]> git.proxmox.com Git - mirror_qemu.git/blob - target-mips/op_helper.c
translate-all: Change cpu_restore_state() argument to CPUState
[mirror_qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22
23 #include "helper.h"
24
25 #if !defined(CONFIG_USER_ONLY)
26 #include "exec/softmmu_exec.h"
27 #endif /* !defined(CONFIG_USER_ONLY) */
28
29 #ifndef CONFIG_USER_ONLY
30 static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
31 #endif
32
33 /*****************************************************************************/
34 /* Exceptions processing helpers */
35
36 static inline void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
37 uint32_t exception,
38 int error_code,
39 uintptr_t pc)
40 {
41 CPUState *cs = CPU(mips_env_get_cpu(env));
42
43 if (exception < EXCP_SC) {
44 qemu_log("%s: %d %d\n", __func__, exception, error_code);
45 }
46 cs->exception_index = exception;
47 env->error_code = error_code;
48
49 if (pc) {
50 /* now we have a real cpu fault */
51 cpu_restore_state(cs, pc);
52 }
53
54 cpu_loop_exit(cs);
55 }
56
57 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
58 uint32_t exception,
59 uintptr_t pc)
60 {
61 do_raise_exception_err(env, exception, 0, pc);
62 }
63
64 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
65 int error_code)
66 {
67 do_raise_exception_err(env, exception, error_code, 0);
68 }
69
70 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
71 {
72 do_raise_exception(env, exception, 0);
73 }
74
75 #if defined(CONFIG_USER_ONLY)
76 #define HELPER_LD(name, insn, type) \
77 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
78 int mem_idx) \
79 { \
80 return (type) insn##_raw(addr); \
81 }
82 #else
83 #define HELPER_LD(name, insn, type) \
84 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
85 int mem_idx) \
86 { \
87 switch (mem_idx) \
88 { \
89 case 0: return (type) cpu_##insn##_kernel(env, addr); break; \
90 case 1: return (type) cpu_##insn##_super(env, addr); break; \
91 default: \
92 case 2: return (type) cpu_##insn##_user(env, addr); break; \
93 } \
94 }
95 #endif
96 HELPER_LD(lbu, ldub, uint8_t)
97 HELPER_LD(lw, ldl, int32_t)
98 #ifdef TARGET_MIPS64
99 HELPER_LD(ld, ldq, int64_t)
100 #endif
101 #undef HELPER_LD
102
103 #if defined(CONFIG_USER_ONLY)
104 #define HELPER_ST(name, insn, type) \
105 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
106 type val, int mem_idx) \
107 { \
108 insn##_raw(addr, val); \
109 }
110 #else
111 #define HELPER_ST(name, insn, type) \
112 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
113 type val, int mem_idx) \
114 { \
115 switch (mem_idx) \
116 { \
117 case 0: cpu_##insn##_kernel(env, addr, val); break; \
118 case 1: cpu_##insn##_super(env, addr, val); break; \
119 default: \
120 case 2: cpu_##insn##_user(env, addr, val); break; \
121 } \
122 }
123 #endif
124 HELPER_ST(sb, stb, uint8_t)
125 HELPER_ST(sw, stl, uint32_t)
126 #ifdef TARGET_MIPS64
127 HELPER_ST(sd, stq, uint64_t)
128 #endif
129 #undef HELPER_ST
130
131 target_ulong helper_clo (target_ulong arg1)
132 {
133 return clo32(arg1);
134 }
135
136 target_ulong helper_clz (target_ulong arg1)
137 {
138 return clz32(arg1);
139 }
140
141 #if defined(TARGET_MIPS64)
142 target_ulong helper_dclo (target_ulong arg1)
143 {
144 return clo64(arg1);
145 }
146
147 target_ulong helper_dclz (target_ulong arg1)
148 {
149 return clz64(arg1);
150 }
151 #endif /* TARGET_MIPS64 */
152
153 /* 64 bits arithmetic for 32 bits hosts */
154 static inline uint64_t get_HILO(CPUMIPSState *env)
155 {
156 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
157 }
158
159 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
160 {
161 target_ulong tmp;
162 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
163 tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
164 return tmp;
165 }
166
167 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
168 {
169 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
170 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
171 return tmp;
172 }
173
174 /* Multiplication variants of the vr54xx. */
175 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
176 target_ulong arg2)
177 {
178 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
179 (int64_t)(int32_t)arg2));
180 }
181
182 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
183 target_ulong arg2)
184 {
185 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
186 (uint64_t)(uint32_t)arg2);
187 }
188
189 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
190 target_ulong arg2)
191 {
192 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
193 (int64_t)(int32_t)arg2);
194 }
195
196 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
197 target_ulong arg2)
198 {
199 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
200 (int64_t)(int32_t)arg2);
201 }
202
203 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
204 target_ulong arg2)
205 {
206 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
207 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
208 }
209
210 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
211 target_ulong arg2)
212 {
213 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
214 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
215 }
216
217 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
218 target_ulong arg2)
219 {
220 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
221 (int64_t)(int32_t)arg2);
222 }
223
224 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
225 target_ulong arg2)
226 {
227 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
228 (int64_t)(int32_t)arg2);
229 }
230
231 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
232 target_ulong arg2)
233 {
234 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
235 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
236 }
237
238 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
239 target_ulong arg2)
240 {
241 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
242 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
243 }
244
245 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
246 target_ulong arg2)
247 {
248 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
249 }
250
251 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
252 target_ulong arg2)
253 {
254 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
255 (uint64_t)(uint32_t)arg2);
256 }
257
258 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
259 target_ulong arg2)
260 {
261 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
262 (int64_t)(int32_t)arg2);
263 }
264
265 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
266 target_ulong arg2)
267 {
268 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
269 (uint64_t)(uint32_t)arg2);
270 }
271
272 #ifndef CONFIG_USER_ONLY
273
274 static inline hwaddr do_translate_address(CPUMIPSState *env,
275 target_ulong address,
276 int rw)
277 {
278 hwaddr lladdr;
279
280 lladdr = cpu_mips_translate_address(env, address, rw);
281
282 if (lladdr == -1LL) {
283 cpu_loop_exit(CPU(mips_env_get_cpu(env)));
284 } else {
285 return lladdr;
286 }
287 }
288
289 #define HELPER_LD_ATOMIC(name, insn) \
290 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
291 { \
292 env->lladdr = do_translate_address(env, arg, 0); \
293 env->llval = do_##insn(env, arg, mem_idx); \
294 return env->llval; \
295 }
296 HELPER_LD_ATOMIC(ll, lw)
297 #ifdef TARGET_MIPS64
298 HELPER_LD_ATOMIC(lld, ld)
299 #endif
300 #undef HELPER_LD_ATOMIC
301
302 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
303 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
304 target_ulong arg2, int mem_idx) \
305 { \
306 target_long tmp; \
307 \
308 if (arg2 & almask) { \
309 env->CP0_BadVAddr = arg2; \
310 helper_raise_exception(env, EXCP_AdES); \
311 } \
312 if (do_translate_address(env, arg2, 1) == env->lladdr) { \
313 tmp = do_##ld_insn(env, arg2, mem_idx); \
314 if (tmp == env->llval) { \
315 do_##st_insn(env, arg2, arg1, mem_idx); \
316 return 1; \
317 } \
318 } \
319 return 0; \
320 }
321 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
322 #ifdef TARGET_MIPS64
323 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
324 #endif
325 #undef HELPER_ST_ATOMIC
326 #endif
327
328 #ifdef TARGET_WORDS_BIGENDIAN
329 #define GET_LMASK(v) ((v) & 3)
330 #define GET_OFFSET(addr, offset) (addr + (offset))
331 #else
332 #define GET_LMASK(v) (((v) & 3) ^ 3)
333 #define GET_OFFSET(addr, offset) (addr - (offset))
334 #endif
335
336 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
337 int mem_idx)
338 {
339 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx);
340
341 if (GET_LMASK(arg2) <= 2)
342 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
343
344 if (GET_LMASK(arg2) <= 1)
345 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
346
347 if (GET_LMASK(arg2) == 0)
348 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
349 }
350
351 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
352 int mem_idx)
353 {
354 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
355
356 if (GET_LMASK(arg2) >= 1)
357 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
358
359 if (GET_LMASK(arg2) >= 2)
360 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
361
362 if (GET_LMASK(arg2) == 3)
363 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
364 }
365
366 #if defined(TARGET_MIPS64)
367 /* "half" load and stores. We must do the memory access inline,
368 or fault handling won't work. */
369
370 #ifdef TARGET_WORDS_BIGENDIAN
371 #define GET_LMASK64(v) ((v) & 7)
372 #else
373 #define GET_LMASK64(v) (((v) & 7) ^ 7)
374 #endif
375
376 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
377 int mem_idx)
378 {
379 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx);
380
381 if (GET_LMASK64(arg2) <= 6)
382 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
383
384 if (GET_LMASK64(arg2) <= 5)
385 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
386
387 if (GET_LMASK64(arg2) <= 4)
388 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
389
390 if (GET_LMASK64(arg2) <= 3)
391 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
392
393 if (GET_LMASK64(arg2) <= 2)
394 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
395
396 if (GET_LMASK64(arg2) <= 1)
397 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
398
399 if (GET_LMASK64(arg2) <= 0)
400 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
401 }
402
403 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
404 int mem_idx)
405 {
406 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
407
408 if (GET_LMASK64(arg2) >= 1)
409 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
410
411 if (GET_LMASK64(arg2) >= 2)
412 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
413
414 if (GET_LMASK64(arg2) >= 3)
415 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
416
417 if (GET_LMASK64(arg2) >= 4)
418 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
419
420 if (GET_LMASK64(arg2) >= 5)
421 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
422
423 if (GET_LMASK64(arg2) >= 6)
424 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
425
426 if (GET_LMASK64(arg2) == 7)
427 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
428 }
429 #endif /* TARGET_MIPS64 */
430
431 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
432
433 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
434 uint32_t mem_idx)
435 {
436 target_ulong base_reglist = reglist & 0xf;
437 target_ulong do_r31 = reglist & 0x10;
438
439 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
440 target_ulong i;
441
442 for (i = 0; i < base_reglist; i++) {
443 env->active_tc.gpr[multiple_regs[i]] =
444 (target_long)do_lw(env, addr, mem_idx);
445 addr += 4;
446 }
447 }
448
449 if (do_r31) {
450 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx);
451 }
452 }
453
454 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
455 uint32_t mem_idx)
456 {
457 target_ulong base_reglist = reglist & 0xf;
458 target_ulong do_r31 = reglist & 0x10;
459
460 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
461 target_ulong i;
462
463 for (i = 0; i < base_reglist; i++) {
464 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
465 addr += 4;
466 }
467 }
468
469 if (do_r31) {
470 do_sw(env, addr, env->active_tc.gpr[31], mem_idx);
471 }
472 }
473
474 #if defined(TARGET_MIPS64)
475 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
476 uint32_t mem_idx)
477 {
478 target_ulong base_reglist = reglist & 0xf;
479 target_ulong do_r31 = reglist & 0x10;
480
481 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
482 target_ulong i;
483
484 for (i = 0; i < base_reglist; i++) {
485 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx);
486 addr += 8;
487 }
488 }
489
490 if (do_r31) {
491 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx);
492 }
493 }
494
495 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
496 uint32_t mem_idx)
497 {
498 target_ulong base_reglist = reglist & 0xf;
499 target_ulong do_r31 = reglist & 0x10;
500
501 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
502 target_ulong i;
503
504 for (i = 0; i < base_reglist; i++) {
505 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
506 addr += 8;
507 }
508 }
509
510 if (do_r31) {
511 do_sd(env, addr, env->active_tc.gpr[31], mem_idx);
512 }
513 }
514 #endif
515
516 #ifndef CONFIG_USER_ONLY
517 /* SMP helpers. */
518 static bool mips_vpe_is_wfi(MIPSCPU *c)
519 {
520 CPUState *cpu = CPU(c);
521 CPUMIPSState *env = &c->env;
522
523 /* If the VPE is halted but otherwise active, it means it's waiting for
524 an interrupt. */
525 return cpu->halted && mips_vpe_active(env);
526 }
527
528 static inline void mips_vpe_wake(MIPSCPU *c)
529 {
530 /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
531 because there might be other conditions that state that c should
532 be sleeping. */
533 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
534 }
535
536 static inline void mips_vpe_sleep(MIPSCPU *cpu)
537 {
538 CPUState *cs = CPU(cpu);
539
540 /* The VPE was shut off, really go to bed.
541 Reset any old _WAKE requests. */
542 cs->halted = 1;
543 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
544 }
545
546 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
547 {
548 CPUMIPSState *c = &cpu->env;
549
550 /* FIXME: TC reschedule. */
551 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
552 mips_vpe_wake(cpu);
553 }
554 }
555
556 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
557 {
558 CPUMIPSState *c = &cpu->env;
559
560 /* FIXME: TC reschedule. */
561 if (!mips_vpe_active(c)) {
562 mips_vpe_sleep(cpu);
563 }
564 }
565
566 /**
567 * mips_cpu_map_tc:
568 * @env: CPU from which mapping is performed.
569 * @tc: Should point to an int with the value of the global TC index.
570 *
571 * This function will transform @tc into a local index within the
572 * returned #CPUMIPSState.
573 */
574 /* FIXME: This code assumes that all VPEs have the same number of TCs,
575 which depends on runtime setup. Can probably be fixed by
576 walking the list of CPUMIPSStates. */
577 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
578 {
579 MIPSCPU *cpu;
580 CPUState *cs;
581 CPUState *other_cs;
582 int vpe_idx;
583 int tc_idx = *tc;
584
585 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
586 /* Not allowed to address other CPUs. */
587 *tc = env->current_tc;
588 return env;
589 }
590
591 cs = CPU(mips_env_get_cpu(env));
592 vpe_idx = tc_idx / cs->nr_threads;
593 *tc = tc_idx % cs->nr_threads;
594 other_cs = qemu_get_cpu(vpe_idx);
595 if (other_cs == NULL) {
596 return env;
597 }
598 cpu = MIPS_CPU(other_cs);
599 return &cpu->env;
600 }
601
602 /* The per VPE CP0_Status register shares some fields with the per TC
603 CP0_TCStatus registers. These fields are wired to the same registers,
604 so changes to either of them should be reflected on both registers.
605
606 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
607
608 These helper call synchronizes the regs for a given cpu. */
609
610 /* Called for updates to CP0_Status. */
611 static void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
612 {
613 int32_t tcstatus, *tcst;
614 uint32_t v = cpu->CP0_Status;
615 uint32_t cu, mx, asid, ksu;
616 uint32_t mask = ((1 << CP0TCSt_TCU3)
617 | (1 << CP0TCSt_TCU2)
618 | (1 << CP0TCSt_TCU1)
619 | (1 << CP0TCSt_TCU0)
620 | (1 << CP0TCSt_TMX)
621 | (3 << CP0TCSt_TKSU)
622 | (0xff << CP0TCSt_TASID));
623
624 cu = (v >> CP0St_CU0) & 0xf;
625 mx = (v >> CP0St_MX) & 0x1;
626 ksu = (v >> CP0St_KSU) & 0x3;
627 asid = env->CP0_EntryHi & 0xff;
628
629 tcstatus = cu << CP0TCSt_TCU0;
630 tcstatus |= mx << CP0TCSt_TMX;
631 tcstatus |= ksu << CP0TCSt_TKSU;
632 tcstatus |= asid;
633
634 if (tc == cpu->current_tc) {
635 tcst = &cpu->active_tc.CP0_TCStatus;
636 } else {
637 tcst = &cpu->tcs[tc].CP0_TCStatus;
638 }
639
640 *tcst &= ~mask;
641 *tcst |= tcstatus;
642 compute_hflags(cpu);
643 }
644
645 /* Called for updates to CP0_TCStatus. */
646 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
647 target_ulong v)
648 {
649 uint32_t status;
650 uint32_t tcu, tmx, tasid, tksu;
651 uint32_t mask = ((1 << CP0St_CU3)
652 | (1 << CP0St_CU2)
653 | (1 << CP0St_CU1)
654 | (1 << CP0St_CU0)
655 | (1 << CP0St_MX)
656 | (3 << CP0St_KSU));
657
658 tcu = (v >> CP0TCSt_TCU0) & 0xf;
659 tmx = (v >> CP0TCSt_TMX) & 0x1;
660 tasid = v & 0xff;
661 tksu = (v >> CP0TCSt_TKSU) & 0x3;
662
663 status = tcu << CP0St_CU0;
664 status |= tmx << CP0St_MX;
665 status |= tksu << CP0St_KSU;
666
667 cpu->CP0_Status &= ~mask;
668 cpu->CP0_Status |= status;
669
670 /* Sync the TASID with EntryHi. */
671 cpu->CP0_EntryHi &= ~0xff;
672 cpu->CP0_EntryHi = tasid;
673
674 compute_hflags(cpu);
675 }
676
677 /* Called for updates to CP0_EntryHi. */
678 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
679 {
680 int32_t *tcst;
681 uint32_t asid, v = cpu->CP0_EntryHi;
682
683 asid = v & 0xff;
684
685 if (tc == cpu->current_tc) {
686 tcst = &cpu->active_tc.CP0_TCStatus;
687 } else {
688 tcst = &cpu->tcs[tc].CP0_TCStatus;
689 }
690
691 *tcst &= ~0xff;
692 *tcst |= asid;
693 }
694
695 /* CP0 helpers */
696 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
697 {
698 return env->mvp->CP0_MVPControl;
699 }
700
701 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
702 {
703 return env->mvp->CP0_MVPConf0;
704 }
705
706 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
707 {
708 return env->mvp->CP0_MVPConf1;
709 }
710
711 target_ulong helper_mfc0_random(CPUMIPSState *env)
712 {
713 return (int32_t)cpu_mips_get_random(env);
714 }
715
716 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
717 {
718 return env->active_tc.CP0_TCStatus;
719 }
720
721 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
722 {
723 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
724 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
725
726 if (other_tc == other->current_tc)
727 return other->active_tc.CP0_TCStatus;
728 else
729 return other->tcs[other_tc].CP0_TCStatus;
730 }
731
732 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
733 {
734 return env->active_tc.CP0_TCBind;
735 }
736
737 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
738 {
739 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
740 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
741
742 if (other_tc == other->current_tc)
743 return other->active_tc.CP0_TCBind;
744 else
745 return other->tcs[other_tc].CP0_TCBind;
746 }
747
748 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
749 {
750 return env->active_tc.PC;
751 }
752
753 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
754 {
755 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
756 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
757
758 if (other_tc == other->current_tc)
759 return other->active_tc.PC;
760 else
761 return other->tcs[other_tc].PC;
762 }
763
764 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
765 {
766 return env->active_tc.CP0_TCHalt;
767 }
768
769 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
770 {
771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
772 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
773
774 if (other_tc == other->current_tc)
775 return other->active_tc.CP0_TCHalt;
776 else
777 return other->tcs[other_tc].CP0_TCHalt;
778 }
779
780 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
781 {
782 return env->active_tc.CP0_TCContext;
783 }
784
785 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
786 {
787 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
788 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
789
790 if (other_tc == other->current_tc)
791 return other->active_tc.CP0_TCContext;
792 else
793 return other->tcs[other_tc].CP0_TCContext;
794 }
795
796 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
797 {
798 return env->active_tc.CP0_TCSchedule;
799 }
800
801 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
802 {
803 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
804 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
805
806 if (other_tc == other->current_tc)
807 return other->active_tc.CP0_TCSchedule;
808 else
809 return other->tcs[other_tc].CP0_TCSchedule;
810 }
811
812 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
813 {
814 return env->active_tc.CP0_TCScheFBack;
815 }
816
817 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
818 {
819 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
820 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
821
822 if (other_tc == other->current_tc)
823 return other->active_tc.CP0_TCScheFBack;
824 else
825 return other->tcs[other_tc].CP0_TCScheFBack;
826 }
827
828 target_ulong helper_mfc0_count(CPUMIPSState *env)
829 {
830 return (int32_t)cpu_mips_get_count(env);
831 }
832
833 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
834 {
835 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
836 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
837
838 return other->CP0_EntryHi;
839 }
840
841 target_ulong helper_mftc0_cause(CPUMIPSState *env)
842 {
843 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
844 int32_t tccause;
845 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
846
847 if (other_tc == other->current_tc) {
848 tccause = other->CP0_Cause;
849 } else {
850 tccause = other->CP0_Cause;
851 }
852
853 return tccause;
854 }
855
856 target_ulong helper_mftc0_status(CPUMIPSState *env)
857 {
858 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
859 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
860
861 return other->CP0_Status;
862 }
863
864 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
865 {
866 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
867 }
868
869 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
870 {
871 return (int32_t)env->CP0_WatchLo[sel];
872 }
873
874 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
875 {
876 return env->CP0_WatchHi[sel];
877 }
878
879 target_ulong helper_mfc0_debug(CPUMIPSState *env)
880 {
881 target_ulong t0 = env->CP0_Debug;
882 if (env->hflags & MIPS_HFLAG_DM)
883 t0 |= 1 << CP0DB_DM;
884
885 return t0;
886 }
887
888 target_ulong helper_mftc0_debug(CPUMIPSState *env)
889 {
890 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
891 int32_t tcstatus;
892 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
893
894 if (other_tc == other->current_tc)
895 tcstatus = other->active_tc.CP0_Debug_tcstatus;
896 else
897 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
898
899 /* XXX: Might be wrong, check with EJTAG spec. */
900 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
901 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
902 }
903
904 #if defined(TARGET_MIPS64)
905 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
906 {
907 return env->active_tc.PC;
908 }
909
910 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
911 {
912 return env->active_tc.CP0_TCHalt;
913 }
914
915 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
916 {
917 return env->active_tc.CP0_TCContext;
918 }
919
920 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
921 {
922 return env->active_tc.CP0_TCSchedule;
923 }
924
925 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
926 {
927 return env->active_tc.CP0_TCScheFBack;
928 }
929
930 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
931 {
932 return env->lladdr >> env->CP0_LLAddr_shift;
933 }
934
935 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
936 {
937 return env->CP0_WatchLo[sel];
938 }
939 #endif /* TARGET_MIPS64 */
940
941 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
942 {
943 int num = 1;
944 unsigned int tmp = env->tlb->nb_tlb;
945
946 do {
947 tmp >>= 1;
948 num <<= 1;
949 } while (tmp);
950 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
951 }
952
953 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
954 {
955 uint32_t mask = 0;
956 uint32_t newval;
957
958 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
959 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
960 (1 << CP0MVPCo_EVP);
961 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
962 mask |= (1 << CP0MVPCo_STLB);
963 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
964
965 // TODO: Enable/disable shared TLB, enable/disable VPEs.
966
967 env->mvp->CP0_MVPControl = newval;
968 }
969
970 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
971 {
972 uint32_t mask;
973 uint32_t newval;
974
975 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
976 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
977 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
978
979 /* Yield scheduler intercept not implemented. */
980 /* Gating storage scheduler intercept not implemented. */
981
982 // TODO: Enable/disable TCs.
983
984 env->CP0_VPEControl = newval;
985 }
986
987 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
988 {
989 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
990 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
991 uint32_t mask;
992 uint32_t newval;
993
994 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
995 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
996 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
997
998 /* TODO: Enable/disable TCs. */
999
1000 other->CP0_VPEControl = newval;
1001 }
1002
1003 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1004 {
1005 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1006 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1007 /* FIXME: Mask away return zero on read bits. */
1008 return other->CP0_VPEControl;
1009 }
1010
1011 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1012 {
1013 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1014 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1015
1016 return other->CP0_VPEConf0;
1017 }
1018
1019 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1020 {
1021 uint32_t mask = 0;
1022 uint32_t newval;
1023
1024 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1025 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1026 mask |= (0xff << CP0VPEC0_XTC);
1027 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1028 }
1029 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1030
1031 // TODO: TC exclusive handling due to ERL/EXL.
1032
1033 env->CP0_VPEConf0 = newval;
1034 }
1035
1036 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1037 {
1038 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1039 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1040 uint32_t mask = 0;
1041 uint32_t newval;
1042
1043 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1044 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1045
1046 /* TODO: TC exclusive handling due to ERL/EXL. */
1047 other->CP0_VPEConf0 = newval;
1048 }
1049
1050 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1051 {
1052 uint32_t mask = 0;
1053 uint32_t newval;
1054
1055 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1056 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1057 (0xff << CP0VPEC1_NCP1);
1058 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1059
1060 /* UDI not implemented. */
1061 /* CP2 not implemented. */
1062
1063 // TODO: Handle FPU (CP1) binding.
1064
1065 env->CP0_VPEConf1 = newval;
1066 }
1067
1068 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1069 {
1070 /* Yield qualifier inputs not implemented. */
1071 env->CP0_YQMask = 0x00000000;
1072 }
1073
1074 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1075 {
1076 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1077 }
1078
1079 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1080 {
1081 /* Large physaddr (PABITS) not implemented */
1082 /* 1k pages not implemented */
1083 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1084 }
1085
1086 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1087 {
1088 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1089 uint32_t newval;
1090
1091 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1092
1093 env->active_tc.CP0_TCStatus = newval;
1094 sync_c0_tcstatus(env, env->current_tc, newval);
1095 }
1096
1097 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1098 {
1099 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1100 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1101
1102 if (other_tc == other->current_tc)
1103 other->active_tc.CP0_TCStatus = arg1;
1104 else
1105 other->tcs[other_tc].CP0_TCStatus = arg1;
1106 sync_c0_tcstatus(other, other_tc, arg1);
1107 }
1108
1109 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1110 {
1111 uint32_t mask = (1 << CP0TCBd_TBE);
1112 uint32_t newval;
1113
1114 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1115 mask |= (1 << CP0TCBd_CurVPE);
1116 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1117 env->active_tc.CP0_TCBind = newval;
1118 }
1119
1120 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1121 {
1122 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1123 uint32_t mask = (1 << CP0TCBd_TBE);
1124 uint32_t newval;
1125 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1126
1127 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1128 mask |= (1 << CP0TCBd_CurVPE);
1129 if (other_tc == other->current_tc) {
1130 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1131 other->active_tc.CP0_TCBind = newval;
1132 } else {
1133 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1134 other->tcs[other_tc].CP0_TCBind = newval;
1135 }
1136 }
1137
1138 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1139 {
1140 env->active_tc.PC = arg1;
1141 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1142 env->lladdr = 0ULL;
1143 /* MIPS16 not implemented. */
1144 }
1145
1146 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1147 {
1148 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1149 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1150
1151 if (other_tc == other->current_tc) {
1152 other->active_tc.PC = arg1;
1153 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1154 other->lladdr = 0ULL;
1155 /* MIPS16 not implemented. */
1156 } else {
1157 other->tcs[other_tc].PC = arg1;
1158 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1159 other->lladdr = 0ULL;
1160 /* MIPS16 not implemented. */
1161 }
1162 }
1163
1164 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1165 {
1166 MIPSCPU *cpu = mips_env_get_cpu(env);
1167
1168 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1169
1170 // TODO: Halt TC / Restart (if allocated+active) TC.
1171 if (env->active_tc.CP0_TCHalt & 1) {
1172 mips_tc_sleep(cpu, env->current_tc);
1173 } else {
1174 mips_tc_wake(cpu, env->current_tc);
1175 }
1176 }
1177
1178 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1179 {
1180 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1181 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1182 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1183
1184 // TODO: Halt TC / Restart (if allocated+active) TC.
1185
1186 if (other_tc == other->current_tc)
1187 other->active_tc.CP0_TCHalt = arg1;
1188 else
1189 other->tcs[other_tc].CP0_TCHalt = arg1;
1190
1191 if (arg1 & 1) {
1192 mips_tc_sleep(other_cpu, other_tc);
1193 } else {
1194 mips_tc_wake(other_cpu, other_tc);
1195 }
1196 }
1197
1198 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1199 {
1200 env->active_tc.CP0_TCContext = arg1;
1201 }
1202
1203 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1204 {
1205 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1206 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1207
1208 if (other_tc == other->current_tc)
1209 other->active_tc.CP0_TCContext = arg1;
1210 else
1211 other->tcs[other_tc].CP0_TCContext = arg1;
1212 }
1213
1214 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1215 {
1216 env->active_tc.CP0_TCSchedule = arg1;
1217 }
1218
1219 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1220 {
1221 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1222 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1223
1224 if (other_tc == other->current_tc)
1225 other->active_tc.CP0_TCSchedule = arg1;
1226 else
1227 other->tcs[other_tc].CP0_TCSchedule = arg1;
1228 }
1229
1230 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1231 {
1232 env->active_tc.CP0_TCScheFBack = arg1;
1233 }
1234
1235 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1236 {
1237 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1238 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1239
1240 if (other_tc == other->current_tc)
1241 other->active_tc.CP0_TCScheFBack = arg1;
1242 else
1243 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1244 }
1245
1246 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1247 {
1248 /* Large physaddr (PABITS) not implemented */
1249 /* 1k pages not implemented */
1250 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1251 }
1252
1253 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1254 {
1255 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1256 }
1257
1258 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1259 {
1260 /* 1k pages not implemented */
1261 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1262 }
1263
1264 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1265 {
1266 /* SmartMIPS not implemented */
1267 /* Large physaddr (PABITS) not implemented */
1268 /* 1k pages not implemented */
1269 env->CP0_PageGrain = 0;
1270 }
1271
1272 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1273 {
1274 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1275 }
1276
1277 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1278 {
1279 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1280 }
1281
1282 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1283 {
1284 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1285 }
1286
1287 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1288 {
1289 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1290 }
1291
1292 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1293 {
1294 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1295 }
1296
1297 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1298 {
1299 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1300 }
1301
1302 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1303 {
1304 env->CP0_HWREna = arg1 & 0x0000000F;
1305 }
1306
1307 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1308 {
1309 cpu_mips_store_count(env, arg1);
1310 }
1311
1312 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1313 {
1314 target_ulong old, val;
1315
1316 /* 1k pages not implemented */
1317 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1318 #if defined(TARGET_MIPS64)
1319 val &= env->SEGMask;
1320 #endif
1321 old = env->CP0_EntryHi;
1322 env->CP0_EntryHi = val;
1323 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1324 sync_c0_entryhi(env, env->current_tc);
1325 }
1326 /* If the ASID changes, flush qemu's TLB. */
1327 if ((old & 0xFF) != (val & 0xFF))
1328 cpu_mips_tlb_flush(env, 1);
1329 }
1330
1331 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1332 {
1333 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1334 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1335
1336 other->CP0_EntryHi = arg1;
1337 sync_c0_entryhi(other, other_tc);
1338 }
1339
1340 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1341 {
1342 cpu_mips_store_compare(env, arg1);
1343 }
1344
1345 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1346 {
1347 uint32_t val, old;
1348 uint32_t mask = env->CP0_Status_rw_bitmask;
1349
1350 val = arg1 & mask;
1351 old = env->CP0_Status;
1352 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1353 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1354 sync_c0_status(env, env, env->current_tc);
1355 } else {
1356 compute_hflags(env);
1357 }
1358
1359 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1360 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1361 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1362 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1363 env->CP0_Cause);
1364 switch (env->hflags & MIPS_HFLAG_KSU) {
1365 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1366 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1367 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1368 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1369 }
1370 }
1371 }
1372
1373 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1374 {
1375 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1376 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1377
1378 other->CP0_Status = arg1 & ~0xf1000018;
1379 sync_c0_status(env, other, other_tc);
1380 }
1381
1382 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1383 {
1384 /* vectored interrupts not implemented, no performance counters. */
1385 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1386 }
1387
1388 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1389 {
1390 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1391 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1392 }
1393
1394 static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
1395 {
1396 uint32_t mask = 0x00C00300;
1397 uint32_t old = cpu->CP0_Cause;
1398 int i;
1399
1400 if (cpu->insn_flags & ISA_MIPS32R2) {
1401 mask |= 1 << CP0Ca_DC;
1402 }
1403
1404 cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
1405
1406 if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
1407 if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
1408 cpu_mips_stop_count(cpu);
1409 } else {
1410 cpu_mips_start_count(cpu);
1411 }
1412 }
1413
1414 /* Set/reset software interrupts */
1415 for (i = 0 ; i < 2 ; i++) {
1416 if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1417 cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
1418 }
1419 }
1420 }
1421
1422 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1423 {
1424 mtc0_cause(env, arg1);
1425 }
1426
1427 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1428 {
1429 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1430 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1431
1432 mtc0_cause(other, arg1);
1433 }
1434
1435 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1436 {
1437 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1438 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1439
1440 return other->CP0_EPC;
1441 }
1442
1443 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1444 {
1445 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1446 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1447
1448 return other->CP0_EBase;
1449 }
1450
1451 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1452 {
1453 /* vectored interrupts not implemented */
1454 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1455 }
1456
1457 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1458 {
1459 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1460 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1461 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1462 }
1463
1464 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1465 {
1466 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1467 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1468
1469 switch (idx) {
1470 case 0: return other->CP0_Config0;
1471 case 1: return other->CP0_Config1;
1472 case 2: return other->CP0_Config2;
1473 case 3: return other->CP0_Config3;
1474 /* 4 and 5 are reserved. */
1475 case 6: return other->CP0_Config6;
1476 case 7: return other->CP0_Config7;
1477 default:
1478 break;
1479 }
1480 return 0;
1481 }
1482
1483 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1484 {
1485 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1486 }
1487
1488 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1489 {
1490 /* tertiary/secondary caches not implemented */
1491 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1492 }
1493
1494 void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
1495 {
1496 env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
1497 (arg1 & env->CP0_Config4_rw_bitmask);
1498 }
1499
1500 void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
1501 {
1502 env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
1503 (arg1 & env->CP0_Config5_rw_bitmask);
1504 }
1505
1506 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1507 {
1508 target_long mask = env->CP0_LLAddr_rw_bitmask;
1509 arg1 = arg1 << env->CP0_LLAddr_shift;
1510 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1511 }
1512
1513 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1514 {
1515 /* Watch exceptions for instructions, data loads, data stores
1516 not implemented. */
1517 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1518 }
1519
1520 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1521 {
1522 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1523 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1524 }
1525
1526 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1527 {
1528 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1529 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1530 }
1531
1532 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1533 {
1534 env->CP0_Framemask = arg1; /* XXX */
1535 }
1536
1537 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1538 {
1539 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1540 if (arg1 & (1 << CP0DB_DM))
1541 env->hflags |= MIPS_HFLAG_DM;
1542 else
1543 env->hflags &= ~MIPS_HFLAG_DM;
1544 }
1545
1546 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1547 {
1548 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1549 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1550 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1551
1552 /* XXX: Might be wrong, check with EJTAG spec. */
1553 if (other_tc == other->current_tc)
1554 other->active_tc.CP0_Debug_tcstatus = val;
1555 else
1556 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1557 other->CP0_Debug = (other->CP0_Debug &
1558 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1559 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1560 }
1561
1562 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1563 {
1564 env->CP0_Performance0 = arg1 & 0x000007ff;
1565 }
1566
1567 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1568 {
1569 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1570 }
1571
1572 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1573 {
1574 env->CP0_DataLo = arg1; /* XXX */
1575 }
1576
1577 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1578 {
1579 env->CP0_TagHi = arg1; /* XXX */
1580 }
1581
1582 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1583 {
1584 env->CP0_DataHi = arg1; /* XXX */
1585 }
1586
1587 /* MIPS MT functions */
1588 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1589 {
1590 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1591 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1592
1593 if (other_tc == other->current_tc)
1594 return other->active_tc.gpr[sel];
1595 else
1596 return other->tcs[other_tc].gpr[sel];
1597 }
1598
1599 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1600 {
1601 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1602 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1603
1604 if (other_tc == other->current_tc)
1605 return other->active_tc.LO[sel];
1606 else
1607 return other->tcs[other_tc].LO[sel];
1608 }
1609
1610 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1611 {
1612 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1613 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1614
1615 if (other_tc == other->current_tc)
1616 return other->active_tc.HI[sel];
1617 else
1618 return other->tcs[other_tc].HI[sel];
1619 }
1620
1621 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1622 {
1623 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1624 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1625
1626 if (other_tc == other->current_tc)
1627 return other->active_tc.ACX[sel];
1628 else
1629 return other->tcs[other_tc].ACX[sel];
1630 }
1631
1632 target_ulong helper_mftdsp(CPUMIPSState *env)
1633 {
1634 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1635 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1636
1637 if (other_tc == other->current_tc)
1638 return other->active_tc.DSPControl;
1639 else
1640 return other->tcs[other_tc].DSPControl;
1641 }
1642
1643 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1644 {
1645 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1646 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1647
1648 if (other_tc == other->current_tc)
1649 other->active_tc.gpr[sel] = arg1;
1650 else
1651 other->tcs[other_tc].gpr[sel] = arg1;
1652 }
1653
1654 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1655 {
1656 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1657 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1658
1659 if (other_tc == other->current_tc)
1660 other->active_tc.LO[sel] = arg1;
1661 else
1662 other->tcs[other_tc].LO[sel] = arg1;
1663 }
1664
1665 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1666 {
1667 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1668 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1669
1670 if (other_tc == other->current_tc)
1671 other->active_tc.HI[sel] = arg1;
1672 else
1673 other->tcs[other_tc].HI[sel] = arg1;
1674 }
1675
1676 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1677 {
1678 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1679 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1680
1681 if (other_tc == other->current_tc)
1682 other->active_tc.ACX[sel] = arg1;
1683 else
1684 other->tcs[other_tc].ACX[sel] = arg1;
1685 }
1686
1687 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1688 {
1689 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1690 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1691
1692 if (other_tc == other->current_tc)
1693 other->active_tc.DSPControl = arg1;
1694 else
1695 other->tcs[other_tc].DSPControl = arg1;
1696 }
1697
1698 /* MIPS MT functions */
1699 target_ulong helper_dmt(void)
1700 {
1701 // TODO
1702 return 0;
1703 }
1704
1705 target_ulong helper_emt(void)
1706 {
1707 // TODO
1708 return 0;
1709 }
1710
1711 target_ulong helper_dvpe(CPUMIPSState *env)
1712 {
1713 CPUState *other_cs = first_cpu;
1714 target_ulong prev = env->mvp->CP0_MVPControl;
1715
1716 CPU_FOREACH(other_cs) {
1717 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1718 /* Turn off all VPEs except the one executing the dvpe. */
1719 if (&other_cpu->env != env) {
1720 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1721 mips_vpe_sleep(other_cpu);
1722 }
1723 }
1724 return prev;
1725 }
1726
1727 target_ulong helper_evpe(CPUMIPSState *env)
1728 {
1729 CPUState *other_cs = first_cpu;
1730 target_ulong prev = env->mvp->CP0_MVPControl;
1731
1732 CPU_FOREACH(other_cs) {
1733 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1734
1735 if (&other_cpu->env != env
1736 /* If the VPE is WFI, don't disturb its sleep. */
1737 && !mips_vpe_is_wfi(other_cpu)) {
1738 /* Enable the VPE. */
1739 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1740 mips_vpe_wake(other_cpu); /* And wake it up. */
1741 }
1742 }
1743 return prev;
1744 }
1745 #endif /* !CONFIG_USER_ONLY */
1746
1747 void helper_fork(target_ulong arg1, target_ulong arg2)
1748 {
1749 // arg1 = rt, arg2 = rs
1750 // TODO: store to TC register
1751 }
1752
1753 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1754 {
1755 target_long arg1 = arg;
1756
1757 if (arg1 < 0) {
1758 /* No scheduling policy implemented. */
1759 if (arg1 != -2) {
1760 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1761 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1762 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1763 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1764 helper_raise_exception(env, EXCP_THREAD);
1765 }
1766 }
1767 } else if (arg1 == 0) {
1768 if (0 /* TODO: TC underflow */) {
1769 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1770 helper_raise_exception(env, EXCP_THREAD);
1771 } else {
1772 // TODO: Deallocate TC
1773 }
1774 } else if (arg1 > 0) {
1775 /* Yield qualifier inputs not implemented. */
1776 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1777 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1778 helper_raise_exception(env, EXCP_THREAD);
1779 }
1780 return env->CP0_YQMask;
1781 }
1782
1783 #ifndef CONFIG_USER_ONLY
1784 /* TLB management */
1785 static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
1786 {
1787 /* Flush qemu's TLB and discard all shadowed entries. */
1788 tlb_flush (env, flush_global);
1789 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1790 }
1791
1792 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1793 {
1794 /* Discard entries from env->tlb[first] onwards. */
1795 while (env->tlb->tlb_in_use > first) {
1796 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1797 }
1798 }
1799
1800 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1801 {
1802 r4k_tlb_t *tlb;
1803
1804 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1805 tlb = &env->tlb->mmu.r4k.tlb[idx];
1806 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1807 #if defined(TARGET_MIPS64)
1808 tlb->VPN &= env->SEGMask;
1809 #endif
1810 tlb->ASID = env->CP0_EntryHi & 0xFF;
1811 tlb->PageMask = env->CP0_PageMask;
1812 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1813 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1814 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1815 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1816 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1817 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1818 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1819 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1820 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1821 }
1822
1823 void r4k_helper_tlbwi(CPUMIPSState *env)
1824 {
1825 r4k_tlb_t *tlb;
1826 int idx;
1827 target_ulong VPN;
1828 uint8_t ASID;
1829 bool G, V0, D0, V1, D1;
1830
1831 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1832 tlb = &env->tlb->mmu.r4k.tlb[idx];
1833 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1834 #if defined(TARGET_MIPS64)
1835 VPN &= env->SEGMask;
1836 #endif
1837 ASID = env->CP0_EntryHi & 0xff;
1838 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1839 V0 = (env->CP0_EntryLo0 & 2) != 0;
1840 D0 = (env->CP0_EntryLo0 & 4) != 0;
1841 V1 = (env->CP0_EntryLo1 & 2) != 0;
1842 D1 = (env->CP0_EntryLo1 & 4) != 0;
1843
1844 /* Discard cached TLB entries, unless tlbwi is just upgrading access
1845 permissions on the current entry. */
1846 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
1847 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
1848 (tlb->V1 && !V1) || (tlb->D1 && !D1)) {
1849 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1850 }
1851
1852 r4k_invalidate_tlb(env, idx, 0);
1853 r4k_fill_tlb(env, idx);
1854 }
1855
1856 void r4k_helper_tlbwr(CPUMIPSState *env)
1857 {
1858 int r = cpu_mips_get_random(env);
1859
1860 r4k_invalidate_tlb(env, r, 1);
1861 r4k_fill_tlb(env, r);
1862 }
1863
1864 void r4k_helper_tlbp(CPUMIPSState *env)
1865 {
1866 r4k_tlb_t *tlb;
1867 target_ulong mask;
1868 target_ulong tag;
1869 target_ulong VPN;
1870 uint8_t ASID;
1871 int i;
1872
1873 ASID = env->CP0_EntryHi & 0xFF;
1874 for (i = 0; i < env->tlb->nb_tlb; i++) {
1875 tlb = &env->tlb->mmu.r4k.tlb[i];
1876 /* 1k pages are not supported. */
1877 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1878 tag = env->CP0_EntryHi & ~mask;
1879 VPN = tlb->VPN & ~mask;
1880 #if defined(TARGET_MIPS64)
1881 tag &= env->SEGMask;
1882 #endif
1883 /* Check ASID, virtual page number & size */
1884 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1885 /* TLB match */
1886 env->CP0_Index = i;
1887 break;
1888 }
1889 }
1890 if (i == env->tlb->nb_tlb) {
1891 /* No match. Discard any shadow entries, if any of them match. */
1892 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1893 tlb = &env->tlb->mmu.r4k.tlb[i];
1894 /* 1k pages are not supported. */
1895 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1896 tag = env->CP0_EntryHi & ~mask;
1897 VPN = tlb->VPN & ~mask;
1898 #if defined(TARGET_MIPS64)
1899 tag &= env->SEGMask;
1900 #endif
1901 /* Check ASID, virtual page number & size */
1902 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1903 r4k_mips_tlb_flush_extra (env, i);
1904 break;
1905 }
1906 }
1907
1908 env->CP0_Index |= 0x80000000;
1909 }
1910 }
1911
1912 void r4k_helper_tlbr(CPUMIPSState *env)
1913 {
1914 r4k_tlb_t *tlb;
1915 uint8_t ASID;
1916 int idx;
1917
1918 ASID = env->CP0_EntryHi & 0xFF;
1919 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1920 tlb = &env->tlb->mmu.r4k.tlb[idx];
1921
1922 /* If this will change the current ASID, flush qemu's TLB. */
1923 if (ASID != tlb->ASID)
1924 cpu_mips_tlb_flush (env, 1);
1925
1926 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1927
1928 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1929 env->CP0_PageMask = tlb->PageMask;
1930 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1931 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1932 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1933 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1934 }
1935
1936 void helper_tlbwi(CPUMIPSState *env)
1937 {
1938 env->tlb->helper_tlbwi(env);
1939 }
1940
1941 void helper_tlbwr(CPUMIPSState *env)
1942 {
1943 env->tlb->helper_tlbwr(env);
1944 }
1945
1946 void helper_tlbp(CPUMIPSState *env)
1947 {
1948 env->tlb->helper_tlbp(env);
1949 }
1950
1951 void helper_tlbr(CPUMIPSState *env)
1952 {
1953 env->tlb->helper_tlbr(env);
1954 }
1955
1956 /* Specials */
1957 target_ulong helper_di(CPUMIPSState *env)
1958 {
1959 target_ulong t0 = env->CP0_Status;
1960
1961 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1962 return t0;
1963 }
1964
1965 target_ulong helper_ei(CPUMIPSState *env)
1966 {
1967 target_ulong t0 = env->CP0_Status;
1968
1969 env->CP0_Status = t0 | (1 << CP0St_IE);
1970 return t0;
1971 }
1972
1973 static void debug_pre_eret(CPUMIPSState *env)
1974 {
1975 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1976 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1977 env->active_tc.PC, env->CP0_EPC);
1978 if (env->CP0_Status & (1 << CP0St_ERL))
1979 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1980 if (env->hflags & MIPS_HFLAG_DM)
1981 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1982 qemu_log("\n");
1983 }
1984 }
1985
1986 static void debug_post_eret(CPUMIPSState *env)
1987 {
1988 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1989 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1990 env->active_tc.PC, env->CP0_EPC);
1991 if (env->CP0_Status & (1 << CP0St_ERL))
1992 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1993 if (env->hflags & MIPS_HFLAG_DM)
1994 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1995 switch (env->hflags & MIPS_HFLAG_KSU) {
1996 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1997 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1998 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1999 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
2000 }
2001 }
2002 }
2003
2004 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2005 {
2006 env->active_tc.PC = error_pc & ~(target_ulong)1;
2007 if (error_pc & 1) {
2008 env->hflags |= MIPS_HFLAG_M16;
2009 } else {
2010 env->hflags &= ~(MIPS_HFLAG_M16);
2011 }
2012 }
2013
2014 void helper_eret(CPUMIPSState *env)
2015 {
2016 debug_pre_eret(env);
2017 if (env->CP0_Status & (1 << CP0St_ERL)) {
2018 set_pc(env, env->CP0_ErrorEPC);
2019 env->CP0_Status &= ~(1 << CP0St_ERL);
2020 } else {
2021 set_pc(env, env->CP0_EPC);
2022 env->CP0_Status &= ~(1 << CP0St_EXL);
2023 }
2024 compute_hflags(env);
2025 debug_post_eret(env);
2026 env->lladdr = 1;
2027 }
2028
2029 void helper_deret(CPUMIPSState *env)
2030 {
2031 debug_pre_eret(env);
2032 set_pc(env, env->CP0_DEPC);
2033
2034 env->hflags &= MIPS_HFLAG_DM;
2035 compute_hflags(env);
2036 debug_post_eret(env);
2037 env->lladdr = 1;
2038 }
2039 #endif /* !CONFIG_USER_ONLY */
2040
2041 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2042 {
2043 if ((env->hflags & MIPS_HFLAG_CP0) ||
2044 (env->CP0_HWREna & (1 << 0)))
2045 return env->CP0_EBase & 0x3ff;
2046 else
2047 helper_raise_exception(env, EXCP_RI);
2048
2049 return 0;
2050 }
2051
2052 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2053 {
2054 if ((env->hflags & MIPS_HFLAG_CP0) ||
2055 (env->CP0_HWREna & (1 << 1)))
2056 return env->SYNCI_Step;
2057 else
2058 helper_raise_exception(env, EXCP_RI);
2059
2060 return 0;
2061 }
2062
2063 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2064 {
2065 if ((env->hflags & MIPS_HFLAG_CP0) ||
2066 (env->CP0_HWREna & (1 << 2)))
2067 return env->CP0_Count;
2068 else
2069 helper_raise_exception(env, EXCP_RI);
2070
2071 return 0;
2072 }
2073
2074 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2075 {
2076 if ((env->hflags & MIPS_HFLAG_CP0) ||
2077 (env->CP0_HWREna & (1 << 3)))
2078 return env->CCRes;
2079 else
2080 helper_raise_exception(env, EXCP_RI);
2081
2082 return 0;
2083 }
2084
2085 void helper_pmon(CPUMIPSState *env, int function)
2086 {
2087 function /= 2;
2088 switch (function) {
2089 case 2: /* TODO: char inbyte(int waitflag); */
2090 if (env->active_tc.gpr[4] == 0)
2091 env->active_tc.gpr[2] = -1;
2092 /* Fall through */
2093 case 11: /* TODO: char inbyte (void); */
2094 env->active_tc.gpr[2] = -1;
2095 break;
2096 case 3:
2097 case 12:
2098 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2099 break;
2100 case 17:
2101 break;
2102 case 158:
2103 {
2104 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2105 printf("%s", fmt);
2106 }
2107 break;
2108 }
2109 }
2110
2111 void helper_wait(CPUMIPSState *env)
2112 {
2113 CPUState *cs = CPU(mips_env_get_cpu(env));
2114
2115 cs->halted = 1;
2116 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2117 helper_raise_exception(env, EXCP_HLT);
2118 }
2119
2120 #if !defined(CONFIG_USER_ONLY)
2121
2122 static void QEMU_NORETURN do_unaligned_access(CPUMIPSState *env,
2123 target_ulong addr, int is_write,
2124 int is_user, uintptr_t retaddr);
2125
2126 #define MMUSUFFIX _mmu
2127 #define ALIGNED_ONLY
2128
2129 #define SHIFT 0
2130 #include "exec/softmmu_template.h"
2131
2132 #define SHIFT 1
2133 #include "exec/softmmu_template.h"
2134
2135 #define SHIFT 2
2136 #include "exec/softmmu_template.h"
2137
2138 #define SHIFT 3
2139 #include "exec/softmmu_template.h"
2140
2141 static void do_unaligned_access(CPUMIPSState *env, target_ulong addr,
2142 int is_write, int is_user, uintptr_t retaddr)
2143 {
2144 env->CP0_BadVAddr = addr;
2145 do_raise_exception(env, (is_write == 1) ? EXCP_AdES : EXCP_AdEL, retaddr);
2146 }
2147
2148 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
2149 uintptr_t retaddr)
2150 {
2151 int ret;
2152
2153 ret = mips_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
2154 if (ret) {
2155 MIPSCPU *cpu = MIPS_CPU(cs);
2156 CPUMIPSState *env = &cpu->env;
2157
2158 do_raise_exception_err(env, cs->exception_index,
2159 env->error_code, retaddr);
2160 }
2161 }
2162
2163 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2164 bool is_write, bool is_exec, int unused,
2165 unsigned size)
2166 {
2167 MIPSCPU *cpu = MIPS_CPU(cs);
2168 CPUMIPSState *env = &cpu->env;
2169
2170 if (is_exec) {
2171 helper_raise_exception(env, EXCP_IBE);
2172 } else {
2173 helper_raise_exception(env, EXCP_DBE);
2174 }
2175 }
2176 #endif /* !CONFIG_USER_ONLY */
2177
2178 /* Complex FPU operations which may need stack space. */
2179
2180 #define FLOAT_TWO32 make_float32(1 << 30)
2181 #define FLOAT_TWO64 make_float64(1ULL << 62)
2182 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2183 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2184
2185 /* convert MIPS rounding mode in FCR31 to IEEE library */
2186 static unsigned int ieee_rm[] = {
2187 float_round_nearest_even,
2188 float_round_to_zero,
2189 float_round_up,
2190 float_round_down
2191 };
2192
2193 static inline void restore_rounding_mode(CPUMIPSState *env)
2194 {
2195 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
2196 &env->active_fpu.fp_status);
2197 }
2198
2199 static inline void restore_flush_mode(CPUMIPSState *env)
2200 {
2201 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0,
2202 &env->active_fpu.fp_status);
2203 }
2204
2205 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2206 {
2207 target_ulong arg1 = 0;
2208
2209 switch (reg) {
2210 case 0:
2211 arg1 = (int32_t)env->active_fpu.fcr0;
2212 break;
2213 case 1:
2214 /* UFR Support - Read Status FR */
2215 if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
2216 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2217 arg1 = (int32_t)
2218 ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
2219 } else {
2220 helper_raise_exception(env, EXCP_RI);
2221 }
2222 }
2223 break;
2224 case 25:
2225 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2226 break;
2227 case 26:
2228 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2229 break;
2230 case 28:
2231 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2232 break;
2233 default:
2234 arg1 = (int32_t)env->active_fpu.fcr31;
2235 break;
2236 }
2237
2238 return arg1;
2239 }
2240
2241 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
2242 {
2243 switch (fs) {
2244 case 1:
2245 /* UFR Alias - Reset Status FR */
2246 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2247 return;
2248 }
2249 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2250 env->CP0_Status &= ~(1 << CP0St_FR);
2251 compute_hflags(env);
2252 } else {
2253 helper_raise_exception(env, EXCP_RI);
2254 }
2255 break;
2256 case 4:
2257 /* UNFR Alias - Set Status FR */
2258 if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
2259 return;
2260 }
2261 if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
2262 env->CP0_Status |= (1 << CP0St_FR);
2263 compute_hflags(env);
2264 } else {
2265 helper_raise_exception(env, EXCP_RI);
2266 }
2267 break;
2268 case 25:
2269 if (arg1 & 0xffffff00)
2270 return;
2271 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2272 ((arg1 & 0x1) << 23);
2273 break;
2274 case 26:
2275 if (arg1 & 0x007c0000)
2276 return;
2277 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2278 break;
2279 case 28:
2280 if (arg1 & 0x007c0000)
2281 return;
2282 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2283 ((arg1 & 0x4) << 22);
2284 break;
2285 case 31:
2286 if (arg1 & 0x007c0000)
2287 return;
2288 env->active_fpu.fcr31 = arg1;
2289 break;
2290 default:
2291 return;
2292 }
2293 /* set rounding mode */
2294 restore_rounding_mode(env);
2295 /* set flush-to-zero mode */
2296 restore_flush_mode(env);
2297 set_float_exception_flags(0, &env->active_fpu.fp_status);
2298 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2299 do_raise_exception(env, EXCP_FPE, GETPC());
2300 }
2301
2302 static inline int ieee_ex_to_mips(int xcpt)
2303 {
2304 int ret = 0;
2305 if (xcpt) {
2306 if (xcpt & float_flag_invalid) {
2307 ret |= FP_INVALID;
2308 }
2309 if (xcpt & float_flag_overflow) {
2310 ret |= FP_OVERFLOW;
2311 }
2312 if (xcpt & float_flag_underflow) {
2313 ret |= FP_UNDERFLOW;
2314 }
2315 if (xcpt & float_flag_divbyzero) {
2316 ret |= FP_DIV0;
2317 }
2318 if (xcpt & float_flag_inexact) {
2319 ret |= FP_INEXACT;
2320 }
2321 }
2322 return ret;
2323 }
2324
2325 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2326 {
2327 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2328
2329 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2330
2331 if (tmp) {
2332 set_float_exception_flags(0, &env->active_fpu.fp_status);
2333
2334 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2335 do_raise_exception(env, EXCP_FPE, pc);
2336 } else {
2337 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2338 }
2339 }
2340 }
2341
2342 /* Float support.
2343 Single precition routines have a "s" suffix, double precision a
2344 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2345 paired single lower "pl", paired single upper "pu". */
2346
2347 /* unary operations, modifying fp status */
2348 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2349 {
2350 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2351 update_fcr31(env, GETPC());
2352 return fdt0;
2353 }
2354
2355 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2356 {
2357 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2358 update_fcr31(env, GETPC());
2359 return fst0;
2360 }
2361
2362 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2363 {
2364 uint64_t fdt2;
2365
2366 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2367 update_fcr31(env, GETPC());
2368 return fdt2;
2369 }
2370
2371 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2372 {
2373 uint64_t fdt2;
2374
2375 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2376 update_fcr31(env, GETPC());
2377 return fdt2;
2378 }
2379
2380 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2381 {
2382 uint64_t fdt2;
2383
2384 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2385 update_fcr31(env, GETPC());
2386 return fdt2;
2387 }
2388
2389 uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
2390 {
2391 uint64_t dt2;
2392
2393 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2394 if (get_float_exception_flags(&env->active_fpu.fp_status)
2395 & (float_flag_invalid | float_flag_overflow)) {
2396 dt2 = FP_TO_INT64_OVERFLOW;
2397 }
2398 update_fcr31(env, GETPC());
2399 return dt2;
2400 }
2401
2402 uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
2403 {
2404 uint64_t dt2;
2405
2406 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2407 if (get_float_exception_flags(&env->active_fpu.fp_status)
2408 & (float_flag_invalid | float_flag_overflow)) {
2409 dt2 = FP_TO_INT64_OVERFLOW;
2410 }
2411 update_fcr31(env, GETPC());
2412 return dt2;
2413 }
2414
2415 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2416 {
2417 uint32_t fst2;
2418 uint32_t fsth2;
2419
2420 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2421 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2422 update_fcr31(env, GETPC());
2423 return ((uint64_t)fsth2 << 32) | fst2;
2424 }
2425
2426 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2427 {
2428 uint32_t wt2;
2429 uint32_t wth2;
2430 int excp, excph;
2431
2432 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2433 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2434 if (excp & (float_flag_overflow | float_flag_invalid)) {
2435 wt2 = FP_TO_INT32_OVERFLOW;
2436 }
2437
2438 set_float_exception_flags(0, &env->active_fpu.fp_status);
2439 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2440 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2441 if (excph & (float_flag_overflow | float_flag_invalid)) {
2442 wth2 = FP_TO_INT32_OVERFLOW;
2443 }
2444
2445 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2446 update_fcr31(env, GETPC());
2447
2448 return ((uint64_t)wth2 << 32) | wt2;
2449 }
2450
2451 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2452 {
2453 uint32_t fst2;
2454
2455 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2456 update_fcr31(env, GETPC());
2457 return fst2;
2458 }
2459
2460 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2461 {
2462 uint32_t fst2;
2463
2464 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2465 update_fcr31(env, GETPC());
2466 return fst2;
2467 }
2468
2469 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2470 {
2471 uint32_t fst2;
2472
2473 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2474 update_fcr31(env, GETPC());
2475 return fst2;
2476 }
2477
2478 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2479 {
2480 uint32_t wt2;
2481
2482 wt2 = wt0;
2483 update_fcr31(env, GETPC());
2484 return wt2;
2485 }
2486
2487 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2488 {
2489 uint32_t wt2;
2490
2491 wt2 = wth0;
2492 update_fcr31(env, GETPC());
2493 return wt2;
2494 }
2495
2496 uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
2497 {
2498 uint32_t wt2;
2499
2500 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2501 update_fcr31(env, GETPC());
2502 if (get_float_exception_flags(&env->active_fpu.fp_status)
2503 & (float_flag_invalid | float_flag_overflow)) {
2504 wt2 = FP_TO_INT32_OVERFLOW;
2505 }
2506 return wt2;
2507 }
2508
2509 uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
2510 {
2511 uint32_t wt2;
2512
2513 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2514 if (get_float_exception_flags(&env->active_fpu.fp_status)
2515 & (float_flag_invalid | float_flag_overflow)) {
2516 wt2 = FP_TO_INT32_OVERFLOW;
2517 }
2518 update_fcr31(env, GETPC());
2519 return wt2;
2520 }
2521
2522 uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
2523 {
2524 uint64_t dt2;
2525
2526 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2527 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2528 restore_rounding_mode(env);
2529 if (get_float_exception_flags(&env->active_fpu.fp_status)
2530 & (float_flag_invalid | float_flag_overflow)) {
2531 dt2 = FP_TO_INT64_OVERFLOW;
2532 }
2533 update_fcr31(env, GETPC());
2534 return dt2;
2535 }
2536
2537 uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
2538 {
2539 uint64_t dt2;
2540
2541 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2542 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2543 restore_rounding_mode(env);
2544 if (get_float_exception_flags(&env->active_fpu.fp_status)
2545 & (float_flag_invalid | float_flag_overflow)) {
2546 dt2 = FP_TO_INT64_OVERFLOW;
2547 }
2548 update_fcr31(env, GETPC());
2549 return dt2;
2550 }
2551
2552 uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
2553 {
2554 uint32_t wt2;
2555
2556 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2557 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2558 restore_rounding_mode(env);
2559 if (get_float_exception_flags(&env->active_fpu.fp_status)
2560 & (float_flag_invalid | float_flag_overflow)) {
2561 wt2 = FP_TO_INT32_OVERFLOW;
2562 }
2563 update_fcr31(env, GETPC());
2564 return wt2;
2565 }
2566
2567 uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
2568 {
2569 uint32_t wt2;
2570
2571 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2572 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2573 restore_rounding_mode(env);
2574 if (get_float_exception_flags(&env->active_fpu.fp_status)
2575 & (float_flag_invalid | float_flag_overflow)) {
2576 wt2 = FP_TO_INT32_OVERFLOW;
2577 }
2578 update_fcr31(env, GETPC());
2579 return wt2;
2580 }
2581
2582 uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
2583 {
2584 uint64_t dt2;
2585
2586 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2587 if (get_float_exception_flags(&env->active_fpu.fp_status)
2588 & (float_flag_invalid | float_flag_overflow)) {
2589 dt2 = FP_TO_INT64_OVERFLOW;
2590 }
2591 update_fcr31(env, GETPC());
2592 return dt2;
2593 }
2594
2595 uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
2596 {
2597 uint64_t dt2;
2598
2599 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2600 if (get_float_exception_flags(&env->active_fpu.fp_status)
2601 & (float_flag_invalid | float_flag_overflow)) {
2602 dt2 = FP_TO_INT64_OVERFLOW;
2603 }
2604 update_fcr31(env, GETPC());
2605 return dt2;
2606 }
2607
2608 uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
2609 {
2610 uint32_t wt2;
2611
2612 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2613 if (get_float_exception_flags(&env->active_fpu.fp_status)
2614 & (float_flag_invalid | float_flag_overflow)) {
2615 wt2 = FP_TO_INT32_OVERFLOW;
2616 }
2617 update_fcr31(env, GETPC());
2618 return wt2;
2619 }
2620
2621 uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
2622 {
2623 uint32_t wt2;
2624
2625 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2626 if (get_float_exception_flags(&env->active_fpu.fp_status)
2627 & (float_flag_invalid | float_flag_overflow)) {
2628 wt2 = FP_TO_INT32_OVERFLOW;
2629 }
2630 update_fcr31(env, GETPC());
2631 return wt2;
2632 }
2633
2634 uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
2635 {
2636 uint64_t dt2;
2637
2638 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2639 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2640 restore_rounding_mode(env);
2641 if (get_float_exception_flags(&env->active_fpu.fp_status)
2642 & (float_flag_invalid | float_flag_overflow)) {
2643 dt2 = FP_TO_INT64_OVERFLOW;
2644 }
2645 update_fcr31(env, GETPC());
2646 return dt2;
2647 }
2648
2649 uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
2650 {
2651 uint64_t dt2;
2652
2653 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2654 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2655 restore_rounding_mode(env);
2656 if (get_float_exception_flags(&env->active_fpu.fp_status)
2657 & (float_flag_invalid | float_flag_overflow)) {
2658 dt2 = FP_TO_INT64_OVERFLOW;
2659 }
2660 update_fcr31(env, GETPC());
2661 return dt2;
2662 }
2663
2664 uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
2665 {
2666 uint32_t wt2;
2667
2668 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2669 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2670 restore_rounding_mode(env);
2671 if (get_float_exception_flags(&env->active_fpu.fp_status)
2672 & (float_flag_invalid | float_flag_overflow)) {
2673 wt2 = FP_TO_INT32_OVERFLOW;
2674 }
2675 update_fcr31(env, GETPC());
2676 return wt2;
2677 }
2678
2679 uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
2680 {
2681 uint32_t wt2;
2682
2683 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2684 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2685 restore_rounding_mode(env);
2686 if (get_float_exception_flags(&env->active_fpu.fp_status)
2687 & (float_flag_invalid | float_flag_overflow)) {
2688 wt2 = FP_TO_INT32_OVERFLOW;
2689 }
2690 update_fcr31(env, GETPC());
2691 return wt2;
2692 }
2693
2694 uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
2695 {
2696 uint64_t dt2;
2697
2698 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2699 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2700 restore_rounding_mode(env);
2701 if (get_float_exception_flags(&env->active_fpu.fp_status)
2702 & (float_flag_invalid | float_flag_overflow)) {
2703 dt2 = FP_TO_INT64_OVERFLOW;
2704 }
2705 update_fcr31(env, GETPC());
2706 return dt2;
2707 }
2708
2709 uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
2710 {
2711 uint64_t dt2;
2712
2713 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2714 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2715 restore_rounding_mode(env);
2716 if (get_float_exception_flags(&env->active_fpu.fp_status)
2717 & (float_flag_invalid | float_flag_overflow)) {
2718 dt2 = FP_TO_INT64_OVERFLOW;
2719 }
2720 update_fcr31(env, GETPC());
2721 return dt2;
2722 }
2723
2724 uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
2725 {
2726 uint32_t wt2;
2727
2728 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2729 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2730 restore_rounding_mode(env);
2731 if (get_float_exception_flags(&env->active_fpu.fp_status)
2732 & (float_flag_invalid | float_flag_overflow)) {
2733 wt2 = FP_TO_INT32_OVERFLOW;
2734 }
2735 update_fcr31(env, GETPC());
2736 return wt2;
2737 }
2738
2739 uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
2740 {
2741 uint32_t wt2;
2742
2743 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2744 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2745 restore_rounding_mode(env);
2746 if (get_float_exception_flags(&env->active_fpu.fp_status)
2747 & (float_flag_invalid | float_flag_overflow)) {
2748 wt2 = FP_TO_INT32_OVERFLOW;
2749 }
2750 update_fcr31(env, GETPC());
2751 return wt2;
2752 }
2753
2754 /* unary operations, not modifying fp status */
2755 #define FLOAT_UNOP(name) \
2756 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2757 { \
2758 return float64_ ## name(fdt0); \
2759 } \
2760 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2761 { \
2762 return float32_ ## name(fst0); \
2763 } \
2764 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2765 { \
2766 uint32_t wt0; \
2767 uint32_t wth0; \
2768 \
2769 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2770 wth0 = float32_ ## name(fdt0 >> 32); \
2771 return ((uint64_t)wth0 << 32) | wt0; \
2772 }
2773 FLOAT_UNOP(abs)
2774 FLOAT_UNOP(chs)
2775 #undef FLOAT_UNOP
2776
2777 /* MIPS specific unary operations */
2778 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
2779 {
2780 uint64_t fdt2;
2781
2782 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2783 update_fcr31(env, GETPC());
2784 return fdt2;
2785 }
2786
2787 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
2788 {
2789 uint32_t fst2;
2790
2791 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2792 update_fcr31(env, GETPC());
2793 return fst2;
2794 }
2795
2796 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
2797 {
2798 uint64_t fdt2;
2799
2800 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2801 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2802 update_fcr31(env, GETPC());
2803 return fdt2;
2804 }
2805
2806 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
2807 {
2808 uint32_t fst2;
2809
2810 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2811 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2812 update_fcr31(env, GETPC());
2813 return fst2;
2814 }
2815
2816 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
2817 {
2818 uint64_t fdt2;
2819
2820 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2821 update_fcr31(env, GETPC());
2822 return fdt2;
2823 }
2824
2825 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
2826 {
2827 uint32_t fst2;
2828
2829 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2830 update_fcr31(env, GETPC());
2831 return fst2;
2832 }
2833
2834 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
2835 {
2836 uint32_t fst2;
2837 uint32_t fsth2;
2838
2839 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2840 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
2841 update_fcr31(env, GETPC());
2842 return ((uint64_t)fsth2 << 32) | fst2;
2843 }
2844
2845 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
2846 {
2847 uint64_t fdt2;
2848
2849 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2850 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2851 update_fcr31(env, GETPC());
2852 return fdt2;
2853 }
2854
2855 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
2856 {
2857 uint32_t fst2;
2858
2859 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2860 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2861 update_fcr31(env, GETPC());
2862 return fst2;
2863 }
2864
2865 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
2866 {
2867 uint32_t fst2;
2868 uint32_t fsth2;
2869
2870 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2871 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2872 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2873 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
2874 update_fcr31(env, GETPC());
2875 return ((uint64_t)fsth2 << 32) | fst2;
2876 }
2877
2878 #define FLOAT_OP(name, p) void helper_float_##name##_##p(CPUMIPSState *env)
2879
2880 /* binary operations */
2881 #define FLOAT_BINOP(name) \
2882 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2883 uint64_t fdt0, uint64_t fdt1) \
2884 { \
2885 uint64_t dt2; \
2886 \
2887 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2888 update_fcr31(env, GETPC()); \
2889 return dt2; \
2890 } \
2891 \
2892 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2893 uint32_t fst0, uint32_t fst1) \
2894 { \
2895 uint32_t wt2; \
2896 \
2897 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2898 update_fcr31(env, GETPC()); \
2899 return wt2; \
2900 } \
2901 \
2902 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2903 uint64_t fdt0, \
2904 uint64_t fdt1) \
2905 { \
2906 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2907 uint32_t fsth0 = fdt0 >> 32; \
2908 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2909 uint32_t fsth1 = fdt1 >> 32; \
2910 uint32_t wt2; \
2911 uint32_t wth2; \
2912 \
2913 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2914 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2915 update_fcr31(env, GETPC()); \
2916 return ((uint64_t)wth2 << 32) | wt2; \
2917 }
2918
2919 FLOAT_BINOP(add)
2920 FLOAT_BINOP(sub)
2921 FLOAT_BINOP(mul)
2922 FLOAT_BINOP(div)
2923 #undef FLOAT_BINOP
2924
2925 #define UNFUSED_FMA(prefix, a, b, c, flags) \
2926 { \
2927 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
2928 if ((flags) & float_muladd_negate_c) { \
2929 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
2930 } else { \
2931 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
2932 } \
2933 if ((flags) & float_muladd_negate_result) { \
2934 a = prefix##_chs(a); \
2935 } \
2936 }
2937
2938 /* FMA based operations */
2939 #define FLOAT_FMA(name, type) \
2940 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2941 uint64_t fdt0, uint64_t fdt1, \
2942 uint64_t fdt2) \
2943 { \
2944 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
2945 update_fcr31(env, GETPC()); \
2946 return fdt0; \
2947 } \
2948 \
2949 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2950 uint32_t fst0, uint32_t fst1, \
2951 uint32_t fst2) \
2952 { \
2953 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
2954 update_fcr31(env, GETPC()); \
2955 return fst0; \
2956 } \
2957 \
2958 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2959 uint64_t fdt0, uint64_t fdt1, \
2960 uint64_t fdt2) \
2961 { \
2962 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2963 uint32_t fsth0 = fdt0 >> 32; \
2964 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2965 uint32_t fsth1 = fdt1 >> 32; \
2966 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2967 uint32_t fsth2 = fdt2 >> 32; \
2968 \
2969 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
2970 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
2971 update_fcr31(env, GETPC()); \
2972 return ((uint64_t)fsth0 << 32) | fst0; \
2973 }
2974 FLOAT_FMA(madd, 0)
2975 FLOAT_FMA(msub, float_muladd_negate_c)
2976 FLOAT_FMA(nmadd, float_muladd_negate_result)
2977 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
2978 #undef FLOAT_FMA
2979
2980 /* MIPS specific binary operations */
2981 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2982 {
2983 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2984 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
2985 update_fcr31(env, GETPC());
2986 return fdt2;
2987 }
2988
2989 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2990 {
2991 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2992 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2993 update_fcr31(env, GETPC());
2994 return fst2;
2995 }
2996
2997 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2998 {
2999 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3000 uint32_t fsth0 = fdt0 >> 32;
3001 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3002 uint32_t fsth2 = fdt2 >> 32;
3003
3004 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3005 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3006 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
3007 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
3008 update_fcr31(env, GETPC());
3009 return ((uint64_t)fsth2 << 32) | fst2;
3010 }
3011
3012 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3013 {
3014 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3015 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
3016 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3017 update_fcr31(env, GETPC());
3018 return fdt2;
3019 }
3020
3021 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
3022 {
3023 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3024 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3025 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3026 update_fcr31(env, GETPC());
3027 return fst2;
3028 }
3029
3030 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
3031 {
3032 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3033 uint32_t fsth0 = fdt0 >> 32;
3034 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3035 uint32_t fsth2 = fdt2 >> 32;
3036
3037 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3038 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3039 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
3040 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
3041 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3042 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3043 update_fcr31(env, GETPC());
3044 return ((uint64_t)fsth2 << 32) | fst2;
3045 }
3046
3047 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3048 {
3049 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3050 uint32_t fsth0 = fdt0 >> 32;
3051 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3052 uint32_t fsth1 = fdt1 >> 32;
3053 uint32_t fst2;
3054 uint32_t fsth2;
3055
3056 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3057 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3058 update_fcr31(env, GETPC());
3059 return ((uint64_t)fsth2 << 32) | fst2;
3060 }
3061
3062 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3063 {
3064 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3065 uint32_t fsth0 = fdt0 >> 32;
3066 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3067 uint32_t fsth1 = fdt1 >> 32;
3068 uint32_t fst2;
3069 uint32_t fsth2;
3070
3071 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3072 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3073 update_fcr31(env, GETPC());
3074 return ((uint64_t)fsth2 << 32) | fst2;
3075 }
3076
3077 /* compare operations */
3078 #define FOP_COND_D(op, cond) \
3079 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3080 uint64_t fdt1, int cc) \
3081 { \
3082 int c; \
3083 c = cond; \
3084 update_fcr31(env, GETPC()); \
3085 if (c) \
3086 SET_FP_COND(cc, env->active_fpu); \
3087 else \
3088 CLEAR_FP_COND(cc, env->active_fpu); \
3089 } \
3090 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3091 uint64_t fdt1, int cc) \
3092 { \
3093 int c; \
3094 fdt0 = float64_abs(fdt0); \
3095 fdt1 = float64_abs(fdt1); \
3096 c = cond; \
3097 update_fcr31(env, GETPC()); \
3098 if (c) \
3099 SET_FP_COND(cc, env->active_fpu); \
3100 else \
3101 CLEAR_FP_COND(cc, env->active_fpu); \
3102 }
3103
3104 /* NOTE: the comma operator will make "cond" to eval to false,
3105 * but float64_unordered_quiet() is still called. */
3106 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3107 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3108 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3109 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3110 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3111 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3112 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3113 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3114 /* NOTE: the comma operator will make "cond" to eval to false,
3115 * but float64_unordered() is still called. */
3116 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3117 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3118 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3119 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3120 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3121 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3122 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3123 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3124
3125 #define FOP_COND_S(op, cond) \
3126 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3127 uint32_t fst1, int cc) \
3128 { \
3129 int c; \
3130 c = cond; \
3131 update_fcr31(env, GETPC()); \
3132 if (c) \
3133 SET_FP_COND(cc, env->active_fpu); \
3134 else \
3135 CLEAR_FP_COND(cc, env->active_fpu); \
3136 } \
3137 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3138 uint32_t fst1, int cc) \
3139 { \
3140 int c; \
3141 fst0 = float32_abs(fst0); \
3142 fst1 = float32_abs(fst1); \
3143 c = cond; \
3144 update_fcr31(env, GETPC()); \
3145 if (c) \
3146 SET_FP_COND(cc, env->active_fpu); \
3147 else \
3148 CLEAR_FP_COND(cc, env->active_fpu); \
3149 }
3150
3151 /* NOTE: the comma operator will make "cond" to eval to false,
3152 * but float32_unordered_quiet() is still called. */
3153 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3154 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3155 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3156 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3157 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3158 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3159 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3160 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3161 /* NOTE: the comma operator will make "cond" to eval to false,
3162 * but float32_unordered() is still called. */
3163 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3164 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3165 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3166 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3167 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3168 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3169 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3170 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3171
3172 #define FOP_COND_PS(op, condl, condh) \
3173 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3174 uint64_t fdt1, int cc) \
3175 { \
3176 uint32_t fst0, fsth0, fst1, fsth1; \
3177 int ch, cl; \
3178 fst0 = fdt0 & 0XFFFFFFFF; \
3179 fsth0 = fdt0 >> 32; \
3180 fst1 = fdt1 & 0XFFFFFFFF; \
3181 fsth1 = fdt1 >> 32; \
3182 cl = condl; \
3183 ch = condh; \
3184 update_fcr31(env, GETPC()); \
3185 if (cl) \
3186 SET_FP_COND(cc, env->active_fpu); \
3187 else \
3188 CLEAR_FP_COND(cc, env->active_fpu); \
3189 if (ch) \
3190 SET_FP_COND(cc + 1, env->active_fpu); \
3191 else \
3192 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3193 } \
3194 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3195 uint64_t fdt1, int cc) \
3196 { \
3197 uint32_t fst0, fsth0, fst1, fsth1; \
3198 int ch, cl; \
3199 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3200 fsth0 = float32_abs(fdt0 >> 32); \
3201 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3202 fsth1 = float32_abs(fdt1 >> 32); \
3203 cl = condl; \
3204 ch = condh; \
3205 update_fcr31(env, GETPC()); \
3206 if (cl) \
3207 SET_FP_COND(cc, env->active_fpu); \
3208 else \
3209 CLEAR_FP_COND(cc, env->active_fpu); \
3210 if (ch) \
3211 SET_FP_COND(cc + 1, env->active_fpu); \
3212 else \
3213 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3214 }
3215
3216 /* NOTE: the comma operator will make "cond" to eval to false,
3217 * but float32_unordered_quiet() is still called. */
3218 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3219 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3220 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3221 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3222 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3223 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3224 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3225 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3226 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3227 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3228 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3229 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3230 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3231 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3232 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3233 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3234 /* NOTE: the comma operator will make "cond" to eval to false,
3235 * but float32_unordered() is still called. */
3236 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3237 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3238 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3239 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3240 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3241 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3242 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3243 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3244 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3245 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3246 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3247 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3248 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3249 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3250 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3251 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))