]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/kvm.c
kvm: x86: Remove redundant mp_state initialization
[mirror_qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 static int lm_capable_kernel;
58
59 #ifdef KVM_CAP_EXT_CPUID
60
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62 {
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
65
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
72 }
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
81 }
82 }
83 return cpuid;
84 }
85
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
88 {
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
93
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
96 }
97
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
101 }
102
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
126 */
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
130 }
131 break;
132 }
133 }
134 }
135
136 qemu_free(cpuid);
137
138 return ret;
139 }
140
141 #else
142
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
145 {
146 return -1U;
147 }
148
149 #endif
150
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
169 };
170
171 static int get_para_features(CPUState *env)
172 {
173 int i, features = 0;
174
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177 features |= (1 << para_features[i].feature);
178 }
179 }
180 return features;
181 }
182 #endif
183
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
187 {
188 int r;
189
190 r = kvm_check_extension(s, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194 }
195 return -ENOSYS;
196 }
197
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199 {
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201 }
202
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204 {
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206 }
207
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209 {
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
212
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
219 }
220
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_progress(CPUState *env)
223 {
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
226 };
227 int r;
228
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 fprintf(stderr, "Failed to get MCE status\n");
232 return 0;
233 }
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235 }
236
237 struct kvm_x86_mce_data
238 {
239 CPUState *env;
240 struct kvm_x86_mce *mce;
241 int abort_on_error;
242 };
243
244 static void kvm_do_inject_x86_mce(void *_data)
245 {
246 struct kvm_x86_mce_data *data = _data;
247 int r;
248
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
252 if (kvm_mce_in_progress(data->env)) {
253 return;
254 }
255 }
256
257 r = kvm_set_mce(data->env, data->mce);
258 if (r < 0) {
259 perror("kvm_set_mce FAILED");
260 if (data->abort_on_error) {
261 abort();
262 }
263 }
264 }
265
266 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267 int flag)
268 {
269 struct kvm_x86_mce_data data = {
270 .env = env,
271 .mce = mce,
272 .abort_on_error = (flag & ABORT_ON_ERROR),
273 };
274
275 if (!env->mcg_cap) {
276 fprintf(stderr, "MCE support is not enabled!\n");
277 return;
278 }
279
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
281 }
282
283 static void kvm_mce_broadcast_rest(CPUState *env);
284 #endif
285
286 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
288 int flag)
289 {
290 #ifdef KVM_CAP_MCE
291 struct kvm_x86_mce mce = {
292 .bank = bank,
293 .status = status,
294 .mcg_status = mcg_status,
295 .addr = addr,
296 .misc = misc,
297 };
298
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
301 }
302
303 kvm_inject_x86_mce_on(cenv, &mce, flag);
304 #else
305 if (flag & ABORT_ON_ERROR) {
306 abort();
307 }
308 #endif
309 }
310
311 int kvm_arch_init_vcpu(CPUState *env)
312 {
313 struct {
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
316 } __attribute__((packed)) cpuid_data;
317 uint32_t limit, i, j, cpuid_i;
318 uint32_t unused;
319 struct kvm_cpuid_entry2 *c;
320 #ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
322 #endif
323
324 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
325
326 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
327 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
328 env->cpuid_ext_features |= i;
329
330 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
331 0, R_EDX);
332 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_ECX);
334 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
335 0, R_EDX);
336
337
338 cpuid_i = 0;
339
340 #ifdef CONFIG_KVM_PARA
341 /* Paravirtualization CPUIDs */
342 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343 c = &cpuid_data.entries[cpuid_i++];
344 memset(c, 0, sizeof(*c));
345 c->function = KVM_CPUID_SIGNATURE;
346 c->eax = 0;
347 c->ebx = signature[0];
348 c->ecx = signature[1];
349 c->edx = signature[2];
350
351 c = &cpuid_data.entries[cpuid_i++];
352 memset(c, 0, sizeof(*c));
353 c->function = KVM_CPUID_FEATURES;
354 c->eax = env->cpuid_kvm_features & get_para_features(env);
355 #endif
356
357 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
358
359 for (i = 0; i <= limit; i++) {
360 c = &cpuid_data.entries[cpuid_i++];
361
362 switch (i) {
363 case 2: {
364 /* Keep reading function 2 till all the input is received */
365 int times;
366
367 c->function = i;
368 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369 KVM_CPUID_FLAG_STATE_READ_NEXT;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 times = c->eax & 0xff;
372
373 for (j = 1; j < times; ++j) {
374 c = &cpuid_data.entries[cpuid_i++];
375 c->function = i;
376 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
378 }
379 break;
380 }
381 case 4:
382 case 0xb:
383 case 0xd:
384 for (j = 0; ; j++) {
385 c->function = i;
386 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387 c->index = j;
388 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
389
390 if (i == 4 && c->eax == 0) {
391 break;
392 }
393 if (i == 0xb && !(c->ecx & 0xff00)) {
394 break;
395 }
396 if (i == 0xd && c->eax == 0) {
397 break;
398 }
399 c = &cpuid_data.entries[cpuid_i++];
400 }
401 break;
402 default:
403 c->function = i;
404 c->flags = 0;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 break;
407 }
408 }
409 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
410
411 for (i = 0x80000000; i <= limit; i++) {
412 c = &cpuid_data.entries[cpuid_i++];
413
414 c->function = i;
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 }
418
419 cpuid_data.cpuid.nent = cpuid_i;
420
421 #ifdef KVM_CAP_MCE
422 if (((env->cpuid_version >> 8)&0xF) >= 6
423 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
425 uint64_t mcg_cap;
426 int banks;
427
428 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
429 perror("kvm_get_mce_cap_supported FAILED");
430 } else {
431 if (banks > MCE_BANKS_DEF)
432 banks = MCE_BANKS_DEF;
433 mcg_cap &= MCE_CAP_DEF;
434 mcg_cap |= banks;
435 if (kvm_setup_mce(env, &mcg_cap)) {
436 perror("kvm_setup_mce FAILED");
437 } else {
438 env->mcg_cap = mcg_cap;
439 }
440 }
441 }
442 #endif
443
444 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
445 }
446
447 void kvm_arch_reset_vcpu(CPUState *env)
448 {
449 env->exception_injected = -1;
450 env->interrupt_injected = -1;
451 env->nmi_injected = 0;
452 env->nmi_pending = 0;
453 if (kvm_irqchip_in_kernel()) {
454 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
455 KVM_MP_STATE_UNINITIALIZED;
456 } else {
457 env->mp_state = KVM_MP_STATE_RUNNABLE;
458 }
459 }
460
461 int has_msr_star;
462 int has_msr_hsave_pa;
463
464 static void kvm_supported_msrs(CPUState *env)
465 {
466 static int kvm_supported_msrs;
467 int ret;
468
469 /* first time */
470 if (kvm_supported_msrs == 0) {
471 struct kvm_msr_list msr_list, *kvm_msr_list;
472
473 kvm_supported_msrs = -1;
474
475 /* Obtain MSR list from KVM. These are the MSRs that we must
476 * save/restore */
477 msr_list.nmsrs = 0;
478 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
479 if (ret < 0 && ret != -E2BIG) {
480 return;
481 }
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485 msr_list.nmsrs *
486 sizeof(msr_list.indices[0])));
487
488 kvm_msr_list->nmsrs = msr_list.nmsrs;
489 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
490 if (ret >= 0) {
491 int i;
492
493 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494 if (kvm_msr_list->indices[i] == MSR_STAR) {
495 has_msr_star = 1;
496 continue;
497 }
498 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
499 has_msr_hsave_pa = 1;
500 continue;
501 }
502 }
503 }
504
505 free(kvm_msr_list);
506 }
507
508 return;
509 }
510
511 static int kvm_has_msr_hsave_pa(CPUState *env)
512 {
513 kvm_supported_msrs(env);
514 return has_msr_hsave_pa;
515 }
516
517 static int kvm_has_msr_star(CPUState *env)
518 {
519 kvm_supported_msrs(env);
520 return has_msr_star;
521 }
522
523 static int kvm_init_identity_map_page(KVMState *s)
524 {
525 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
526 int ret;
527 uint64_t addr = 0xfffbc000;
528
529 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
530 return 0;
531 }
532
533 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
534 if (ret < 0) {
535 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
536 return ret;
537 }
538 #endif
539 return 0;
540 }
541
542 int kvm_arch_init(KVMState *s, int smp_cpus)
543 {
544 int ret;
545
546 struct utsname utsname;
547
548 uname(&utsname);
549 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
550
551 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
552 * directly. In order to use vm86 mode, a TSS is needed. Since this
553 * must be part of guest physical memory, we need to allocate it. Older
554 * versions of KVM just assumed that it would be at the end of physical
555 * memory but that doesn't work with more than 4GB of memory. We simply
556 * refuse to work with those older versions of KVM. */
557 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
558 if (ret <= 0) {
559 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
560 return ret;
561 }
562
563 /* this address is 3 pages before the bios, and the bios should present
564 * as unavaible memory. FIXME, need to ensure the e820 map deals with
565 * this?
566 */
567 /*
568 * Tell fw_cfg to notify the BIOS to reserve the range.
569 */
570 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
571 perror("e820_add_entry() table is full");
572 exit(1);
573 }
574 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
575 if (ret < 0) {
576 return ret;
577 }
578
579 return kvm_init_identity_map_page(s);
580 }
581
582 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
583 {
584 lhs->selector = rhs->selector;
585 lhs->base = rhs->base;
586 lhs->limit = rhs->limit;
587 lhs->type = 3;
588 lhs->present = 1;
589 lhs->dpl = 3;
590 lhs->db = 0;
591 lhs->s = 1;
592 lhs->l = 0;
593 lhs->g = 0;
594 lhs->avl = 0;
595 lhs->unusable = 0;
596 }
597
598 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
599 {
600 unsigned flags = rhs->flags;
601 lhs->selector = rhs->selector;
602 lhs->base = rhs->base;
603 lhs->limit = rhs->limit;
604 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
605 lhs->present = (flags & DESC_P_MASK) != 0;
606 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
607 lhs->db = (flags >> DESC_B_SHIFT) & 1;
608 lhs->s = (flags & DESC_S_MASK) != 0;
609 lhs->l = (flags >> DESC_L_SHIFT) & 1;
610 lhs->g = (flags & DESC_G_MASK) != 0;
611 lhs->avl = (flags & DESC_AVL_MASK) != 0;
612 lhs->unusable = 0;
613 }
614
615 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
616 {
617 lhs->selector = rhs->selector;
618 lhs->base = rhs->base;
619 lhs->limit = rhs->limit;
620 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
621 (rhs->present * DESC_P_MASK) |
622 (rhs->dpl << DESC_DPL_SHIFT) |
623 (rhs->db << DESC_B_SHIFT) |
624 (rhs->s * DESC_S_MASK) |
625 (rhs->l << DESC_L_SHIFT) |
626 (rhs->g * DESC_G_MASK) |
627 (rhs->avl * DESC_AVL_MASK);
628 }
629
630 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
631 {
632 if (set) {
633 *kvm_reg = *qemu_reg;
634 } else {
635 *qemu_reg = *kvm_reg;
636 }
637 }
638
639 static int kvm_getput_regs(CPUState *env, int set)
640 {
641 struct kvm_regs regs;
642 int ret = 0;
643
644 if (!set) {
645 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
646 if (ret < 0) {
647 return ret;
648 }
649 }
650
651 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
652 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
653 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
654 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
655 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
656 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
657 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
658 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
659 #ifdef TARGET_X86_64
660 kvm_getput_reg(&regs.r8, &env->regs[8], set);
661 kvm_getput_reg(&regs.r9, &env->regs[9], set);
662 kvm_getput_reg(&regs.r10, &env->regs[10], set);
663 kvm_getput_reg(&regs.r11, &env->regs[11], set);
664 kvm_getput_reg(&regs.r12, &env->regs[12], set);
665 kvm_getput_reg(&regs.r13, &env->regs[13], set);
666 kvm_getput_reg(&regs.r14, &env->regs[14], set);
667 kvm_getput_reg(&regs.r15, &env->regs[15], set);
668 #endif
669
670 kvm_getput_reg(&regs.rflags, &env->eflags, set);
671 kvm_getput_reg(&regs.rip, &env->eip, set);
672
673 if (set) {
674 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
675 }
676
677 return ret;
678 }
679
680 static int kvm_put_fpu(CPUState *env)
681 {
682 struct kvm_fpu fpu;
683 int i;
684
685 memset(&fpu, 0, sizeof fpu);
686 fpu.fsw = env->fpus & ~(7 << 11);
687 fpu.fsw |= (env->fpstt & 7) << 11;
688 fpu.fcw = env->fpuc;
689 for (i = 0; i < 8; ++i) {
690 fpu.ftwx |= (!env->fptags[i]) << i;
691 }
692 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
693 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
694 fpu.mxcsr = env->mxcsr;
695
696 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
697 }
698
699 #ifdef KVM_CAP_XSAVE
700 #define XSAVE_CWD_RIP 2
701 #define XSAVE_CWD_RDP 4
702 #define XSAVE_MXCSR 6
703 #define XSAVE_ST_SPACE 8
704 #define XSAVE_XMM_SPACE 40
705 #define XSAVE_XSTATE_BV 128
706 #define XSAVE_YMMH_SPACE 144
707 #endif
708
709 static int kvm_put_xsave(CPUState *env)
710 {
711 #ifdef KVM_CAP_XSAVE
712 int i, r;
713 struct kvm_xsave* xsave;
714 uint16_t cwd, swd, twd, fop;
715
716 if (!kvm_has_xsave()) {
717 return kvm_put_fpu(env);
718 }
719
720 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
721 memset(xsave, 0, sizeof(struct kvm_xsave));
722 cwd = swd = twd = fop = 0;
723 swd = env->fpus & ~(7 << 11);
724 swd |= (env->fpstt & 7) << 11;
725 cwd = env->fpuc;
726 for (i = 0; i < 8; ++i) {
727 twd |= (!env->fptags[i]) << i;
728 }
729 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
730 xsave->region[1] = (uint32_t)(fop << 16) + twd;
731 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
732 sizeof env->fpregs);
733 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
734 sizeof env->xmm_regs);
735 xsave->region[XSAVE_MXCSR] = env->mxcsr;
736 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
737 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
738 sizeof env->ymmh_regs);
739 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
740 qemu_free(xsave);
741 return r;
742 #else
743 return kvm_put_fpu(env);
744 #endif
745 }
746
747 static int kvm_put_xcrs(CPUState *env)
748 {
749 #ifdef KVM_CAP_XCRS
750 struct kvm_xcrs xcrs;
751
752 if (!kvm_has_xcrs()) {
753 return 0;
754 }
755
756 xcrs.nr_xcrs = 1;
757 xcrs.flags = 0;
758 xcrs.xcrs[0].xcr = 0;
759 xcrs.xcrs[0].value = env->xcr0;
760 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
761 #else
762 return 0;
763 #endif
764 }
765
766 static int kvm_put_sregs(CPUState *env)
767 {
768 struct kvm_sregs sregs;
769
770 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
771 if (env->interrupt_injected >= 0) {
772 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
773 (uint64_t)1 << (env->interrupt_injected % 64);
774 }
775
776 if ((env->eflags & VM_MASK)) {
777 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
778 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
779 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
780 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
781 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
782 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
783 } else {
784 set_seg(&sregs.cs, &env->segs[R_CS]);
785 set_seg(&sregs.ds, &env->segs[R_DS]);
786 set_seg(&sregs.es, &env->segs[R_ES]);
787 set_seg(&sregs.fs, &env->segs[R_FS]);
788 set_seg(&sregs.gs, &env->segs[R_GS]);
789 set_seg(&sregs.ss, &env->segs[R_SS]);
790 }
791
792 set_seg(&sregs.tr, &env->tr);
793 set_seg(&sregs.ldt, &env->ldt);
794
795 sregs.idt.limit = env->idt.limit;
796 sregs.idt.base = env->idt.base;
797 sregs.gdt.limit = env->gdt.limit;
798 sregs.gdt.base = env->gdt.base;
799
800 sregs.cr0 = env->cr[0];
801 sregs.cr2 = env->cr[2];
802 sregs.cr3 = env->cr[3];
803 sregs.cr4 = env->cr[4];
804
805 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
806 sregs.apic_base = cpu_get_apic_base(env->apic_state);
807
808 sregs.efer = env->efer;
809
810 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
811 }
812
813 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
814 uint32_t index, uint64_t value)
815 {
816 entry->index = index;
817 entry->data = value;
818 }
819
820 static int kvm_put_msrs(CPUState *env, int level)
821 {
822 struct {
823 struct kvm_msrs info;
824 struct kvm_msr_entry entries[100];
825 } msr_data;
826 struct kvm_msr_entry *msrs = msr_data.entries;
827 int n = 0;
828
829 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
830 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
832 if (kvm_has_msr_star(env)) {
833 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
834 }
835 if (kvm_has_msr_hsave_pa(env)) {
836 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
837 }
838 #ifdef TARGET_X86_64
839 if (lm_capable_kernel) {
840 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
841 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
842 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
843 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
844 }
845 #endif
846 if (level == KVM_PUT_FULL_STATE) {
847 /*
848 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
849 * writeback. Until this is fixed, we only write the offset to SMP
850 * guests after migration, desynchronizing the VCPUs, but avoiding
851 * huge jump-backs that would occur without any writeback at all.
852 */
853 if (smp_cpus == 1 || env->tsc != 0) {
854 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
855 }
856 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
857 env->system_time_msr);
858 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
859 #ifdef KVM_CAP_ASYNC_PF
860 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
861 #endif
862 }
863 #ifdef KVM_CAP_MCE
864 if (env->mcg_cap) {
865 int i;
866
867 if (level == KVM_PUT_RESET_STATE) {
868 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
869 } else if (level == KVM_PUT_FULL_STATE) {
870 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
871 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
872 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
873 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
874 }
875 }
876 }
877 #endif
878
879 msr_data.info.nmsrs = n;
880
881 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
882
883 }
884
885
886 static int kvm_get_fpu(CPUState *env)
887 {
888 struct kvm_fpu fpu;
889 int i, ret;
890
891 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
892 if (ret < 0) {
893 return ret;
894 }
895
896 env->fpstt = (fpu.fsw >> 11) & 7;
897 env->fpus = fpu.fsw;
898 env->fpuc = fpu.fcw;
899 for (i = 0; i < 8; ++i) {
900 env->fptags[i] = !((fpu.ftwx >> i) & 1);
901 }
902 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
903 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
904 env->mxcsr = fpu.mxcsr;
905
906 return 0;
907 }
908
909 static int kvm_get_xsave(CPUState *env)
910 {
911 #ifdef KVM_CAP_XSAVE
912 struct kvm_xsave* xsave;
913 int ret, i;
914 uint16_t cwd, swd, twd, fop;
915
916 if (!kvm_has_xsave()) {
917 return kvm_get_fpu(env);
918 }
919
920 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
921 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
922 if (ret < 0) {
923 qemu_free(xsave);
924 return ret;
925 }
926
927 cwd = (uint16_t)xsave->region[0];
928 swd = (uint16_t)(xsave->region[0] >> 16);
929 twd = (uint16_t)xsave->region[1];
930 fop = (uint16_t)(xsave->region[1] >> 16);
931 env->fpstt = (swd >> 11) & 7;
932 env->fpus = swd;
933 env->fpuc = cwd;
934 for (i = 0; i < 8; ++i) {
935 env->fptags[i] = !((twd >> i) & 1);
936 }
937 env->mxcsr = xsave->region[XSAVE_MXCSR];
938 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
939 sizeof env->fpregs);
940 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
941 sizeof env->xmm_regs);
942 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
943 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
944 sizeof env->ymmh_regs);
945 qemu_free(xsave);
946 return 0;
947 #else
948 return kvm_get_fpu(env);
949 #endif
950 }
951
952 static int kvm_get_xcrs(CPUState *env)
953 {
954 #ifdef KVM_CAP_XCRS
955 int i, ret;
956 struct kvm_xcrs xcrs;
957
958 if (!kvm_has_xcrs()) {
959 return 0;
960 }
961
962 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
963 if (ret < 0) {
964 return ret;
965 }
966
967 for (i = 0; i < xcrs.nr_xcrs; i++) {
968 /* Only support xcr0 now */
969 if (xcrs.xcrs[0].xcr == 0) {
970 env->xcr0 = xcrs.xcrs[0].value;
971 break;
972 }
973 }
974 return 0;
975 #else
976 return 0;
977 #endif
978 }
979
980 static int kvm_get_sregs(CPUState *env)
981 {
982 struct kvm_sregs sregs;
983 uint32_t hflags;
984 int bit, i, ret;
985
986 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
987 if (ret < 0) {
988 return ret;
989 }
990
991 /* There can only be one pending IRQ set in the bitmap at a time, so try
992 to find it and save its number instead (-1 for none). */
993 env->interrupt_injected = -1;
994 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
995 if (sregs.interrupt_bitmap[i]) {
996 bit = ctz64(sregs.interrupt_bitmap[i]);
997 env->interrupt_injected = i * 64 + bit;
998 break;
999 }
1000 }
1001
1002 get_seg(&env->segs[R_CS], &sregs.cs);
1003 get_seg(&env->segs[R_DS], &sregs.ds);
1004 get_seg(&env->segs[R_ES], &sregs.es);
1005 get_seg(&env->segs[R_FS], &sregs.fs);
1006 get_seg(&env->segs[R_GS], &sregs.gs);
1007 get_seg(&env->segs[R_SS], &sregs.ss);
1008
1009 get_seg(&env->tr, &sregs.tr);
1010 get_seg(&env->ldt, &sregs.ldt);
1011
1012 env->idt.limit = sregs.idt.limit;
1013 env->idt.base = sregs.idt.base;
1014 env->gdt.limit = sregs.gdt.limit;
1015 env->gdt.base = sregs.gdt.base;
1016
1017 env->cr[0] = sregs.cr0;
1018 env->cr[2] = sregs.cr2;
1019 env->cr[3] = sregs.cr3;
1020 env->cr[4] = sregs.cr4;
1021
1022 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1023
1024 env->efer = sregs.efer;
1025 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1026
1027 #define HFLAG_COPY_MASK \
1028 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1029 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1030 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1031 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1032
1033 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1034 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1035 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1036 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1037 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1038 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1039 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1040
1041 if (env->efer & MSR_EFER_LMA) {
1042 hflags |= HF_LMA_MASK;
1043 }
1044
1045 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1046 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1047 } else {
1048 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1049 (DESC_B_SHIFT - HF_CS32_SHIFT);
1050 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1051 (DESC_B_SHIFT - HF_SS32_SHIFT);
1052 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1053 !(hflags & HF_CS32_MASK)) {
1054 hflags |= HF_ADDSEG_MASK;
1055 } else {
1056 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1057 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1058 }
1059 }
1060 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1061
1062 return 0;
1063 }
1064
1065 static int kvm_get_msrs(CPUState *env)
1066 {
1067 struct {
1068 struct kvm_msrs info;
1069 struct kvm_msr_entry entries[100];
1070 } msr_data;
1071 struct kvm_msr_entry *msrs = msr_data.entries;
1072 int ret, i, n;
1073
1074 n = 0;
1075 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1076 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1077 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1078 if (kvm_has_msr_star(env)) {
1079 msrs[n++].index = MSR_STAR;
1080 }
1081 if (kvm_has_msr_hsave_pa(env)) {
1082 msrs[n++].index = MSR_VM_HSAVE_PA;
1083 }
1084 msrs[n++].index = MSR_IA32_TSC;
1085 #ifdef TARGET_X86_64
1086 if (lm_capable_kernel) {
1087 msrs[n++].index = MSR_CSTAR;
1088 msrs[n++].index = MSR_KERNELGSBASE;
1089 msrs[n++].index = MSR_FMASK;
1090 msrs[n++].index = MSR_LSTAR;
1091 }
1092 #endif
1093 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1094 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1095 #ifdef KVM_CAP_ASYNC_PF
1096 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1097 #endif
1098
1099 #ifdef KVM_CAP_MCE
1100 if (env->mcg_cap) {
1101 msrs[n++].index = MSR_MCG_STATUS;
1102 msrs[n++].index = MSR_MCG_CTL;
1103 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1104 msrs[n++].index = MSR_MC0_CTL + i;
1105 }
1106 }
1107 #endif
1108
1109 msr_data.info.nmsrs = n;
1110 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1111 if (ret < 0) {
1112 return ret;
1113 }
1114
1115 for (i = 0; i < ret; i++) {
1116 switch (msrs[i].index) {
1117 case MSR_IA32_SYSENTER_CS:
1118 env->sysenter_cs = msrs[i].data;
1119 break;
1120 case MSR_IA32_SYSENTER_ESP:
1121 env->sysenter_esp = msrs[i].data;
1122 break;
1123 case MSR_IA32_SYSENTER_EIP:
1124 env->sysenter_eip = msrs[i].data;
1125 break;
1126 case MSR_STAR:
1127 env->star = msrs[i].data;
1128 break;
1129 #ifdef TARGET_X86_64
1130 case MSR_CSTAR:
1131 env->cstar = msrs[i].data;
1132 break;
1133 case MSR_KERNELGSBASE:
1134 env->kernelgsbase = msrs[i].data;
1135 break;
1136 case MSR_FMASK:
1137 env->fmask = msrs[i].data;
1138 break;
1139 case MSR_LSTAR:
1140 env->lstar = msrs[i].data;
1141 break;
1142 #endif
1143 case MSR_IA32_TSC:
1144 env->tsc = msrs[i].data;
1145 break;
1146 case MSR_VM_HSAVE_PA:
1147 env->vm_hsave = msrs[i].data;
1148 break;
1149 case MSR_KVM_SYSTEM_TIME:
1150 env->system_time_msr = msrs[i].data;
1151 break;
1152 case MSR_KVM_WALL_CLOCK:
1153 env->wall_clock_msr = msrs[i].data;
1154 break;
1155 #ifdef KVM_CAP_MCE
1156 case MSR_MCG_STATUS:
1157 env->mcg_status = msrs[i].data;
1158 break;
1159 case MSR_MCG_CTL:
1160 env->mcg_ctl = msrs[i].data;
1161 break;
1162 #endif
1163 default:
1164 #ifdef KVM_CAP_MCE
1165 if (msrs[i].index >= MSR_MC0_CTL &&
1166 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1167 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1168 }
1169 #endif
1170 break;
1171 #ifdef KVM_CAP_ASYNC_PF
1172 case MSR_KVM_ASYNC_PF_EN:
1173 env->async_pf_en_msr = msrs[i].data;
1174 break;
1175 #endif
1176 }
1177 }
1178
1179 return 0;
1180 }
1181
1182 static int kvm_put_mp_state(CPUState *env)
1183 {
1184 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1185
1186 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1187 }
1188
1189 static int kvm_get_mp_state(CPUState *env)
1190 {
1191 struct kvm_mp_state mp_state;
1192 int ret;
1193
1194 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1195 if (ret < 0) {
1196 return ret;
1197 }
1198 env->mp_state = mp_state.mp_state;
1199 if (kvm_irqchip_in_kernel()) {
1200 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1201 }
1202 return 0;
1203 }
1204
1205 static int kvm_put_vcpu_events(CPUState *env, int level)
1206 {
1207 #ifdef KVM_CAP_VCPU_EVENTS
1208 struct kvm_vcpu_events events;
1209
1210 if (!kvm_has_vcpu_events()) {
1211 return 0;
1212 }
1213
1214 events.exception.injected = (env->exception_injected >= 0);
1215 events.exception.nr = env->exception_injected;
1216 events.exception.has_error_code = env->has_error_code;
1217 events.exception.error_code = env->error_code;
1218
1219 events.interrupt.injected = (env->interrupt_injected >= 0);
1220 events.interrupt.nr = env->interrupt_injected;
1221 events.interrupt.soft = env->soft_interrupt;
1222
1223 events.nmi.injected = env->nmi_injected;
1224 events.nmi.pending = env->nmi_pending;
1225 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1226
1227 events.sipi_vector = env->sipi_vector;
1228
1229 events.flags = 0;
1230 if (level >= KVM_PUT_RESET_STATE) {
1231 events.flags |=
1232 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1233 }
1234
1235 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1236 #else
1237 return 0;
1238 #endif
1239 }
1240
1241 static int kvm_get_vcpu_events(CPUState *env)
1242 {
1243 #ifdef KVM_CAP_VCPU_EVENTS
1244 struct kvm_vcpu_events events;
1245 int ret;
1246
1247 if (!kvm_has_vcpu_events()) {
1248 return 0;
1249 }
1250
1251 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1252 if (ret < 0) {
1253 return ret;
1254 }
1255 env->exception_injected =
1256 events.exception.injected ? events.exception.nr : -1;
1257 env->has_error_code = events.exception.has_error_code;
1258 env->error_code = events.exception.error_code;
1259
1260 env->interrupt_injected =
1261 events.interrupt.injected ? events.interrupt.nr : -1;
1262 env->soft_interrupt = events.interrupt.soft;
1263
1264 env->nmi_injected = events.nmi.injected;
1265 env->nmi_pending = events.nmi.pending;
1266 if (events.nmi.masked) {
1267 env->hflags2 |= HF2_NMI_MASK;
1268 } else {
1269 env->hflags2 &= ~HF2_NMI_MASK;
1270 }
1271
1272 env->sipi_vector = events.sipi_vector;
1273 #endif
1274
1275 return 0;
1276 }
1277
1278 static int kvm_guest_debug_workarounds(CPUState *env)
1279 {
1280 int ret = 0;
1281 #ifdef KVM_CAP_SET_GUEST_DEBUG
1282 unsigned long reinject_trap = 0;
1283
1284 if (!kvm_has_vcpu_events()) {
1285 if (env->exception_injected == 1) {
1286 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1287 } else if (env->exception_injected == 3) {
1288 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1289 }
1290 env->exception_injected = -1;
1291 }
1292
1293 /*
1294 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1295 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1296 * by updating the debug state once again if single-stepping is on.
1297 * Another reason to call kvm_update_guest_debug here is a pending debug
1298 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1299 * reinject them via SET_GUEST_DEBUG.
1300 */
1301 if (reinject_trap ||
1302 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1303 ret = kvm_update_guest_debug(env, reinject_trap);
1304 }
1305 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1306 return ret;
1307 }
1308
1309 static int kvm_put_debugregs(CPUState *env)
1310 {
1311 #ifdef KVM_CAP_DEBUGREGS
1312 struct kvm_debugregs dbgregs;
1313 int i;
1314
1315 if (!kvm_has_debugregs()) {
1316 return 0;
1317 }
1318
1319 for (i = 0; i < 4; i++) {
1320 dbgregs.db[i] = env->dr[i];
1321 }
1322 dbgregs.dr6 = env->dr[6];
1323 dbgregs.dr7 = env->dr[7];
1324 dbgregs.flags = 0;
1325
1326 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1327 #else
1328 return 0;
1329 #endif
1330 }
1331
1332 static int kvm_get_debugregs(CPUState *env)
1333 {
1334 #ifdef KVM_CAP_DEBUGREGS
1335 struct kvm_debugregs dbgregs;
1336 int i, ret;
1337
1338 if (!kvm_has_debugregs()) {
1339 return 0;
1340 }
1341
1342 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1343 if (ret < 0) {
1344 return ret;
1345 }
1346 for (i = 0; i < 4; i++) {
1347 env->dr[i] = dbgregs.db[i];
1348 }
1349 env->dr[4] = env->dr[6] = dbgregs.dr6;
1350 env->dr[5] = env->dr[7] = dbgregs.dr7;
1351 #endif
1352
1353 return 0;
1354 }
1355
1356 int kvm_arch_put_registers(CPUState *env, int level)
1357 {
1358 int ret;
1359
1360 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1361
1362 ret = kvm_getput_regs(env, 1);
1363 if (ret < 0) {
1364 return ret;
1365 }
1366 ret = kvm_put_xsave(env);
1367 if (ret < 0) {
1368 return ret;
1369 }
1370 ret = kvm_put_xcrs(env);
1371 if (ret < 0) {
1372 return ret;
1373 }
1374 ret = kvm_put_sregs(env);
1375 if (ret < 0) {
1376 return ret;
1377 }
1378 ret = kvm_put_msrs(env, level);
1379 if (ret < 0) {
1380 return ret;
1381 }
1382 if (level >= KVM_PUT_RESET_STATE) {
1383 ret = kvm_put_mp_state(env);
1384 if (ret < 0) {
1385 return ret;
1386 }
1387 }
1388 ret = kvm_put_vcpu_events(env, level);
1389 if (ret < 0) {
1390 return ret;
1391 }
1392 ret = kvm_put_debugregs(env);
1393 if (ret < 0) {
1394 return ret;
1395 }
1396 /* must be last */
1397 ret = kvm_guest_debug_workarounds(env);
1398 if (ret < 0) {
1399 return ret;
1400 }
1401 return 0;
1402 }
1403
1404 int kvm_arch_get_registers(CPUState *env)
1405 {
1406 int ret;
1407
1408 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1409
1410 ret = kvm_getput_regs(env, 0);
1411 if (ret < 0) {
1412 return ret;
1413 }
1414 ret = kvm_get_xsave(env);
1415 if (ret < 0) {
1416 return ret;
1417 }
1418 ret = kvm_get_xcrs(env);
1419 if (ret < 0) {
1420 return ret;
1421 }
1422 ret = kvm_get_sregs(env);
1423 if (ret < 0) {
1424 return ret;
1425 }
1426 ret = kvm_get_msrs(env);
1427 if (ret < 0) {
1428 return ret;
1429 }
1430 ret = kvm_get_mp_state(env);
1431 if (ret < 0) {
1432 return ret;
1433 }
1434 ret = kvm_get_vcpu_events(env);
1435 if (ret < 0) {
1436 return ret;
1437 }
1438 ret = kvm_get_debugregs(env);
1439 if (ret < 0) {
1440 return ret;
1441 }
1442 return 0;
1443 }
1444
1445 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1446 {
1447 /* Inject NMI */
1448 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1449 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1450 DPRINTF("injected NMI\n");
1451 kvm_vcpu_ioctl(env, KVM_NMI);
1452 }
1453
1454 /* Try to inject an interrupt if the guest can accept it */
1455 if (run->ready_for_interrupt_injection &&
1456 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1457 (env->eflags & IF_MASK)) {
1458 int irq;
1459
1460 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1461 irq = cpu_get_pic_interrupt(env);
1462 if (irq >= 0) {
1463 struct kvm_interrupt intr;
1464 intr.irq = irq;
1465 /* FIXME: errors */
1466 DPRINTF("injected interrupt %d\n", irq);
1467 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1468 }
1469 }
1470
1471 /* If we have an interrupt but the guest is not ready to receive an
1472 * interrupt, request an interrupt window exit. This will
1473 * cause a return to userspace as soon as the guest is ready to
1474 * receive interrupts. */
1475 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1476 run->request_interrupt_window = 1;
1477 } else {
1478 run->request_interrupt_window = 0;
1479 }
1480
1481 DPRINTF("setting tpr\n");
1482 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1483
1484 return 0;
1485 }
1486
1487 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1488 {
1489 if (run->if_flag) {
1490 env->eflags |= IF_MASK;
1491 } else {
1492 env->eflags &= ~IF_MASK;
1493 }
1494 cpu_set_apic_tpr(env->apic_state, run->cr8);
1495 cpu_set_apic_base(env->apic_state, run->apic_base);
1496
1497 return 0;
1498 }
1499
1500 int kvm_arch_process_irqchip_events(CPUState *env)
1501 {
1502 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1503 kvm_cpu_synchronize_state(env);
1504 do_cpu_init(env);
1505 env->exception_index = EXCP_HALTED;
1506 }
1507
1508 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1509 kvm_cpu_synchronize_state(env);
1510 do_cpu_sipi(env);
1511 }
1512
1513 return env->halted;
1514 }
1515
1516 static int kvm_handle_halt(CPUState *env)
1517 {
1518 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1519 (env->eflags & IF_MASK)) &&
1520 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1521 env->halted = 1;
1522 env->exception_index = EXCP_HLT;
1523 return 0;
1524 }
1525
1526 return 1;
1527 }
1528
1529 static bool host_supports_vmx(void)
1530 {
1531 uint32_t ecx, unused;
1532
1533 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1534 return ecx & CPUID_EXT_VMX;
1535 }
1536
1537 #define VMX_INVALID_GUEST_STATE 0x80000021
1538
1539 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1540 {
1541 uint64_t code;
1542 int ret = 0;
1543
1544 switch (run->exit_reason) {
1545 case KVM_EXIT_HLT:
1546 DPRINTF("handle_hlt\n");
1547 ret = kvm_handle_halt(env);
1548 break;
1549 case KVM_EXIT_SET_TPR:
1550 ret = 1;
1551 break;
1552 case KVM_EXIT_FAIL_ENTRY:
1553 code = run->fail_entry.hardware_entry_failure_reason;
1554 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1555 code);
1556 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1557 fprintf(stderr,
1558 "\nIf you're runnning a guest on an Intel machine without "
1559 "unrestricted mode\n"
1560 "support, the failure can be most likely due to the guest "
1561 "entering an invalid\n"
1562 "state for Intel VT. For example, the guest maybe running "
1563 "in big real mode\n"
1564 "which is not supported on less recent Intel processors."
1565 "\n\n");
1566 }
1567 ret = -1;
1568 break;
1569 case KVM_EXIT_EXCEPTION:
1570 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1571 run->ex.exception, run->ex.error_code);
1572 ret = -1;
1573 break;
1574 default:
1575 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1576 ret = -1;
1577 break;
1578 }
1579
1580 return ret;
1581 }
1582
1583 #ifdef KVM_CAP_SET_GUEST_DEBUG
1584 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1585 {
1586 static const uint8_t int3 = 0xcc;
1587
1588 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1589 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1590 return -EINVAL;
1591 }
1592 return 0;
1593 }
1594
1595 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1596 {
1597 uint8_t int3;
1598
1599 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1600 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1601 return -EINVAL;
1602 }
1603 return 0;
1604 }
1605
1606 static struct {
1607 target_ulong addr;
1608 int len;
1609 int type;
1610 } hw_breakpoint[4];
1611
1612 static int nb_hw_breakpoint;
1613
1614 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1615 {
1616 int n;
1617
1618 for (n = 0; n < nb_hw_breakpoint; n++) {
1619 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1620 (hw_breakpoint[n].len == len || len == -1)) {
1621 return n;
1622 }
1623 }
1624 return -1;
1625 }
1626
1627 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1628 target_ulong len, int type)
1629 {
1630 switch (type) {
1631 case GDB_BREAKPOINT_HW:
1632 len = 1;
1633 break;
1634 case GDB_WATCHPOINT_WRITE:
1635 case GDB_WATCHPOINT_ACCESS:
1636 switch (len) {
1637 case 1:
1638 break;
1639 case 2:
1640 case 4:
1641 case 8:
1642 if (addr & (len - 1)) {
1643 return -EINVAL;
1644 }
1645 break;
1646 default:
1647 return -EINVAL;
1648 }
1649 break;
1650 default:
1651 return -ENOSYS;
1652 }
1653
1654 if (nb_hw_breakpoint == 4) {
1655 return -ENOBUFS;
1656 }
1657 if (find_hw_breakpoint(addr, len, type) >= 0) {
1658 return -EEXIST;
1659 }
1660 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1661 hw_breakpoint[nb_hw_breakpoint].len = len;
1662 hw_breakpoint[nb_hw_breakpoint].type = type;
1663 nb_hw_breakpoint++;
1664
1665 return 0;
1666 }
1667
1668 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1669 target_ulong len, int type)
1670 {
1671 int n;
1672
1673 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1674 if (n < 0) {
1675 return -ENOENT;
1676 }
1677 nb_hw_breakpoint--;
1678 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1679
1680 return 0;
1681 }
1682
1683 void kvm_arch_remove_all_hw_breakpoints(void)
1684 {
1685 nb_hw_breakpoint = 0;
1686 }
1687
1688 static CPUWatchpoint hw_watchpoint;
1689
1690 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1691 {
1692 int handle = 0;
1693 int n;
1694
1695 if (arch_info->exception == 1) {
1696 if (arch_info->dr6 & (1 << 14)) {
1697 if (cpu_single_env->singlestep_enabled) {
1698 handle = 1;
1699 }
1700 } else {
1701 for (n = 0; n < 4; n++) {
1702 if (arch_info->dr6 & (1 << n)) {
1703 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1704 case 0x0:
1705 handle = 1;
1706 break;
1707 case 0x1:
1708 handle = 1;
1709 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1710 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1711 hw_watchpoint.flags = BP_MEM_WRITE;
1712 break;
1713 case 0x3:
1714 handle = 1;
1715 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1716 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1717 hw_watchpoint.flags = BP_MEM_ACCESS;
1718 break;
1719 }
1720 }
1721 }
1722 }
1723 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1724 handle = 1;
1725 }
1726 if (!handle) {
1727 cpu_synchronize_state(cpu_single_env);
1728 assert(cpu_single_env->exception_injected == -1);
1729
1730 cpu_single_env->exception_injected = arch_info->exception;
1731 cpu_single_env->has_error_code = 0;
1732 }
1733
1734 return handle;
1735 }
1736
1737 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1738 {
1739 const uint8_t type_code[] = {
1740 [GDB_BREAKPOINT_HW] = 0x0,
1741 [GDB_WATCHPOINT_WRITE] = 0x1,
1742 [GDB_WATCHPOINT_ACCESS] = 0x3
1743 };
1744 const uint8_t len_code[] = {
1745 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1746 };
1747 int n;
1748
1749 if (kvm_sw_breakpoints_active(env)) {
1750 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1751 }
1752 if (nb_hw_breakpoint > 0) {
1753 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1754 dbg->arch.debugreg[7] = 0x0600;
1755 for (n = 0; n < nb_hw_breakpoint; n++) {
1756 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1757 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1758 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1759 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1760 }
1761 }
1762 /* Legal xcr0 for loading */
1763 env->xcr0 = 1;
1764 }
1765 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1766
1767 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1768 {
1769 return !(env->cr[0] & CR0_PE_MASK) ||
1770 ((env->segs[R_CS].selector & 3) != 3);
1771 }
1772
1773 static void hardware_memory_error(void)
1774 {
1775 fprintf(stderr, "Hardware memory error!\n");
1776 exit(1);
1777 }
1778
1779 #ifdef KVM_CAP_MCE
1780 static void kvm_mce_broadcast_rest(CPUState *env)
1781 {
1782 struct kvm_x86_mce mce = {
1783 .bank = 1,
1784 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1785 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1786 .addr = 0,
1787 .misc = 0,
1788 };
1789 CPUState *cenv;
1790
1791 /* Broadcast MCA signal for processor version 06H_EH and above */
1792 if (cpu_x86_support_mca_broadcast(env)) {
1793 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1794 if (cenv == env) {
1795 continue;
1796 }
1797 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1798 }
1799 }
1800 }
1801
1802 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1803 {
1804 struct kvm_x86_mce mce = {
1805 .bank = 9,
1806 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1807 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1808 | MCI_STATUS_AR | 0x134,
1809 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1810 .addr = paddr,
1811 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1812 };
1813 int r;
1814
1815 r = kvm_set_mce(env, &mce);
1816 if (r < 0) {
1817 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1818 abort();
1819 }
1820 kvm_mce_broadcast_rest(env);
1821 }
1822
1823 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1824 {
1825 struct kvm_x86_mce mce = {
1826 .bank = 9,
1827 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1828 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1829 | 0xc0,
1830 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1831 .addr = paddr,
1832 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1833 };
1834 int r;
1835
1836 r = kvm_set_mce(env, &mce);
1837 if (r < 0) {
1838 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1839 abort();
1840 }
1841 kvm_mce_broadcast_rest(env);
1842 }
1843
1844 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1845 {
1846 struct kvm_x86_mce mce = {
1847 .bank = 9,
1848 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1849 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1850 | 0xc0,
1851 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1852 .addr = paddr,
1853 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1854 };
1855
1856 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1857 kvm_mce_broadcast_rest(env);
1858 }
1859
1860 #endif
1861
1862 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1863 {
1864 #if defined(KVM_CAP_MCE)
1865 void *vaddr;
1866 ram_addr_t ram_addr;
1867 target_phys_addr_t paddr;
1868
1869 if ((env->mcg_cap & MCG_SER_P) && addr
1870 && (code == BUS_MCEERR_AR
1871 || code == BUS_MCEERR_AO)) {
1872 vaddr = (void *)addr;
1873 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1874 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1875 fprintf(stderr, "Hardware memory error for memory used by "
1876 "QEMU itself instead of guest system!\n");
1877 /* Hope we are lucky for AO MCE */
1878 if (code == BUS_MCEERR_AO) {
1879 return 0;
1880 } else {
1881 hardware_memory_error();
1882 }
1883 }
1884
1885 if (code == BUS_MCEERR_AR) {
1886 /* Fake an Intel architectural Data Load SRAR UCR */
1887 kvm_mce_inj_srar_dataload(env, paddr);
1888 } else {
1889 /*
1890 * If there is an MCE excpetion being processed, ignore
1891 * this SRAO MCE
1892 */
1893 if (!kvm_mce_in_progress(env)) {
1894 /* Fake an Intel architectural Memory scrubbing UCR */
1895 kvm_mce_inj_srao_memscrub(env, paddr);
1896 }
1897 }
1898 } else
1899 #endif
1900 {
1901 if (code == BUS_MCEERR_AO) {
1902 return 0;
1903 } else if (code == BUS_MCEERR_AR) {
1904 hardware_memory_error();
1905 } else {
1906 return 1;
1907 }
1908 }
1909 return 0;
1910 }
1911
1912 int kvm_on_sigbus(int code, void *addr)
1913 {
1914 #if defined(KVM_CAP_MCE)
1915 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1916 void *vaddr;
1917 ram_addr_t ram_addr;
1918 target_phys_addr_t paddr;
1919
1920 /* Hope we are lucky for AO MCE */
1921 vaddr = addr;
1922 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1923 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1924 fprintf(stderr, "Hardware memory error for memory used by "
1925 "QEMU itself instead of guest system!: %p\n", addr);
1926 return 0;
1927 }
1928 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1929 } else
1930 #endif
1931 {
1932 if (code == BUS_MCEERR_AO) {
1933 return 0;
1934 } else if (code == BUS_MCEERR_AR) {
1935 hardware_memory_error();
1936 } else {
1937 return 1;
1938 }
1939 }
1940 return 0;
1941 }