]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/kvm.c
kvm: x86: Use symbols for all xsave field
[mirror_qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 #define MSR_KVM_WALL_CLOCK 0x11
44 #define MSR_KVM_SYSTEM_TIME 0x12
45
46 #ifndef BUS_MCEERR_AR
47 #define BUS_MCEERR_AR 4
48 #endif
49 #ifndef BUS_MCEERR_AO
50 #define BUS_MCEERR_AO 5
51 #endif
52
53 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
58 };
59
60 static bool has_msr_star;
61 static bool has_msr_hsave_pa;
62 static bool has_msr_tsc_deadline;
63 static bool has_msr_async_pf_en;
64 static bool has_msr_misc_enable;
65 static int lm_capable_kernel;
66
67 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
68 {
69 struct kvm_cpuid2 *cpuid;
70 int r, size;
71
72 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
73 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
74 cpuid->nent = max;
75 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76 if (r == 0 && cpuid->nent >= max) {
77 r = -E2BIG;
78 }
79 if (r < 0) {
80 if (r == -E2BIG) {
81 g_free(cpuid);
82 return NULL;
83 } else {
84 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
85 strerror(-r));
86 exit(1);
87 }
88 }
89 return cpuid;
90 }
91
92 struct kvm_para_features {
93 int cap;
94 int feature;
95 } para_features[] = {
96 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
97 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
98 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
99 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
100 { -1, -1 }
101 };
102
103 static int get_para_features(KVMState *s)
104 {
105 int i, features = 0;
106
107 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
108 if (kvm_check_extension(s, para_features[i].cap)) {
109 features |= (1 << para_features[i].feature);
110 }
111 }
112
113 return features;
114 }
115
116
117 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
118 uint32_t index, int reg)
119 {
120 struct kvm_cpuid2 *cpuid;
121 int i, max;
122 uint32_t ret = 0;
123 uint32_t cpuid_1_edx;
124 int has_kvm_features = 0;
125
126 max = 1;
127 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
128 max *= 2;
129 }
130
131 for (i = 0; i < cpuid->nent; ++i) {
132 if (cpuid->entries[i].function == function &&
133 cpuid->entries[i].index == index) {
134 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
135 has_kvm_features = 1;
136 }
137 switch (reg) {
138 case R_EAX:
139 ret = cpuid->entries[i].eax;
140 break;
141 case R_EBX:
142 ret = cpuid->entries[i].ebx;
143 break;
144 case R_ECX:
145 ret = cpuid->entries[i].ecx;
146 break;
147 case R_EDX:
148 ret = cpuid->entries[i].edx;
149 switch (function) {
150 case 1:
151 /* KVM before 2.6.30 misreports the following features */
152 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
153 break;
154 case 0x80000001:
155 /* On Intel, kvm returns cpuid according to the Intel spec,
156 * so add missing bits according to the AMD spec:
157 */
158 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
159 ret |= cpuid_1_edx & 0x183f7ff;
160 break;
161 }
162 break;
163 }
164 }
165 }
166
167 g_free(cpuid);
168
169 /* fallback for older kernels */
170 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
171 ret = get_para_features(s);
172 }
173
174 return ret;
175 }
176
177 typedef struct HWPoisonPage {
178 ram_addr_t ram_addr;
179 QLIST_ENTRY(HWPoisonPage) list;
180 } HWPoisonPage;
181
182 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
183 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
184
185 static void kvm_unpoison_all(void *param)
186 {
187 HWPoisonPage *page, *next_page;
188
189 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
190 QLIST_REMOVE(page, list);
191 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
192 g_free(page);
193 }
194 }
195
196 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
197 {
198 HWPoisonPage *page;
199
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
203 }
204 }
205 page = g_malloc(sizeof(HWPoisonPage));
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208 }
209
210 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
212 {
213 int r;
214
215 r = kvm_check_extension(s, KVM_CAP_MCE);
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
219 }
220 return -ENOSYS;
221 }
222
223 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
224 {
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
228
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
235 }
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
240 }
241
242 static void hardware_memory_error(void)
243 {
244 fprintf(stderr, "Hardware memory error!\n");
245 exit(1);
246 }
247
248 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
249 {
250 ram_addr_t ram_addr;
251 target_phys_addr_t paddr;
252
253 if ((env->mcg_cap & MCG_SER_P) && addr
254 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
255 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
256 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
257 &paddr)) {
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
262 return 0;
263 } else {
264 hardware_memory_error();
265 }
266 }
267 kvm_hwpoison_page_add(ram_addr);
268 kvm_mce_inject(env, paddr, code);
269 } else {
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
276 }
277 }
278 return 0;
279 }
280
281 int kvm_arch_on_sigbus(int code, void *addr)
282 {
283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284 ram_addr_t ram_addr;
285 target_phys_addr_t paddr;
286
287 /* Hope we are lucky for AO MCE */
288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
290 &paddr)) {
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
293 return 0;
294 }
295 kvm_hwpoison_page_add(ram_addr);
296 kvm_mce_inject(first_cpu, paddr, code);
297 } else {
298 if (code == BUS_MCEERR_AO) {
299 return 0;
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
302 } else {
303 return 1;
304 }
305 }
306 return 0;
307 }
308
309 static int kvm_inject_mce_oldstyle(CPUState *env)
310 {
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
314
315 env->exception_injected = -1;
316
317 /*
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
320 */
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323 break;
324 }
325 }
326 assert(bank < bank_num);
327
328 mce.bank = bank;
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
333
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335 }
336 return 0;
337 }
338
339 static void cpu_update_state(void *opaque, int running, RunState state)
340 {
341 CPUState *env = opaque;
342
343 if (running) {
344 env->tsc_valid = false;
345 }
346 }
347
348 int kvm_arch_init_vcpu(CPUState *env)
349 {
350 struct {
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
353 } QEMU_PACKED cpuid_data;
354 KVMState *s = env->kvm_state;
355 uint32_t limit, i, j, cpuid_i;
356 uint32_t unused;
357 struct kvm_cpuid_entry2 *c;
358 uint32_t signature[3];
359 int r;
360
361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
362
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
365 env->cpuid_ext_features |= i;
366
367 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
368 0, R_EDX);
369 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
370 0, R_ECX);
371 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
372 0, R_EDX);
373
374 cpuid_i = 0;
375
376 /* Paravirtualization CPUIDs */
377 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
378 c = &cpuid_data.entries[cpuid_i++];
379 memset(c, 0, sizeof(*c));
380 c->function = KVM_CPUID_SIGNATURE;
381 c->eax = 0;
382 c->ebx = signature[0];
383 c->ecx = signature[1];
384 c->edx = signature[2];
385
386 c = &cpuid_data.entries[cpuid_i++];
387 memset(c, 0, sizeof(*c));
388 c->function = KVM_CPUID_FEATURES;
389 c->eax = env->cpuid_kvm_features &
390 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
391
392 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
393
394 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
395
396 for (i = 0; i <= limit; i++) {
397 c = &cpuid_data.entries[cpuid_i++];
398
399 switch (i) {
400 case 2: {
401 /* Keep reading function 2 till all the input is received */
402 int times;
403
404 c->function = i;
405 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
406 KVM_CPUID_FLAG_STATE_READ_NEXT;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 times = c->eax & 0xff;
409
410 for (j = 1; j < times; ++j) {
411 c = &cpuid_data.entries[cpuid_i++];
412 c->function = i;
413 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
414 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
415 }
416 break;
417 }
418 case 4:
419 case 0xb:
420 case 0xd:
421 for (j = 0; ; j++) {
422 if (i == 0xd && j == 64) {
423 break;
424 }
425 c->function = i;
426 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427 c->index = j;
428 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
429
430 if (i == 4 && c->eax == 0) {
431 break;
432 }
433 if (i == 0xb && !(c->ecx & 0xff00)) {
434 break;
435 }
436 if (i == 0xd && c->eax == 0) {
437 continue;
438 }
439 c = &cpuid_data.entries[cpuid_i++];
440 }
441 break;
442 default:
443 c->function = i;
444 c->flags = 0;
445 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
446 break;
447 }
448 }
449 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
450
451 for (i = 0x80000000; i <= limit; i++) {
452 c = &cpuid_data.entries[cpuid_i++];
453
454 c->function = i;
455 c->flags = 0;
456 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
457 }
458
459 /* Call Centaur's CPUID instructions they are supported. */
460 if (env->cpuid_xlevel2 > 0) {
461 env->cpuid_ext4_features &=
462 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
463 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
464
465 for (i = 0xC0000000; i <= limit; i++) {
466 c = &cpuid_data.entries[cpuid_i++];
467
468 c->function = i;
469 c->flags = 0;
470 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
471 }
472 }
473
474 cpuid_data.cpuid.nent = cpuid_i;
475
476 if (((env->cpuid_version >> 8)&0xF) >= 6
477 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
478 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
479 uint64_t mcg_cap;
480 int banks;
481 int ret;
482
483 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
484 if (ret < 0) {
485 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
486 return ret;
487 }
488
489 if (banks > MCE_BANKS_DEF) {
490 banks = MCE_BANKS_DEF;
491 }
492 mcg_cap &= MCE_CAP_DEF;
493 mcg_cap |= banks;
494 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
495 if (ret < 0) {
496 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
497 return ret;
498 }
499
500 env->mcg_cap = mcg_cap;
501 }
502
503 qemu_add_vm_change_state_handler(cpu_update_state, env);
504
505 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
506 if (r) {
507 return r;
508 }
509
510 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
511 if (r && env->tsc_khz) {
512 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
513 if (r < 0) {
514 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
515 return r;
516 }
517 }
518
519 return 0;
520 }
521
522 void kvm_arch_reset_vcpu(CPUState *env)
523 {
524 env->exception_injected = -1;
525 env->interrupt_injected = -1;
526 env->xcr0 = 1;
527 if (kvm_irqchip_in_kernel()) {
528 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
529 KVM_MP_STATE_UNINITIALIZED;
530 } else {
531 env->mp_state = KVM_MP_STATE_RUNNABLE;
532 }
533 }
534
535 static int kvm_get_supported_msrs(KVMState *s)
536 {
537 static int kvm_supported_msrs;
538 int ret = 0;
539
540 /* first time */
541 if (kvm_supported_msrs == 0) {
542 struct kvm_msr_list msr_list, *kvm_msr_list;
543
544 kvm_supported_msrs = -1;
545
546 /* Obtain MSR list from KVM. These are the MSRs that we must
547 * save/restore */
548 msr_list.nmsrs = 0;
549 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
550 if (ret < 0 && ret != -E2BIG) {
551 return ret;
552 }
553 /* Old kernel modules had a bug and could write beyond the provided
554 memory. Allocate at least a safe amount of 1K. */
555 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
556 msr_list.nmsrs *
557 sizeof(msr_list.indices[0])));
558
559 kvm_msr_list->nmsrs = msr_list.nmsrs;
560 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
561 if (ret >= 0) {
562 int i;
563
564 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
565 if (kvm_msr_list->indices[i] == MSR_STAR) {
566 has_msr_star = true;
567 continue;
568 }
569 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
570 has_msr_hsave_pa = true;
571 continue;
572 }
573 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
574 has_msr_tsc_deadline = true;
575 continue;
576 }
577 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
578 has_msr_misc_enable = true;
579 continue;
580 }
581 }
582 }
583
584 g_free(kvm_msr_list);
585 }
586
587 return ret;
588 }
589
590 int kvm_arch_init(KVMState *s)
591 {
592 uint64_t identity_base = 0xfffbc000;
593 int ret;
594 struct utsname utsname;
595
596 ret = kvm_get_supported_msrs(s);
597 if (ret < 0) {
598 return ret;
599 }
600
601 uname(&utsname);
602 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
603
604 /*
605 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
606 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
607 * Since these must be part of guest physical memory, we need to allocate
608 * them, both by setting their start addresses in the kernel and by
609 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
610 *
611 * Older KVM versions may not support setting the identity map base. In
612 * that case we need to stick with the default, i.e. a 256K maximum BIOS
613 * size.
614 */
615 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
616 /* Allows up to 16M BIOSes. */
617 identity_base = 0xfeffc000;
618
619 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
620 if (ret < 0) {
621 return ret;
622 }
623 }
624
625 /* Set TSS base one page after EPT identity map. */
626 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
627 if (ret < 0) {
628 return ret;
629 }
630
631 /* Tell fw_cfg to notify the BIOS to reserve the range. */
632 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
633 if (ret < 0) {
634 fprintf(stderr, "e820_add_entry() table is full\n");
635 return ret;
636 }
637 qemu_register_reset(kvm_unpoison_all, NULL);
638
639 return 0;
640 }
641
642 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
643 {
644 lhs->selector = rhs->selector;
645 lhs->base = rhs->base;
646 lhs->limit = rhs->limit;
647 lhs->type = 3;
648 lhs->present = 1;
649 lhs->dpl = 3;
650 lhs->db = 0;
651 lhs->s = 1;
652 lhs->l = 0;
653 lhs->g = 0;
654 lhs->avl = 0;
655 lhs->unusable = 0;
656 }
657
658 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
659 {
660 unsigned flags = rhs->flags;
661 lhs->selector = rhs->selector;
662 lhs->base = rhs->base;
663 lhs->limit = rhs->limit;
664 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
665 lhs->present = (flags & DESC_P_MASK) != 0;
666 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
667 lhs->db = (flags >> DESC_B_SHIFT) & 1;
668 lhs->s = (flags & DESC_S_MASK) != 0;
669 lhs->l = (flags >> DESC_L_SHIFT) & 1;
670 lhs->g = (flags & DESC_G_MASK) != 0;
671 lhs->avl = (flags & DESC_AVL_MASK) != 0;
672 lhs->unusable = 0;
673 }
674
675 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
676 {
677 lhs->selector = rhs->selector;
678 lhs->base = rhs->base;
679 lhs->limit = rhs->limit;
680 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
681 (rhs->present * DESC_P_MASK) |
682 (rhs->dpl << DESC_DPL_SHIFT) |
683 (rhs->db << DESC_B_SHIFT) |
684 (rhs->s * DESC_S_MASK) |
685 (rhs->l << DESC_L_SHIFT) |
686 (rhs->g * DESC_G_MASK) |
687 (rhs->avl * DESC_AVL_MASK);
688 }
689
690 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
691 {
692 if (set) {
693 *kvm_reg = *qemu_reg;
694 } else {
695 *qemu_reg = *kvm_reg;
696 }
697 }
698
699 static int kvm_getput_regs(CPUState *env, int set)
700 {
701 struct kvm_regs regs;
702 int ret = 0;
703
704 if (!set) {
705 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
706 if (ret < 0) {
707 return ret;
708 }
709 }
710
711 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
712 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
713 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
714 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
715 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
716 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
717 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
718 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
719 #ifdef TARGET_X86_64
720 kvm_getput_reg(&regs.r8, &env->regs[8], set);
721 kvm_getput_reg(&regs.r9, &env->regs[9], set);
722 kvm_getput_reg(&regs.r10, &env->regs[10], set);
723 kvm_getput_reg(&regs.r11, &env->regs[11], set);
724 kvm_getput_reg(&regs.r12, &env->regs[12], set);
725 kvm_getput_reg(&regs.r13, &env->regs[13], set);
726 kvm_getput_reg(&regs.r14, &env->regs[14], set);
727 kvm_getput_reg(&regs.r15, &env->regs[15], set);
728 #endif
729
730 kvm_getput_reg(&regs.rflags, &env->eflags, set);
731 kvm_getput_reg(&regs.rip, &env->eip, set);
732
733 if (set) {
734 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
735 }
736
737 return ret;
738 }
739
740 static int kvm_put_fpu(CPUState *env)
741 {
742 struct kvm_fpu fpu;
743 int i;
744
745 memset(&fpu, 0, sizeof fpu);
746 fpu.fsw = env->fpus & ~(7 << 11);
747 fpu.fsw |= (env->fpstt & 7) << 11;
748 fpu.fcw = env->fpuc;
749 fpu.last_opcode = env->fpop;
750 fpu.last_ip = env->fpip;
751 fpu.last_dp = env->fpdp;
752 for (i = 0; i < 8; ++i) {
753 fpu.ftwx |= (!env->fptags[i]) << i;
754 }
755 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
756 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
757 fpu.mxcsr = env->mxcsr;
758
759 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
760 }
761
762 #define XSAVE_FCW_FSW 0
763 #define XSAVE_FTW_FOP 1
764 #define XSAVE_CWD_RIP 2
765 #define XSAVE_CWD_RDP 4
766 #define XSAVE_MXCSR 6
767 #define XSAVE_ST_SPACE 8
768 #define XSAVE_XMM_SPACE 40
769 #define XSAVE_XSTATE_BV 128
770 #define XSAVE_YMMH_SPACE 144
771
772 static int kvm_put_xsave(CPUState *env)
773 {
774 int i, r;
775 struct kvm_xsave* xsave;
776 uint16_t cwd, swd, twd;
777
778 if (!kvm_has_xsave()) {
779 return kvm_put_fpu(env);
780 }
781
782 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
783 memset(xsave, 0, sizeof(struct kvm_xsave));
784 twd = 0;
785 swd = env->fpus & ~(7 << 11);
786 swd |= (env->fpstt & 7) << 11;
787 cwd = env->fpuc;
788 for (i = 0; i < 8; ++i) {
789 twd |= (!env->fptags[i]) << i;
790 }
791 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
792 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
793 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
794 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
795 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
796 sizeof env->fpregs);
797 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
798 sizeof env->xmm_regs);
799 xsave->region[XSAVE_MXCSR] = env->mxcsr;
800 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
801 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
802 sizeof env->ymmh_regs);
803 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
804 g_free(xsave);
805 return r;
806 }
807
808 static int kvm_put_xcrs(CPUState *env)
809 {
810 struct kvm_xcrs xcrs;
811
812 if (!kvm_has_xcrs()) {
813 return 0;
814 }
815
816 xcrs.nr_xcrs = 1;
817 xcrs.flags = 0;
818 xcrs.xcrs[0].xcr = 0;
819 xcrs.xcrs[0].value = env->xcr0;
820 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
821 }
822
823 static int kvm_put_sregs(CPUState *env)
824 {
825 struct kvm_sregs sregs;
826
827 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
828 if (env->interrupt_injected >= 0) {
829 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
830 (uint64_t)1 << (env->interrupt_injected % 64);
831 }
832
833 if ((env->eflags & VM_MASK)) {
834 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
835 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
836 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
837 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
838 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
839 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
840 } else {
841 set_seg(&sregs.cs, &env->segs[R_CS]);
842 set_seg(&sregs.ds, &env->segs[R_DS]);
843 set_seg(&sregs.es, &env->segs[R_ES]);
844 set_seg(&sregs.fs, &env->segs[R_FS]);
845 set_seg(&sregs.gs, &env->segs[R_GS]);
846 set_seg(&sregs.ss, &env->segs[R_SS]);
847 }
848
849 set_seg(&sregs.tr, &env->tr);
850 set_seg(&sregs.ldt, &env->ldt);
851
852 sregs.idt.limit = env->idt.limit;
853 sregs.idt.base = env->idt.base;
854 sregs.gdt.limit = env->gdt.limit;
855 sregs.gdt.base = env->gdt.base;
856
857 sregs.cr0 = env->cr[0];
858 sregs.cr2 = env->cr[2];
859 sregs.cr3 = env->cr[3];
860 sregs.cr4 = env->cr[4];
861
862 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
863 sregs.apic_base = cpu_get_apic_base(env->apic_state);
864
865 sregs.efer = env->efer;
866
867 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
868 }
869
870 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
871 uint32_t index, uint64_t value)
872 {
873 entry->index = index;
874 entry->data = value;
875 }
876
877 static int kvm_put_msrs(CPUState *env, int level)
878 {
879 struct {
880 struct kvm_msrs info;
881 struct kvm_msr_entry entries[100];
882 } msr_data;
883 struct kvm_msr_entry *msrs = msr_data.entries;
884 int n = 0;
885
886 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
887 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
888 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
889 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
890 if (has_msr_star) {
891 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
892 }
893 if (has_msr_hsave_pa) {
894 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
895 }
896 if (has_msr_tsc_deadline) {
897 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
898 }
899 if (has_msr_misc_enable) {
900 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
901 env->msr_ia32_misc_enable);
902 }
903 #ifdef TARGET_X86_64
904 if (lm_capable_kernel) {
905 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
906 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
907 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
908 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
909 }
910 #endif
911 if (level == KVM_PUT_FULL_STATE) {
912 /*
913 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
914 * writeback. Until this is fixed, we only write the offset to SMP
915 * guests after migration, desynchronizing the VCPUs, but avoiding
916 * huge jump-backs that would occur without any writeback at all.
917 */
918 if (smp_cpus == 1 || env->tsc != 0) {
919 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
920 }
921 }
922 /*
923 * The following paravirtual MSRs have side effects on the guest or are
924 * too heavy for normal writeback. Limit them to reset or full state
925 * updates.
926 */
927 if (level >= KVM_PUT_RESET_STATE) {
928 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
929 env->system_time_msr);
930 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
931 if (has_msr_async_pf_en) {
932 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
933 env->async_pf_en_msr);
934 }
935 }
936 if (env->mcg_cap) {
937 int i;
938
939 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
940 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
941 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
942 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
943 }
944 }
945
946 msr_data.info.nmsrs = n;
947
948 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
949
950 }
951
952
953 static int kvm_get_fpu(CPUState *env)
954 {
955 struct kvm_fpu fpu;
956 int i, ret;
957
958 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
959 if (ret < 0) {
960 return ret;
961 }
962
963 env->fpstt = (fpu.fsw >> 11) & 7;
964 env->fpus = fpu.fsw;
965 env->fpuc = fpu.fcw;
966 env->fpop = fpu.last_opcode;
967 env->fpip = fpu.last_ip;
968 env->fpdp = fpu.last_dp;
969 for (i = 0; i < 8; ++i) {
970 env->fptags[i] = !((fpu.ftwx >> i) & 1);
971 }
972 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
973 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
974 env->mxcsr = fpu.mxcsr;
975
976 return 0;
977 }
978
979 static int kvm_get_xsave(CPUState *env)
980 {
981 struct kvm_xsave* xsave;
982 int ret, i;
983 uint16_t cwd, swd, twd;
984
985 if (!kvm_has_xsave()) {
986 return kvm_get_fpu(env);
987 }
988
989 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
990 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
991 if (ret < 0) {
992 g_free(xsave);
993 return ret;
994 }
995
996 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
997 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
998 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
999 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1000 env->fpstt = (swd >> 11) & 7;
1001 env->fpus = swd;
1002 env->fpuc = cwd;
1003 for (i = 0; i < 8; ++i) {
1004 env->fptags[i] = !((twd >> i) & 1);
1005 }
1006 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1007 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1008 env->mxcsr = xsave->region[XSAVE_MXCSR];
1009 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1010 sizeof env->fpregs);
1011 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1012 sizeof env->xmm_regs);
1013 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1014 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1015 sizeof env->ymmh_regs);
1016 g_free(xsave);
1017 return 0;
1018 }
1019
1020 static int kvm_get_xcrs(CPUState *env)
1021 {
1022 int i, ret;
1023 struct kvm_xcrs xcrs;
1024
1025 if (!kvm_has_xcrs()) {
1026 return 0;
1027 }
1028
1029 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1030 if (ret < 0) {
1031 return ret;
1032 }
1033
1034 for (i = 0; i < xcrs.nr_xcrs; i++) {
1035 /* Only support xcr0 now */
1036 if (xcrs.xcrs[0].xcr == 0) {
1037 env->xcr0 = xcrs.xcrs[0].value;
1038 break;
1039 }
1040 }
1041 return 0;
1042 }
1043
1044 static int kvm_get_sregs(CPUState *env)
1045 {
1046 struct kvm_sregs sregs;
1047 uint32_t hflags;
1048 int bit, i, ret;
1049
1050 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1051 if (ret < 0) {
1052 return ret;
1053 }
1054
1055 /* There can only be one pending IRQ set in the bitmap at a time, so try
1056 to find it and save its number instead (-1 for none). */
1057 env->interrupt_injected = -1;
1058 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1059 if (sregs.interrupt_bitmap[i]) {
1060 bit = ctz64(sregs.interrupt_bitmap[i]);
1061 env->interrupt_injected = i * 64 + bit;
1062 break;
1063 }
1064 }
1065
1066 get_seg(&env->segs[R_CS], &sregs.cs);
1067 get_seg(&env->segs[R_DS], &sregs.ds);
1068 get_seg(&env->segs[R_ES], &sregs.es);
1069 get_seg(&env->segs[R_FS], &sregs.fs);
1070 get_seg(&env->segs[R_GS], &sregs.gs);
1071 get_seg(&env->segs[R_SS], &sregs.ss);
1072
1073 get_seg(&env->tr, &sregs.tr);
1074 get_seg(&env->ldt, &sregs.ldt);
1075
1076 env->idt.limit = sregs.idt.limit;
1077 env->idt.base = sregs.idt.base;
1078 env->gdt.limit = sregs.gdt.limit;
1079 env->gdt.base = sregs.gdt.base;
1080
1081 env->cr[0] = sregs.cr0;
1082 env->cr[2] = sregs.cr2;
1083 env->cr[3] = sregs.cr3;
1084 env->cr[4] = sregs.cr4;
1085
1086 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1087
1088 env->efer = sregs.efer;
1089 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1090
1091 #define HFLAG_COPY_MASK \
1092 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1093 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1094 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1095 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1096
1097 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1098 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1099 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1100 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1101 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1102 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1103 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1104
1105 if (env->efer & MSR_EFER_LMA) {
1106 hflags |= HF_LMA_MASK;
1107 }
1108
1109 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1110 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1111 } else {
1112 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1113 (DESC_B_SHIFT - HF_CS32_SHIFT);
1114 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1115 (DESC_B_SHIFT - HF_SS32_SHIFT);
1116 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1117 !(hflags & HF_CS32_MASK)) {
1118 hflags |= HF_ADDSEG_MASK;
1119 } else {
1120 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1121 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1122 }
1123 }
1124 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1125
1126 return 0;
1127 }
1128
1129 static int kvm_get_msrs(CPUState *env)
1130 {
1131 struct {
1132 struct kvm_msrs info;
1133 struct kvm_msr_entry entries[100];
1134 } msr_data;
1135 struct kvm_msr_entry *msrs = msr_data.entries;
1136 int ret, i, n;
1137
1138 n = 0;
1139 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1140 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1141 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1142 msrs[n++].index = MSR_PAT;
1143 if (has_msr_star) {
1144 msrs[n++].index = MSR_STAR;
1145 }
1146 if (has_msr_hsave_pa) {
1147 msrs[n++].index = MSR_VM_HSAVE_PA;
1148 }
1149 if (has_msr_tsc_deadline) {
1150 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1151 }
1152 if (has_msr_misc_enable) {
1153 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1154 }
1155
1156 if (!env->tsc_valid) {
1157 msrs[n++].index = MSR_IA32_TSC;
1158 env->tsc_valid = !runstate_is_running();
1159 }
1160
1161 #ifdef TARGET_X86_64
1162 if (lm_capable_kernel) {
1163 msrs[n++].index = MSR_CSTAR;
1164 msrs[n++].index = MSR_KERNELGSBASE;
1165 msrs[n++].index = MSR_FMASK;
1166 msrs[n++].index = MSR_LSTAR;
1167 }
1168 #endif
1169 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1170 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1171 if (has_msr_async_pf_en) {
1172 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1173 }
1174
1175 if (env->mcg_cap) {
1176 msrs[n++].index = MSR_MCG_STATUS;
1177 msrs[n++].index = MSR_MCG_CTL;
1178 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1179 msrs[n++].index = MSR_MC0_CTL + i;
1180 }
1181 }
1182
1183 msr_data.info.nmsrs = n;
1184 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1185 if (ret < 0) {
1186 return ret;
1187 }
1188
1189 for (i = 0; i < ret; i++) {
1190 switch (msrs[i].index) {
1191 case MSR_IA32_SYSENTER_CS:
1192 env->sysenter_cs = msrs[i].data;
1193 break;
1194 case MSR_IA32_SYSENTER_ESP:
1195 env->sysenter_esp = msrs[i].data;
1196 break;
1197 case MSR_IA32_SYSENTER_EIP:
1198 env->sysenter_eip = msrs[i].data;
1199 break;
1200 case MSR_PAT:
1201 env->pat = msrs[i].data;
1202 break;
1203 case MSR_STAR:
1204 env->star = msrs[i].data;
1205 break;
1206 #ifdef TARGET_X86_64
1207 case MSR_CSTAR:
1208 env->cstar = msrs[i].data;
1209 break;
1210 case MSR_KERNELGSBASE:
1211 env->kernelgsbase = msrs[i].data;
1212 break;
1213 case MSR_FMASK:
1214 env->fmask = msrs[i].data;
1215 break;
1216 case MSR_LSTAR:
1217 env->lstar = msrs[i].data;
1218 break;
1219 #endif
1220 case MSR_IA32_TSC:
1221 env->tsc = msrs[i].data;
1222 break;
1223 case MSR_IA32_TSCDEADLINE:
1224 env->tsc_deadline = msrs[i].data;
1225 break;
1226 case MSR_VM_HSAVE_PA:
1227 env->vm_hsave = msrs[i].data;
1228 break;
1229 case MSR_KVM_SYSTEM_TIME:
1230 env->system_time_msr = msrs[i].data;
1231 break;
1232 case MSR_KVM_WALL_CLOCK:
1233 env->wall_clock_msr = msrs[i].data;
1234 break;
1235 case MSR_MCG_STATUS:
1236 env->mcg_status = msrs[i].data;
1237 break;
1238 case MSR_MCG_CTL:
1239 env->mcg_ctl = msrs[i].data;
1240 break;
1241 case MSR_IA32_MISC_ENABLE:
1242 env->msr_ia32_misc_enable = msrs[i].data;
1243 break;
1244 default:
1245 if (msrs[i].index >= MSR_MC0_CTL &&
1246 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1247 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1248 }
1249 break;
1250 case MSR_KVM_ASYNC_PF_EN:
1251 env->async_pf_en_msr = msrs[i].data;
1252 break;
1253 }
1254 }
1255
1256 return 0;
1257 }
1258
1259 static int kvm_put_mp_state(CPUState *env)
1260 {
1261 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1262
1263 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1264 }
1265
1266 static int kvm_get_mp_state(CPUState *env)
1267 {
1268 struct kvm_mp_state mp_state;
1269 int ret;
1270
1271 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1272 if (ret < 0) {
1273 return ret;
1274 }
1275 env->mp_state = mp_state.mp_state;
1276 if (kvm_irqchip_in_kernel()) {
1277 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1278 }
1279 return 0;
1280 }
1281
1282 static int kvm_put_vcpu_events(CPUState *env, int level)
1283 {
1284 struct kvm_vcpu_events events;
1285
1286 if (!kvm_has_vcpu_events()) {
1287 return 0;
1288 }
1289
1290 events.exception.injected = (env->exception_injected >= 0);
1291 events.exception.nr = env->exception_injected;
1292 events.exception.has_error_code = env->has_error_code;
1293 events.exception.error_code = env->error_code;
1294
1295 events.interrupt.injected = (env->interrupt_injected >= 0);
1296 events.interrupt.nr = env->interrupt_injected;
1297 events.interrupt.soft = env->soft_interrupt;
1298
1299 events.nmi.injected = env->nmi_injected;
1300 events.nmi.pending = env->nmi_pending;
1301 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1302
1303 events.sipi_vector = env->sipi_vector;
1304
1305 events.flags = 0;
1306 if (level >= KVM_PUT_RESET_STATE) {
1307 events.flags |=
1308 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1309 }
1310
1311 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1312 }
1313
1314 static int kvm_get_vcpu_events(CPUState *env)
1315 {
1316 struct kvm_vcpu_events events;
1317 int ret;
1318
1319 if (!kvm_has_vcpu_events()) {
1320 return 0;
1321 }
1322
1323 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1324 if (ret < 0) {
1325 return ret;
1326 }
1327 env->exception_injected =
1328 events.exception.injected ? events.exception.nr : -1;
1329 env->has_error_code = events.exception.has_error_code;
1330 env->error_code = events.exception.error_code;
1331
1332 env->interrupt_injected =
1333 events.interrupt.injected ? events.interrupt.nr : -1;
1334 env->soft_interrupt = events.interrupt.soft;
1335
1336 env->nmi_injected = events.nmi.injected;
1337 env->nmi_pending = events.nmi.pending;
1338 if (events.nmi.masked) {
1339 env->hflags2 |= HF2_NMI_MASK;
1340 } else {
1341 env->hflags2 &= ~HF2_NMI_MASK;
1342 }
1343
1344 env->sipi_vector = events.sipi_vector;
1345
1346 return 0;
1347 }
1348
1349 static int kvm_guest_debug_workarounds(CPUState *env)
1350 {
1351 int ret = 0;
1352 unsigned long reinject_trap = 0;
1353
1354 if (!kvm_has_vcpu_events()) {
1355 if (env->exception_injected == 1) {
1356 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1357 } else if (env->exception_injected == 3) {
1358 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1359 }
1360 env->exception_injected = -1;
1361 }
1362
1363 /*
1364 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1365 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1366 * by updating the debug state once again if single-stepping is on.
1367 * Another reason to call kvm_update_guest_debug here is a pending debug
1368 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1369 * reinject them via SET_GUEST_DEBUG.
1370 */
1371 if (reinject_trap ||
1372 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1373 ret = kvm_update_guest_debug(env, reinject_trap);
1374 }
1375 return ret;
1376 }
1377
1378 static int kvm_put_debugregs(CPUState *env)
1379 {
1380 struct kvm_debugregs dbgregs;
1381 int i;
1382
1383 if (!kvm_has_debugregs()) {
1384 return 0;
1385 }
1386
1387 for (i = 0; i < 4; i++) {
1388 dbgregs.db[i] = env->dr[i];
1389 }
1390 dbgregs.dr6 = env->dr[6];
1391 dbgregs.dr7 = env->dr[7];
1392 dbgregs.flags = 0;
1393
1394 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1395 }
1396
1397 static int kvm_get_debugregs(CPUState *env)
1398 {
1399 struct kvm_debugregs dbgregs;
1400 int i, ret;
1401
1402 if (!kvm_has_debugregs()) {
1403 return 0;
1404 }
1405
1406 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1407 if (ret < 0) {
1408 return ret;
1409 }
1410 for (i = 0; i < 4; i++) {
1411 env->dr[i] = dbgregs.db[i];
1412 }
1413 env->dr[4] = env->dr[6] = dbgregs.dr6;
1414 env->dr[5] = env->dr[7] = dbgregs.dr7;
1415
1416 return 0;
1417 }
1418
1419 int kvm_arch_put_registers(CPUState *env, int level)
1420 {
1421 int ret;
1422
1423 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1424
1425 ret = kvm_getput_regs(env, 1);
1426 if (ret < 0) {
1427 return ret;
1428 }
1429 ret = kvm_put_xsave(env);
1430 if (ret < 0) {
1431 return ret;
1432 }
1433 ret = kvm_put_xcrs(env);
1434 if (ret < 0) {
1435 return ret;
1436 }
1437 ret = kvm_put_sregs(env);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441 /* must be before kvm_put_msrs */
1442 ret = kvm_inject_mce_oldstyle(env);
1443 if (ret < 0) {
1444 return ret;
1445 }
1446 ret = kvm_put_msrs(env, level);
1447 if (ret < 0) {
1448 return ret;
1449 }
1450 if (level >= KVM_PUT_RESET_STATE) {
1451 ret = kvm_put_mp_state(env);
1452 if (ret < 0) {
1453 return ret;
1454 }
1455 }
1456 ret = kvm_put_vcpu_events(env, level);
1457 if (ret < 0) {
1458 return ret;
1459 }
1460 ret = kvm_put_debugregs(env);
1461 if (ret < 0) {
1462 return ret;
1463 }
1464 /* must be last */
1465 ret = kvm_guest_debug_workarounds(env);
1466 if (ret < 0) {
1467 return ret;
1468 }
1469 return 0;
1470 }
1471
1472 int kvm_arch_get_registers(CPUState *env)
1473 {
1474 int ret;
1475
1476 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1477
1478 ret = kvm_getput_regs(env, 0);
1479 if (ret < 0) {
1480 return ret;
1481 }
1482 ret = kvm_get_xsave(env);
1483 if (ret < 0) {
1484 return ret;
1485 }
1486 ret = kvm_get_xcrs(env);
1487 if (ret < 0) {
1488 return ret;
1489 }
1490 ret = kvm_get_sregs(env);
1491 if (ret < 0) {
1492 return ret;
1493 }
1494 ret = kvm_get_msrs(env);
1495 if (ret < 0) {
1496 return ret;
1497 }
1498 ret = kvm_get_mp_state(env);
1499 if (ret < 0) {
1500 return ret;
1501 }
1502 ret = kvm_get_vcpu_events(env);
1503 if (ret < 0) {
1504 return ret;
1505 }
1506 ret = kvm_get_debugregs(env);
1507 if (ret < 0) {
1508 return ret;
1509 }
1510 return 0;
1511 }
1512
1513 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1514 {
1515 int ret;
1516
1517 /* Inject NMI */
1518 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1519 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1520 DPRINTF("injected NMI\n");
1521 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1522 if (ret < 0) {
1523 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1524 strerror(-ret));
1525 }
1526 }
1527
1528 if (!kvm_irqchip_in_kernel()) {
1529 /* Force the VCPU out of its inner loop to process the INIT request */
1530 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1531 env->exit_request = 1;
1532 }
1533
1534 /* Try to inject an interrupt if the guest can accept it */
1535 if (run->ready_for_interrupt_injection &&
1536 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1537 (env->eflags & IF_MASK)) {
1538 int irq;
1539
1540 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1541 irq = cpu_get_pic_interrupt(env);
1542 if (irq >= 0) {
1543 struct kvm_interrupt intr;
1544
1545 intr.irq = irq;
1546 DPRINTF("injected interrupt %d\n", irq);
1547 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1548 if (ret < 0) {
1549 fprintf(stderr,
1550 "KVM: injection failed, interrupt lost (%s)\n",
1551 strerror(-ret));
1552 }
1553 }
1554 }
1555
1556 /* If we have an interrupt but the guest is not ready to receive an
1557 * interrupt, request an interrupt window exit. This will
1558 * cause a return to userspace as soon as the guest is ready to
1559 * receive interrupts. */
1560 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1561 run->request_interrupt_window = 1;
1562 } else {
1563 run->request_interrupt_window = 0;
1564 }
1565
1566 DPRINTF("setting tpr\n");
1567 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1568 }
1569 }
1570
1571 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1572 {
1573 if (run->if_flag) {
1574 env->eflags |= IF_MASK;
1575 } else {
1576 env->eflags &= ~IF_MASK;
1577 }
1578 cpu_set_apic_tpr(env->apic_state, run->cr8);
1579 cpu_set_apic_base(env->apic_state, run->apic_base);
1580 }
1581
1582 int kvm_arch_process_async_events(CPUState *env)
1583 {
1584 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1585 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1586 assert(env->mcg_cap);
1587
1588 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1589
1590 kvm_cpu_synchronize_state(env);
1591
1592 if (env->exception_injected == EXCP08_DBLE) {
1593 /* this means triple fault */
1594 qemu_system_reset_request();
1595 env->exit_request = 1;
1596 return 0;
1597 }
1598 env->exception_injected = EXCP12_MCHK;
1599 env->has_error_code = 0;
1600
1601 env->halted = 0;
1602 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1603 env->mp_state = KVM_MP_STATE_RUNNABLE;
1604 }
1605 }
1606
1607 if (kvm_irqchip_in_kernel()) {
1608 return 0;
1609 }
1610
1611 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1612 (env->eflags & IF_MASK)) ||
1613 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1614 env->halted = 0;
1615 }
1616 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1617 kvm_cpu_synchronize_state(env);
1618 do_cpu_init(env);
1619 }
1620 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1621 kvm_cpu_synchronize_state(env);
1622 do_cpu_sipi(env);
1623 }
1624
1625 return env->halted;
1626 }
1627
1628 static int kvm_handle_halt(CPUState *env)
1629 {
1630 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1631 (env->eflags & IF_MASK)) &&
1632 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1633 env->halted = 1;
1634 return EXCP_HLT;
1635 }
1636
1637 return 0;
1638 }
1639
1640 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1641 {
1642 static const uint8_t int3 = 0xcc;
1643
1644 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1645 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1646 return -EINVAL;
1647 }
1648 return 0;
1649 }
1650
1651 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1652 {
1653 uint8_t int3;
1654
1655 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1656 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1657 return -EINVAL;
1658 }
1659 return 0;
1660 }
1661
1662 static struct {
1663 target_ulong addr;
1664 int len;
1665 int type;
1666 } hw_breakpoint[4];
1667
1668 static int nb_hw_breakpoint;
1669
1670 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1671 {
1672 int n;
1673
1674 for (n = 0; n < nb_hw_breakpoint; n++) {
1675 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1676 (hw_breakpoint[n].len == len || len == -1)) {
1677 return n;
1678 }
1679 }
1680 return -1;
1681 }
1682
1683 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1684 target_ulong len, int type)
1685 {
1686 switch (type) {
1687 case GDB_BREAKPOINT_HW:
1688 len = 1;
1689 break;
1690 case GDB_WATCHPOINT_WRITE:
1691 case GDB_WATCHPOINT_ACCESS:
1692 switch (len) {
1693 case 1:
1694 break;
1695 case 2:
1696 case 4:
1697 case 8:
1698 if (addr & (len - 1)) {
1699 return -EINVAL;
1700 }
1701 break;
1702 default:
1703 return -EINVAL;
1704 }
1705 break;
1706 default:
1707 return -ENOSYS;
1708 }
1709
1710 if (nb_hw_breakpoint == 4) {
1711 return -ENOBUFS;
1712 }
1713 if (find_hw_breakpoint(addr, len, type) >= 0) {
1714 return -EEXIST;
1715 }
1716 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1717 hw_breakpoint[nb_hw_breakpoint].len = len;
1718 hw_breakpoint[nb_hw_breakpoint].type = type;
1719 nb_hw_breakpoint++;
1720
1721 return 0;
1722 }
1723
1724 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1725 target_ulong len, int type)
1726 {
1727 int n;
1728
1729 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1730 if (n < 0) {
1731 return -ENOENT;
1732 }
1733 nb_hw_breakpoint--;
1734 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1735
1736 return 0;
1737 }
1738
1739 void kvm_arch_remove_all_hw_breakpoints(void)
1740 {
1741 nb_hw_breakpoint = 0;
1742 }
1743
1744 static CPUWatchpoint hw_watchpoint;
1745
1746 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1747 {
1748 int ret = 0;
1749 int n;
1750
1751 if (arch_info->exception == 1) {
1752 if (arch_info->dr6 & (1 << 14)) {
1753 if (cpu_single_env->singlestep_enabled) {
1754 ret = EXCP_DEBUG;
1755 }
1756 } else {
1757 for (n = 0; n < 4; n++) {
1758 if (arch_info->dr6 & (1 << n)) {
1759 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1760 case 0x0:
1761 ret = EXCP_DEBUG;
1762 break;
1763 case 0x1:
1764 ret = EXCP_DEBUG;
1765 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1766 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1767 hw_watchpoint.flags = BP_MEM_WRITE;
1768 break;
1769 case 0x3:
1770 ret = EXCP_DEBUG;
1771 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1772 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1773 hw_watchpoint.flags = BP_MEM_ACCESS;
1774 break;
1775 }
1776 }
1777 }
1778 }
1779 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1780 ret = EXCP_DEBUG;
1781 }
1782 if (ret == 0) {
1783 cpu_synchronize_state(cpu_single_env);
1784 assert(cpu_single_env->exception_injected == -1);
1785
1786 /* pass to guest */
1787 cpu_single_env->exception_injected = arch_info->exception;
1788 cpu_single_env->has_error_code = 0;
1789 }
1790
1791 return ret;
1792 }
1793
1794 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1795 {
1796 const uint8_t type_code[] = {
1797 [GDB_BREAKPOINT_HW] = 0x0,
1798 [GDB_WATCHPOINT_WRITE] = 0x1,
1799 [GDB_WATCHPOINT_ACCESS] = 0x3
1800 };
1801 const uint8_t len_code[] = {
1802 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1803 };
1804 int n;
1805
1806 if (kvm_sw_breakpoints_active(env)) {
1807 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1808 }
1809 if (nb_hw_breakpoint > 0) {
1810 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1811 dbg->arch.debugreg[7] = 0x0600;
1812 for (n = 0; n < nb_hw_breakpoint; n++) {
1813 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1814 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1815 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1816 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1817 }
1818 }
1819 }
1820
1821 static bool host_supports_vmx(void)
1822 {
1823 uint32_t ecx, unused;
1824
1825 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1826 return ecx & CPUID_EXT_VMX;
1827 }
1828
1829 #define VMX_INVALID_GUEST_STATE 0x80000021
1830
1831 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1832 {
1833 uint64_t code;
1834 int ret;
1835
1836 switch (run->exit_reason) {
1837 case KVM_EXIT_HLT:
1838 DPRINTF("handle_hlt\n");
1839 ret = kvm_handle_halt(env);
1840 break;
1841 case KVM_EXIT_SET_TPR:
1842 ret = 0;
1843 break;
1844 case KVM_EXIT_FAIL_ENTRY:
1845 code = run->fail_entry.hardware_entry_failure_reason;
1846 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1847 code);
1848 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1849 fprintf(stderr,
1850 "\nIf you're running a guest on an Intel machine without "
1851 "unrestricted mode\n"
1852 "support, the failure can be most likely due to the guest "
1853 "entering an invalid\n"
1854 "state for Intel VT. For example, the guest maybe running "
1855 "in big real mode\n"
1856 "which is not supported on less recent Intel processors."
1857 "\n\n");
1858 }
1859 ret = -1;
1860 break;
1861 case KVM_EXIT_EXCEPTION:
1862 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1863 run->ex.exception, run->ex.error_code);
1864 ret = -1;
1865 break;
1866 case KVM_EXIT_DEBUG:
1867 DPRINTF("kvm_exit_debug\n");
1868 ret = kvm_handle_debug(&run->debug.arch);
1869 break;
1870 default:
1871 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1872 ret = -1;
1873 break;
1874 }
1875
1876 return ret;
1877 }
1878
1879 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1880 {
1881 return !(env->cr[0] & CR0_PE_MASK) ||
1882 ((env->segs[R_CS].selector & 3) != 3);
1883 }