]> git.proxmox.com Git - mirror_qemu.git/blob - target-i386/op.c
hlt instruction fix
[mirror_qemu.git] / target-i386 / op.c
1 /*
2 * i386 micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* XXX: must use this define because the soft mmu macros have huge
22 register constraints so they cannot be used in any C code. gcc 3.3
23 does not seem to be able to handle some constraints in rol
24 operations, so we disable it. */
25 #if !(__GNUC__ == 3 && __GNUC_MINOR__ == 3)
26 #define ASM_SOFTMMU
27 #endif
28 #include "exec.h"
29
30 /* n must be a constant to be efficient */
31 static inline int lshift(int x, int n)
32 {
33 if (n >= 0)
34 return x << n;
35 else
36 return x >> (-n);
37 }
38
39 /* we define the various pieces of code used by the JIT */
40
41 #define REG EAX
42 #define REGNAME _EAX
43 #include "opreg_template.h"
44 #undef REG
45 #undef REGNAME
46
47 #define REG ECX
48 #define REGNAME _ECX
49 #include "opreg_template.h"
50 #undef REG
51 #undef REGNAME
52
53 #define REG EDX
54 #define REGNAME _EDX
55 #include "opreg_template.h"
56 #undef REG
57 #undef REGNAME
58
59 #define REG EBX
60 #define REGNAME _EBX
61 #include "opreg_template.h"
62 #undef REG
63 #undef REGNAME
64
65 #define REG ESP
66 #define REGNAME _ESP
67 #include "opreg_template.h"
68 #undef REG
69 #undef REGNAME
70
71 #define REG EBP
72 #define REGNAME _EBP
73 #include "opreg_template.h"
74 #undef REG
75 #undef REGNAME
76
77 #define REG ESI
78 #define REGNAME _ESI
79 #include "opreg_template.h"
80 #undef REG
81 #undef REGNAME
82
83 #define REG EDI
84 #define REGNAME _EDI
85 #include "opreg_template.h"
86 #undef REG
87 #undef REGNAME
88
89 /* operations with flags */
90
91 /* update flags with T0 and T1 (add/sub case) */
92 void OPPROTO op_update2_cc(void)
93 {
94 CC_SRC = T1;
95 CC_DST = T0;
96 }
97
98 /* update flags with T0 (logic operation case) */
99 void OPPROTO op_update1_cc(void)
100 {
101 CC_DST = T0;
102 }
103
104 void OPPROTO op_update_neg_cc(void)
105 {
106 CC_SRC = -T0;
107 CC_DST = T0;
108 }
109
110 void OPPROTO op_cmpl_T0_T1_cc(void)
111 {
112 CC_SRC = T1;
113 CC_DST = T0 - T1;
114 }
115
116 void OPPROTO op_update_inc_cc(void)
117 {
118 CC_SRC = cc_table[CC_OP].compute_c();
119 CC_DST = T0;
120 }
121
122 void OPPROTO op_testl_T0_T1_cc(void)
123 {
124 CC_DST = T0 & T1;
125 }
126
127 /* operations without flags */
128
129 void OPPROTO op_addl_T0_T1(void)
130 {
131 T0 += T1;
132 }
133
134 void OPPROTO op_orl_T0_T1(void)
135 {
136 T0 |= T1;
137 }
138
139 void OPPROTO op_andl_T0_T1(void)
140 {
141 T0 &= T1;
142 }
143
144 void OPPROTO op_subl_T0_T1(void)
145 {
146 T0 -= T1;
147 }
148
149 void OPPROTO op_xorl_T0_T1(void)
150 {
151 T0 ^= T1;
152 }
153
154 void OPPROTO op_negl_T0(void)
155 {
156 T0 = -T0;
157 }
158
159 void OPPROTO op_incl_T0(void)
160 {
161 T0++;
162 }
163
164 void OPPROTO op_decl_T0(void)
165 {
166 T0--;
167 }
168
169 void OPPROTO op_notl_T0(void)
170 {
171 T0 = ~T0;
172 }
173
174 void OPPROTO op_bswapl_T0(void)
175 {
176 T0 = bswap32(T0);
177 }
178
179 /* multiply/divide */
180
181 /* XXX: add eflags optimizations */
182 /* XXX: add non P4 style flags */
183
184 void OPPROTO op_mulb_AL_T0(void)
185 {
186 unsigned int res;
187 res = (uint8_t)EAX * (uint8_t)T0;
188 EAX = (EAX & 0xffff0000) | res;
189 CC_DST = res;
190 CC_SRC = (res & 0xff00);
191 }
192
193 void OPPROTO op_imulb_AL_T0(void)
194 {
195 int res;
196 res = (int8_t)EAX * (int8_t)T0;
197 EAX = (EAX & 0xffff0000) | (res & 0xffff);
198 CC_DST = res;
199 CC_SRC = (res != (int8_t)res);
200 }
201
202 void OPPROTO op_mulw_AX_T0(void)
203 {
204 unsigned int res;
205 res = (uint16_t)EAX * (uint16_t)T0;
206 EAX = (EAX & 0xffff0000) | (res & 0xffff);
207 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
208 CC_DST = res;
209 CC_SRC = res >> 16;
210 }
211
212 void OPPROTO op_imulw_AX_T0(void)
213 {
214 int res;
215 res = (int16_t)EAX * (int16_t)T0;
216 EAX = (EAX & 0xffff0000) | (res & 0xffff);
217 EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
218 CC_DST = res;
219 CC_SRC = (res != (int16_t)res);
220 }
221
222 void OPPROTO op_mull_EAX_T0(void)
223 {
224 uint64_t res;
225 res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
226 EAX = res;
227 EDX = res >> 32;
228 CC_DST = res;
229 CC_SRC = res >> 32;
230 }
231
232 void OPPROTO op_imull_EAX_T0(void)
233 {
234 int64_t res;
235 res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
236 EAX = res;
237 EDX = res >> 32;
238 CC_DST = res;
239 CC_SRC = (res != (int32_t)res);
240 }
241
242 void OPPROTO op_imulw_T0_T1(void)
243 {
244 int res;
245 res = (int16_t)T0 * (int16_t)T1;
246 T0 = res;
247 CC_DST = res;
248 CC_SRC = (res != (int16_t)res);
249 }
250
251 void OPPROTO op_imull_T0_T1(void)
252 {
253 int64_t res;
254 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
255 T0 = res;
256 CC_DST = res;
257 CC_SRC = (res != (int32_t)res);
258 }
259
260 /* division, flags are undefined */
261 /* XXX: add exceptions for overflow */
262
263 void OPPROTO op_divb_AL_T0(void)
264 {
265 unsigned int num, den, q, r;
266
267 num = (EAX & 0xffff);
268 den = (T0 & 0xff);
269 if (den == 0) {
270 EIP = PARAM1;
271 raise_exception(EXCP00_DIVZ);
272 }
273 q = (num / den) & 0xff;
274 r = (num % den) & 0xff;
275 EAX = (EAX & 0xffff0000) | (r << 8) | q;
276 }
277
278 void OPPROTO op_idivb_AL_T0(void)
279 {
280 int num, den, q, r;
281
282 num = (int16_t)EAX;
283 den = (int8_t)T0;
284 if (den == 0) {
285 EIP = PARAM1;
286 raise_exception(EXCP00_DIVZ);
287 }
288 q = (num / den) & 0xff;
289 r = (num % den) & 0xff;
290 EAX = (EAX & 0xffff0000) | (r << 8) | q;
291 }
292
293 void OPPROTO op_divw_AX_T0(void)
294 {
295 unsigned int num, den, q, r;
296
297 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
298 den = (T0 & 0xffff);
299 if (den == 0) {
300 EIP = PARAM1;
301 raise_exception(EXCP00_DIVZ);
302 }
303 q = (num / den) & 0xffff;
304 r = (num % den) & 0xffff;
305 EAX = (EAX & 0xffff0000) | q;
306 EDX = (EDX & 0xffff0000) | r;
307 }
308
309 void OPPROTO op_idivw_AX_T0(void)
310 {
311 int num, den, q, r;
312
313 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
314 den = (int16_t)T0;
315 if (den == 0) {
316 EIP = PARAM1;
317 raise_exception(EXCP00_DIVZ);
318 }
319 q = (num / den) & 0xffff;
320 r = (num % den) & 0xffff;
321 EAX = (EAX & 0xffff0000) | q;
322 EDX = (EDX & 0xffff0000) | r;
323 }
324
325 void OPPROTO op_divl_EAX_T0(void)
326 {
327 helper_divl_EAX_T0(PARAM1);
328 }
329
330 void OPPROTO op_idivl_EAX_T0(void)
331 {
332 helper_idivl_EAX_T0(PARAM1);
333 }
334
335 /* constant load & misc op */
336
337 void OPPROTO op_movl_T0_im(void)
338 {
339 T0 = PARAM1;
340 }
341
342 void OPPROTO op_addl_T0_im(void)
343 {
344 T0 += PARAM1;
345 }
346
347 void OPPROTO op_andl_T0_ffff(void)
348 {
349 T0 = T0 & 0xffff;
350 }
351
352 void OPPROTO op_andl_T0_im(void)
353 {
354 T0 = T0 & PARAM1;
355 }
356
357 void OPPROTO op_movl_T0_T1(void)
358 {
359 T0 = T1;
360 }
361
362 void OPPROTO op_movl_T1_im(void)
363 {
364 T1 = PARAM1;
365 }
366
367 void OPPROTO op_addl_T1_im(void)
368 {
369 T1 += PARAM1;
370 }
371
372 void OPPROTO op_movl_T1_A0(void)
373 {
374 T1 = A0;
375 }
376
377 void OPPROTO op_movl_A0_im(void)
378 {
379 A0 = PARAM1;
380 }
381
382 void OPPROTO op_addl_A0_im(void)
383 {
384 A0 += PARAM1;
385 }
386
387 void OPPROTO op_addl_A0_AL(void)
388 {
389 A0 += (EAX & 0xff);
390 }
391
392 void OPPROTO op_andl_A0_ffff(void)
393 {
394 A0 = A0 & 0xffff;
395 }
396
397 /* memory access */
398
399 #define MEMSUFFIX _raw
400 #include "ops_mem.h"
401
402 #if !defined(CONFIG_USER_ONLY)
403 #define MEMSUFFIX _kernel
404 #include "ops_mem.h"
405
406 #define MEMSUFFIX _user
407 #include "ops_mem.h"
408 #endif
409
410 /* used for bit operations */
411
412 void OPPROTO op_add_bitw_A0_T1(void)
413 {
414 A0 += ((int16_t)T1 >> 4) << 1;
415 }
416
417 void OPPROTO op_add_bitl_A0_T1(void)
418 {
419 A0 += ((int32_t)T1 >> 5) << 2;
420 }
421
422 /* indirect jump */
423
424 void OPPROTO op_jmp_T0(void)
425 {
426 EIP = T0;
427 }
428
429 void OPPROTO op_jmp_im(void)
430 {
431 EIP = PARAM1;
432 }
433
434 void OPPROTO op_hlt(void)
435 {
436 env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
437 env->exception_index = EXCP_HLT;
438 cpu_loop_exit();
439 }
440
441 void OPPROTO op_debug(void)
442 {
443 env->exception_index = EXCP_DEBUG;
444 cpu_loop_exit();
445 }
446
447 void OPPROTO op_raise_interrupt(void)
448 {
449 int intno;
450 unsigned int next_eip;
451 intno = PARAM1;
452 next_eip = PARAM2;
453 raise_interrupt(intno, 1, 0, next_eip);
454 }
455
456 void OPPROTO op_raise_exception(void)
457 {
458 int exception_index;
459 exception_index = PARAM1;
460 raise_exception(exception_index);
461 }
462
463 void OPPROTO op_into(void)
464 {
465 int eflags;
466 eflags = cc_table[CC_OP].compute_all();
467 if (eflags & CC_O) {
468 raise_interrupt(EXCP04_INTO, 1, 0, PARAM1);
469 }
470 FORCE_RET();
471 }
472
473 void OPPROTO op_cli(void)
474 {
475 env->eflags &= ~IF_MASK;
476 }
477
478 void OPPROTO op_sti(void)
479 {
480 env->eflags |= IF_MASK;
481 }
482
483 void OPPROTO op_set_inhibit_irq(void)
484 {
485 env->hflags |= HF_INHIBIT_IRQ_MASK;
486 }
487
488 void OPPROTO op_reset_inhibit_irq(void)
489 {
490 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
491 }
492
493 #if 0
494 /* vm86plus instructions */
495 void OPPROTO op_cli_vm(void)
496 {
497 env->eflags &= ~VIF_MASK;
498 }
499
500 void OPPROTO op_sti_vm(void)
501 {
502 env->eflags |= VIF_MASK;
503 if (env->eflags & VIP_MASK) {
504 EIP = PARAM1;
505 raise_exception(EXCP0D_GPF);
506 }
507 FORCE_RET();
508 }
509 #endif
510
511 void OPPROTO op_boundw(void)
512 {
513 int low, high, v;
514 low = ldsw((uint8_t *)A0);
515 high = ldsw((uint8_t *)A0 + 2);
516 v = (int16_t)T0;
517 if (v < low || v > high) {
518 EIP = PARAM1;
519 raise_exception(EXCP05_BOUND);
520 }
521 FORCE_RET();
522 }
523
524 void OPPROTO op_boundl(void)
525 {
526 int low, high, v;
527 low = ldl((uint8_t *)A0);
528 high = ldl((uint8_t *)A0 + 4);
529 v = T0;
530 if (v < low || v > high) {
531 EIP = PARAM1;
532 raise_exception(EXCP05_BOUND);
533 }
534 FORCE_RET();
535 }
536
537 void OPPROTO op_cmpxchg8b(void)
538 {
539 helper_cmpxchg8b();
540 }
541
542 void OPPROTO op_jmp(void)
543 {
544 JUMP_TB(op_jmp, PARAM1, 0, PARAM2);
545 }
546
547 void OPPROTO op_movl_T0_0(void)
548 {
549 T0 = 0;
550 }
551
552 void OPPROTO op_exit_tb(void)
553 {
554 EXIT_TB();
555 }
556
557 /* multiple size ops */
558
559 #define ldul ldl
560
561 #define SHIFT 0
562 #include "ops_template.h"
563 #undef SHIFT
564
565 #define SHIFT 1
566 #include "ops_template.h"
567 #undef SHIFT
568
569 #define SHIFT 2
570 #include "ops_template.h"
571 #undef SHIFT
572
573 /* sign extend */
574
575 void OPPROTO op_movsbl_T0_T0(void)
576 {
577 T0 = (int8_t)T0;
578 }
579
580 void OPPROTO op_movzbl_T0_T0(void)
581 {
582 T0 = (uint8_t)T0;
583 }
584
585 void OPPROTO op_movswl_T0_T0(void)
586 {
587 T0 = (int16_t)T0;
588 }
589
590 void OPPROTO op_movzwl_T0_T0(void)
591 {
592 T0 = (uint16_t)T0;
593 }
594
595 void OPPROTO op_movswl_EAX_AX(void)
596 {
597 EAX = (int16_t)EAX;
598 }
599
600 void OPPROTO op_movsbw_AX_AL(void)
601 {
602 EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
603 }
604
605 void OPPROTO op_movslq_EDX_EAX(void)
606 {
607 EDX = (int32_t)EAX >> 31;
608 }
609
610 void OPPROTO op_movswl_DX_AX(void)
611 {
612 EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
613 }
614
615 /* string ops helpers */
616
617 void OPPROTO op_addl_ESI_T0(void)
618 {
619 ESI += T0;
620 }
621
622 void OPPROTO op_addw_ESI_T0(void)
623 {
624 ESI = (ESI & ~0xffff) | ((ESI + T0) & 0xffff);
625 }
626
627 void OPPROTO op_addl_EDI_T0(void)
628 {
629 EDI += T0;
630 }
631
632 void OPPROTO op_addw_EDI_T0(void)
633 {
634 EDI = (EDI & ~0xffff) | ((EDI + T0) & 0xffff);
635 }
636
637 void OPPROTO op_decl_ECX(void)
638 {
639 ECX--;
640 }
641
642 void OPPROTO op_decw_ECX(void)
643 {
644 ECX = (ECX & ~0xffff) | ((ECX - 1) & 0xffff);
645 }
646
647 /* push/pop utils */
648
649 void op_addl_A0_SS(void)
650 {
651 A0 += (long)env->segs[R_SS].base;
652 }
653
654 void op_subl_A0_2(void)
655 {
656 A0 -= 2;
657 }
658
659 void op_subl_A0_4(void)
660 {
661 A0 -= 4;
662 }
663
664 void op_addl_ESP_4(void)
665 {
666 ESP += 4;
667 }
668
669 void op_addl_ESP_2(void)
670 {
671 ESP += 2;
672 }
673
674 void op_addw_ESP_4(void)
675 {
676 ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
677 }
678
679 void op_addw_ESP_2(void)
680 {
681 ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
682 }
683
684 void op_addl_ESP_im(void)
685 {
686 ESP += PARAM1;
687 }
688
689 void op_addw_ESP_im(void)
690 {
691 ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
692 }
693
694 void OPPROTO op_rdtsc(void)
695 {
696 helper_rdtsc();
697 }
698
699 void OPPROTO op_cpuid(void)
700 {
701 helper_cpuid();
702 }
703
704 void OPPROTO op_sysenter(void)
705 {
706 helper_sysenter();
707 }
708
709 void OPPROTO op_sysexit(void)
710 {
711 helper_sysexit();
712 }
713
714 void OPPROTO op_rdmsr(void)
715 {
716 helper_rdmsr();
717 }
718
719 void OPPROTO op_wrmsr(void)
720 {
721 helper_wrmsr();
722 }
723
724 /* bcd */
725
726 /* XXX: exception */
727 void OPPROTO op_aam(void)
728 {
729 int base = PARAM1;
730 int al, ah;
731 al = EAX & 0xff;
732 ah = al / base;
733 al = al % base;
734 EAX = (EAX & ~0xffff) | al | (ah << 8);
735 CC_DST = al;
736 }
737
738 void OPPROTO op_aad(void)
739 {
740 int base = PARAM1;
741 int al, ah;
742 al = EAX & 0xff;
743 ah = (EAX >> 8) & 0xff;
744 al = ((ah * base) + al) & 0xff;
745 EAX = (EAX & ~0xffff) | al;
746 CC_DST = al;
747 }
748
749 void OPPROTO op_aaa(void)
750 {
751 int icarry;
752 int al, ah, af;
753 int eflags;
754
755 eflags = cc_table[CC_OP].compute_all();
756 af = eflags & CC_A;
757 al = EAX & 0xff;
758 ah = (EAX >> 8) & 0xff;
759
760 icarry = (al > 0xf9);
761 if (((al & 0x0f) > 9 ) || af) {
762 al = (al + 6) & 0x0f;
763 ah = (ah + 1 + icarry) & 0xff;
764 eflags |= CC_C | CC_A;
765 } else {
766 eflags &= ~(CC_C | CC_A);
767 al &= 0x0f;
768 }
769 EAX = (EAX & ~0xffff) | al | (ah << 8);
770 CC_SRC = eflags;
771 }
772
773 void OPPROTO op_aas(void)
774 {
775 int icarry;
776 int al, ah, af;
777 int eflags;
778
779 eflags = cc_table[CC_OP].compute_all();
780 af = eflags & CC_A;
781 al = EAX & 0xff;
782 ah = (EAX >> 8) & 0xff;
783
784 icarry = (al < 6);
785 if (((al & 0x0f) > 9 ) || af) {
786 al = (al - 6) & 0x0f;
787 ah = (ah - 1 - icarry) & 0xff;
788 eflags |= CC_C | CC_A;
789 } else {
790 eflags &= ~(CC_C | CC_A);
791 al &= 0x0f;
792 }
793 EAX = (EAX & ~0xffff) | al | (ah << 8);
794 CC_SRC = eflags;
795 }
796
797 void OPPROTO op_daa(void)
798 {
799 int al, af, cf;
800 int eflags;
801
802 eflags = cc_table[CC_OP].compute_all();
803 cf = eflags & CC_C;
804 af = eflags & CC_A;
805 al = EAX & 0xff;
806
807 eflags = 0;
808 if (((al & 0x0f) > 9 ) || af) {
809 al = (al + 6) & 0xff;
810 eflags |= CC_A;
811 }
812 if ((al > 0x9f) || cf) {
813 al = (al + 0x60) & 0xff;
814 eflags |= CC_C;
815 }
816 EAX = (EAX & ~0xff) | al;
817 /* well, speed is not an issue here, so we compute the flags by hand */
818 eflags |= (al == 0) << 6; /* zf */
819 eflags |= parity_table[al]; /* pf */
820 eflags |= (al & 0x80); /* sf */
821 CC_SRC = eflags;
822 }
823
824 void OPPROTO op_das(void)
825 {
826 int al, al1, af, cf;
827 int eflags;
828
829 eflags = cc_table[CC_OP].compute_all();
830 cf = eflags & CC_C;
831 af = eflags & CC_A;
832 al = EAX & 0xff;
833
834 eflags = 0;
835 al1 = al;
836 if (((al & 0x0f) > 9 ) || af) {
837 eflags |= CC_A;
838 if (al < 6 || cf)
839 eflags |= CC_C;
840 al = (al - 6) & 0xff;
841 }
842 if ((al1 > 0x99) || cf) {
843 al = (al - 0x60) & 0xff;
844 eflags |= CC_C;
845 }
846 EAX = (EAX & ~0xff) | al;
847 /* well, speed is not an issue here, so we compute the flags by hand */
848 eflags |= (al == 0) << 6; /* zf */
849 eflags |= parity_table[al]; /* pf */
850 eflags |= (al & 0x80); /* sf */
851 CC_SRC = eflags;
852 }
853
854 /* segment handling */
855
856 /* never use it with R_CS */
857 void OPPROTO op_movl_seg_T0(void)
858 {
859 load_seg(PARAM1, T0);
860 }
861
862 /* faster VM86 version */
863 void OPPROTO op_movl_seg_T0_vm(void)
864 {
865 int selector;
866 SegmentCache *sc;
867
868 selector = T0 & 0xffff;
869 /* env->segs[] access */
870 sc = (SegmentCache *)((char *)env + PARAM1);
871 sc->selector = selector;
872 sc->base = (void *)(selector << 4);
873 }
874
875 void OPPROTO op_movl_T0_seg(void)
876 {
877 T0 = env->segs[PARAM1].selector;
878 }
879
880 void OPPROTO op_movl_A0_seg(void)
881 {
882 A0 = *(unsigned long *)((char *)env + PARAM1);
883 }
884
885 void OPPROTO op_addl_A0_seg(void)
886 {
887 A0 += *(unsigned long *)((char *)env + PARAM1);
888 }
889
890 void OPPROTO op_lsl(void)
891 {
892 helper_lsl();
893 }
894
895 void OPPROTO op_lar(void)
896 {
897 helper_lar();
898 }
899
900 void OPPROTO op_verr(void)
901 {
902 helper_verr();
903 }
904
905 void OPPROTO op_verw(void)
906 {
907 helper_verw();
908 }
909
910 void OPPROTO op_arpl(void)
911 {
912 if ((T0 & 3) < (T1 & 3)) {
913 /* XXX: emulate bug or 0xff3f0000 oring as in bochs ? */
914 T0 = (T0 & ~3) | (T1 & 3);
915 T1 = CC_Z;
916 } else {
917 T1 = 0;
918 }
919 FORCE_RET();
920 }
921
922 void OPPROTO op_arpl_update(void)
923 {
924 int eflags;
925 eflags = cc_table[CC_OP].compute_all();
926 CC_SRC = (eflags & ~CC_Z) | T1;
927 }
928
929 /* T0: segment, T1:eip */
930 void OPPROTO op_ljmp_protected_T0_T1(void)
931 {
932 helper_ljmp_protected_T0_T1(PARAM1);
933 }
934
935 void OPPROTO op_lcall_real_T0_T1(void)
936 {
937 helper_lcall_real_T0_T1(PARAM1, PARAM2);
938 }
939
940 void OPPROTO op_lcall_protected_T0_T1(void)
941 {
942 helper_lcall_protected_T0_T1(PARAM1, PARAM2);
943 }
944
945 void OPPROTO op_iret_real(void)
946 {
947 helper_iret_real(PARAM1);
948 }
949
950 void OPPROTO op_iret_protected(void)
951 {
952 helper_iret_protected(PARAM1, PARAM2);
953 }
954
955 void OPPROTO op_lret_protected(void)
956 {
957 helper_lret_protected(PARAM1, PARAM2);
958 }
959
960 void OPPROTO op_lldt_T0(void)
961 {
962 helper_lldt_T0();
963 }
964
965 void OPPROTO op_ltr_T0(void)
966 {
967 helper_ltr_T0();
968 }
969
970 /* CR registers access */
971 void OPPROTO op_movl_crN_T0(void)
972 {
973 helper_movl_crN_T0(PARAM1);
974 }
975
976 /* DR registers access */
977 void OPPROTO op_movl_drN_T0(void)
978 {
979 helper_movl_drN_T0(PARAM1);
980 }
981
982 void OPPROTO op_lmsw_T0(void)
983 {
984 /* only 4 lower bits of CR0 are modified. PE cannot be set to zero
985 if already set to one. */
986 T0 = (env->cr[0] & ~0xe) | (T0 & 0xf);
987 helper_movl_crN_T0(0);
988 }
989
990 void OPPROTO op_invlpg_A0(void)
991 {
992 helper_invlpg(A0);
993 }
994
995 void OPPROTO op_movl_T0_env(void)
996 {
997 T0 = *(uint32_t *)((char *)env + PARAM1);
998 }
999
1000 void OPPROTO op_movl_env_T0(void)
1001 {
1002 *(uint32_t *)((char *)env + PARAM1) = T0;
1003 }
1004
1005 void OPPROTO op_movl_env_T1(void)
1006 {
1007 *(uint32_t *)((char *)env + PARAM1) = T1;
1008 }
1009
1010 void OPPROTO op_clts(void)
1011 {
1012 env->cr[0] &= ~CR0_TS_MASK;
1013 env->hflags &= ~HF_TS_MASK;
1014 }
1015
1016 /* flags handling */
1017
1018 /* slow jumps cases : in order to avoid calling a function with a
1019 pointer (which can generate a stack frame on PowerPC), we use
1020 op_setcc to set T0 and then call op_jcc. */
1021 void OPPROTO op_jcc(void)
1022 {
1023 if (T0)
1024 JUMP_TB(op_jcc, PARAM1, 0, PARAM2);
1025 else
1026 JUMP_TB(op_jcc, PARAM1, 1, PARAM3);
1027 FORCE_RET();
1028 }
1029
1030 void OPPROTO op_jcc_im(void)
1031 {
1032 if (T0)
1033 EIP = PARAM1;
1034 else
1035 EIP = PARAM2;
1036 FORCE_RET();
1037 }
1038
1039 /* slow set cases (compute x86 flags) */
1040 void OPPROTO op_seto_T0_cc(void)
1041 {
1042 int eflags;
1043 eflags = cc_table[CC_OP].compute_all();
1044 T0 = (eflags >> 11) & 1;
1045 }
1046
1047 void OPPROTO op_setb_T0_cc(void)
1048 {
1049 T0 = cc_table[CC_OP].compute_c();
1050 }
1051
1052 void OPPROTO op_setz_T0_cc(void)
1053 {
1054 int eflags;
1055 eflags = cc_table[CC_OP].compute_all();
1056 T0 = (eflags >> 6) & 1;
1057 }
1058
1059 void OPPROTO op_setbe_T0_cc(void)
1060 {
1061 int eflags;
1062 eflags = cc_table[CC_OP].compute_all();
1063 T0 = (eflags & (CC_Z | CC_C)) != 0;
1064 }
1065
1066 void OPPROTO op_sets_T0_cc(void)
1067 {
1068 int eflags;
1069 eflags = cc_table[CC_OP].compute_all();
1070 T0 = (eflags >> 7) & 1;
1071 }
1072
1073 void OPPROTO op_setp_T0_cc(void)
1074 {
1075 int eflags;
1076 eflags = cc_table[CC_OP].compute_all();
1077 T0 = (eflags >> 2) & 1;
1078 }
1079
1080 void OPPROTO op_setl_T0_cc(void)
1081 {
1082 int eflags;
1083 eflags = cc_table[CC_OP].compute_all();
1084 T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1085 }
1086
1087 void OPPROTO op_setle_T0_cc(void)
1088 {
1089 int eflags;
1090 eflags = cc_table[CC_OP].compute_all();
1091 T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1092 }
1093
1094 void OPPROTO op_xor_T0_1(void)
1095 {
1096 T0 ^= 1;
1097 }
1098
1099 void OPPROTO op_set_cc_op(void)
1100 {
1101 CC_OP = PARAM1;
1102 }
1103
1104 /* XXX: clear VIF/VIP in all ops ? */
1105
1106 void OPPROTO op_movl_eflags_T0(void)
1107 {
1108 load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK));
1109 }
1110
1111 void OPPROTO op_movw_eflags_T0(void)
1112 {
1113 load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK) & 0xffff);
1114 }
1115
1116 void OPPROTO op_movl_eflags_T0_io(void)
1117 {
1118 load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK));
1119 }
1120
1121 void OPPROTO op_movw_eflags_T0_io(void)
1122 {
1123 load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK) & 0xffff);
1124 }
1125
1126 void OPPROTO op_movl_eflags_T0_cpl0(void)
1127 {
1128 load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK));
1129 }
1130
1131 void OPPROTO op_movw_eflags_T0_cpl0(void)
1132 {
1133 load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK) & 0xffff);
1134 }
1135
1136 #if 0
1137 /* vm86plus version */
1138 void OPPROTO op_movw_eflags_T0_vm(void)
1139 {
1140 int eflags;
1141 eflags = T0;
1142 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1143 DF = 1 - (2 * ((eflags >> 10) & 1));
1144 /* we also update some system flags as in user mode */
1145 env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1146 (eflags & FL_UPDATE_MASK16);
1147 if (eflags & IF_MASK) {
1148 env->eflags |= VIF_MASK;
1149 if (env->eflags & VIP_MASK) {
1150 EIP = PARAM1;
1151 raise_exception(EXCP0D_GPF);
1152 }
1153 }
1154 FORCE_RET();
1155 }
1156
1157 void OPPROTO op_movl_eflags_T0_vm(void)
1158 {
1159 int eflags;
1160 eflags = T0;
1161 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1162 DF = 1 - (2 * ((eflags >> 10) & 1));
1163 /* we also update some system flags as in user mode */
1164 env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1165 (eflags & FL_UPDATE_MASK32);
1166 if (eflags & IF_MASK) {
1167 env->eflags |= VIF_MASK;
1168 if (env->eflags & VIP_MASK) {
1169 EIP = PARAM1;
1170 raise_exception(EXCP0D_GPF);
1171 }
1172 }
1173 FORCE_RET();
1174 }
1175 #endif
1176
1177 /* XXX: compute only O flag */
1178 void OPPROTO op_movb_eflags_T0(void)
1179 {
1180 int of;
1181 of = cc_table[CC_OP].compute_all() & CC_O;
1182 CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1183 }
1184
1185 void OPPROTO op_movl_T0_eflags(void)
1186 {
1187 int eflags;
1188 eflags = cc_table[CC_OP].compute_all();
1189 eflags |= (DF & DF_MASK);
1190 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1191 T0 = eflags;
1192 }
1193
1194 /* vm86plus version */
1195 #if 0
1196 void OPPROTO op_movl_T0_eflags_vm(void)
1197 {
1198 int eflags;
1199 eflags = cc_table[CC_OP].compute_all();
1200 eflags |= (DF & DF_MASK);
1201 eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1202 if (env->eflags & VIF_MASK)
1203 eflags |= IF_MASK;
1204 T0 = eflags;
1205 }
1206 #endif
1207
1208 void OPPROTO op_cld(void)
1209 {
1210 DF = 1;
1211 }
1212
1213 void OPPROTO op_std(void)
1214 {
1215 DF = -1;
1216 }
1217
1218 void OPPROTO op_clc(void)
1219 {
1220 int eflags;
1221 eflags = cc_table[CC_OP].compute_all();
1222 eflags &= ~CC_C;
1223 CC_SRC = eflags;
1224 }
1225
1226 void OPPROTO op_stc(void)
1227 {
1228 int eflags;
1229 eflags = cc_table[CC_OP].compute_all();
1230 eflags |= CC_C;
1231 CC_SRC = eflags;
1232 }
1233
1234 void OPPROTO op_cmc(void)
1235 {
1236 int eflags;
1237 eflags = cc_table[CC_OP].compute_all();
1238 eflags ^= CC_C;
1239 CC_SRC = eflags;
1240 }
1241
1242 void OPPROTO op_salc(void)
1243 {
1244 int cf;
1245 cf = cc_table[CC_OP].compute_c();
1246 EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1247 }
1248
1249 static int compute_all_eflags(void)
1250 {
1251 return CC_SRC;
1252 }
1253
1254 static int compute_c_eflags(void)
1255 {
1256 return CC_SRC & CC_C;
1257 }
1258
1259 CCTable cc_table[CC_OP_NB] = {
1260 [CC_OP_DYNAMIC] = { /* should never happen */ },
1261
1262 [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1263
1264 [CC_OP_MULB] = { compute_all_mulb, compute_c_mull },
1265 [CC_OP_MULW] = { compute_all_mulw, compute_c_mull },
1266 [CC_OP_MULL] = { compute_all_mull, compute_c_mull },
1267
1268 [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1269 [CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
1270 [CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
1271
1272 [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1273 [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
1274 [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
1275
1276 [CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
1277 [CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
1278 [CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
1279
1280 [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
1281 [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
1282 [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
1283
1284 [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1285 [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1286 [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1287
1288 [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1289 [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1290 [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1291
1292 [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1293 [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1294 [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1295
1296 [CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb },
1297 [CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw },
1298 [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1299
1300 [CC_OP_SARB] = { compute_all_sarb, compute_c_sarl },
1301 [CC_OP_SARW] = { compute_all_sarw, compute_c_sarl },
1302 [CC_OP_SARL] = { compute_all_sarl, compute_c_sarl },
1303 };
1304
1305 /* floating point support. Some of the code for complicated x87
1306 functions comes from the LGPL'ed x86 emulator found in the Willows
1307 TWIN windows emulator. */
1308
1309 #if defined(__powerpc__)
1310 extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1311
1312 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1313 double qemu_rint(double x)
1314 {
1315 double y = 4503599627370496.0;
1316 if (fabs(x) >= y)
1317 return x;
1318 if (x < 0)
1319 y = -y;
1320 y = (x + y) - y;
1321 if (y == 0.0)
1322 y = copysign(y, x);
1323 return y;
1324 }
1325
1326 #define rint qemu_rint
1327 #endif
1328
1329 /* fp load FT0 */
1330
1331 void OPPROTO op_flds_FT0_A0(void)
1332 {
1333 #ifdef USE_FP_CONVERT
1334 FP_CONVERT.i32 = ldl((void *)A0);
1335 FT0 = FP_CONVERT.f;
1336 #else
1337 FT0 = ldfl((void *)A0);
1338 #endif
1339 }
1340
1341 void OPPROTO op_fldl_FT0_A0(void)
1342 {
1343 #ifdef USE_FP_CONVERT
1344 FP_CONVERT.i64 = ldq((void *)A0);
1345 FT0 = FP_CONVERT.d;
1346 #else
1347 FT0 = ldfq((void *)A0);
1348 #endif
1349 }
1350
1351 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1352 #ifdef USE_INT_TO_FLOAT_HELPERS
1353
1354 void helper_fild_FT0_A0(void)
1355 {
1356 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1357 }
1358
1359 void helper_fildl_FT0_A0(void)
1360 {
1361 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1362 }
1363
1364 void helper_fildll_FT0_A0(void)
1365 {
1366 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1367 }
1368
1369 void OPPROTO op_fild_FT0_A0(void)
1370 {
1371 helper_fild_FT0_A0();
1372 }
1373
1374 void OPPROTO op_fildl_FT0_A0(void)
1375 {
1376 helper_fildl_FT0_A0();
1377 }
1378
1379 void OPPROTO op_fildll_FT0_A0(void)
1380 {
1381 helper_fildll_FT0_A0();
1382 }
1383
1384 #else
1385
1386 void OPPROTO op_fild_FT0_A0(void)
1387 {
1388 #ifdef USE_FP_CONVERT
1389 FP_CONVERT.i32 = ldsw((void *)A0);
1390 FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1391 #else
1392 FT0 = (CPU86_LDouble)ldsw((void *)A0);
1393 #endif
1394 }
1395
1396 void OPPROTO op_fildl_FT0_A0(void)
1397 {
1398 #ifdef USE_FP_CONVERT
1399 FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1400 FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1401 #else
1402 FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1403 #endif
1404 }
1405
1406 void OPPROTO op_fildll_FT0_A0(void)
1407 {
1408 #ifdef USE_FP_CONVERT
1409 FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1410 FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1411 #else
1412 FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1413 #endif
1414 }
1415 #endif
1416
1417 /* fp load ST0 */
1418
1419 void OPPROTO op_flds_ST0_A0(void)
1420 {
1421 int new_fpstt;
1422 new_fpstt = (env->fpstt - 1) & 7;
1423 #ifdef USE_FP_CONVERT
1424 FP_CONVERT.i32 = ldl((void *)A0);
1425 env->fpregs[new_fpstt] = FP_CONVERT.f;
1426 #else
1427 env->fpregs[new_fpstt] = ldfl((void *)A0);
1428 #endif
1429 env->fpstt = new_fpstt;
1430 env->fptags[new_fpstt] = 0; /* validate stack entry */
1431 }
1432
1433 void OPPROTO op_fldl_ST0_A0(void)
1434 {
1435 int new_fpstt;
1436 new_fpstt = (env->fpstt - 1) & 7;
1437 #ifdef USE_FP_CONVERT
1438 FP_CONVERT.i64 = ldq((void *)A0);
1439 env->fpregs[new_fpstt] = FP_CONVERT.d;
1440 #else
1441 env->fpregs[new_fpstt] = ldfq((void *)A0);
1442 #endif
1443 env->fpstt = new_fpstt;
1444 env->fptags[new_fpstt] = 0; /* validate stack entry */
1445 }
1446
1447 void OPPROTO op_fldt_ST0_A0(void)
1448 {
1449 helper_fldt_ST0_A0();
1450 }
1451
1452 /* helpers are needed to avoid static constant reference. XXX: find a better way */
1453 #ifdef USE_INT_TO_FLOAT_HELPERS
1454
1455 void helper_fild_ST0_A0(void)
1456 {
1457 int new_fpstt;
1458 new_fpstt = (env->fpstt - 1) & 7;
1459 env->fpregs[new_fpstt] = (CPU86_LDouble)ldsw((void *)A0);
1460 env->fpstt = new_fpstt;
1461 env->fptags[new_fpstt] = 0; /* validate stack entry */
1462 }
1463
1464 void helper_fildl_ST0_A0(void)
1465 {
1466 int new_fpstt;
1467 new_fpstt = (env->fpstt - 1) & 7;
1468 env->fpregs[new_fpstt] = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1469 env->fpstt = new_fpstt;
1470 env->fptags[new_fpstt] = 0; /* validate stack entry */
1471 }
1472
1473 void helper_fildll_ST0_A0(void)
1474 {
1475 int new_fpstt;
1476 new_fpstt = (env->fpstt - 1) & 7;
1477 env->fpregs[new_fpstt] = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1478 env->fpstt = new_fpstt;
1479 env->fptags[new_fpstt] = 0; /* validate stack entry */
1480 }
1481
1482 void OPPROTO op_fild_ST0_A0(void)
1483 {
1484 helper_fild_ST0_A0();
1485 }
1486
1487 void OPPROTO op_fildl_ST0_A0(void)
1488 {
1489 helper_fildl_ST0_A0();
1490 }
1491
1492 void OPPROTO op_fildll_ST0_A0(void)
1493 {
1494 helper_fildll_ST0_A0();
1495 }
1496
1497 #else
1498
1499 void OPPROTO op_fild_ST0_A0(void)
1500 {
1501 int new_fpstt;
1502 new_fpstt = (env->fpstt - 1) & 7;
1503 #ifdef USE_FP_CONVERT
1504 FP_CONVERT.i32 = ldsw((void *)A0);
1505 env->fpregs[new_fpstt] = (CPU86_LDouble)FP_CONVERT.i32;
1506 #else
1507 env->fpregs[new_fpstt] = (CPU86_LDouble)ldsw((void *)A0);
1508 #endif
1509 env->fpstt = new_fpstt;
1510 env->fptags[new_fpstt] = 0; /* validate stack entry */
1511 }
1512
1513 void OPPROTO op_fildl_ST0_A0(void)
1514 {
1515 int new_fpstt;
1516 new_fpstt = (env->fpstt - 1) & 7;
1517 #ifdef USE_FP_CONVERT
1518 FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1519 env->fpregs[new_fpstt] = (CPU86_LDouble)FP_CONVERT.i32;
1520 #else
1521 env->fpregs[new_fpstt] = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1522 #endif
1523 env->fpstt = new_fpstt;
1524 env->fptags[new_fpstt] = 0; /* validate stack entry */
1525 }
1526
1527 void OPPROTO op_fildll_ST0_A0(void)
1528 {
1529 int new_fpstt;
1530 new_fpstt = (env->fpstt - 1) & 7;
1531 #ifdef USE_FP_CONVERT
1532 FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1533 env->fpregs[new_fpstt] = (CPU86_LDouble)FP_CONVERT.i64;
1534 #else
1535 env->fpregs[new_fpstt] = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1536 #endif
1537 env->fpstt = new_fpstt;
1538 env->fptags[new_fpstt] = 0; /* validate stack entry */
1539 }
1540
1541 #endif
1542
1543 /* fp store */
1544
1545 void OPPROTO op_fsts_ST0_A0(void)
1546 {
1547 #ifdef USE_FP_CONVERT
1548 FP_CONVERT.f = (float)ST0;
1549 stfl((void *)A0, FP_CONVERT.f);
1550 #else
1551 stfl((void *)A0, (float)ST0);
1552 #endif
1553 }
1554
1555 void OPPROTO op_fstl_ST0_A0(void)
1556 {
1557 stfq((void *)A0, (double)ST0);
1558 }
1559
1560 void OPPROTO op_fstt_ST0_A0(void)
1561 {
1562 helper_fstt_ST0_A0();
1563 }
1564
1565 void OPPROTO op_fist_ST0_A0(void)
1566 {
1567 #if defined(__sparc__) && !defined(__sparc_v9__)
1568 register CPU86_LDouble d asm("o0");
1569 #else
1570 CPU86_LDouble d;
1571 #endif
1572 int val;
1573
1574 d = ST0;
1575 val = lrint(d);
1576 if (val != (int16_t)val)
1577 val = -32768;
1578 stw((void *)A0, val);
1579 }
1580
1581 void OPPROTO op_fistl_ST0_A0(void)
1582 {
1583 #if defined(__sparc__) && !defined(__sparc_v9__)
1584 register CPU86_LDouble d asm("o0");
1585 #else
1586 CPU86_LDouble d;
1587 #endif
1588 int val;
1589
1590 d = ST0;
1591 val = lrint(d);
1592 stl((void *)A0, val);
1593 }
1594
1595 void OPPROTO op_fistll_ST0_A0(void)
1596 {
1597 #if defined(__sparc__) && !defined(__sparc_v9__)
1598 register CPU86_LDouble d asm("o0");
1599 #else
1600 CPU86_LDouble d;
1601 #endif
1602 int64_t val;
1603
1604 d = ST0;
1605 val = llrint(d);
1606 stq((void *)A0, val);
1607 }
1608
1609 void OPPROTO op_fbld_ST0_A0(void)
1610 {
1611 helper_fbld_ST0_A0();
1612 }
1613
1614 void OPPROTO op_fbst_ST0_A0(void)
1615 {
1616 helper_fbst_ST0_A0();
1617 }
1618
1619 /* FPU move */
1620
1621 void OPPROTO op_fpush(void)
1622 {
1623 fpush();
1624 }
1625
1626 void OPPROTO op_fpop(void)
1627 {
1628 fpop();
1629 }
1630
1631 void OPPROTO op_fdecstp(void)
1632 {
1633 env->fpstt = (env->fpstt - 1) & 7;
1634 env->fpus &= (~0x4700);
1635 }
1636
1637 void OPPROTO op_fincstp(void)
1638 {
1639 env->fpstt = (env->fpstt + 1) & 7;
1640 env->fpus &= (~0x4700);
1641 }
1642
1643 void OPPROTO op_ffree_STN(void)
1644 {
1645 env->fptags[(env->fpstt + PARAM1) & 7] = 1;
1646 }
1647
1648 void OPPROTO op_fmov_ST0_FT0(void)
1649 {
1650 ST0 = FT0;
1651 }
1652
1653 void OPPROTO op_fmov_FT0_STN(void)
1654 {
1655 FT0 = ST(PARAM1);
1656 }
1657
1658 void OPPROTO op_fmov_ST0_STN(void)
1659 {
1660 ST0 = ST(PARAM1);
1661 }
1662
1663 void OPPROTO op_fmov_STN_ST0(void)
1664 {
1665 ST(PARAM1) = ST0;
1666 }
1667
1668 void OPPROTO op_fxchg_ST0_STN(void)
1669 {
1670 CPU86_LDouble tmp;
1671 tmp = ST(PARAM1);
1672 ST(PARAM1) = ST0;
1673 ST0 = tmp;
1674 }
1675
1676 /* FPU operations */
1677
1678 /* XXX: handle nans */
1679 void OPPROTO op_fcom_ST0_FT0(void)
1680 {
1681 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1682 if (ST0 < FT0)
1683 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1684 else if (ST0 == FT0)
1685 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1686 FORCE_RET();
1687 }
1688
1689 /* XXX: handle nans */
1690 void OPPROTO op_fucom_ST0_FT0(void)
1691 {
1692 env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
1693 if (ST0 < FT0)
1694 env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
1695 else if (ST0 == FT0)
1696 env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
1697 FORCE_RET();
1698 }
1699
1700 /* XXX: handle nans */
1701 void OPPROTO op_fcomi_ST0_FT0(void)
1702 {
1703 int eflags;
1704 eflags = cc_table[CC_OP].compute_all();
1705 eflags &= ~(CC_Z | CC_P | CC_C);
1706 if (ST0 < FT0)
1707 eflags |= CC_C;
1708 else if (ST0 == FT0)
1709 eflags |= CC_Z;
1710 CC_SRC = eflags;
1711 FORCE_RET();
1712 }
1713
1714 /* XXX: handle nans */
1715 void OPPROTO op_fucomi_ST0_FT0(void)
1716 {
1717 int eflags;
1718 eflags = cc_table[CC_OP].compute_all();
1719 eflags &= ~(CC_Z | CC_P | CC_C);
1720 if (ST0 < FT0)
1721 eflags |= CC_C;
1722 else if (ST0 == FT0)
1723 eflags |= CC_Z;
1724 CC_SRC = eflags;
1725 FORCE_RET();
1726 }
1727
1728 void OPPROTO op_fcmov_ST0_STN_T0(void)
1729 {
1730 if (T0) {
1731 ST0 = ST(PARAM1);
1732 }
1733 FORCE_RET();
1734 }
1735
1736 void OPPROTO op_fadd_ST0_FT0(void)
1737 {
1738 ST0 += FT0;
1739 }
1740
1741 void OPPROTO op_fmul_ST0_FT0(void)
1742 {
1743 ST0 *= FT0;
1744 }
1745
1746 void OPPROTO op_fsub_ST0_FT0(void)
1747 {
1748 ST0 -= FT0;
1749 }
1750
1751 void OPPROTO op_fsubr_ST0_FT0(void)
1752 {
1753 ST0 = FT0 - ST0;
1754 }
1755
1756 void OPPROTO op_fdiv_ST0_FT0(void)
1757 {
1758 ST0 = helper_fdiv(ST0, FT0);
1759 }
1760
1761 void OPPROTO op_fdivr_ST0_FT0(void)
1762 {
1763 ST0 = helper_fdiv(FT0, ST0);
1764 }
1765
1766 /* fp operations between STN and ST0 */
1767
1768 void OPPROTO op_fadd_STN_ST0(void)
1769 {
1770 ST(PARAM1) += ST0;
1771 }
1772
1773 void OPPROTO op_fmul_STN_ST0(void)
1774 {
1775 ST(PARAM1) *= ST0;
1776 }
1777
1778 void OPPROTO op_fsub_STN_ST0(void)
1779 {
1780 ST(PARAM1) -= ST0;
1781 }
1782
1783 void OPPROTO op_fsubr_STN_ST0(void)
1784 {
1785 CPU86_LDouble *p;
1786 p = &ST(PARAM1);
1787 *p = ST0 - *p;
1788 }
1789
1790 void OPPROTO op_fdiv_STN_ST0(void)
1791 {
1792 CPU86_LDouble *p;
1793 p = &ST(PARAM1);
1794 *p = helper_fdiv(*p, ST0);
1795 }
1796
1797 void OPPROTO op_fdivr_STN_ST0(void)
1798 {
1799 CPU86_LDouble *p;
1800 p = &ST(PARAM1);
1801 *p = helper_fdiv(ST0, *p);
1802 }
1803
1804 /* misc FPU operations */
1805 void OPPROTO op_fchs_ST0(void)
1806 {
1807 ST0 = -ST0;
1808 }
1809
1810 void OPPROTO op_fabs_ST0(void)
1811 {
1812 ST0 = fabs(ST0);
1813 }
1814
1815 void OPPROTO op_fxam_ST0(void)
1816 {
1817 helper_fxam_ST0();
1818 }
1819
1820 void OPPROTO op_fld1_ST0(void)
1821 {
1822 ST0 = f15rk[1];
1823 }
1824
1825 void OPPROTO op_fldl2t_ST0(void)
1826 {
1827 ST0 = f15rk[6];
1828 }
1829
1830 void OPPROTO op_fldl2e_ST0(void)
1831 {
1832 ST0 = f15rk[5];
1833 }
1834
1835 void OPPROTO op_fldpi_ST0(void)
1836 {
1837 ST0 = f15rk[2];
1838 }
1839
1840 void OPPROTO op_fldlg2_ST0(void)
1841 {
1842 ST0 = f15rk[3];
1843 }
1844
1845 void OPPROTO op_fldln2_ST0(void)
1846 {
1847 ST0 = f15rk[4];
1848 }
1849
1850 void OPPROTO op_fldz_ST0(void)
1851 {
1852 ST0 = f15rk[0];
1853 }
1854
1855 void OPPROTO op_fldz_FT0(void)
1856 {
1857 FT0 = f15rk[0];
1858 }
1859
1860 /* associated heplers to reduce generated code length and to simplify
1861 relocation (FP constants are usually stored in .rodata section) */
1862
1863 void OPPROTO op_f2xm1(void)
1864 {
1865 helper_f2xm1();
1866 }
1867
1868 void OPPROTO op_fyl2x(void)
1869 {
1870 helper_fyl2x();
1871 }
1872
1873 void OPPROTO op_fptan(void)
1874 {
1875 helper_fptan();
1876 }
1877
1878 void OPPROTO op_fpatan(void)
1879 {
1880 helper_fpatan();
1881 }
1882
1883 void OPPROTO op_fxtract(void)
1884 {
1885 helper_fxtract();
1886 }
1887
1888 void OPPROTO op_fprem1(void)
1889 {
1890 helper_fprem1();
1891 }
1892
1893
1894 void OPPROTO op_fprem(void)
1895 {
1896 helper_fprem();
1897 }
1898
1899 void OPPROTO op_fyl2xp1(void)
1900 {
1901 helper_fyl2xp1();
1902 }
1903
1904 void OPPROTO op_fsqrt(void)
1905 {
1906 helper_fsqrt();
1907 }
1908
1909 void OPPROTO op_fsincos(void)
1910 {
1911 helper_fsincos();
1912 }
1913
1914 void OPPROTO op_frndint(void)
1915 {
1916 helper_frndint();
1917 }
1918
1919 void OPPROTO op_fscale(void)
1920 {
1921 helper_fscale();
1922 }
1923
1924 void OPPROTO op_fsin(void)
1925 {
1926 helper_fsin();
1927 }
1928
1929 void OPPROTO op_fcos(void)
1930 {
1931 helper_fcos();
1932 }
1933
1934 void OPPROTO op_fnstsw_A0(void)
1935 {
1936 int fpus;
1937 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
1938 stw((void *)A0, fpus);
1939 }
1940
1941 void OPPROTO op_fnstsw_EAX(void)
1942 {
1943 int fpus;
1944 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
1945 EAX = (EAX & 0xffff0000) | fpus;
1946 }
1947
1948 void OPPROTO op_fnstcw_A0(void)
1949 {
1950 stw((void *)A0, env->fpuc);
1951 }
1952
1953 void OPPROTO op_fldcw_A0(void)
1954 {
1955 int rnd_type;
1956 env->fpuc = lduw((void *)A0);
1957 /* set rounding mode */
1958 #ifdef _BSD
1959 switch(env->fpuc & RC_MASK) {
1960 default:
1961 case RC_NEAR:
1962 rnd_type = FP_RN;
1963 break;
1964 case RC_DOWN:
1965 rnd_type = FP_RM;
1966 break;
1967 case RC_UP:
1968 rnd_type = FP_RP;
1969 break;
1970 case RC_CHOP:
1971 rnd_type = FP_RZ;
1972 break;
1973 }
1974 fpsetround(rnd_type);
1975 #else
1976 switch(env->fpuc & RC_MASK) {
1977 default:
1978 case RC_NEAR:
1979 rnd_type = FE_TONEAREST;
1980 break;
1981 case RC_DOWN:
1982 rnd_type = FE_DOWNWARD;
1983 break;
1984 case RC_UP:
1985 rnd_type = FE_UPWARD;
1986 break;
1987 case RC_CHOP:
1988 rnd_type = FE_TOWARDZERO;
1989 break;
1990 }
1991 fesetround(rnd_type);
1992 #endif
1993 }
1994
1995 void OPPROTO op_fclex(void)
1996 {
1997 env->fpus &= 0x7f00;
1998 }
1999
2000 void OPPROTO op_fwait(void)
2001 {
2002 if (env->fpus & FPUS_SE)
2003 fpu_raise_exception();
2004 FORCE_RET();
2005 }
2006
2007 void OPPROTO op_fninit(void)
2008 {
2009 env->fpus = 0;
2010 env->fpstt = 0;
2011 env->fpuc = 0x37f;
2012 env->fptags[0] = 1;
2013 env->fptags[1] = 1;
2014 env->fptags[2] = 1;
2015 env->fptags[3] = 1;
2016 env->fptags[4] = 1;
2017 env->fptags[5] = 1;
2018 env->fptags[6] = 1;
2019 env->fptags[7] = 1;
2020 }
2021
2022 void OPPROTO op_fnstenv_A0(void)
2023 {
2024 helper_fstenv((uint8_t *)A0, PARAM1);
2025 }
2026
2027 void OPPROTO op_fldenv_A0(void)
2028 {
2029 helper_fldenv((uint8_t *)A0, PARAM1);
2030 }
2031
2032 void OPPROTO op_fnsave_A0(void)
2033 {
2034 helper_fsave((uint8_t *)A0, PARAM1);
2035 }
2036
2037 void OPPROTO op_frstor_A0(void)
2038 {
2039 helper_frstor((uint8_t *)A0, PARAM1);
2040 }
2041
2042 /* threading support */
2043 void OPPROTO op_lock(void)
2044 {
2045 cpu_lock();
2046 }
2047
2048 void OPPROTO op_unlock(void)
2049 {
2050 cpu_unlock();
2051 }
2052