lhs->unusable = 0;
662 }
663
664 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
665 {
666 lhs->selector = rhs->selector;
667 lhs->base = rhs->base;
668 lhs->limit = rhs->limit;
669 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
670 (rhs->present * DESC_P_MASK) |
671 (rhs->dpl << DESC_DPL_SHIFT) |
672 (rhs->db << DESC_B_SHIFT) |
673 (rhs->s * DESC_S_MASK) |
674 (rhs->l << DESC_L_SHIFT) |
675 (rhs->g * DESC_G_MASK) |
676 (rhs->avl * DESC_AVL_MASK);
677 }
678
679 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
680 {
681 if (set) {
682 *kvm_reg = *qemu_reg;
683 } else {
684 *qemu_reg = *kvm_reg;
685 }
686 }
687
688 static int kvm_getput_regs(CPUState *env, int set)
689 {
690 struct kvm_regs regs;
691 int ret = 0;
692
693 if (!set) {
694 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
695 if (ret < 0) {
696 return ret;
697 }
698 }
699
700 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
701 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
702 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
703 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
704 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
705 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
706 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
707 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
708 #ifdef TARGET_X86_64
709 kvm_getput_reg(&regs.r8, &env->regs[8], set);
710 kvm_getput_reg(&regs.r9, &env->regs[9], set);
711 kvm_getput_reg(&regs.r10, &env->regs[10], set);
712 kvm_getput_reg(&regs.r11, &env->regs[11], set);
713 kvm_getput_reg(&regs.r12, &env->regs[12], set);
714 kvm_getput_reg(&regs.r13, &env->regs[13], set);
715 kvm_getput_reg(&regs.r14, &env->regs[14], set);
716 kvm_getput_reg(&regs.r15, &env->regs[15], set);
717 #endif
718
719 kvm_getput_reg(&regs.rflags, &env->eflags, set);
720 kvm_getput_reg(&regs.rip, &env->eip, set);
721
722 if (set) {
723 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
724 }
725
726 return ret;
727 }
728
729 static int kvm_put_fpu(CPUState *env)
730 {
731 struct kvm_fpu fpu;
732 int i;
733
734 memset(&fpu, 0, sizeof fpu);
735 fpu.fsw = env->fpus & ~(7 << 11);
736 fpu.fsw |= (env->fpstt & 7) << 11;
737 fpu.fcw = env->fpuc;
738 fpu.last_opcode = env->fpop;
739 fpu.last_ip = env->fpip;
740 fpu.last_dp = env->fpdp;
741 for (i = 0; i < 8; ++i) {
742 fpu.ftwx |= (!env->fptags[i]) << i;
743 }
744 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
745 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
746 fpu.mxcsr = env->mxcsr;
747
748 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
749 }
750
751 #ifdef KVM_CAP_XSAVE
752 #define XSAVE_CWD_RIP 2
753 #define XSAVE_CWD_RDP 4
754 #define XSAVE_MXCSR 6
755 #define XSAVE_ST_SPACE 8
756 #define XSAVE_XMM_SPACE 40
757 #define XSAVE_XSTATE_BV 128
758 #define XSAVE_YMMH_SPACE 144
759 #endif
760
761 static int kvm_put_xsave(CPUState *env)
762 {
763 #ifdef KVM_CAP_XSAVE
764 int i, r;
765 struct kvm_xsave* xsave;
766 uint16_t cwd, swd, twd;
767
768 if (!kvm_has_xsave()) {
769 return kvm_put_fpu(env);
770 }
771
772 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
773 memset(xsave, 0, sizeof(struct kvm_xsave));
774 cwd = swd = twd = 0;
775 swd = env->fpus & ~(7 << 11);
776 swd |= (env->fpstt & 7) << 11;
777 cwd = env->fpuc;
778 for (i = 0; i < 8; ++i) {
779 twd |= (!env->fptags[i]) << i;
780 }
781 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
782 xsave->region[1] = (uint32_t)(env->fpop << 16) + twd;
783 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
784 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
785 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
786 sizeof env->fpregs);
787 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
788 sizeof env->xmm_regs);
789 xsave->region[XSAVE_MXCSR] = env->mxcsr;
790 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
791 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
792 sizeof env->ymmh_regs);
793 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
794 qemu_free(xsave);
795 return r;
796 #else
797 return kvm_put_fpu(env);
798 #endif
799 }
800
801 static int kvm_put_xcrs(CPUState *env)
802 {
803 #ifdef KVM_CAP_XCRS
804 struct kvm_xcrs xcrs;
805
806 if (!kvm_has_xcrs()) {
807 return 0;
808 }
809
810 xcrs.nr_xcrs = 1;
811 xcrs.flags = 0;
812 xcrs.xcrs[0].xcr = 0;
813 xcrs.xcrs[0].value = env->xcr0;
814 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
815 #else
816 return 0;
817 #endif
818 }
819
820 static int kvm_put_sregs(CPUState *env)
821 {
822 struct kvm_sregs sregs;
823
824 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
825 if (env->interrupt_injected >= 0) {
826 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
827 (uint64_t)1 << (env->interrupt_injected % 64);
828 }
829
830 if ((env->eflags & VM_MASK)) {
831 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
832 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
833 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
834 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
835 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
836 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
837 } else {
838 set_seg(&sregs.cs, &env->segs[R_CS]);
839 set_seg(&sregs.ds, &env->segs[R_DS]);
840 set_seg(&sregs.es, &env->segs[R_ES]);
841 set_seg(&sregs.fs, &env->segs[R_FS]);
842 set_seg(&sregs.gs, &env->segs[R_GS]);
843 set_seg(&sregs.ss, &env->segs[R_SS]);
844 }
845
846 set_seg(&sregs.tr, &env->tr);
847 set_seg(&sregs.ldt, &env->ldt);
848
849 sregs.idt.limit = env->idt.limit;
850 sregs.idt.base = env->idt.base;
851 sregs.gdt.limit = env->gdt.limit;
852 sregs.gdt.base = env->gdt.base;
853
854 sregs.cr0 = env->cr[0];
855 sregs.cr2 = env->cr[2];
856 sregs.cr3 = env->cr[3];
857 sregs.cr4 = env->cr[4];
858
859 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
860 sregs.apic_base = cpu_get_apic_base(env->apic_state);
861
862 sregs.efer = env->efer;
863
864 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
865 }
866
867 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
868 uint32_t index, uint64_t value)
869 {
870 entry->index = index;
871 entry->data = value;
872 }
873
874 static int kvm_put_msrs(CPUState *env, int level)
875 {
876 struct {
877 struct kvm_msrs info;
878 struct kvm_msr_entry entries[100];
879 } msr_data;
880 struct kvm_msr_entry *msrs = msr_data.entries;
881 int n = 0;
882
883 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
884 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
885 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
886 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
887 if (has_msr_star) {
888 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
889 }
890 if (has_msr_hsave_pa) {
891 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
892 }
893 #ifdef TARGET_X86_64
894 if (lm_capable_kernel) {
895 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
896 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
897 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
898 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
899 }
900 #endif
901 if (level == KVM_PUT_FULL_STATE) {
902 /*
903 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
904 * writeback. Until this is fixed, we only write the offset to SMP
905 * guests after migration, desynchronizing the VCPUs, but avoiding
906 * huge jump-backs that would occur without any writeback at all.
907 */
908 if (smp_cpus == 1 || env->tsc != 0) {
909 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
910 }
911 }
912 /*
913 * The following paravirtual MSRs have side effects on the guest or are
914 * too heavy for normal writeback. Limit them to reset or full state
915 * updates.
916 */
917 if (level >= KVM_PUT_RESET_STATE) {
918 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
919 env->system_time_msr);
920 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
921 if (has_msr_async_pf_en) {
922 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
923 env->async_pf_en_msr);
924 }
925 }
926 #ifdef KVM_CAP_MCE
927 if (env->mcg_cap) {
928 int i;
929
930 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
931 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
932 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
933 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
934 }
935 }
936 #endif
937
938 msr_data.info.nmsrs = n;
939
940 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
941
942 }
943
944
945 static int kvm_get_fpu(CPUState *env)
946 {
947 struct kvm_fpu fpu;
948 int i, ret;
949
950 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
951 if (ret < 0) {
952 return ret;
953 }
954
955 env->fpstt = (fpu.fsw >> 11) & 7;
956 env->fpus = fpu.fsw;
957 env->fpuc = fpu.fcw;
958 env->fpop = fpu.last_opcode;
959 env->fpip = fpu.last_ip;
960 env->fpdp = fpu.last_dp;
961 for (i = 0; i < 8; ++i) {
962 env->fptags[i] = !((fpu.ftwx >> i) & 1);
963 }
964 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
965 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
966 env->mxcsr = fpu.mxcsr;
967
968 return 0;
969 }
970
971 static int kvm_get_xsave(CPUState *env)
972 {
973 #ifdef KVM_CAP_XSAVE
974 struct kvm_xsave* xsave;
975 int ret, i;
976 uint16_t cwd, swd, twd;
977
978 if (!kvm_has_xsave()) {
979 return kvm_get_fpu(env);
980 }
981
982 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
983 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
984 if (ret < 0) {
985 qemu_free(xsave);
986 return ret;
987 }
988
989 cwd = (uint16_t)xsave->region[0];
990 swd = (uint16_t)(xsave->region[0] >> 16);
991 twd = (uint16_t)xsave->region[1];
992 env->fpop = (uint16_t)(xsave->region[1] >> 16);
993 env->fpstt = (swd >> 11) & 7;
994 env->fpus = swd;
995 env->fpuc = cwd;
996 for (i = 0; i < 8; ++i) {
997 env->fptags[i] = !((twd >> i) & 1);
998 }
999 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1000 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1001 env->mxcsr = xsave->region[XSAVE_MXCSR];
1002 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1003 sizeof env->fpregs);
1004 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1005 sizeof env->xmm_regs);
1006 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1007 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1008 sizeof env->ymmh_regs);
1009 qemu_free(xsave);
1010 return 0;
1011 #else
1012 return kvm_get_fpu(env);
1013 #endif
1014 }
1015
1016 static int kvm_get_xcrs(CPUState *env)
1017 {
1018 #ifdef KVM_CAP_XCRS
1019 int i, ret;
1020 struct kvm_xcrs xcrs;
1021
1022 if (!kvm_has_xcrs()) {
1023 return 0;
1024 }
1025
1026 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1027 if (ret < 0) {
1028 return ret;
1029 }
1030
1031 for (i = 0; i < xcrs.nr_xcrs; i++) {
1032 /* Only support xcr0 now */
1033 if (xcrs.xcrs[0].xcr == 0) {
1034 env->xcr0 = xcrs.xcrs[0].value;
1035 break;
1036 }
1037 }
1038 return 0;
1039 #else
1040 return 0;
1041 #endif
1042 }
1043
1044 static int kvm_get_sregs(CPUState *env)
1045 {
1046 struct kvm_sregs sregs;
1047 uint32_t hflags;
1048 int bit, i, ret;
1049
1050 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1051 if (ret < 0) {
1052 return ret;
1053 }
1054
1055 /* There can only be one pending IRQ set in the bitmap at a time, so try
1056 to find it and save its number instead (-1 for none). */
1057 env->interrupt_injected = -1;
1058 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1059 if (sregs.interrupt_bitmap[i]) {
1060 bit = ctz64(sregs.interrupt_bitmap[i]);
1061 env->interrupt_injected = i * 64 + bit;
1062 break;
1063 }
1064 }
1065
1066 get_seg(&env->segs[R_CS], &sregs.cs);
1067 get_seg(&env->segs[R_DS], &sregs.ds);
1068 get_seg(&env->segs[R_ES], &sregs.es);
1069 get_seg(&env->segs[R_FS], &sregs.fs);
1070 get_seg(&env->segs[R_GS], &sregs.gs);
1071 get_seg(&env->segs[R_SS], &sregs.ss);
1072
1073 get_seg(&env->tr, &sregs.tr);
1074 get_seg(&env->ldt, &sregs.ldt);
1075
1076 env->idt.limit = sregs.idt.limit;
1077 env->idt.base = sregs.idt.base;
1078 env->gdt.limit = sregs.gdt.limit;
1079 env->gdt.base = sregs.gdt.base;
1080
1081 env->cr[0] = sregs.cr0;
1082 env->cr[2] = sregs.cr2;
1083 env->cr[3] = sregs.cr3;
1084 env->cr[4] = sregs.cr4;
1085
1086 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1087
1088 env->efer = sregs.efer;
1089 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1090
1091 #define HFLAG_COPY_MASK \
1092 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1093 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1094 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1095 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1096
1097 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1098 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1099 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1100 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1101 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1102 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1103 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1104
1105 if (env->efer & MSR_EFER_LMA) {
1106 hflags |= HF_LMA_MASK;
1107 }
1108
1109 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1110 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1111 } else {
1112 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1113 (DESC_B_SHIFT - HF_CS32_SHIFT);
1114 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1115 (DESC_B_SHIFT - HF_SS32_SHIFT);
1116 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1117 !(hflags & HF_CS32_MASK)) {
1118 hflags |= HF_ADDSEG_MASK;
1119 } else {
1120 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1121 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1122 }
1123 }
1124 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1125
1126 return 0;
1127 }
1128
1129 static int kvm_get_msrs(CPUState *env)
1130 {
1131 struct {
1132 struct kvm_msrs info;
1133 struct kvm_msr_entry entries[100];
1134 } msr_data;
1135 struct kvm_msr_entry *msrs = msr_data.entries;
1136 int ret, i, n;
1137
1138 n = 0;
1139 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1140 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1141 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1142 msrs[n++].index = MSR_PAT;
1143 if (has_msr_star) {
1144 msrs[n++].index = MSR_STAR;
1145 }
1146 if (has_msr_hsave_pa) {
1147 msrs[n++].index = MSR_VM_HSAVE_PA;
1148 }
1149
1150 if (!env->tsc_valid) {
1151 msrs[n++].index = MSR_IA32_TSC;
1152 env->tsc_valid = !vm_running;
1153 }
1154
1155 #ifdef TARGET_X86_64
1156 if (lm_capable_kernel) {
1157 msrs[n++].index = MSR_CSTAR;
1158 msrs[n++].index = MSR_KERNELGSBASE;
1159 msrs[n++].index = MSR_FMASK;
1160 msrs[n++].index = MSR_LSTAR;
1161 }
1162 #endif
1163 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1164 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1165 if (has_msr_async_pf_en) {
1166 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1167 }
1168
1169 #ifdef KVM_CAP_MCE
1170 if (env->mcg_cap) {
1171 msrs[n++].index = MSR_MCG_STATUS;
1172 msrs[n++].index = MSR_MCG_CTL;
1173 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1174 msrs[n++].index = MSR_MC0_CTL + i;
1175 }
1176 }
1177 #endif
1178
1179 msr_data.info.nmsrs = n;
1180 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1181 if (ret < 0) {
1182 return ret;
1183 }
1184
1185 for (i = 0; i < ret; i++) {
1186 switch (msrs[i].index) {
1187 case MSR_IA32_SYSENTER_CS:
1188 env->sysenter_cs = msrs[i].data;
1189 break;
1190 case MSR_IA32_SYSENTER_ESP:
1191 env->sysenter_esp = msrs[i].data;
1192 break;
1193 case MSR_IA32_SYSENTER_EIP:
1194 env->sysenter_eip = msrs[i].data;
1195 break;
1196 case MSR_PAT:
1197 env->pat = msrs[i].data;
1198 break;
1199 case MSR_STAR:
1200 env->star = msrs[i].data;
1201 break;
1202 #ifdef TARGET_X86_64
1203 case MSR_CSTAR:
1204 env->cstar = msrs[i].data;
1205 break;
1206 case MSR_KERNELGSBASE:
1207 env->kernelgsbase = msrs[i].data;
1208 break;
1209 case MSR_FMASK:
1210 env->fmask = msrs[i].data;
1211 break;
1212 case MSR_LSTAR:
1213 env->lstar = msrs[i].data;
1214 break;
1215 #endif
1216 case MSR_IA32_TSC:
1217 env->tsc = msrs[i].data;
1218 break;
1219 case MSR_VM_HSAVE_PA:
1220 env->vm_hsave = msrs[i].data;
1221 break;
1222 case MSR_KVM_SYSTEM_TIME:
1223 env->system_time_msr = msrs[i].data;
1224 break;
1225 case MSR_KVM_WALL_CLOCK:
1226 env->wall_clock_msr = msrs[i].data;
1227 break;
1228 #ifdef KVM_CAP_MCE
1229 case MSR_MCG_STATUS:
1230 env->mcg_status = msrs[i].data;
1231 break;
1232 case MSR_MCG_CTL:
1233 env->mcg_ctl = msrs[i].data;
1234 break;
1235 #endif
1236 default:
1237 #ifdef KVM_CAP_MCE
1238 if (msrs[i].index >= MSR_MC0_CTL &&
1239 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1240 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1241 }
1242 #endif
1243 break;
1244 case MSR_KVM_ASYNC_PF_EN:
1245 env->async_pf_en_msr = msrs[i].data;
1246 break;
1247 }
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int kvm_put_mp_state(CPUState *env)
1254 {
1255 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1256
1257 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1258 }
1259
1260 static int kvm_get_mp_state(CPUState *env)
1261 {
1262 struct kvm_mp_state mp_state;
1263 int ret;
1264
1265 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1266 if (ret < 0) {
1267 return ret;
1268 }
1269 env->mp_state = mp_state.mp_state;
1270 if (kvm_irqchip_in_kernel()) {
1271 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1272 }
1273 return 0;
1274 }
1275
1276 static int kvm_put_vcpu_events(CPUState *env, int level)
1277 {
1278 #ifdef KVM_CAP_VCPU_EVENTS
1279 struct kvm_vcpu_events events;
1280
1281 if (!kvm_has_vcpu_events()) {
1282 return 0;
1283 }
1284
1285 events.exception.injected = (env->exception_injected >= 0);
1286 events.exception.nr = env->exception_injected;
1287 events.exception.has_error_code = env->has_error_code;
1288 events.exception.error_code = env->error_code;
1289
1290 events.interrupt.injected = (env->interrupt_injected >= 0);
1291 events.interrupt.nr = env->interrupt_injected;
1292 events.interrupt.soft = env->soft_interrupt;
1293
1294 events.nmi.injected = env->nmi_injected;
1295 events.nmi.pending = env->nmi_pending;
1296 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1297
1298 events.sipi_vector = env->sipi_vector;
1299
1300 events.flags = 0;
1301 if (level >= KVM_PUT_RESET_STATE) {
1302 events.flags |=
1303 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1304 }
1305
1306 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1307 #else
1308 return 0;
1309 #endif
1310 }
1311
1312 static int kvm_get_vcpu_events(CPUState *env)
1313 {
1314 #ifdef KVM_CAP_VCPU_EVENTS
1315 struct kvm_vcpu_events events;
1316 int ret;
1317
1318 if (!kvm_has_vcpu_events()) {
1319 return 0;
1320 }
1321
1322 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1323 if (ret < 0) {
1324 return ret;
1325 }
1326 env->exception_injected =
1327 events.exception.injected ? events.exception.nr : -1;
1328 env->has_error_code = events.exception.has_error_code;
1329 env->error_code = events.exception.error_code;
1330
1331 env->interrupt_injected =
1332 events.interrupt.injected ? events.interrupt.nr : -1;
1333 env->soft_interrupt = events.interrupt.soft;
1334
1335 env->nmi_injected = events.nmi.injected;
1336 env->nmi_pending = events.nmi.pending;
1337 if (events.nmi.masked) {
1338 env->hflags2 |= HF2_NMI_MASK;
1339 } else {
1340 env->hflags2 &= ~HF2_NMI_MASK;
1341 }
1342
1343 env->sipi_vector = events.sipi_vector;
1344 #endif
1345
1346 return 0;
1347 }
1348
1349 static int kvm_guest_debug_workarounds(CPUState *env)
1350 {
1351 int ret = 0;
1352 #ifdef KVM_CAP_SET_GUEST_DEBUG
1353 unsigned long reinject_trap = 0;
1354
1355 if (!kvm_has_vcpu_events()) {
1356 if (env->exception_injected == 1) {
1357 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1358 } else if (env->exception_injected == 3) {
1359 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1360 }
1361 env->exception_injected = -1;
1362 }
1363
1364 /*
1365 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1366 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1367 * by updating the debug state once again if single-stepping is on.
1368 * Another reason to call kvm_update_guest_debug here is a pending debug
1369 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1370 * reinject them via SET_GUEST_DEBUG.
1371 */
1372 if (reinject_trap ||
1373 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1374 ret = kvm_update_guest_debug(env, reinject_trap);
1375 }
1376 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1377 return ret;
1378 }
1379
1380 static int kvm_put_debugregs(CPUState *env)
1381 {
1382 #ifdef KVM_CAP_DEBUGREGS
1383 struct kvm_debugregs dbgregs;
1384 int i;
1385
1386 if (!kvm_has_debugregs()) {
1387 return 0;
1388 }
1389
1390 for (i = 0; i < 4; i++) {
1391 dbgregs.db[i] = env->dr[i];
1392 }
1393 dbgregs.dr6 = env->dr[6];
1394 dbgregs.dr7 = env->dr[7];
1395 dbgregs.flags = 0;
1396
1397 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1398 #else
1399 return 0;
1400 #endif
1401 }
1402
1403 static int kvm_get_debugregs(CPUState *env)
1404 {
1405 #ifdef KVM_CAP_DEBUGREGS
1406 struct kvm_debugregs dbgregs;
1407 int i, ret;
1408
1409 if (!kvm_has_debugregs()) {
1410 return 0;
1411 }
1412
1413 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1414 if (ret < 0) {
1415 return ret;
1416 }
1417 for (i = 0; i < 4; i++) {
1418 env->dr[i] = dbgregs.db[i];
1419 }
1420 env->dr[4] = env->dr[6] = dbgregs.dr6;
1421 env->dr[5] = env->dr[7] = dbgregs.dr7;
1422 #endif
1423
1424 return 0;
1425 }
1426
1427 int kvm_arch_put_registers(CPUState *env, int level)
1428 {
1429 int ret;
1430
1431 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1432
1433 ret = kvm_getput_regs(env, 1);
1434 if (ret < 0) {
1435 return ret;
1436 }
1437 ret = kvm_put_xsave(env);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441 ret = kvm_put_xcrs(env);
1442 if (ret < 0) {
1443 return ret;
1444 }
1445 ret = kvm_put_sregs(env);
1446 if (ret < 0) {
1447 return ret;
1448 }
1449 /* must be before kvm_put_msrs */
1450 ret = kvm_inject_mce_oldstyle(env);
1451 if (ret < 0) {
1452 return ret;
1453 }
1454 ret = kvm_put_msrs(env, level);
1455 if (ret < 0) {
1456 return ret;
1457 }
1458 if (level >= KVM_PUT_RESET_STATE) {
1459 ret = kvm_put_mp_state(env);
1460 if (ret < 0) {
1461 return ret;
1462 }
1463 }
1464 ret = kvm_put_vcpu_events(env, level);
1465 if (ret < 0) {
1466 return ret;
1467 }
1468 ret = kvm_put_debugregs(env);
1469 if (ret < 0) {
1470 return ret;
1471 }
1472 /* must be last */
1473 ret = kvm_guest_debug_workarounds(env);
1474 if (ret < 0) {
1475 return ret;
1476 }
1477 return 0;
1478 }
1479
1480 int kvm_arch_get_registers(CPUState *env)
1481 {
1482 int ret;
1483
1484 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1485
1486 ret = kvm_getput_regs(env, 0);
1487 if (ret < 0) {
1488 return ret;
1489 }
1490 ret = kvm_get_xsave(env);
1491 if (ret < 0) {
1492 return ret;
1493 }
1494 ret = kvm_get_xcrs(env);
1495 if (ret < 0) {
1496 return ret;
1497 }
1498 ret = kvm_get_sregs(env);
1499 if (ret < 0) {
1500 return ret;
1501 }
1502 ret = kvm_get_msrs(env);
1503 if (ret < 0) {
1504 return ret;
1505 }
1506 ret = kvm_get_mp_state(env);
1507 if (ret < 0) {
1508 return ret;
1509 }
1510 ret = kvm_get_vcpu_events(env);
1511 if (ret < 0) {
1512 return ret;
1513 }
1514 ret = kvm_get_debugregs(env);
1515 if (ret < 0) {
1516 return ret;
1517 }
1518 return 0;
1519 }
1520
1521 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1522 {
1523 int ret;
1524
1525 /* Inject NMI */
1526 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1527 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1528 DPRINTF("injected NMI\n");
1529 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1530 if (ret < 0) {
1531 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1532 strerror(-ret));
1533 }
1534 }
1535
1536 if (!kvm_irqchip_in_kernel()) {
1537 /* Force the VCPU out of its inner loop to process the INIT request */
1538 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1539 env->exit_request = 1;
1540 }
1541
1542 /* Try to inject an interrupt if the guest can accept it */
1543 if (run->ready_for_interrupt_injection &&
1544 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1545 (env->eflags & IF_MASK)) {
1546 int irq;
1547
1548 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1549 irq = cpu_get_pic_interrupt(env);
1550 if (irq >= 0) {
1551 struct kvm_interrupt intr;
1552
1553 intr.irq = irq;
1554 DPRINTF("injected interrupt %d\n", irq);
1555 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1556 if (ret < 0) {
1557 fprintf(stderr,
1558 "KVM: injection failed, interrupt lost (%s)\n",
1559 strerror(-ret));
1560 }
1561 }
1562 }
1563
1564 /* If we have an interrupt but the guest is not ready to receive an
1565 * interrupt, request an interrupt window exit. This will
1566 * cause a return to userspace as soon as the guest is ready to
1567 * receive interrupts. */
1568 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1569 run->request_interrupt_window = 1;
1570 } else {
1571 run->request_interrupt_window = 0;
1572 }
1573
1574 DPRINTF("setting tpr\n");
1575 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1576 }
1577 }
1578
1579 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1580 {
1581 if (run->if_flag) {
1582 env->eflags |= IF_MASK;
1583 } else {
1584 env->eflags &= ~IF_MASK;
1585 }
1586 cpu_set_apic_tpr(env->apic_state, run->cr8);
1587 cpu_set_apic_base(env->apic_state, run->apic_base);
1588 }
1589
1590 int kvm_arch_process_async_events(CPUState *env)
1591 {
1592 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1593 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1594 assert(env->mcg_cap);
1595
1596 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1597
1598 kvm_cpu_synchronize_state(env);
1599
1600 if (env->exception_injected == EXCP08_DBLE) {
1601 /* this means triple fault */
1602 qemu_system_reset_request();
1603 env->exit_request = 1;
1604 return 0;
1605 }
1606 env->exception_injected = EXCP12_MCHK;
1607 env->has_error_code = 0;
1608
1609 env->halted = 0;
1610 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1611 env->mp_state = KVM_MP_STATE_RUNNABLE;
1612 }
1613 }
1614
1615 if (kvm_irqchip_in_kernel()) {
1616 return 0;
1617 }
1618
1619 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1620 (env->eflags & IF_MASK)) ||
1621 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1622 env->halted = 0;
1623 }
1624 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1625 kvm_cpu_synchronize_state(env);
1626 do_cpu_init(env);
1627 }
1628 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1629 kvm_cpu_synchronize_state(env);
1630 do_cpu_sipi(env);
1631 }
1632
1633 return env->halted;
1634 }
1635
1636 static int kvm_handle_halt(CPUState *env)
1637 {
1638 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1639 (env->eflags & IF_MASK)) &&
1640 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1641 env->halted = 1;
1642 return EXCP_HLT;
1643 }
1644
1645 return 0;
1646 }
1647
1648 #ifdef KVM_CAP_SET_GUEST_DEBUG
1649 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1650 {
1651 static const uint8_t int3 = 0xcc;
1652
1653 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1654 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1655 return -EINVAL;
1656 }
1657 return 0;
1658 }
1659
1660 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1661 {
1662 uint8_t int3;
1663
1664 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1665 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1666 return -EINVAL;
1667 }
1668 return 0;
1669 }
1670
1671 static struct {
1672 target_ulong addr;
1673 int len;
1674 int type;
1675 } hw_breakpoint[4];
1676
1677 static int nb_hw_breakpoint;
1678
1679 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1680 {
1681 int n;
1682
1683 for (n = 0; n < nb_hw_breakpoint; n++) {
1684 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1685 (hw_breakpoint[n].len == len || len == -1)) {
1686 return n;
1687 }
1688 }
1689 return -1;
1690 }
1691
1692 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1693 target_ulong len, int type)
1694 {
1695 switch (type) {
1696 case GDB_BREAKPOINT_HW:
1697 len = 1;
1698 break;
1699 case GDB_WATCHPOINT_WRITE:
1700 case GDB_WATCHPOINT_ACCESS:
1701 switch (len) {
1702 case 1:
1703 break;
1704 case 2:
1705 case 4:
1706 case 8:
1707 if (addr & (len - 1)) {
1708 return -EINVAL;
1709 }
1710 break;
1711 default:
1712 return -EINVAL;
1713 }
1714 break;
1715 default:
1716 return -ENOSYS;
1717 }
1718
1719 if (nb_hw_breakpoint == 4) {
1720 return -ENOBUFS;
1721 }
1722 if (find_hw_breakpoint(addr, len, type) >= 0) {
1723 return -EEXIST;
1724 }
1725 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1726 hw_breakpoint[nb_hw_breakpoint].len = len;
1727 hw_breakpoint[nb_hw_breakpoint].type = type;
1728 nb_hw_breakpoint++;
1729
1730 return 0;
1731 }
1732
1733 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1734 target_ulong len, int type)
1735 {
1736 int n;
1737
1738 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1739 if (n < 0) {
1740 return -ENOENT;
1741 }
1742 nb_hw_breakpoint--;
1743 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1744
1745 return 0;
1746 }
1747
1748 void kvm_arch_remove_all_hw_breakpoints(void)
1749 {
1750 nb_hw_breakpoint = 0;
1751 }
1752
1753 static CPUWatchpoint hw_watchpoint;
1754
1755 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1756 {
1757 int ret = 0;
1758 int n;
1759
1760 if (arch_info->exception == 1) {
1761 if (arch_info->dr6 & (1 << 14)) {
1762 if (cpu_single_env->singlestep_enabled) {
1763 ret = EXCP_DEBUG;
1764 }
1765 } else {
1766 for (n = 0; n < 4; n++) {
1767 if (arch_info->dr6 & (1 << n)) {
1768 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1769 case 0x0:
1770 ret = EXCP_DEBUG;
1771 break;
1772 case 0x1:
1773 ret = EXCP_DEBUG;
1774 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1775 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1776 hw_watchpoint.flags = BP_MEM_WRITE;
1777 break;
1778 case 0x3:
1779 ret = EXCP_DEBUG;
1780 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1781 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1782 hw_watchpoint.flags = BP_MEM_ACCESS;
1783 break;
1784 }
1785 }
1786 }
1787 }
1788 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1789 ret = EXCP_DEBUG;
1790 }
1791 if (ret == 0) {
1792 cpu_synchronize_state(cpu_single_env);
1793 assert(cpu_single_env->exception_injected == -1);
1794
1795 /* pass to guest */
1796 cpu_single_env->exception_injected = arch_info->exception;
1797 cpu_single_env->has_error_code = 0;
1798 }
1799
1800 return ret;
1801 }
1802
1803 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1804 {
1805 const uint8_t type_code[] = {
1806 [GDB_BREAKPOINT_HW] = 0x0,
1807 [GDB_WATCHPOINT_WRITE] = 0x1,
1808 [GDB_WATCHPOINT_ACCESS] = 0x3
1809 };
1810 const uint8_t len_code[] = {
1811 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1812 };
1813 int n;
1814
1815 if (kvm_sw_breakpoints_active(env)) {
1816 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1817 }
1818 if (nb_hw_breakpoint > 0) {
1819 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1820 dbg->arch.debugreg[7] = 0x0600;
1821 for (n = 0; n < nb_hw_breakpoint; n++) {
1822 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1823 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1824 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1825 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1826 }
1827 }
1828 }
1829 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1830
1831 static bool host_supports_vmx(void)
1832 {
1833 uint32_t ecx, unused;
1834
1835 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1836 return ecx & CPUID_EXT_VMX;
1837 }
1838
1839 #define VMX_INVALID_GUEST_STATE 0x80000021
1840
1841 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1842 {
1843 uint64_t code;
1844 int ret;
1845
1846 switch (run->exit_reason) {
1847 case KVM_EXIT_HLT:
1848 DPRINTF("handle_hlt\n");
1849 ret = kvm_handle_halt(env);
1850 break;
1851 case KVM_EXIT_SET_TPR:
1852 ret = 0;
1853 break;
1854 case KVM_EXIT_FAIL_ENTRY:
1855 code = run->fail_entry.hardware_entry_failure_reason;
1856 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1857 code);
1858 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1859 fprintf(stderr,
1860 "\nIf you're runnning a guest on an Intel machine without "
1861 "unrestricted mode\n"
1862 "support, the failure can be most likely due to the guest "
1863 "entering an invalid\n"
1864 "state for Intel VT. For example, the guest maybe running "
1865 "in big real mode\n"
1866 "which is not supported on less recent Intel processors."
1867 "\n\n");
1868 }
1869 ret = -1;
1870 break;
1871 case KVM_EXIT_EXCEPTION:
1872 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1873 run->ex.exception, run->ex.error_code);
1874 ret = -1;
1875 break;
1876 #ifdef KVM_CAP_SET_GUEST_DEBUG
1877 case KVM_EXIT_DEBUG:
1878 DPRINTF("kvm_exit_debug\n");
1879 ret = kvm_handle_debug(&run->debug.arch);
1880 break;
1881 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1882 default:
1883 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1884 ret = -1;
1885 break;
1886 }
1887
1888 return ret;
1889 }
1890
1891 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1892 {
1893 return !(env->cr[0] & CR0_PE_MASK) ||
1894 ((env->segs[R_CS].selector & 3) != 3);
1895 }