]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/kvm.c
kvm: x86: Implicitly clear nmi_injected/pending on reset
[mirror_qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static int lm_capable_kernel;
67
68 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69 {
70 struct kvm_cpuid2 *cpuid;
71 int r, size;
72
73 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
75 cpuid->nent = max;
76 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77 if (r == 0 && cpuid->nent >= max) {
78 r = -E2BIG;
79 }
80 if (r < 0) {
81 if (r == -E2BIG) {
82 qemu_free(cpuid);
83 return NULL;
84 } else {
85 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 strerror(-r));
87 exit(1);
88 }
89 }
90 return cpuid;
91 }
92
93 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
94 uint32_t index, int reg)
95 {
96 struct kvm_cpuid2 *cpuid;
97 int i, max;
98 uint32_t ret = 0;
99 uint32_t cpuid_1_edx;
100
101 max = 1;
102 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
103 max *= 2;
104 }
105
106 for (i = 0; i < cpuid->nent; ++i) {
107 if (cpuid->entries[i].function == function &&
108 cpuid->entries[i].index == index) {
109 switch (reg) {
110 case R_EAX:
111 ret = cpuid->entries[i].eax;
112 break;
113 case R_EBX:
114 ret = cpuid->entries[i].ebx;
115 break;
116 case R_ECX:
117 ret = cpuid->entries[i].ecx;
118 break;
119 case R_EDX:
120 ret = cpuid->entries[i].edx;
121 switch (function) {
122 case 1:
123 /* KVM before 2.6.30 misreports the following features */
124 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
125 break;
126 case 0x80000001:
127 /* On Intel, kvm returns cpuid according to the Intel spec,
128 * so add missing bits according to the AMD spec:
129 */
130 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
131 ret |= cpuid_1_edx & 0x183f7ff;
132 break;
133 }
134 break;
135 }
136 }
137 }
138
139 qemu_free(cpuid);
140
141 return ret;
142 }
143
144 #ifdef CONFIG_KVM_PARA
145 struct kvm_para_features {
146 int cap;
147 int feature;
148 } para_features[] = {
149 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
150 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
151 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152 #ifdef KVM_CAP_ASYNC_PF
153 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
154 #endif
155 { -1, -1 }
156 };
157
158 static int get_para_features(CPUState *env)
159 {
160 int i, features = 0;
161
162 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
163 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
164 features |= (1 << para_features[i].feature);
165 }
166 }
167 return features;
168 }
169 #endif
170
171 #ifdef KVM_CAP_MCE
172 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
173 int *max_banks)
174 {
175 int r;
176
177 r = kvm_check_extension(s, KVM_CAP_MCE);
178 if (r > 0) {
179 *max_banks = r;
180 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
181 }
182 return -ENOSYS;
183 }
184
185 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
186 {
187 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
188 }
189
190 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
191 {
192 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
193 }
194
195 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
196 {
197 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
198 int r;
199
200 kmsrs->nmsrs = n;
201 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
202 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
203 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
204 free(kmsrs);
205 return r;
206 }
207
208 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
209 static int kvm_mce_in_progress(CPUState *env)
210 {
211 struct kvm_msr_entry msr_mcg_status = {
212 .index = MSR_MCG_STATUS,
213 };
214 int r;
215
216 r = kvm_get_msr(env, &msr_mcg_status, 1);
217 if (r == -1 || r == 0) {
218 fprintf(stderr, "Failed to get MCE status\n");
219 return 0;
220 }
221 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
222 }
223
224 struct kvm_x86_mce_data
225 {
226 CPUState *env;
227 struct kvm_x86_mce *mce;
228 int abort_on_error;
229 };
230
231 static void kvm_do_inject_x86_mce(void *_data)
232 {
233 struct kvm_x86_mce_data *data = _data;
234 int r;
235
236 /* If there is an MCE exception being processed, ignore this SRAO MCE */
237 if ((data->env->mcg_cap & MCG_SER_P) &&
238 !(data->mce->status & MCI_STATUS_AR)) {
239 if (kvm_mce_in_progress(data->env)) {
240 return;
241 }
242 }
243
244 r = kvm_set_mce(data->env, data->mce);
245 if (r < 0) {
246 perror("kvm_set_mce FAILED");
247 if (data->abort_on_error) {
248 abort();
249 }
250 }
251 }
252
253 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
254 int flag)
255 {
256 struct kvm_x86_mce_data data = {
257 .env = env,
258 .mce = mce,
259 .abort_on_error = (flag & ABORT_ON_ERROR),
260 };
261
262 if (!env->mcg_cap) {
263 fprintf(stderr, "MCE support is not enabled!\n");
264 return;
265 }
266
267 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
268 }
269
270 static void kvm_mce_broadcast_rest(CPUState *env);
271 #endif
272
273 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
274 uint64_t mcg_status, uint64_t addr, uint64_t misc,
275 int flag)
276 {
277 #ifdef KVM_CAP_MCE
278 struct kvm_x86_mce mce = {
279 .bank = bank,
280 .status = status,
281 .mcg_status = mcg_status,
282 .addr = addr,
283 .misc = misc,
284 };
285
286 if (flag & MCE_BROADCAST) {
287 kvm_mce_broadcast_rest(cenv);
288 }
289
290 kvm_inject_x86_mce_on(cenv, &mce, flag);
291 #else
292 if (flag & ABORT_ON_ERROR) {
293 abort();
294 }
295 #endif
296 }
297
298 int kvm_arch_init_vcpu(CPUState *env)
299 {
300 struct {
301 struct kvm_cpuid2 cpuid;
302 struct kvm_cpuid_entry2 entries[100];
303 } __attribute__((packed)) cpuid_data;
304 uint32_t limit, i, j, cpuid_i;
305 uint32_t unused;
306 struct kvm_cpuid_entry2 *c;
307 #ifdef CONFIG_KVM_PARA
308 uint32_t signature[3];
309 #endif
310
311 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
312
313 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
314 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
315 env->cpuid_ext_features |= i;
316
317 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
318 0, R_EDX);
319 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
320 0, R_ECX);
321 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
322 0, R_EDX);
323
324
325 cpuid_i = 0;
326
327 #ifdef CONFIG_KVM_PARA
328 /* Paravirtualization CPUIDs */
329 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
330 c = &cpuid_data.entries[cpuid_i++];
331 memset(c, 0, sizeof(*c));
332 c->function = KVM_CPUID_SIGNATURE;
333 c->eax = 0;
334 c->ebx = signature[0];
335 c->ecx = signature[1];
336 c->edx = signature[2];
337
338 c = &cpuid_data.entries[cpuid_i++];
339 memset(c, 0, sizeof(*c));
340 c->function = KVM_CPUID_FEATURES;
341 c->eax = env->cpuid_kvm_features & get_para_features(env);
342 #endif
343
344 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
345
346 for (i = 0; i <= limit; i++) {
347 c = &cpuid_data.entries[cpuid_i++];
348
349 switch (i) {
350 case 2: {
351 /* Keep reading function 2 till all the input is received */
352 int times;
353
354 c->function = i;
355 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
356 KVM_CPUID_FLAG_STATE_READ_NEXT;
357 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
358 times = c->eax & 0xff;
359
360 for (j = 1; j < times; ++j) {
361 c = &cpuid_data.entries[cpuid_i++];
362 c->function = i;
363 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
364 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
365 }
366 break;
367 }
368 case 4:
369 case 0xb:
370 case 0xd:
371 for (j = 0; ; j++) {
372 c->function = i;
373 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
374 c->index = j;
375 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
376
377 if (i == 4 && c->eax == 0) {
378 break;
379 }
380 if (i == 0xb && !(c->ecx & 0xff00)) {
381 break;
382 }
383 if (i == 0xd && c->eax == 0) {
384 break;
385 }
386 c = &cpuid_data.entries[cpuid_i++];
387 }
388 break;
389 default:
390 c->function = i;
391 c->flags = 0;
392 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
393 break;
394 }
395 }
396 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
397
398 for (i = 0x80000000; i <= limit; i++) {
399 c = &cpuid_data.entries[cpuid_i++];
400
401 c->function = i;
402 c->flags = 0;
403 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
404 }
405
406 cpuid_data.cpuid.nent = cpuid_i;
407
408 #ifdef KVM_CAP_MCE
409 if (((env->cpuid_version >> 8)&0xF) >= 6
410 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
411 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
412 uint64_t mcg_cap;
413 int banks;
414
415 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
416 perror("kvm_get_mce_cap_supported FAILED");
417 } else {
418 if (banks > MCE_BANKS_DEF)
419 banks = MCE_BANKS_DEF;
420 mcg_cap &= MCE_CAP_DEF;
421 mcg_cap |= banks;
422 if (kvm_setup_mce(env, &mcg_cap)) {
423 perror("kvm_setup_mce FAILED");
424 } else {
425 env->mcg_cap = mcg_cap;
426 }
427 }
428 }
429 #endif
430
431 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
432 }
433
434 void kvm_arch_reset_vcpu(CPUState *env)
435 {
436 env->exception_injected = -1;
437 env->interrupt_injected = -1;
438 env->xcr0 = 1;
439 if (kvm_irqchip_in_kernel()) {
440 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
441 KVM_MP_STATE_UNINITIALIZED;
442 } else {
443 env->mp_state = KVM_MP_STATE_RUNNABLE;
444 }
445 }
446
447 static int kvm_get_supported_msrs(KVMState *s)
448 {
449 static int kvm_supported_msrs;
450 int ret = 0;
451
452 /* first time */
453 if (kvm_supported_msrs == 0) {
454 struct kvm_msr_list msr_list, *kvm_msr_list;
455
456 kvm_supported_msrs = -1;
457
458 /* Obtain MSR list from KVM. These are the MSRs that we must
459 * save/restore */
460 msr_list.nmsrs = 0;
461 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
462 if (ret < 0 && ret != -E2BIG) {
463 return ret;
464 }
465 /* Old kernel modules had a bug and could write beyond the provided
466 memory. Allocate at least a safe amount of 1K. */
467 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
468 msr_list.nmsrs *
469 sizeof(msr_list.indices[0])));
470
471 kvm_msr_list->nmsrs = msr_list.nmsrs;
472 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
473 if (ret >= 0) {
474 int i;
475
476 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
477 if (kvm_msr_list->indices[i] == MSR_STAR) {
478 has_msr_star = true;
479 continue;
480 }
481 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
482 has_msr_hsave_pa = true;
483 continue;
484 }
485 }
486 }
487
488 free(kvm_msr_list);
489 }
490
491 return ret;
492 }
493
494 int kvm_arch_init(KVMState *s)
495 {
496 uint64_t identity_base = 0xfffbc000;
497 int ret;
498 struct utsname utsname;
499
500 ret = kvm_get_supported_msrs(s);
501 if (ret < 0) {
502 return ret;
503 }
504
505 uname(&utsname);
506 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
507
508 /*
509 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
510 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
511 * Since these must be part of guest physical memory, we need to allocate
512 * them, both by setting their start addresses in the kernel and by
513 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
514 *
515 * Older KVM versions may not support setting the identity map base. In
516 * that case we need to stick with the default, i.e. a 256K maximum BIOS
517 * size.
518 */
519 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
520 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
521 /* Allows up to 16M BIOSes. */
522 identity_base = 0xfeffc000;
523
524 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
525 if (ret < 0) {
526 return ret;
527 }
528 }
529 #endif
530 /* Set TSS base one page after EPT identity map. */
531 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
532 if (ret < 0) {
533 return ret;
534 }
535
536 /* Tell fw_cfg to notify the BIOS to reserve the range. */
537 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
538 if (ret < 0) {
539 fprintf(stderr, "e820_add_entry() table is full\n");
540 return ret;
541 }
542
543 return 0;
544 }
545
546 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
547 {
548 lhs->selector = rhs->selector;
549 lhs->base = rhs->base;
550 lhs->limit = rhs->limit;
551 lhs->type = 3;
552 lhs->present = 1;
553 lhs->dpl = 3;
554 lhs->db = 0;
555 lhs->s = 1;
556 lhs->l = 0;
557 lhs->g = 0;
558 lhs->avl = 0;
559 lhs->unusable = 0;
560 }
561
562 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
563 {
564 unsigned flags = rhs->flags;
565 lhs->selector = rhs->selector;
566 lhs->base = rhs->base;
567 lhs->limit = rhs->limit;
568 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
569 lhs->present = (flags & DESC_P_MASK) != 0;
570 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
571 lhs->db = (flags >> DESC_B_SHIFT) & 1;
572 lhs->s = (flags & DESC_S_MASK) != 0;
573 lhs->l = (flags >> DESC_L_SHIFT) & 1;
574 lhs->g = (flags & DESC_G_MASK) != 0;
575 lhs->avl = (flags & DESC_AVL_MASK) != 0;
576 lhs->unusable = 0;
577 }
578
579 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
580 {
581 lhs->selector = rhs->selector;
582 lhs->base = rhs->base;
583 lhs->limit = rhs->limit;
584 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
585 (rhs->present * DESC_P_MASK) |
586 (rhs->dpl << DESC_DPL_SHIFT) |
587 (rhs->db << DESC_B_SHIFT) |
588 (rhs->s * DESC_S_MASK) |
589 (rhs->l << DESC_L_SHIFT) |
590 (rhs->g * DESC_G_MASK) |
591 (rhs->avl * DESC_AVL_MASK);
592 }
593
594 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
595 {
596 if (set) {
597 *kvm_reg = *qemu_reg;
598 } else {
599 *qemu_reg = *kvm_reg;
600 }
601 }
602
603 static int kvm_getput_regs(CPUState *env, int set)
604 {
605 struct kvm_regs regs;
606 int ret = 0;
607
608 if (!set) {
609 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
610 if (ret < 0) {
611 return ret;
612 }
613 }
614
615 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
616 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
617 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
618 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
619 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
620 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
621 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
622 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
623 #ifdef TARGET_X86_64
624 kvm_getput_reg(&regs.r8, &env->regs[8], set);
625 kvm_getput_reg(&regs.r9, &env->regs[9], set);
626 kvm_getput_reg(&regs.r10, &env->regs[10], set);
627 kvm_getput_reg(&regs.r11, &env->regs[11], set);
628 kvm_getput_reg(&regs.r12, &env->regs[12], set);
629 kvm_getput_reg(&regs.r13, &env->regs[13], set);
630 kvm_getput_reg(&regs.r14, &env->regs[14], set);
631 kvm_getput_reg(&regs.r15, &env->regs[15], set);
632 #endif
633
634 kvm_getput_reg(&regs.rflags, &env->eflags, set);
635 kvm_getput_reg(&regs.rip, &env->eip, set);
636
637 if (set) {
638 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
639 }
640
641 return ret;
642 }
643
644 static int kvm_put_fpu(CPUState *env)
645 {
646 struct kvm_fpu fpu;
647 int i;
648
649 memset(&fpu, 0, sizeof fpu);
650 fpu.fsw = env->fpus & ~(7 << 11);
651 fpu.fsw |= (env->fpstt & 7) << 11;
652 fpu.fcw = env->fpuc;
653 for (i = 0; i < 8; ++i) {
654 fpu.ftwx |= (!env->fptags[i]) << i;
655 }
656 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
657 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
658 fpu.mxcsr = env->mxcsr;
659
660 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
661 }
662
663 #ifdef KVM_CAP_XSAVE
664 #define XSAVE_CWD_RIP 2
665 #define XSAVE_CWD_RDP 4
666 #define XSAVE_MXCSR 6
667 #define XSAVE_ST_SPACE 8
668 #define XSAVE_XMM_SPACE 40
669 #define XSAVE_XSTATE_BV 128
670 #define XSAVE_YMMH_SPACE 144
671 #endif
672
673 static int kvm_put_xsave(CPUState *env)
674 {
675 #ifdef KVM_CAP_XSAVE
676 int i, r;
677 struct kvm_xsave* xsave;
678 uint16_t cwd, swd, twd, fop;
679
680 if (!kvm_has_xsave()) {
681 return kvm_put_fpu(env);
682 }
683
684 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
685 memset(xsave, 0, sizeof(struct kvm_xsave));
686 cwd = swd = twd = fop = 0;
687 swd = env->fpus & ~(7 << 11);
688 swd |= (env->fpstt & 7) << 11;
689 cwd = env->fpuc;
690 for (i = 0; i < 8; ++i) {
691 twd |= (!env->fptags[i]) << i;
692 }
693 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
694 xsave->region[1] = (uint32_t)(fop << 16) + twd;
695 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
696 sizeof env->fpregs);
697 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
698 sizeof env->xmm_regs);
699 xsave->region[XSAVE_MXCSR] = env->mxcsr;
700 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
701 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
702 sizeof env->ymmh_regs);
703 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
704 qemu_free(xsave);
705 return r;
706 #else
707 return kvm_put_fpu(env);
708 #endif
709 }
710
711 static int kvm_put_xcrs(CPUState *env)
712 {
713 #ifdef KVM_CAP_XCRS
714 struct kvm_xcrs xcrs;
715
716 if (!kvm_has_xcrs()) {
717 return 0;
718 }
719
720 xcrs.nr_xcrs = 1;
721 xcrs.flags = 0;
722 xcrs.xcrs[0].xcr = 0;
723 xcrs.xcrs[0].value = env->xcr0;
724 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
725 #else
726 return 0;
727 #endif
728 }
729
730 static int kvm_put_sregs(CPUState *env)
731 {
732 struct kvm_sregs sregs;
733
734 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
735 if (env->interrupt_injected >= 0) {
736 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
737 (uint64_t)1 << (env->interrupt_injected % 64);
738 }
739
740 if ((env->eflags & VM_MASK)) {
741 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
742 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
743 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
744 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
745 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
746 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
747 } else {
748 set_seg(&sregs.cs, &env->segs[R_CS]);
749 set_seg(&sregs.ds, &env->segs[R_DS]);
750 set_seg(&sregs.es, &env->segs[R_ES]);
751 set_seg(&sregs.fs, &env->segs[R_FS]);
752 set_seg(&sregs.gs, &env->segs[R_GS]);
753 set_seg(&sregs.ss, &env->segs[R_SS]);
754 }
755
756 set_seg(&sregs.tr, &env->tr);
757 set_seg(&sregs.ldt, &env->ldt);
758
759 sregs.idt.limit = env->idt.limit;
760 sregs.idt.base = env->idt.base;
761 sregs.gdt.limit = env->gdt.limit;
762 sregs.gdt.base = env->gdt.base;
763
764 sregs.cr0 = env->cr[0];
765 sregs.cr2 = env->cr[2];
766 sregs.cr3 = env->cr[3];
767 sregs.cr4 = env->cr[4];
768
769 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
770 sregs.apic_base = cpu_get_apic_base(env->apic_state);
771
772 sregs.efer = env->efer;
773
774 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
775 }
776
777 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
778 uint32_t index, uint64_t value)
779 {
780 entry->index = index;
781 entry->data = value;
782 }
783
784 static int kvm_put_msrs(CPUState *env, int level)
785 {
786 struct {
787 struct kvm_msrs info;
788 struct kvm_msr_entry entries[100];
789 } msr_data;
790 struct kvm_msr_entry *msrs = msr_data.entries;
791 int n = 0;
792
793 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
794 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
795 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
796 if (has_msr_star) {
797 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
798 }
799 if (has_msr_hsave_pa) {
800 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
801 }
802 #ifdef TARGET_X86_64
803 if (lm_capable_kernel) {
804 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
805 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
806 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
807 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
808 }
809 #endif
810 if (level == KVM_PUT_FULL_STATE) {
811 /*
812 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
813 * writeback. Until this is fixed, we only write the offset to SMP
814 * guests after migration, desynchronizing the VCPUs, but avoiding
815 * huge jump-backs that would occur without any writeback at all.
816 */
817 if (smp_cpus == 1 || env->tsc != 0) {
818 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
819 }
820 }
821 /*
822 * The following paravirtual MSRs have side effects on the guest or are
823 * too heavy for normal writeback. Limit them to reset or full state
824 * updates.
825 */
826 if (level >= KVM_PUT_RESET_STATE) {
827 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
828 env->system_time_msr);
829 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
830 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
831 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
832 #endif
833 }
834 #ifdef KVM_CAP_MCE
835 if (env->mcg_cap) {
836 int i;
837
838 if (level == KVM_PUT_RESET_STATE) {
839 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
840 } else if (level == KVM_PUT_FULL_STATE) {
841 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
842 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
843 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
844 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
845 }
846 }
847 }
848 #endif
849
850 msr_data.info.nmsrs = n;
851
852 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
853
854 }
855
856
857 static int kvm_get_fpu(CPUState *env)
858 {
859 struct kvm_fpu fpu;
860 int i, ret;
861
862 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
863 if (ret < 0) {
864 return ret;
865 }
866
867 env->fpstt = (fpu.fsw >> 11) & 7;
868 env->fpus = fpu.fsw;
869 env->fpuc = fpu.fcw;
870 for (i = 0; i < 8; ++i) {
871 env->fptags[i] = !((fpu.ftwx >> i) & 1);
872 }
873 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
874 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
875 env->mxcsr = fpu.mxcsr;
876
877 return 0;
878 }
879
880 static int kvm_get_xsave(CPUState *env)
881 {
882 #ifdef KVM_CAP_XSAVE
883 struct kvm_xsave* xsave;
884 int ret, i;
885 uint16_t cwd, swd, twd, fop;
886
887 if (!kvm_has_xsave()) {
888 return kvm_get_fpu(env);
889 }
890
891 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
892 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
893 if (ret < 0) {
894 qemu_free(xsave);
895 return ret;
896 }
897
898 cwd = (uint16_t)xsave->region[0];
899 swd = (uint16_t)(xsave->region[0] >> 16);
900 twd = (uint16_t)xsave->region[1];
901 fop = (uint16_t)(xsave->region[1] >> 16);
902 env->fpstt = (swd >> 11) & 7;
903 env->fpus = swd;
904 env->fpuc = cwd;
905 for (i = 0; i < 8; ++i) {
906 env->fptags[i] = !((twd >> i) & 1);
907 }
908 env->mxcsr = xsave->region[XSAVE_MXCSR];
909 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
910 sizeof env->fpregs);
911 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
912 sizeof env->xmm_regs);
913 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
914 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
915 sizeof env->ymmh_regs);
916 qemu_free(xsave);
917 return 0;
918 #else
919 return kvm_get_fpu(env);
920 #endif
921 }
922
923 static int kvm_get_xcrs(CPUState *env)
924 {
925 #ifdef KVM_CAP_XCRS
926 int i, ret;
927 struct kvm_xcrs xcrs;
928
929 if (!kvm_has_xcrs()) {
930 return 0;
931 }
932
933 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
934 if (ret < 0) {
935 return ret;
936 }
937
938 for (i = 0; i < xcrs.nr_xcrs; i++) {
939 /* Only support xcr0 now */
940 if (xcrs.xcrs[0].xcr == 0) {
941 env->xcr0 = xcrs.xcrs[0].value;
942 break;
943 }
944 }
945 return 0;
946 #else
947 return 0;
948 #endif
949 }
950
951 static int kvm_get_sregs(CPUState *env)
952 {
953 struct kvm_sregs sregs;
954 uint32_t hflags;
955 int bit, i, ret;
956
957 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
958 if (ret < 0) {
959 return ret;
960 }
961
962 /* There can only be one pending IRQ set in the bitmap at a time, so try
963 to find it and save its number instead (-1 for none). */
964 env->interrupt_injected = -1;
965 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
966 if (sregs.interrupt_bitmap[i]) {
967 bit = ctz64(sregs.interrupt_bitmap[i]);
968 env->interrupt_injected = i * 64 + bit;
969 break;
970 }
971 }
972
973 get_seg(&env->segs[R_CS], &sregs.cs);
974 get_seg(&env->segs[R_DS], &sregs.ds);
975 get_seg(&env->segs[R_ES], &sregs.es);
976 get_seg(&env->segs[R_FS], &sregs.fs);
977 get_seg(&env->segs[R_GS], &sregs.gs);
978 get_seg(&env->segs[R_SS], &sregs.ss);
979
980 get_seg(&env->tr, &sregs.tr);
981 get_seg(&env->ldt, &sregs.ldt);
982
983 env->idt.limit = sregs.idt.limit;
984 env->idt.base = sregs.idt.base;
985 env->gdt.limit = sregs.gdt.limit;
986 env->gdt.base = sregs.gdt.base;
987
988 env->cr[0] = sregs.cr0;
989 env->cr[2] = sregs.cr2;
990 env->cr[3] = sregs.cr3;
991 env->cr[4] = sregs.cr4;
992
993 cpu_set_apic_base(env->apic_state, sregs.apic_base);
994
995 env->efer = sregs.efer;
996 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
997
998 #define HFLAG_COPY_MASK \
999 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1000 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1001 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1002 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1003
1004 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1005 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1006 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1007 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1008 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1009 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1010 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1011
1012 if (env->efer & MSR_EFER_LMA) {
1013 hflags |= HF_LMA_MASK;
1014 }
1015
1016 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1017 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1018 } else {
1019 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1020 (DESC_B_SHIFT - HF_CS32_SHIFT);
1021 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1022 (DESC_B_SHIFT - HF_SS32_SHIFT);
1023 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1024 !(hflags & HF_CS32_MASK)) {
1025 hflags |= HF_ADDSEG_MASK;
1026 } else {
1027 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1028 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1029 }
1030 }
1031 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1032
1033 return 0;
1034 }
1035
1036 static int kvm_get_msrs(CPUState *env)
1037 {
1038 struct {
1039 struct kvm_msrs info;
1040 struct kvm_msr_entry entries[100];
1041 } msr_data;
1042 struct kvm_msr_entry *msrs = msr_data.entries;
1043 int ret, i, n;
1044
1045 n = 0;
1046 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1047 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1048 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1049 if (has_msr_star) {
1050 msrs[n++].index = MSR_STAR;
1051 }
1052 if (has_msr_hsave_pa) {
1053 msrs[n++].index = MSR_VM_HSAVE_PA;
1054 }
1055 msrs[n++].index = MSR_IA32_TSC;
1056 #ifdef TARGET_X86_64
1057 if (lm_capable_kernel) {
1058 msrs[n++].index = MSR_CSTAR;
1059 msrs[n++].index = MSR_KERNELGSBASE;
1060 msrs[n++].index = MSR_FMASK;
1061 msrs[n++].index = MSR_LSTAR;
1062 }
1063 #endif
1064 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1065 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1066 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1067 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1068 #endif
1069
1070 #ifdef KVM_CAP_MCE
1071 if (env->mcg_cap) {
1072 msrs[n++].index = MSR_MCG_STATUS;
1073 msrs[n++].index = MSR_MCG_CTL;
1074 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1075 msrs[n++].index = MSR_MC0_CTL + i;
1076 }
1077 }
1078 #endif
1079
1080 msr_data.info.nmsrs = n;
1081 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1082 if (ret < 0) {
1083 return ret;
1084 }
1085
1086 for (i = 0; i < ret; i++) {
1087 switch (msrs[i].index) {
1088 case MSR_IA32_SYSENTER_CS:
1089 env->sysenter_cs = msrs[i].data;
1090 break;
1091 case MSR_IA32_SYSENTER_ESP:
1092 env->sysenter_esp = msrs[i].data;
1093 break;
1094 case MSR_IA32_SYSENTER_EIP:
1095 env->sysenter_eip = msrs[i].data;
1096 break;
1097 case MSR_STAR:
1098 env->star = msrs[i].data;
1099 break;
1100 #ifdef TARGET_X86_64
1101 case MSR_CSTAR:
1102 env->cstar = msrs[i].data;
1103 break;
1104 case MSR_KERNELGSBASE:
1105 env->kernelgsbase = msrs[i].data;
1106 break;
1107 case MSR_FMASK:
1108 env->fmask = msrs[i].data;
1109 break;
1110 case MSR_LSTAR:
1111 env->lstar = msrs[i].data;
1112 break;
1113 #endif
1114 case MSR_IA32_TSC:
1115 env->tsc = msrs[i].data;
1116 break;
1117 case MSR_VM_HSAVE_PA:
1118 env->vm_hsave = msrs[i].data;
1119 break;
1120 case MSR_KVM_SYSTEM_TIME:
1121 env->system_time_msr = msrs[i].data;
1122 break;
1123 case MSR_KVM_WALL_CLOCK:
1124 env->wall_clock_msr = msrs[i].data;
1125 break;
1126 #ifdef KVM_CAP_MCE
1127 case MSR_MCG_STATUS:
1128 env->mcg_status = msrs[i].data;
1129 break;
1130 case MSR_MCG_CTL:
1131 env->mcg_ctl = msrs[i].data;
1132 break;
1133 #endif
1134 default:
1135 #ifdef KVM_CAP_MCE
1136 if (msrs[i].index >= MSR_MC0_CTL &&
1137 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1138 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1139 }
1140 #endif
1141 break;
1142 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1143 case MSR_KVM_ASYNC_PF_EN:
1144 env->async_pf_en_msr = msrs[i].data;
1145 break;
1146 #endif
1147 }
1148 }
1149
1150 return 0;
1151 }
1152
1153 static int kvm_put_mp_state(CPUState *env)
1154 {
1155 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1156
1157 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1158 }
1159
1160 static int kvm_get_mp_state(CPUState *env)
1161 {
1162 struct kvm_mp_state mp_state;
1163 int ret;
1164
1165 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1166 if (ret < 0) {
1167 return ret;
1168 }
1169 env->mp_state = mp_state.mp_state;
1170 if (kvm_irqchip_in_kernel()) {
1171 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1172 }
1173 return 0;
1174 }
1175
1176 static int kvm_put_vcpu_events(CPUState *env, int level)
1177 {
1178 #ifdef KVM_CAP_VCPU_EVENTS
1179 struct kvm_vcpu_events events;
1180
1181 if (!kvm_has_vcpu_events()) {
1182 return 0;
1183 }
1184
1185 events.exception.injected = (env->exception_injected >= 0);
1186 events.exception.nr = env->exception_injected;
1187 events.exception.has_error_code = env->has_error_code;
1188 events.exception.error_code = env->error_code;
1189
1190 events.interrupt.injected = (env->interrupt_injected >= 0);
1191 events.interrupt.nr = env->interrupt_injected;
1192 events.interrupt.soft = env->soft_interrupt;
1193
1194 events.nmi.injected = env->nmi_injected;
1195 events.nmi.pending = env->nmi_pending;
1196 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1197
1198 events.sipi_vector = env->sipi_vector;
1199
1200 events.flags = 0;
1201 if (level >= KVM_PUT_RESET_STATE) {
1202 events.flags |=
1203 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1204 }
1205
1206 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1207 #else
1208 return 0;
1209 #endif
1210 }
1211
1212 static int kvm_get_vcpu_events(CPUState *env)
1213 {
1214 #ifdef KVM_CAP_VCPU_EVENTS
1215 struct kvm_vcpu_events events;
1216 int ret;
1217
1218 if (!kvm_has_vcpu_events()) {
1219 return 0;
1220 }
1221
1222 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1223 if (ret < 0) {
1224 return ret;
1225 }
1226 env->exception_injected =
1227 events.exception.injected ? events.exception.nr : -1;
1228 env->has_error_code = events.exception.has_error_code;
1229 env->error_code = events.exception.error_code;
1230
1231 env->interrupt_injected =
1232 events.interrupt.injected ? events.interrupt.nr : -1;
1233 env->soft_interrupt = events.interrupt.soft;
1234
1235 env->nmi_injected = events.nmi.injected;
1236 env->nmi_pending = events.nmi.pending;
1237 if (events.nmi.masked) {
1238 env->hflags2 |= HF2_NMI_MASK;
1239 } else {
1240 env->hflags2 &= ~HF2_NMI_MASK;
1241 }
1242
1243 env->sipi_vector = events.sipi_vector;
1244 #endif
1245
1246 return 0;
1247 }
1248
1249 static int kvm_guest_debug_workarounds(CPUState *env)
1250 {
1251 int ret = 0;
1252 #ifdef KVM_CAP_SET_GUEST_DEBUG
1253 unsigned long reinject_trap = 0;
1254
1255 if (!kvm_has_vcpu_events()) {
1256 if (env->exception_injected == 1) {
1257 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1258 } else if (env->exception_injected == 3) {
1259 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1260 }
1261 env->exception_injected = -1;
1262 }
1263
1264 /*
1265 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1266 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1267 * by updating the debug state once again if single-stepping is on.
1268 * Another reason to call kvm_update_guest_debug here is a pending debug
1269 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1270 * reinject them via SET_GUEST_DEBUG.
1271 */
1272 if (reinject_trap ||
1273 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1274 ret = kvm_update_guest_debug(env, reinject_trap);
1275 }
1276 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1277 return ret;
1278 }
1279
1280 static int kvm_put_debugregs(CPUState *env)
1281 {
1282 #ifdef KVM_CAP_DEBUGREGS
1283 struct kvm_debugregs dbgregs;
1284 int i;
1285
1286 if (!kvm_has_debugregs()) {
1287 return 0;
1288 }
1289
1290 for (i = 0; i < 4; i++) {
1291 dbgregs.db[i] = env->dr[i];
1292 }
1293 dbgregs.dr6 = env->dr[6];
1294 dbgregs.dr7 = env->dr[7];
1295 dbgregs.flags = 0;
1296
1297 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1298 #else
1299 return 0;
1300 #endif
1301 }
1302
1303 static int kvm_get_debugregs(CPUState *env)
1304 {
1305 #ifdef KVM_CAP_DEBUGREGS
1306 struct kvm_debugregs dbgregs;
1307 int i, ret;
1308
1309 if (!kvm_has_debugregs()) {
1310 return 0;
1311 }
1312
1313 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1314 if (ret < 0) {
1315 return ret;
1316 }
1317 for (i = 0; i < 4; i++) {
1318 env->dr[i] = dbgregs.db[i];
1319 }
1320 env->dr[4] = env->dr[6] = dbgregs.dr6;
1321 env->dr[5] = env->dr[7] = dbgregs.dr7;
1322 #endif
1323
1324 return 0;
1325 }
1326
1327 int kvm_arch_put_registers(CPUState *env, int level)
1328 {
1329 int ret;
1330
1331 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1332
1333 ret = kvm_getput_regs(env, 1);
1334 if (ret < 0) {
1335 return ret;
1336 }
1337 ret = kvm_put_xsave(env);
1338 if (ret < 0) {
1339 return ret;
1340 }
1341 ret = kvm_put_xcrs(env);
1342 if (ret < 0) {
1343 return ret;
1344 }
1345 ret = kvm_put_sregs(env);
1346 if (ret < 0) {
1347 return ret;
1348 }
1349 ret = kvm_put_msrs(env, level);
1350 if (ret < 0) {
1351 return ret;
1352 }
1353 if (level >= KVM_PUT_RESET_STATE) {
1354 ret = kvm_put_mp_state(env);
1355 if (ret < 0) {
1356 return ret;
1357 }
1358 }
1359 ret = kvm_put_vcpu_events(env, level);
1360 if (ret < 0) {
1361 return ret;
1362 }
1363 ret = kvm_put_debugregs(env);
1364 if (ret < 0) {
1365 return ret;
1366 }
1367 /* must be last */
1368 ret = kvm_guest_debug_workarounds(env);
1369 if (ret < 0) {
1370 return ret;
1371 }
1372 return 0;
1373 }
1374
1375 int kvm_arch_get_registers(CPUState *env)
1376 {
1377 int ret;
1378
1379 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1380
1381 ret = kvm_getput_regs(env, 0);
1382 if (ret < 0) {
1383 return ret;
1384 }
1385 ret = kvm_get_xsave(env);
1386 if (ret < 0) {
1387 return ret;
1388 }
1389 ret = kvm_get_xcrs(env);
1390 if (ret < 0) {
1391 return ret;
1392 }
1393 ret = kvm_get_sregs(env);
1394 if (ret < 0) {
1395 return ret;
1396 }
1397 ret = kvm_get_msrs(env);
1398 if (ret < 0) {
1399 return ret;
1400 }
1401 ret = kvm_get_mp_state(env);
1402 if (ret < 0) {
1403 return ret;
1404 }
1405 ret = kvm_get_vcpu_events(env);
1406 if (ret < 0) {
1407 return ret;
1408 }
1409 ret = kvm_get_debugregs(env);
1410 if (ret < 0) {
1411 return ret;
1412 }
1413 return 0;
1414 }
1415
1416 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1417 {
1418 /* Inject NMI */
1419 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1420 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1421 DPRINTF("injected NMI\n");
1422 kvm_vcpu_ioctl(env, KVM_NMI);
1423 }
1424
1425 /* Try to inject an interrupt if the guest can accept it */
1426 if (run->ready_for_interrupt_injection &&
1427 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1428 (env->eflags & IF_MASK)) {
1429 int irq;
1430
1431 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1432 irq = cpu_get_pic_interrupt(env);
1433 if (irq >= 0) {
1434 struct kvm_interrupt intr;
1435 intr.irq = irq;
1436 /* FIXME: errors */
1437 DPRINTF("injected interrupt %d\n", irq);
1438 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1439 }
1440 }
1441
1442 /* If we have an interrupt but the guest is not ready to receive an
1443 * interrupt, request an interrupt window exit. This will
1444 * cause a return to userspace as soon as the guest is ready to
1445 * receive interrupts. */
1446 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1447 run->request_interrupt_window = 1;
1448 } else {
1449 run->request_interrupt_window = 0;
1450 }
1451
1452 DPRINTF("setting tpr\n");
1453 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1454
1455 return 0;
1456 }
1457
1458 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1459 {
1460 if (run->if_flag) {
1461 env->eflags |= IF_MASK;
1462 } else {
1463 env->eflags &= ~IF_MASK;
1464 }
1465 cpu_set_apic_tpr(env->apic_state, run->cr8);
1466 cpu_set_apic_base(env->apic_state, run->apic_base);
1467
1468 return 0;
1469 }
1470
1471 int kvm_arch_process_irqchip_events(CPUState *env)
1472 {
1473 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1474 kvm_cpu_synchronize_state(env);
1475 do_cpu_init(env);
1476 env->exception_index = EXCP_HALTED;
1477 }
1478
1479 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1480 kvm_cpu_synchronize_state(env);
1481 do_cpu_sipi(env);
1482 }
1483
1484 return env->halted;
1485 }
1486
1487 static int kvm_handle_halt(CPUState *env)
1488 {
1489 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1490 (env->eflags & IF_MASK)) &&
1491 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1492 env->halted = 1;
1493 env->exception_index = EXCP_HLT;
1494 return 0;
1495 }
1496
1497 return 1;
1498 }
1499
1500 static bool host_supports_vmx(void)
1501 {
1502 uint32_t ecx, unused;
1503
1504 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1505 return ecx & CPUID_EXT_VMX;
1506 }
1507
1508 #define VMX_INVALID_GUEST_STATE 0x80000021
1509
1510 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1511 {
1512 uint64_t code;
1513 int ret = 0;
1514
1515 switch (run->exit_reason) {
1516 case KVM_EXIT_HLT:
1517 DPRINTF("handle_hlt\n");
1518 ret = kvm_handle_halt(env);
1519 break;
1520 case KVM_EXIT_SET_TPR:
1521 ret = 1;
1522 break;
1523 case KVM_EXIT_FAIL_ENTRY:
1524 code = run->fail_entry.hardware_entry_failure_reason;
1525 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1526 code);
1527 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1528 fprintf(stderr,
1529 "\nIf you're runnning a guest on an Intel machine without "
1530 "unrestricted mode\n"
1531 "support, the failure can be most likely due to the guest "
1532 "entering an invalid\n"
1533 "state for Intel VT. For example, the guest maybe running "
1534 "in big real mode\n"
1535 "which is not supported on less recent Intel processors."
1536 "\n\n");
1537 }
1538 ret = -1;
1539 break;
1540 case KVM_EXIT_EXCEPTION:
1541 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1542 run->ex.exception, run->ex.error_code);
1543 ret = -1;
1544 break;
1545 default:
1546 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1547 ret = -1;
1548 break;
1549 }
1550
1551 return ret;
1552 }
1553
1554 #ifdef KVM_CAP_SET_GUEST_DEBUG
1555 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1556 {
1557 static const uint8_t int3 = 0xcc;
1558
1559 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1560 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1561 return -EINVAL;
1562 }
1563 return 0;
1564 }
1565
1566 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1567 {
1568 uint8_t int3;
1569
1570 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1571 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1572 return -EINVAL;
1573 }
1574 return 0;
1575 }
1576
1577 static struct {
1578 target_ulong addr;
1579 int len;
1580 int type;
1581 } hw_breakpoint[4];
1582
1583 static int nb_hw_breakpoint;
1584
1585 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1586 {
1587 int n;
1588
1589 for (n = 0; n < nb_hw_breakpoint; n++) {
1590 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1591 (hw_breakpoint[n].len == len || len == -1)) {
1592 return n;
1593 }
1594 }
1595 return -1;
1596 }
1597
1598 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1599 target_ulong len, int type)
1600 {
1601 switch (type) {
1602 case GDB_BREAKPOINT_HW:
1603 len = 1;
1604 break;
1605 case GDB_WATCHPOINT_WRITE:
1606 case GDB_WATCHPOINT_ACCESS:
1607 switch (len) {
1608 case 1:
1609 break;
1610 case 2:
1611 case 4:
1612 case 8:
1613 if (addr & (len - 1)) {
1614 return -EINVAL;
1615 }
1616 break;
1617 default:
1618 return -EINVAL;
1619 }
1620 break;
1621 default:
1622 return -ENOSYS;
1623 }
1624
1625 if (nb_hw_breakpoint == 4) {
1626 return -ENOBUFS;
1627 }
1628 if (find_hw_breakpoint(addr, len, type) >= 0) {
1629 return -EEXIST;
1630 }
1631 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1632 hw_breakpoint[nb_hw_breakpoint].len = len;
1633 hw_breakpoint[nb_hw_breakpoint].type = type;
1634 nb_hw_breakpoint++;
1635
1636 return 0;
1637 }
1638
1639 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1640 target_ulong len, int type)
1641 {
1642 int n;
1643
1644 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1645 if (n < 0) {
1646 return -ENOENT;
1647 }
1648 nb_hw_breakpoint--;
1649 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1650
1651 return 0;
1652 }
1653
1654 void kvm_arch_remove_all_hw_breakpoints(void)
1655 {
1656 nb_hw_breakpoint = 0;
1657 }
1658
1659 static CPUWatchpoint hw_watchpoint;
1660
1661 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1662 {
1663 int handle = 0;
1664 int n;
1665
1666 if (arch_info->exception == 1) {
1667 if (arch_info->dr6 & (1 << 14)) {
1668 if (cpu_single_env->singlestep_enabled) {
1669 handle = 1;
1670 }
1671 } else {
1672 for (n = 0; n < 4; n++) {
1673 if (arch_info->dr6 & (1 << n)) {
1674 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1675 case 0x0:
1676 handle = 1;
1677 break;
1678 case 0x1:
1679 handle = 1;
1680 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1681 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1682 hw_watchpoint.flags = BP_MEM_WRITE;
1683 break;
1684 case 0x3:
1685 handle = 1;
1686 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1687 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1688 hw_watchpoint.flags = BP_MEM_ACCESS;
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1695 handle = 1;
1696 }
1697 if (!handle) {
1698 cpu_synchronize_state(cpu_single_env);
1699 assert(cpu_single_env->exception_injected == -1);
1700
1701 cpu_single_env->exception_injected = arch_info->exception;
1702 cpu_single_env->has_error_code = 0;
1703 }
1704
1705 return handle;
1706 }
1707
1708 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1709 {
1710 const uint8_t type_code[] = {
1711 [GDB_BREAKPOINT_HW] = 0x0,
1712 [GDB_WATCHPOINT_WRITE] = 0x1,
1713 [GDB_WATCHPOINT_ACCESS] = 0x3
1714 };
1715 const uint8_t len_code[] = {
1716 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1717 };
1718 int n;
1719
1720 if (kvm_sw_breakpoints_active(env)) {
1721 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1722 }
1723 if (nb_hw_breakpoint > 0) {
1724 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1725 dbg->arch.debugreg[7] = 0x0600;
1726 for (n = 0; n < nb_hw_breakpoint; n++) {
1727 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1728 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1729 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1730 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1731 }
1732 }
1733 }
1734 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1735
1736 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1737 {
1738 return !(env->cr[0] & CR0_PE_MASK) ||
1739 ((env->segs[R_CS].selector & 3) != 3);
1740 }
1741
1742 static void hardware_memory_error(void)
1743 {
1744 fprintf(stderr, "Hardware memory error!\n");
1745 exit(1);
1746 }
1747
1748 #ifdef KVM_CAP_MCE
1749 static void kvm_mce_broadcast_rest(CPUState *env)
1750 {
1751 struct kvm_x86_mce mce = {
1752 .bank = 1,
1753 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1754 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1755 .addr = 0,
1756 .misc = 0,
1757 };
1758 CPUState *cenv;
1759
1760 /* Broadcast MCA signal for processor version 06H_EH and above */
1761 if (cpu_x86_support_mca_broadcast(env)) {
1762 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1763 if (cenv == env) {
1764 continue;
1765 }
1766 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1767 }
1768 }
1769 }
1770
1771 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1772 {
1773 struct kvm_x86_mce mce = {
1774 .bank = 9,
1775 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1776 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1777 | MCI_STATUS_AR | 0x134,
1778 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1779 .addr = paddr,
1780 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1781 };
1782 int r;
1783
1784 r = kvm_set_mce(env, &mce);
1785 if (r < 0) {
1786 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1787 abort();
1788 }
1789 kvm_mce_broadcast_rest(env);
1790 }
1791
1792 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1793 {
1794 struct kvm_x86_mce mce = {
1795 .bank = 9,
1796 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1797 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1798 | 0xc0,
1799 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1800 .addr = paddr,
1801 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1802 };
1803 int r;
1804
1805 r = kvm_set_mce(env, &mce);
1806 if (r < 0) {
1807 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1808 abort();
1809 }
1810 kvm_mce_broadcast_rest(env);
1811 }
1812
1813 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1814 {
1815 struct kvm_x86_mce mce = {
1816 .bank = 9,
1817 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1818 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1819 | 0xc0,
1820 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1821 .addr = paddr,
1822 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1823 };
1824
1825 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1826 kvm_mce_broadcast_rest(env);
1827 }
1828
1829 #endif
1830
1831 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1832 {
1833 #if defined(KVM_CAP_MCE)
1834 void *vaddr;
1835 ram_addr_t ram_addr;
1836 target_phys_addr_t paddr;
1837
1838 if ((env->mcg_cap & MCG_SER_P) && addr
1839 && (code == BUS_MCEERR_AR
1840 || code == BUS_MCEERR_AO)) {
1841 vaddr = (void *)addr;
1842 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1843 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1844 fprintf(stderr, "Hardware memory error for memory used by "
1845 "QEMU itself instead of guest system!\n");
1846 /* Hope we are lucky for AO MCE */
1847 if (code == BUS_MCEERR_AO) {
1848 return 0;
1849 } else {
1850 hardware_memory_error();
1851 }
1852 }
1853
1854 if (code == BUS_MCEERR_AR) {
1855 /* Fake an Intel architectural Data Load SRAR UCR */
1856 kvm_mce_inj_srar_dataload(env, paddr);
1857 } else {
1858 /*
1859 * If there is an MCE excpetion being processed, ignore
1860 * this SRAO MCE
1861 */
1862 if (!kvm_mce_in_progress(env)) {
1863 /* Fake an Intel architectural Memory scrubbing UCR */
1864 kvm_mce_inj_srao_memscrub(env, paddr);
1865 }
1866 }
1867 } else
1868 #endif
1869 {
1870 if (code == BUS_MCEERR_AO) {
1871 return 0;
1872 } else if (code == BUS_MCEERR_AR) {
1873 hardware_memory_error();
1874 } else {
1875 return 1;
1876 }
1877 }
1878 return 0;
1879 }
1880
1881 int kvm_on_sigbus(int code, void *addr)
1882 {
1883 #if defined(KVM_CAP_MCE)
1884 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1885 void *vaddr;
1886 ram_addr_t ram_addr;
1887 target_phys_addr_t paddr;
1888
1889 /* Hope we are lucky for AO MCE */
1890 vaddr = addr;
1891 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1892 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1893 fprintf(stderr, "Hardware memory error for memory used by "
1894 "QEMU itself instead of guest system!: %p\n", addr);
1895 return 0;
1896 }
1897 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1898 } else
1899 #endif
1900 {
1901 if (code == BUS_MCEERR_AO) {
1902 return 0;
1903 } else if (code == BUS_MCEERR_AR) {
1904 hardware_memory_error();
1905 } else {
1906 return 1;
1907 }
1908 }
1909 return 0;
1910 }