]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
e85edce6faa8c99e7a30e8e76c7548ec6877f7c8
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22
23 #include "helper.h"
24
25 #if !defined(CONFIG_USER_ONLY)
26 #include "exec/softmmu_exec.h"
27 #endif /* !defined(CONFIG_USER_ONLY) */
28
29 #ifndef CONFIG_USER_ONLY
30 static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
31 #endif
32
33 /*****************************************************************************/
34 /* Exceptions processing helpers */
35
36 static inline void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
37 uint32_t exception,
38 int error_code,
39 uintptr_t pc)
40 {
41 #if 1
42 if (exception < 0x100)
43 qemu_log("%s: %d %d\n", __func__, exception, error_code);
44 #endif
45 env->exception_index = exception;
46 env->error_code = error_code;
47
48 if (pc) {
49 /* now we have a real cpu fault */
50 cpu_restore_state(env, pc);
51 }
52
53 cpu_loop_exit(env);
54 }
55
56 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
57 uint32_t exception,
58 uintptr_t pc)
59 {
60 do_raise_exception_err(env, exception, 0, pc);
61 }
62
63 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
64 int error_code)
65 {
66 do_raise_exception_err(env, exception, error_code, 0);
67 }
68
69 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
70 {
71 do_raise_exception(env, exception, 0);
72 }
73
74 #if defined(CONFIG_USER_ONLY)
75 #define HELPER_LD(name, insn, type) \
76 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
77 int mem_idx) \
78 { \
79 return (type) insn##_raw(addr); \
80 }
81 #else
82 #define HELPER_LD(name, insn, type) \
83 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
84 int mem_idx) \
85 { \
86 switch (mem_idx) \
87 { \
88 case 0: return (type) cpu_##insn##_kernel(env, addr); break; \
89 case 1: return (type) cpu_##insn##_super(env, addr); break; \
90 default: \
91 case 2: return (type) cpu_##insn##_user(env, addr); break; \
92 } \
93 }
94 #endif
95 HELPER_LD(lbu, ldub, uint8_t)
96 HELPER_LD(lw, ldl, int32_t)
97 #ifdef TARGET_MIPS64
98 HELPER_LD(ld, ldq, int64_t)
99 #endif
100 #undef HELPER_LD
101
102 #if defined(CONFIG_USER_ONLY)
103 #define HELPER_ST(name, insn, type) \
104 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
105 type val, int mem_idx) \
106 { \
107 insn##_raw(addr, val); \
108 }
109 #else
110 #define HELPER_ST(name, insn, type) \
111 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
112 type val, int mem_idx) \
113 { \
114 switch (mem_idx) \
115 { \
116 case 0: cpu_##insn##_kernel(env, addr, val); break; \
117 case 1: cpu_##insn##_super(env, addr, val); break; \
118 default: \
119 case 2: cpu_##insn##_user(env, addr, val); break; \
120 } \
121 }
122 #endif
123 HELPER_ST(sb, stb, uint8_t)
124 HELPER_ST(sw, stl, uint32_t)
125 #ifdef TARGET_MIPS64
126 HELPER_ST(sd, stq, uint64_t)
127 #endif
128 #undef HELPER_ST
129
130 target_ulong helper_clo (target_ulong arg1)
131 {
132 return clo32(arg1);
133 }
134
135 target_ulong helper_clz (target_ulong arg1)
136 {
137 return clz32(arg1);
138 }
139
140 #if defined(TARGET_MIPS64)
141 target_ulong helper_dclo (target_ulong arg1)
142 {
143 return clo64(arg1);
144 }
145
146 target_ulong helper_dclz (target_ulong arg1)
147 {
148 return clz64(arg1);
149 }
150 #endif /* TARGET_MIPS64 */
151
152 /* 64 bits arithmetic for 32 bits hosts */
153 static inline uint64_t get_HILO(CPUMIPSState *env)
154 {
155 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
156 }
157
158 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
159 {
160 target_ulong tmp;
161 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
162 tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
163 return tmp;
164 }
165
166 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
167 {
168 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
169 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
170 return tmp;
171 }
172
173 /* Multiplication variants of the vr54xx. */
174 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
175 target_ulong arg2)
176 {
177 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
178 (int64_t)(int32_t)arg2));
179 }
180
181 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
182 target_ulong arg2)
183 {
184 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
185 (uint64_t)(uint32_t)arg2);
186 }
187
188 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
189 target_ulong arg2)
190 {
191 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
192 (int64_t)(int32_t)arg2);
193 }
194
195 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
196 target_ulong arg2)
197 {
198 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
199 (int64_t)(int32_t)arg2);
200 }
201
202 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
203 target_ulong arg2)
204 {
205 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
206 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
207 }
208
209 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
210 target_ulong arg2)
211 {
212 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
213 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
214 }
215
216 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
217 target_ulong arg2)
218 {
219 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
220 (int64_t)(int32_t)arg2);
221 }
222
223 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
224 target_ulong arg2)
225 {
226 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
227 (int64_t)(int32_t)arg2);
228 }
229
230 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
231 target_ulong arg2)
232 {
233 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
234 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
235 }
236
237 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
238 target_ulong arg2)
239 {
240 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
241 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
242 }
243
244 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
245 target_ulong arg2)
246 {
247 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
248 }
249
250 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
251 target_ulong arg2)
252 {
253 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
254 (uint64_t)(uint32_t)arg2);
255 }
256
257 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
258 target_ulong arg2)
259 {
260 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
261 (int64_t)(int32_t)arg2);
262 }
263
264 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
265 target_ulong arg2)
266 {
267 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
268 (uint64_t)(uint32_t)arg2);
269 }
270
271 #ifdef TARGET_MIPS64
272 void helper_dmult(CPUMIPSState *env, target_ulong arg1, target_ulong arg2)
273 {
274 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
275 }
276
277 void helper_dmultu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2)
278 {
279 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
280 }
281 #endif
282
283 #ifndef CONFIG_USER_ONLY
284
285 static inline hwaddr do_translate_address(CPUMIPSState *env,
286 target_ulong address,
287 int rw)
288 {
289 hwaddr lladdr;
290
291 lladdr = cpu_mips_translate_address(env, address, rw);
292
293 if (lladdr == -1LL) {
294 cpu_loop_exit(env);
295 } else {
296 return lladdr;
297 }
298 }
299
300 #define HELPER_LD_ATOMIC(name, insn) \
301 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
302 { \
303 env->lladdr = do_translate_address(env, arg, 0); \
304 env->llval = do_##insn(env, arg, mem_idx); \
305 return env->llval; \
306 }
307 HELPER_LD_ATOMIC(ll, lw)
308 #ifdef TARGET_MIPS64
309 HELPER_LD_ATOMIC(lld, ld)
310 #endif
311 #undef HELPER_LD_ATOMIC
312
313 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
314 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
315 target_ulong arg2, int mem_idx) \
316 { \
317 target_long tmp; \
318 \
319 if (arg2 & almask) { \
320 env->CP0_BadVAddr = arg2; \
321 helper_raise_exception(env, EXCP_AdES); \
322 } \
323 if (do_translate_address(env, arg2, 1) == env->lladdr) { \
324 tmp = do_##ld_insn(env, arg2, mem_idx); \
325 if (tmp == env->llval) { \
326 do_##st_insn(env, arg2, arg1, mem_idx); \
327 return 1; \
328 } \
329 } \
330 return 0; \
331 }
332 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
333 #ifdef TARGET_MIPS64
334 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
335 #endif
336 #undef HELPER_ST_ATOMIC
337 #endif
338
339 #ifdef TARGET_WORDS_BIGENDIAN
340 #define GET_LMASK(v) ((v) & 3)
341 #define GET_OFFSET(addr, offset) (addr + (offset))
342 #else
343 #define GET_LMASK(v) (((v) & 3) ^ 3)
344 #define GET_OFFSET(addr, offset) (addr - (offset))
345 #endif
346
347 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
348 int mem_idx)
349 {
350 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx);
351
352 if (GET_LMASK(arg2) <= 2)
353 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
354
355 if (GET_LMASK(arg2) <= 1)
356 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
357
358 if (GET_LMASK(arg2) == 0)
359 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
360 }
361
362 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
363 int mem_idx)
364 {
365 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
366
367 if (GET_LMASK(arg2) >= 1)
368 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
369
370 if (GET_LMASK(arg2) >= 2)
371 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
372
373 if (GET_LMASK(arg2) == 3)
374 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
375 }
376
377 #if defined(TARGET_MIPS64)
378 /* "half" load and stores. We must do the memory access inline,
379 or fault handling won't work. */
380
381 #ifdef TARGET_WORDS_BIGENDIAN
382 #define GET_LMASK64(v) ((v) & 7)
383 #else
384 #define GET_LMASK64(v) (((v) & 7) ^ 7)
385 #endif
386
387 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
388 int mem_idx)
389 {
390 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx);
391
392 if (GET_LMASK64(arg2) <= 6)
393 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
394
395 if (GET_LMASK64(arg2) <= 5)
396 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
397
398 if (GET_LMASK64(arg2) <= 4)
399 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
400
401 if (GET_LMASK64(arg2) <= 3)
402 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
403
404 if (GET_LMASK64(arg2) <= 2)
405 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
406
407 if (GET_LMASK64(arg2) <= 1)
408 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
409
410 if (GET_LMASK64(arg2) <= 0)
411 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
412 }
413
414 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
415 int mem_idx)
416 {
417 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
418
419 if (GET_LMASK64(arg2) >= 1)
420 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
421
422 if (GET_LMASK64(arg2) >= 2)
423 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
424
425 if (GET_LMASK64(arg2) >= 3)
426 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
427
428 if (GET_LMASK64(arg2) >= 4)
429 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
430
431 if (GET_LMASK64(arg2) >= 5)
432 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
433
434 if (GET_LMASK64(arg2) >= 6)
435 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
436
437 if (GET_LMASK64(arg2) == 7)
438 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
439 }
440 #endif /* TARGET_MIPS64 */
441
442 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
443
444 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
445 uint32_t mem_idx)
446 {
447 target_ulong base_reglist = reglist & 0xf;
448 target_ulong do_r31 = reglist & 0x10;
449
450 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
451 target_ulong i;
452
453 for (i = 0; i < base_reglist; i++) {
454 env->active_tc.gpr[multiple_regs[i]] =
455 (target_long)do_lw(env, addr, mem_idx);
456 addr += 4;
457 }
458 }
459
460 if (do_r31) {
461 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx);
462 }
463 }
464
465 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
466 uint32_t mem_idx)
467 {
468 target_ulong base_reglist = reglist & 0xf;
469 target_ulong do_r31 = reglist & 0x10;
470
471 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
472 target_ulong i;
473
474 for (i = 0; i < base_reglist; i++) {
475 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
476 addr += 4;
477 }
478 }
479
480 if (do_r31) {
481 do_sw(env, addr, env->active_tc.gpr[31], mem_idx);
482 }
483 }
484
485 #if defined(TARGET_MIPS64)
486 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
487 uint32_t mem_idx)
488 {
489 target_ulong base_reglist = reglist & 0xf;
490 target_ulong do_r31 = reglist & 0x10;
491
492 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
493 target_ulong i;
494
495 for (i = 0; i < base_reglist; i++) {
496 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx);
497 addr += 8;
498 }
499 }
500
501 if (do_r31) {
502 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx);
503 }
504 }
505
506 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
507 uint32_t mem_idx)
508 {
509 target_ulong base_reglist = reglist & 0xf;
510 target_ulong do_r31 = reglist & 0x10;
511
512 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
513 target_ulong i;
514
515 for (i = 0; i < base_reglist; i++) {
516 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
517 addr += 8;
518 }
519 }
520
521 if (do_r31) {
522 do_sd(env, addr, env->active_tc.gpr[31], mem_idx);
523 }
524 }
525 #endif
526
527 #ifndef CONFIG_USER_ONLY
528 /* SMP helpers. */
529 static bool mips_vpe_is_wfi(MIPSCPU *c)
530 {
531 CPUMIPSState *env = &c->env;
532
533 /* If the VPE is halted but otherwise active, it means it's waiting for
534 an interrupt. */
535 return env->halted && mips_vpe_active(env);
536 }
537
538 static inline void mips_vpe_wake(CPUMIPSState *c)
539 {
540 /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
541 because there might be other conditions that state that c should
542 be sleeping. */
543 cpu_interrupt(c, CPU_INTERRUPT_WAKE);
544 }
545
546 static inline void mips_vpe_sleep(MIPSCPU *cpu)
547 {
548 CPUMIPSState *c = &cpu->env;
549
550 /* The VPE was shut off, really go to bed.
551 Reset any old _WAKE requests. */
552 c->halted = 1;
553 cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
554 }
555
556 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
557 {
558 CPUMIPSState *c = &cpu->env;
559
560 /* FIXME: TC reschedule. */
561 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
562 mips_vpe_wake(c);
563 }
564 }
565
566 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
567 {
568 CPUMIPSState *c = &cpu->env;
569
570 /* FIXME: TC reschedule. */
571 if (!mips_vpe_active(c)) {
572 mips_vpe_sleep(cpu);
573 }
574 }
575
576 /* tc should point to an int with the value of the global TC index.
577 This function will transform it into a local index within the
578 returned CPUMIPSState.
579
580 FIXME: This code assumes that all VPEs have the same number of TCs,
581 which depends on runtime setup. Can probably be fixed by
582 walking the list of CPUMIPSStates. */
583 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
584 {
585 CPUMIPSState *other;
586 int vpe_idx, nr_threads = env->nr_threads;
587 int tc_idx = *tc;
588
589 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
590 /* Not allowed to address other CPUs. */
591 *tc = env->current_tc;
592 return env;
593 }
594
595 vpe_idx = tc_idx / nr_threads;
596 *tc = tc_idx % nr_threads;
597 other = qemu_get_cpu(vpe_idx);
598 return other ? other : env;
599 }
600
601 /* The per VPE CP0_Status register shares some fields with the per TC
602 CP0_TCStatus registers. These fields are wired to the same registers,
603 so changes to either of them should be reflected on both registers.
604
605 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
606
607 These helper call synchronizes the regs for a given cpu. */
608
609 /* Called for updates to CP0_Status. */
610 static void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
611 {
612 int32_t tcstatus, *tcst;
613 uint32_t v = cpu->CP0_Status;
614 uint32_t cu, mx, asid, ksu;
615 uint32_t mask = ((1 << CP0TCSt_TCU3)
616 | (1 << CP0TCSt_TCU2)
617 | (1 << CP0TCSt_TCU1)
618 | (1 << CP0TCSt_TCU0)
619 | (1 << CP0TCSt_TMX)
620 | (3 << CP0TCSt_TKSU)
621 | (0xff << CP0TCSt_TASID));
622
623 cu = (v >> CP0St_CU0) & 0xf;
624 mx = (v >> CP0St_MX) & 0x1;
625 ksu = (v >> CP0St_KSU) & 0x3;
626 asid = env->CP0_EntryHi & 0xff;
627
628 tcstatus = cu << CP0TCSt_TCU0;
629 tcstatus |= mx << CP0TCSt_TMX;
630 tcstatus |= ksu << CP0TCSt_TKSU;
631 tcstatus |= asid;
632
633 if (tc == cpu->current_tc) {
634 tcst = &cpu->active_tc.CP0_TCStatus;
635 } else {
636 tcst = &cpu->tcs[tc].CP0_TCStatus;
637 }
638
639 *tcst &= ~mask;
640 *tcst |= tcstatus;
641 compute_hflags(cpu);
642 }
643
644 /* Called for updates to CP0_TCStatus. */
645 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
646 target_ulong v)
647 {
648 uint32_t status;
649 uint32_t tcu, tmx, tasid, tksu;
650 uint32_t mask = ((1 << CP0St_CU3)
651 | (1 << CP0St_CU2)
652 | (1 << CP0St_CU1)
653 | (1 << CP0St_CU0)
654 | (1 << CP0St_MX)
655 | (3 << CP0St_KSU));
656
657 tcu = (v >> CP0TCSt_TCU0) & 0xf;
658 tmx = (v >> CP0TCSt_TMX) & 0x1;
659 tasid = v & 0xff;
660 tksu = (v >> CP0TCSt_TKSU) & 0x3;
661
662 status = tcu << CP0St_CU0;
663 status |= tmx << CP0St_MX;
664 status |= tksu << CP0St_KSU;
665
666 cpu->CP0_Status &= ~mask;
667 cpu->CP0_Status |= status;
668
669 /* Sync the TASID with EntryHi. */
670 cpu->CP0_EntryHi &= ~0xff;
671 cpu->CP0_EntryHi = tasid;
672
673 compute_hflags(cpu);
674 }
675
676 /* Called for updates to CP0_EntryHi. */
677 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
678 {
679 int32_t *tcst;
680 uint32_t asid, v = cpu->CP0_EntryHi;
681
682 asid = v & 0xff;
683
684 if (tc == cpu->current_tc) {
685 tcst = &cpu->active_tc.CP0_TCStatus;
686 } else {
687 tcst = &cpu->tcs[tc].CP0_TCStatus;
688 }
689
690 *tcst &= ~0xff;
691 *tcst |= asid;
692 }
693
694 /* CP0 helpers */
695 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
696 {
697 return env->mvp->CP0_MVPControl;
698 }
699
700 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
701 {
702 return env->mvp->CP0_MVPConf0;
703 }
704
705 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
706 {
707 return env->mvp->CP0_MVPConf1;
708 }
709
710 target_ulong helper_mfc0_random(CPUMIPSState *env)
711 {
712 return (int32_t)cpu_mips_get_random(env);
713 }
714
715 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
716 {
717 return env->active_tc.CP0_TCStatus;
718 }
719
720 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
721 {
722 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
723 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
724
725 if (other_tc == other->current_tc)
726 return other->active_tc.CP0_TCStatus;
727 else
728 return other->tcs[other_tc].CP0_TCStatus;
729 }
730
731 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
732 {
733 return env->active_tc.CP0_TCBind;
734 }
735
736 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
737 {
738 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
739 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
740
741 if (other_tc == other->current_tc)
742 return other->active_tc.CP0_TCBind;
743 else
744 return other->tcs[other_tc].CP0_TCBind;
745 }
746
747 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
748 {
749 return env->active_tc.PC;
750 }
751
752 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
753 {
754 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
755 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
756
757 if (other_tc == other->current_tc)
758 return other->active_tc.PC;
759 else
760 return other->tcs[other_tc].PC;
761 }
762
763 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
764 {
765 return env->active_tc.CP0_TCHalt;
766 }
767
768 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
769 {
770 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
771 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
772
773 if (other_tc == other->current_tc)
774 return other->active_tc.CP0_TCHalt;
775 else
776 return other->tcs[other_tc].CP0_TCHalt;
777 }
778
779 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
780 {
781 return env->active_tc.CP0_TCContext;
782 }
783
784 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
785 {
786 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
787 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
788
789 if (other_tc == other->current_tc)
790 return other->active_tc.CP0_TCContext;
791 else
792 return other->tcs[other_tc].CP0_TCContext;
793 }
794
795 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
796 {
797 return env->active_tc.CP0_TCSchedule;
798 }
799
800 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
801 {
802 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
803 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
804
805 if (other_tc == other->current_tc)
806 return other->active_tc.CP0_TCSchedule;
807 else
808 return other->tcs[other_tc].CP0_TCSchedule;
809 }
810
811 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
812 {
813 return env->active_tc.CP0_TCScheFBack;
814 }
815
816 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
817 {
818 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
819 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
820
821 if (other_tc == other->current_tc)
822 return other->active_tc.CP0_TCScheFBack;
823 else
824 return other->tcs[other_tc].CP0_TCScheFBack;
825 }
826
827 target_ulong helper_mfc0_count(CPUMIPSState *env)
828 {
829 return (int32_t)cpu_mips_get_count(env);
830 }
831
832 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
833 {
834 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
835 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
836
837 return other->CP0_EntryHi;
838 }
839
840 target_ulong helper_mftc0_cause(CPUMIPSState *env)
841 {
842 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
843 int32_t tccause;
844 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
845
846 if (other_tc == other->current_tc) {
847 tccause = other->CP0_Cause;
848 } else {
849 tccause = other->CP0_Cause;
850 }
851
852 return tccause;
853 }
854
855 target_ulong helper_mftc0_status(CPUMIPSState *env)
856 {
857 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
858 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
859
860 return other->CP0_Status;
861 }
862
863 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
864 {
865 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
866 }
867
868 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
869 {
870 return (int32_t)env->CP0_WatchLo[sel];
871 }
872
873 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
874 {
875 return env->CP0_WatchHi[sel];
876 }
877
878 target_ulong helper_mfc0_debug(CPUMIPSState *env)
879 {
880 target_ulong t0 = env->CP0_Debug;
881 if (env->hflags & MIPS_HFLAG_DM)
882 t0 |= 1 << CP0DB_DM;
883
884 return t0;
885 }
886
887 target_ulong helper_mftc0_debug(CPUMIPSState *env)
888 {
889 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
890 int32_t tcstatus;
891 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
892
893 if (other_tc == other->current_tc)
894 tcstatus = other->active_tc.CP0_Debug_tcstatus;
895 else
896 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
897
898 /* XXX: Might be wrong, check with EJTAG spec. */
899 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
900 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
901 }
902
903 #if defined(TARGET_MIPS64)
904 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
905 {
906 return env->active_tc.PC;
907 }
908
909 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
910 {
911 return env->active_tc.CP0_TCHalt;
912 }
913
914 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
915 {
916 return env->active_tc.CP0_TCContext;
917 }
918
919 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
920 {
921 return env->active_tc.CP0_TCSchedule;
922 }
923
924 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
925 {
926 return env->active_tc.CP0_TCScheFBack;
927 }
928
929 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
930 {
931 return env->lladdr >> env->CP0_LLAddr_shift;
932 }
933
934 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
935 {
936 return env->CP0_WatchLo[sel];
937 }
938 #endif /* TARGET_MIPS64 */
939
940 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
941 {
942 int num = 1;
943 unsigned int tmp = env->tlb->nb_tlb;
944
945 do {
946 tmp >>= 1;
947 num <<= 1;
948 } while (tmp);
949 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
950 }
951
952 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
953 {
954 uint32_t mask = 0;
955 uint32_t newval;
956
957 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
958 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
959 (1 << CP0MVPCo_EVP);
960 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
961 mask |= (1 << CP0MVPCo_STLB);
962 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
963
964 // TODO: Enable/disable shared TLB, enable/disable VPEs.
965
966 env->mvp->CP0_MVPControl = newval;
967 }
968
969 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
970 {
971 uint32_t mask;
972 uint32_t newval;
973
974 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
975 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
976 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
977
978 /* Yield scheduler intercept not implemented. */
979 /* Gating storage scheduler intercept not implemented. */
980
981 // TODO: Enable/disable TCs.
982
983 env->CP0_VPEControl = newval;
984 }
985
986 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
987 {
988 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
989 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
990 uint32_t mask;
991 uint32_t newval;
992
993 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
994 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
995 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
996
997 /* TODO: Enable/disable TCs. */
998
999 other->CP0_VPEControl = newval;
1000 }
1001
1002 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1003 {
1004 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1005 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1006 /* FIXME: Mask away return zero on read bits. */
1007 return other->CP0_VPEControl;
1008 }
1009
1010 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1011 {
1012 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1013 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1014
1015 return other->CP0_VPEConf0;
1016 }
1017
1018 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1019 {
1020 uint32_t mask = 0;
1021 uint32_t newval;
1022
1023 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1024 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1025 mask |= (0xff << CP0VPEC0_XTC);
1026 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1027 }
1028 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1029
1030 // TODO: TC exclusive handling due to ERL/EXL.
1031
1032 env->CP0_VPEConf0 = newval;
1033 }
1034
1035 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1036 {
1037 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1038 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1039 uint32_t mask = 0;
1040 uint32_t newval;
1041
1042 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1043 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1044
1045 /* TODO: TC exclusive handling due to ERL/EXL. */
1046 other->CP0_VPEConf0 = newval;
1047 }
1048
1049 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1050 {
1051 uint32_t mask = 0;
1052 uint32_t newval;
1053
1054 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1055 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1056 (0xff << CP0VPEC1_NCP1);
1057 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1058
1059 /* UDI not implemented. */
1060 /* CP2 not implemented. */
1061
1062 // TODO: Handle FPU (CP1) binding.
1063
1064 env->CP0_VPEConf1 = newval;
1065 }
1066
1067 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1068 {
1069 /* Yield qualifier inputs not implemented. */
1070 env->CP0_YQMask = 0x00000000;
1071 }
1072
1073 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1074 {
1075 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1076 }
1077
1078 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1079 {
1080 /* Large physaddr (PABITS) not implemented */
1081 /* 1k pages not implemented */
1082 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1083 }
1084
1085 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1086 {
1087 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1088 uint32_t newval;
1089
1090 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1091
1092 env->active_tc.CP0_TCStatus = newval;
1093 sync_c0_tcstatus(env, env->current_tc, newval);
1094 }
1095
1096 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1097 {
1098 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1099 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1100
1101 if (other_tc == other->current_tc)
1102 other->active_tc.CP0_TCStatus = arg1;
1103 else
1104 other->tcs[other_tc].CP0_TCStatus = arg1;
1105 sync_c0_tcstatus(other, other_tc, arg1);
1106 }
1107
1108 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1109 {
1110 uint32_t mask = (1 << CP0TCBd_TBE);
1111 uint32_t newval;
1112
1113 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1114 mask |= (1 << CP0TCBd_CurVPE);
1115 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1116 env->active_tc.CP0_TCBind = newval;
1117 }
1118
1119 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1120 {
1121 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1122 uint32_t mask = (1 << CP0TCBd_TBE);
1123 uint32_t newval;
1124 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1125
1126 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1127 mask |= (1 << CP0TCBd_CurVPE);
1128 if (other_tc == other->current_tc) {
1129 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1130 other->active_tc.CP0_TCBind = newval;
1131 } else {
1132 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1133 other->tcs[other_tc].CP0_TCBind = newval;
1134 }
1135 }
1136
1137 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1138 {
1139 env->active_tc.PC = arg1;
1140 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1141 env->lladdr = 0ULL;
1142 /* MIPS16 not implemented. */
1143 }
1144
1145 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1146 {
1147 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1148 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1149
1150 if (other_tc == other->current_tc) {
1151 other->active_tc.PC = arg1;
1152 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1153 other->lladdr = 0ULL;
1154 /* MIPS16 not implemented. */
1155 } else {
1156 other->tcs[other_tc].PC = arg1;
1157 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1158 other->lladdr = 0ULL;
1159 /* MIPS16 not implemented. */
1160 }
1161 }
1162
1163 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1164 {
1165 MIPSCPU *cpu = mips_env_get_cpu(env);
1166
1167 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1168
1169 // TODO: Halt TC / Restart (if allocated+active) TC.
1170 if (env->active_tc.CP0_TCHalt & 1) {
1171 mips_tc_sleep(cpu, env->current_tc);
1172 } else {
1173 mips_tc_wake(cpu, env->current_tc);
1174 }
1175 }
1176
1177 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1178 {
1179 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1180 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1181 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1182
1183 // TODO: Halt TC / Restart (if allocated+active) TC.
1184
1185 if (other_tc == other->current_tc)
1186 other->active_tc.CP0_TCHalt = arg1;
1187 else
1188 other->tcs[other_tc].CP0_TCHalt = arg1;
1189
1190 if (arg1 & 1) {
1191 mips_tc_sleep(other_cpu, other_tc);
1192 } else {
1193 mips_tc_wake(other_cpu, other_tc);
1194 }
1195 }
1196
1197 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1198 {
1199 env->active_tc.CP0_TCContext = arg1;
1200 }
1201
1202 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1203 {
1204 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1205 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1206
1207 if (other_tc == other->current_tc)
1208 other->active_tc.CP0_TCContext = arg1;
1209 else
1210 other->tcs[other_tc].CP0_TCContext = arg1;
1211 }
1212
1213 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1214 {
1215 env->active_tc.CP0_TCSchedule = arg1;
1216 }
1217
1218 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1219 {
1220 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1221 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1222
1223 if (other_tc == other->current_tc)
1224 other->active_tc.CP0_TCSchedule = arg1;
1225 else
1226 other->tcs[other_tc].CP0_TCSchedule = arg1;
1227 }
1228
1229 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1230 {
1231 env->active_tc.CP0_TCScheFBack = arg1;
1232 }
1233
1234 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1235 {
1236 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1237 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1238
1239 if (other_tc == other->current_tc)
1240 other->active_tc.CP0_TCScheFBack = arg1;
1241 else
1242 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1243 }
1244
1245 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1246 {
1247 /* Large physaddr (PABITS) not implemented */
1248 /* 1k pages not implemented */
1249 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1250 }
1251
1252 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1253 {
1254 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1255 }
1256
1257 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1258 {
1259 /* 1k pages not implemented */
1260 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1261 }
1262
1263 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1264 {
1265 /* SmartMIPS not implemented */
1266 /* Large physaddr (PABITS) not implemented */
1267 /* 1k pages not implemented */
1268 env->CP0_PageGrain = 0;
1269 }
1270
1271 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1272 {
1273 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1274 }
1275
1276 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1277 {
1278 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1279 }
1280
1281 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1282 {
1283 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1284 }
1285
1286 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1287 {
1288 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1289 }
1290
1291 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1292 {
1293 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1294 }
1295
1296 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1297 {
1298 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1299 }
1300
1301 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1302 {
1303 env->CP0_HWREna = arg1 & 0x0000000F;
1304 }
1305
1306 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1307 {
1308 cpu_mips_store_count(env, arg1);
1309 }
1310
1311 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1312 {
1313 target_ulong old, val;
1314
1315 /* 1k pages not implemented */
1316 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1317 #if defined(TARGET_MIPS64)
1318 val &= env->SEGMask;
1319 #endif
1320 old = env->CP0_EntryHi;
1321 env->CP0_EntryHi = val;
1322 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1323 sync_c0_entryhi(env, env->current_tc);
1324 }
1325 /* If the ASID changes, flush qemu's TLB. */
1326 if ((old & 0xFF) != (val & 0xFF))
1327 cpu_mips_tlb_flush(env, 1);
1328 }
1329
1330 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1331 {
1332 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1333 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1334
1335 other->CP0_EntryHi = arg1;
1336 sync_c0_entryhi(other, other_tc);
1337 }
1338
1339 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1340 {
1341 cpu_mips_store_compare(env, arg1);
1342 }
1343
1344 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1345 {
1346 uint32_t val, old;
1347 uint32_t mask = env->CP0_Status_rw_bitmask;
1348
1349 val = arg1 & mask;
1350 old = env->CP0_Status;
1351 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1352 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1353 sync_c0_status(env, env, env->current_tc);
1354 } else {
1355 compute_hflags(env);
1356 }
1357
1358 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1359 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1360 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1361 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1362 env->CP0_Cause);
1363 switch (env->hflags & MIPS_HFLAG_KSU) {
1364 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1365 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1366 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1367 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1368 }
1369 }
1370 }
1371
1372 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1373 {
1374 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1375 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1376
1377 other->CP0_Status = arg1 & ~0xf1000018;
1378 sync_c0_status(env, other, other_tc);
1379 }
1380
1381 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1382 {
1383 /* vectored interrupts not implemented, no performance counters. */
1384 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1385 }
1386
1387 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1388 {
1389 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1390 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1391 }
1392
1393 static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
1394 {
1395 uint32_t mask = 0x00C00300;
1396 uint32_t old = cpu->CP0_Cause;
1397 int i;
1398
1399 if (cpu->insn_flags & ISA_MIPS32R2) {
1400 mask |= 1 << CP0Ca_DC;
1401 }
1402
1403 cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
1404
1405 if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
1406 if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
1407 cpu_mips_stop_count(cpu);
1408 } else {
1409 cpu_mips_start_count(cpu);
1410 }
1411 }
1412
1413 /* Set/reset software interrupts */
1414 for (i = 0 ; i < 2 ; i++) {
1415 if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1416 cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
1417 }
1418 }
1419 }
1420
1421 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1422 {
1423 mtc0_cause(env, arg1);
1424 }
1425
1426 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1427 {
1428 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1429 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1430
1431 mtc0_cause(other, arg1);
1432 }
1433
1434 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1435 {
1436 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1437 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1438
1439 return other->CP0_EPC;
1440 }
1441
1442 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1443 {
1444 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1445 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1446
1447 return other->CP0_EBase;
1448 }
1449
1450 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1451 {
1452 /* vectored interrupts not implemented */
1453 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1454 }
1455
1456 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1457 {
1458 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1459 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1460 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1461 }
1462
1463 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1464 {
1465 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1466 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1467
1468 switch (idx) {
1469 case 0: return other->CP0_Config0;
1470 case 1: return other->CP0_Config1;
1471 case 2: return other->CP0_Config2;
1472 case 3: return other->CP0_Config3;
1473 /* 4 and 5 are reserved. */
1474 case 6: return other->CP0_Config6;
1475 case 7: return other->CP0_Config7;
1476 default:
1477 break;
1478 }
1479 return 0;
1480 }
1481
1482 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1483 {
1484 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1485 }
1486
1487 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1488 {
1489 /* tertiary/secondary caches not implemented */
1490 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1491 }
1492
1493 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1494 {
1495 target_long mask = env->CP0_LLAddr_rw_bitmask;
1496 arg1 = arg1 << env->CP0_LLAddr_shift;
1497 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1498 }
1499
1500 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1501 {
1502 /* Watch exceptions for instructions, data loads, data stores
1503 not implemented. */
1504 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1505 }
1506
1507 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1508 {
1509 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1510 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1511 }
1512
1513 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1514 {
1515 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1516 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1517 }
1518
1519 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1520 {
1521 env->CP0_Framemask = arg1; /* XXX */
1522 }
1523
1524 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1525 {
1526 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1527 if (arg1 & (1 << CP0DB_DM))
1528 env->hflags |= MIPS_HFLAG_DM;
1529 else
1530 env->hflags &= ~MIPS_HFLAG_DM;
1531 }
1532
1533 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1534 {
1535 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1536 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1537 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1538
1539 /* XXX: Might be wrong, check with EJTAG spec. */
1540 if (other_tc == other->current_tc)
1541 other->active_tc.CP0_Debug_tcstatus = val;
1542 else
1543 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1544 other->CP0_Debug = (other->CP0_Debug &
1545 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1546 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1547 }
1548
1549 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1550 {
1551 env->CP0_Performance0 = arg1 & 0x000007ff;
1552 }
1553
1554 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1555 {
1556 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1557 }
1558
1559 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1560 {
1561 env->CP0_DataLo = arg1; /* XXX */
1562 }
1563
1564 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1565 {
1566 env->CP0_TagHi = arg1; /* XXX */
1567 }
1568
1569 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1570 {
1571 env->CP0_DataHi = arg1; /* XXX */
1572 }
1573
1574 /* MIPS MT functions */
1575 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1576 {
1577 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1578 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1579
1580 if (other_tc == other->current_tc)
1581 return other->active_tc.gpr[sel];
1582 else
1583 return other->tcs[other_tc].gpr[sel];
1584 }
1585
1586 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1587 {
1588 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1589 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1590
1591 if (other_tc == other->current_tc)
1592 return other->active_tc.LO[sel];
1593 else
1594 return other->tcs[other_tc].LO[sel];
1595 }
1596
1597 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1598 {
1599 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1600 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1601
1602 if (other_tc == other->current_tc)
1603 return other->active_tc.HI[sel];
1604 else
1605 return other->tcs[other_tc].HI[sel];
1606 }
1607
1608 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1609 {
1610 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1611 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1612
1613 if (other_tc == other->current_tc)
1614 return other->active_tc.ACX[sel];
1615 else
1616 return other->tcs[other_tc].ACX[sel];
1617 }
1618
1619 target_ulong helper_mftdsp(CPUMIPSState *env)
1620 {
1621 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1622 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1623
1624 if (other_tc == other->current_tc)
1625 return other->active_tc.DSPControl;
1626 else
1627 return other->tcs[other_tc].DSPControl;
1628 }
1629
1630 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1631 {
1632 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1633 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1634
1635 if (other_tc == other->current_tc)
1636 other->active_tc.gpr[sel] = arg1;
1637 else
1638 other->tcs[other_tc].gpr[sel] = arg1;
1639 }
1640
1641 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1642 {
1643 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1644 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1645
1646 if (other_tc == other->current_tc)
1647 other->active_tc.LO[sel] = arg1;
1648 else
1649 other->tcs[other_tc].LO[sel] = arg1;
1650 }
1651
1652 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1653 {
1654 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1655 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1656
1657 if (other_tc == other->current_tc)
1658 other->active_tc.HI[sel] = arg1;
1659 else
1660 other->tcs[other_tc].HI[sel] = arg1;
1661 }
1662
1663 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1664 {
1665 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1666 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1667
1668 if (other_tc == other->current_tc)
1669 other->active_tc.ACX[sel] = arg1;
1670 else
1671 other->tcs[other_tc].ACX[sel] = arg1;
1672 }
1673
1674 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1675 {
1676 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1677 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1678
1679 if (other_tc == other->current_tc)
1680 other->active_tc.DSPControl = arg1;
1681 else
1682 other->tcs[other_tc].DSPControl = arg1;
1683 }
1684
1685 /* MIPS MT functions */
1686 target_ulong helper_dmt(void)
1687 {
1688 // TODO
1689 return 0;
1690 }
1691
1692 target_ulong helper_emt(void)
1693 {
1694 // TODO
1695 return 0;
1696 }
1697
1698 target_ulong helper_dvpe(CPUMIPSState *env)
1699 {
1700 CPUMIPSState *other_cpu_env = first_cpu;
1701 target_ulong prev = env->mvp->CP0_MVPControl;
1702
1703 do {
1704 /* Turn off all VPEs except the one executing the dvpe. */
1705 if (other_cpu_env != env) {
1706 MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
1707
1708 other_cpu_env->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1709 mips_vpe_sleep(other_cpu);
1710 }
1711 other_cpu_env = other_cpu_env->next_cpu;
1712 } while (other_cpu_env);
1713 return prev;
1714 }
1715
1716 target_ulong helper_evpe(CPUMIPSState *env)
1717 {
1718 CPUMIPSState *other_cpu_env = first_cpu;
1719 target_ulong prev = env->mvp->CP0_MVPControl;
1720
1721 do {
1722 MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
1723
1724 if (other_cpu_env != env
1725 /* If the VPE is WFI, don't disturb its sleep. */
1726 && !mips_vpe_is_wfi(other_cpu)) {
1727 /* Enable the VPE. */
1728 other_cpu_env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1729 mips_vpe_wake(other_cpu_env); /* And wake it up. */
1730 }
1731 other_cpu_env = other_cpu_env->next_cpu;
1732 } while (other_cpu_env);
1733 return prev;
1734 }
1735 #endif /* !CONFIG_USER_ONLY */
1736
1737 void helper_fork(target_ulong arg1, target_ulong arg2)
1738 {
1739 // arg1 = rt, arg2 = rs
1740 arg1 = 0;
1741 // TODO: store to TC register
1742 }
1743
1744 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1745 {
1746 target_long arg1 = arg;
1747
1748 if (arg1 < 0) {
1749 /* No scheduling policy implemented. */
1750 if (arg1 != -2) {
1751 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1752 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1753 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1754 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1755 helper_raise_exception(env, EXCP_THREAD);
1756 }
1757 }
1758 } else if (arg1 == 0) {
1759 if (0 /* TODO: TC underflow */) {
1760 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1761 helper_raise_exception(env, EXCP_THREAD);
1762 } else {
1763 // TODO: Deallocate TC
1764 }
1765 } else if (arg1 > 0) {
1766 /* Yield qualifier inputs not implemented. */
1767 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1768 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1769 helper_raise_exception(env, EXCP_THREAD);
1770 }
1771 return env->CP0_YQMask;
1772 }
1773
1774 #ifndef CONFIG_USER_ONLY
1775 /* TLB management */
1776 static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
1777 {
1778 /* Flush qemu's TLB and discard all shadowed entries. */
1779 tlb_flush (env, flush_global);
1780 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1781 }
1782
1783 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1784 {
1785 /* Discard entries from env->tlb[first] onwards. */
1786 while (env->tlb->tlb_in_use > first) {
1787 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1788 }
1789 }
1790
1791 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1792 {
1793 r4k_tlb_t *tlb;
1794
1795 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1796 tlb = &env->tlb->mmu.r4k.tlb[idx];
1797 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1798 #if defined(TARGET_MIPS64)
1799 tlb->VPN &= env->SEGMask;
1800 #endif
1801 tlb->ASID = env->CP0_EntryHi & 0xFF;
1802 tlb->PageMask = env->CP0_PageMask;
1803 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1804 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1805 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1806 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1807 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1808 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1809 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1810 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1811 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1812 }
1813
1814 void r4k_helper_tlbwi(CPUMIPSState *env)
1815 {
1816 r4k_tlb_t *tlb;
1817 int idx;
1818 target_ulong VPN;
1819 uint8_t ASID;
1820 bool G, V0, D0, V1, D1;
1821
1822 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1823 tlb = &env->tlb->mmu.r4k.tlb[idx];
1824 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1825 #if defined(TARGET_MIPS64)
1826 VPN &= env->SEGMask;
1827 #endif
1828 ASID = env->CP0_EntryHi & 0xff;
1829 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1830 V0 = (env->CP0_EntryLo0 & 2) != 0;
1831 D0 = (env->CP0_EntryLo0 & 4) != 0;
1832 V1 = (env->CP0_EntryLo1 & 2) != 0;
1833 D1 = (env->CP0_EntryLo1 & 4) != 0;
1834
1835 /* Discard cached TLB entries, unless tlbwi is just upgrading access
1836 permissions on the current entry. */
1837 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
1838 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
1839 (tlb->V1 && !V1) || (tlb->D1 && !D1)) {
1840 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1841 }
1842
1843 r4k_invalidate_tlb(env, idx, 0);
1844 r4k_fill_tlb(env, idx);
1845 }
1846
1847 void r4k_helper_tlbwr(CPUMIPSState *env)
1848 {
1849 int r = cpu_mips_get_random(env);
1850
1851 r4k_invalidate_tlb(env, r, 1);
1852 r4k_fill_tlb(env, r);
1853 }
1854
1855 void r4k_helper_tlbp(CPUMIPSState *env)
1856 {
1857 r4k_tlb_t *tlb;
1858 target_ulong mask;
1859 target_ulong tag;
1860 target_ulong VPN;
1861 uint8_t ASID;
1862 int i;
1863
1864 ASID = env->CP0_EntryHi & 0xFF;
1865 for (i = 0; i < env->tlb->nb_tlb; i++) {
1866 tlb = &env->tlb->mmu.r4k.tlb[i];
1867 /* 1k pages are not supported. */
1868 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1869 tag = env->CP0_EntryHi & ~mask;
1870 VPN = tlb->VPN & ~mask;
1871 #if defined(TARGET_MIPS64)
1872 tag &= env->SEGMask;
1873 #endif
1874 /* Check ASID, virtual page number & size */
1875 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1876 /* TLB match */
1877 env->CP0_Index = i;
1878 break;
1879 }
1880 }
1881 if (i == env->tlb->nb_tlb) {
1882 /* No match. Discard any shadow entries, if any of them match. */
1883 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1884 tlb = &env->tlb->mmu.r4k.tlb[i];
1885 /* 1k pages are not supported. */
1886 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1887 tag = env->CP0_EntryHi & ~mask;
1888 VPN = tlb->VPN & ~mask;
1889 #if defined(TARGET_MIPS64)
1890 tag &= env->SEGMask;
1891 #endif
1892 /* Check ASID, virtual page number & size */
1893 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1894 r4k_mips_tlb_flush_extra (env, i);
1895 break;
1896 }
1897 }
1898
1899 env->CP0_Index |= 0x80000000;
1900 }
1901 }
1902
1903 void r4k_helper_tlbr(CPUMIPSState *env)
1904 {
1905 r4k_tlb_t *tlb;
1906 uint8_t ASID;
1907 int idx;
1908
1909 ASID = env->CP0_EntryHi & 0xFF;
1910 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1911 tlb = &env->tlb->mmu.r4k.tlb[idx];
1912
1913 /* If this will change the current ASID, flush qemu's TLB. */
1914 if (ASID != tlb->ASID)
1915 cpu_mips_tlb_flush (env, 1);
1916
1917 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1918
1919 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1920 env->CP0_PageMask = tlb->PageMask;
1921 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1922 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1923 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1924 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1925 }
1926
1927 void helper_tlbwi(CPUMIPSState *env)
1928 {
1929 env->tlb->helper_tlbwi(env);
1930 }
1931
1932 void helper_tlbwr(CPUMIPSState *env)
1933 {
1934 env->tlb->helper_tlbwr(env);
1935 }
1936
1937 void helper_tlbp(CPUMIPSState *env)
1938 {
1939 env->tlb->helper_tlbp(env);
1940 }
1941
1942 void helper_tlbr(CPUMIPSState *env)
1943 {
1944 env->tlb->helper_tlbr(env);
1945 }
1946
1947 /* Specials */
1948 target_ulong helper_di(CPUMIPSState *env)
1949 {
1950 target_ulong t0 = env->CP0_Status;
1951
1952 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1953 return t0;
1954 }
1955
1956 target_ulong helper_ei(CPUMIPSState *env)
1957 {
1958 target_ulong t0 = env->CP0_Status;
1959
1960 env->CP0_Status = t0 | (1 << CP0St_IE);
1961 return t0;
1962 }
1963
1964 static void debug_pre_eret(CPUMIPSState *env)
1965 {
1966 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1967 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1968 env->active_tc.PC, env->CP0_EPC);
1969 if (env->CP0_Status & (1 << CP0St_ERL))
1970 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1971 if (env->hflags & MIPS_HFLAG_DM)
1972 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1973 qemu_log("\n");
1974 }
1975 }
1976
1977 static void debug_post_eret(CPUMIPSState *env)
1978 {
1979 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1980 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1981 env->active_tc.PC, env->CP0_EPC);
1982 if (env->CP0_Status & (1 << CP0St_ERL))
1983 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1984 if (env->hflags & MIPS_HFLAG_DM)
1985 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1986 switch (env->hflags & MIPS_HFLAG_KSU) {
1987 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1988 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1989 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1990 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1991 }
1992 }
1993 }
1994
1995 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
1996 {
1997 env->active_tc.PC = error_pc & ~(target_ulong)1;
1998 if (error_pc & 1) {
1999 env->hflags |= MIPS_HFLAG_M16;
2000 } else {
2001 env->hflags &= ~(MIPS_HFLAG_M16);
2002 }
2003 }
2004
2005 void helper_eret(CPUMIPSState *env)
2006 {
2007 debug_pre_eret(env);
2008 if (env->CP0_Status & (1 << CP0St_ERL)) {
2009 set_pc(env, env->CP0_ErrorEPC);
2010 env->CP0_Status &= ~(1 << CP0St_ERL);
2011 } else {
2012 set_pc(env, env->CP0_EPC);
2013 env->CP0_Status &= ~(1 << CP0St_EXL);
2014 }
2015 compute_hflags(env);
2016 debug_post_eret(env);
2017 env->lladdr = 1;
2018 }
2019
2020 void helper_deret(CPUMIPSState *env)
2021 {
2022 debug_pre_eret(env);
2023 set_pc(env, env->CP0_DEPC);
2024
2025 env->hflags &= MIPS_HFLAG_DM;
2026 compute_hflags(env);
2027 debug_post_eret(env);
2028 env->lladdr = 1;
2029 }
2030 #endif /* !CONFIG_USER_ONLY */
2031
2032 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2033 {
2034 if ((env->hflags & MIPS_HFLAG_CP0) ||
2035 (env->CP0_HWREna & (1 << 0)))
2036 return env->CP0_EBase & 0x3ff;
2037 else
2038 helper_raise_exception(env, EXCP_RI);
2039
2040 return 0;
2041 }
2042
2043 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2044 {
2045 if ((env->hflags & MIPS_HFLAG_CP0) ||
2046 (env->CP0_HWREna & (1 << 1)))
2047 return env->SYNCI_Step;
2048 else
2049 helper_raise_exception(env, EXCP_RI);
2050
2051 return 0;
2052 }
2053
2054 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2055 {
2056 if ((env->hflags & MIPS_HFLAG_CP0) ||
2057 (env->CP0_HWREna & (1 << 2)))
2058 return env->CP0_Count;
2059 else
2060 helper_raise_exception(env, EXCP_RI);
2061
2062 return 0;
2063 }
2064
2065 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2066 {
2067 if ((env->hflags & MIPS_HFLAG_CP0) ||
2068 (env->CP0_HWREna & (1 << 3)))
2069 return env->CCRes;
2070 else
2071 helper_raise_exception(env, EXCP_RI);
2072
2073 return 0;
2074 }
2075
2076 void helper_pmon(CPUMIPSState *env, int function)
2077 {
2078 function /= 2;
2079 switch (function) {
2080 case 2: /* TODO: char inbyte(int waitflag); */
2081 if (env->active_tc.gpr[4] == 0)
2082 env->active_tc.gpr[2] = -1;
2083 /* Fall through */
2084 case 11: /* TODO: char inbyte (void); */
2085 env->active_tc.gpr[2] = -1;
2086 break;
2087 case 3:
2088 case 12:
2089 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2090 break;
2091 case 17:
2092 break;
2093 case 158:
2094 {
2095 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2096 printf("%s", fmt);
2097 }
2098 break;
2099 }
2100 }
2101
2102 void helper_wait(CPUMIPSState *env)
2103 {
2104 env->halted = 1;
2105 cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
2106 helper_raise_exception(env, EXCP_HLT);
2107 }
2108
2109 #if !defined(CONFIG_USER_ONLY)
2110
2111 static void QEMU_NORETURN do_unaligned_access(CPUMIPSState *env,
2112 target_ulong addr, int is_write,
2113 int is_user, uintptr_t retaddr);
2114
2115 #define MMUSUFFIX _mmu
2116 #define ALIGNED_ONLY
2117
2118 #define SHIFT 0
2119 #include "exec/softmmu_template.h"
2120
2121 #define SHIFT 1
2122 #include "exec/softmmu_template.h"
2123
2124 #define SHIFT 2
2125 #include "exec/softmmu_template.h"
2126
2127 #define SHIFT 3
2128 #include "exec/softmmu_template.h"
2129
2130 static void do_unaligned_access(CPUMIPSState *env, target_ulong addr,
2131 int is_write, int is_user, uintptr_t retaddr)
2132 {
2133 env->CP0_BadVAddr = addr;
2134 do_raise_exception(env, (is_write == 1) ? EXCP_AdES : EXCP_AdEL, retaddr);
2135 }
2136
2137 void tlb_fill(CPUMIPSState *env, target_ulong addr, int is_write, int mmu_idx,
2138 uintptr_t retaddr)
2139 {
2140 int ret;
2141
2142 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
2143 if (ret) {
2144 do_raise_exception_err(env, env->exception_index,
2145 env->error_code, retaddr);
2146 }
2147 }
2148
2149 void cpu_unassigned_access(CPUMIPSState *env, hwaddr addr,
2150 int is_write, int is_exec, int unused, int size)
2151 {
2152 if (is_exec)
2153 helper_raise_exception(env, EXCP_IBE);
2154 else
2155 helper_raise_exception(env, EXCP_DBE);
2156 }
2157 #endif /* !CONFIG_USER_ONLY */
2158
2159 /* Complex FPU operations which may need stack space. */
2160
2161 #define FLOAT_TWO32 make_float32(1 << 30)
2162 #define FLOAT_TWO64 make_float64(1ULL << 62)
2163 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2164 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2165
2166 /* convert MIPS rounding mode in FCR31 to IEEE library */
2167 static unsigned int ieee_rm[] = {
2168 float_round_nearest_even,
2169 float_round_to_zero,
2170 float_round_up,
2171 float_round_down
2172 };
2173
2174 #define RESTORE_ROUNDING_MODE \
2175 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2176
2177 #define RESTORE_FLUSH_MODE \
2178 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2179
2180 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2181 {
2182 target_ulong arg1;
2183
2184 switch (reg) {
2185 case 0:
2186 arg1 = (int32_t)env->active_fpu.fcr0;
2187 break;
2188 case 25:
2189 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2190 break;
2191 case 26:
2192 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2193 break;
2194 case 28:
2195 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2196 break;
2197 default:
2198 arg1 = (int32_t)env->active_fpu.fcr31;
2199 break;
2200 }
2201
2202 return arg1;
2203 }
2204
2205 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t reg)
2206 {
2207 switch(reg) {
2208 case 25:
2209 if (arg1 & 0xffffff00)
2210 return;
2211 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2212 ((arg1 & 0x1) << 23);
2213 break;
2214 case 26:
2215 if (arg1 & 0x007c0000)
2216 return;
2217 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2218 break;
2219 case 28:
2220 if (arg1 & 0x007c0000)
2221 return;
2222 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2223 ((arg1 & 0x4) << 22);
2224 break;
2225 case 31:
2226 if (arg1 & 0x007c0000)
2227 return;
2228 env->active_fpu.fcr31 = arg1;
2229 break;
2230 default:
2231 return;
2232 }
2233 /* set rounding mode */
2234 RESTORE_ROUNDING_MODE;
2235 /* set flush-to-zero mode */
2236 RESTORE_FLUSH_MODE;
2237 set_float_exception_flags(0, &env->active_fpu.fp_status);
2238 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2239 do_raise_exception(env, EXCP_FPE, GETPC());
2240 }
2241
2242 static inline int ieee_ex_to_mips(int xcpt)
2243 {
2244 int ret = 0;
2245 if (xcpt) {
2246 if (xcpt & float_flag_invalid) {
2247 ret |= FP_INVALID;
2248 }
2249 if (xcpt & float_flag_overflow) {
2250 ret |= FP_OVERFLOW;
2251 }
2252 if (xcpt & float_flag_underflow) {
2253 ret |= FP_UNDERFLOW;
2254 }
2255 if (xcpt & float_flag_divbyzero) {
2256 ret |= FP_DIV0;
2257 }
2258 if (xcpt & float_flag_inexact) {
2259 ret |= FP_INEXACT;
2260 }
2261 }
2262 return ret;
2263 }
2264
2265 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2266 {
2267 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2268
2269 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2270
2271 if (tmp) {
2272 set_float_exception_flags(0, &env->active_fpu.fp_status);
2273
2274 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2275 do_raise_exception(env, EXCP_FPE, pc);
2276 } else {
2277 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2278 }
2279 }
2280 }
2281
2282 /* Float support.
2283 Single precition routines have a "s" suffix, double precision a
2284 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2285 paired single lower "pl", paired single upper "pu". */
2286
2287 /* unary operations, modifying fp status */
2288 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2289 {
2290 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2291 update_fcr31(env, GETPC());
2292 return fdt0;
2293 }
2294
2295 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2296 {
2297 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2298 update_fcr31(env, GETPC());
2299 return fst0;
2300 }
2301
2302 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2303 {
2304 uint64_t fdt2;
2305
2306 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2307 update_fcr31(env, GETPC());
2308 return fdt2;
2309 }
2310
2311 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2312 {
2313 uint64_t fdt2;
2314
2315 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2316 update_fcr31(env, GETPC());
2317 return fdt2;
2318 }
2319
2320 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2321 {
2322 uint64_t fdt2;
2323
2324 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2325 update_fcr31(env, GETPC());
2326 return fdt2;
2327 }
2328
2329 uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
2330 {
2331 uint64_t dt2;
2332
2333 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2334 if (get_float_exception_flags(&env->active_fpu.fp_status)
2335 & (float_flag_invalid | float_flag_overflow)) {
2336 dt2 = FP_TO_INT64_OVERFLOW;
2337 }
2338 update_fcr31(env, GETPC());
2339 return dt2;
2340 }
2341
2342 uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
2343 {
2344 uint64_t dt2;
2345
2346 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2347 if (get_float_exception_flags(&env->active_fpu.fp_status)
2348 & (float_flag_invalid | float_flag_overflow)) {
2349 dt2 = FP_TO_INT64_OVERFLOW;
2350 }
2351 update_fcr31(env, GETPC());
2352 return dt2;
2353 }
2354
2355 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2356 {
2357 uint32_t fst2;
2358 uint32_t fsth2;
2359
2360 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2361 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2362 update_fcr31(env, GETPC());
2363 return ((uint64_t)fsth2 << 32) | fst2;
2364 }
2365
2366 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2367 {
2368 uint32_t wt2;
2369 uint32_t wth2;
2370 int excp, excph;
2371
2372 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2373 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2374 if (excp & (float_flag_overflow | float_flag_invalid)) {
2375 wt2 = FP_TO_INT32_OVERFLOW;
2376 }
2377
2378 set_float_exception_flags(0, &env->active_fpu.fp_status);
2379 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2380 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2381 if (excph & (float_flag_overflow | float_flag_invalid)) {
2382 wth2 = FP_TO_INT32_OVERFLOW;
2383 }
2384
2385 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2386 update_fcr31(env, GETPC());
2387
2388 return ((uint64_t)wth2 << 32) | wt2;
2389 }
2390
2391 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2392 {
2393 uint32_t fst2;
2394
2395 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2396 update_fcr31(env, GETPC());
2397 return fst2;
2398 }
2399
2400 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2401 {
2402 uint32_t fst2;
2403
2404 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2405 update_fcr31(env, GETPC());
2406 return fst2;
2407 }
2408
2409 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2410 {
2411 uint32_t fst2;
2412
2413 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2414 update_fcr31(env, GETPC());
2415 return fst2;
2416 }
2417
2418 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2419 {
2420 uint32_t wt2;
2421
2422 wt2 = wt0;
2423 update_fcr31(env, GETPC());
2424 return wt2;
2425 }
2426
2427 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2428 {
2429 uint32_t wt2;
2430
2431 wt2 = wth0;
2432 update_fcr31(env, GETPC());
2433 return wt2;
2434 }
2435
2436 uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
2437 {
2438 uint32_t wt2;
2439
2440 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2441 update_fcr31(env, GETPC());
2442 if (get_float_exception_flags(&env->active_fpu.fp_status)
2443 & (float_flag_invalid | float_flag_overflow)) {
2444 wt2 = FP_TO_INT32_OVERFLOW;
2445 }
2446 return wt2;
2447 }
2448
2449 uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
2450 {
2451 uint32_t wt2;
2452
2453 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2454 if (get_float_exception_flags(&env->active_fpu.fp_status)
2455 & (float_flag_invalid | float_flag_overflow)) {
2456 wt2 = FP_TO_INT32_OVERFLOW;
2457 }
2458 update_fcr31(env, GETPC());
2459 return wt2;
2460 }
2461
2462 uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
2463 {
2464 uint64_t dt2;
2465
2466 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2467 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2468 RESTORE_ROUNDING_MODE;
2469 if (get_float_exception_flags(&env->active_fpu.fp_status)
2470 & (float_flag_invalid | float_flag_overflow)) {
2471 dt2 = FP_TO_INT64_OVERFLOW;
2472 }
2473 update_fcr31(env, GETPC());
2474 return dt2;
2475 }
2476
2477 uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
2478 {
2479 uint64_t dt2;
2480
2481 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2482 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2483 RESTORE_ROUNDING_MODE;
2484 if (get_float_exception_flags(&env->active_fpu.fp_status)
2485 & (float_flag_invalid | float_flag_overflow)) {
2486 dt2 = FP_TO_INT64_OVERFLOW;
2487 }
2488 update_fcr31(env, GETPC());
2489 return dt2;
2490 }
2491
2492 uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
2493 {
2494 uint32_t wt2;
2495
2496 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2497 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2498 RESTORE_ROUNDING_MODE;
2499 if (get_float_exception_flags(&env->active_fpu.fp_status)
2500 & (float_flag_invalid | float_flag_overflow)) {
2501 wt2 = FP_TO_INT32_OVERFLOW;
2502 }
2503 update_fcr31(env, GETPC());
2504 return wt2;
2505 }
2506
2507 uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
2508 {
2509 uint32_t wt2;
2510
2511 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2512 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2513 RESTORE_ROUNDING_MODE;
2514 if (get_float_exception_flags(&env->active_fpu.fp_status)
2515 & (float_flag_invalid | float_flag_overflow)) {
2516 wt2 = FP_TO_INT32_OVERFLOW;
2517 }
2518 update_fcr31(env, GETPC());
2519 return wt2;
2520 }
2521
2522 uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
2523 {
2524 uint64_t dt2;
2525
2526 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2527 if (get_float_exception_flags(&env->active_fpu.fp_status)
2528 & (float_flag_invalid | float_flag_overflow)) {
2529 dt2 = FP_TO_INT64_OVERFLOW;
2530 }
2531 update_fcr31(env, GETPC());
2532 return dt2;
2533 }
2534
2535 uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
2536 {
2537 uint64_t dt2;
2538
2539 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2540 if (get_float_exception_flags(&env->active_fpu.fp_status)
2541 & (float_flag_invalid | float_flag_overflow)) {
2542 dt2 = FP_TO_INT64_OVERFLOW;
2543 }
2544 update_fcr31(env, GETPC());
2545 return dt2;
2546 }
2547
2548 uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
2549 {
2550 uint32_t wt2;
2551
2552 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2553 if (get_float_exception_flags(&env->active_fpu.fp_status)
2554 & (float_flag_invalid | float_flag_overflow)) {
2555 wt2 = FP_TO_INT32_OVERFLOW;
2556 }
2557 update_fcr31(env, GETPC());
2558 return wt2;
2559 }
2560
2561 uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
2562 {
2563 uint32_t wt2;
2564
2565 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2566 if (get_float_exception_flags(&env->active_fpu.fp_status)
2567 & (float_flag_invalid | float_flag_overflow)) {
2568 wt2 = FP_TO_INT32_OVERFLOW;
2569 }
2570 update_fcr31(env, GETPC());
2571 return wt2;
2572 }
2573
2574 uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
2575 {
2576 uint64_t dt2;
2577
2578 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2579 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2580 RESTORE_ROUNDING_MODE;
2581 if (get_float_exception_flags(&env->active_fpu.fp_status)
2582 & (float_flag_invalid | float_flag_overflow)) {
2583 dt2 = FP_TO_INT64_OVERFLOW;
2584 }
2585 update_fcr31(env, GETPC());
2586 return dt2;
2587 }
2588
2589 uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
2590 {
2591 uint64_t dt2;
2592
2593 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2594 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2595 RESTORE_ROUNDING_MODE;
2596 if (get_float_exception_flags(&env->active_fpu.fp_status)
2597 & (float_flag_invalid | float_flag_overflow)) {
2598 dt2 = FP_TO_INT64_OVERFLOW;
2599 }
2600 update_fcr31(env, GETPC());
2601 return dt2;
2602 }
2603
2604 uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
2605 {
2606 uint32_t wt2;
2607
2608 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2609 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2610 RESTORE_ROUNDING_MODE;
2611 if (get_float_exception_flags(&env->active_fpu.fp_status)
2612 & (float_flag_invalid | float_flag_overflow)) {
2613 wt2 = FP_TO_INT32_OVERFLOW;
2614 }
2615 update_fcr31(env, GETPC());
2616 return wt2;
2617 }
2618
2619 uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
2620 {
2621 uint32_t wt2;
2622
2623 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2624 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2625 RESTORE_ROUNDING_MODE;
2626 if (get_float_exception_flags(&env->active_fpu.fp_status)
2627 & (float_flag_invalid | float_flag_overflow)) {
2628 wt2 = FP_TO_INT32_OVERFLOW;
2629 }
2630 update_fcr31(env, GETPC());
2631 return wt2;
2632 }
2633
2634 uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
2635 {
2636 uint64_t dt2;
2637
2638 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2639 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2640 RESTORE_ROUNDING_MODE;
2641 if (get_float_exception_flags(&env->active_fpu.fp_status)
2642 & (float_flag_invalid | float_flag_overflow)) {
2643 dt2 = FP_TO_INT64_OVERFLOW;
2644 }
2645 update_fcr31(env, GETPC());
2646 return dt2;
2647 }
2648
2649 uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
2650 {
2651 uint64_t dt2;
2652
2653 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2654 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2655 RESTORE_ROUNDING_MODE;
2656 if (get_float_exception_flags(&env->active_fpu.fp_status)
2657 & (float_flag_invalid | float_flag_overflow)) {
2658 dt2 = FP_TO_INT64_OVERFLOW;
2659 }
2660 update_fcr31(env, GETPC());
2661 return dt2;
2662 }
2663
2664 uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
2665 {
2666 uint32_t wt2;
2667
2668 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2669 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2670 RESTORE_ROUNDING_MODE;
2671 if (get_float_exception_flags(&env->active_fpu.fp_status)
2672 & (float_flag_invalid | float_flag_overflow)) {
2673 wt2 = FP_TO_INT32_OVERFLOW;
2674 }
2675 update_fcr31(env, GETPC());
2676 return wt2;
2677 }
2678
2679 uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
2680 {
2681 uint32_t wt2;
2682
2683 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2684 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2685 RESTORE_ROUNDING_MODE;
2686 if (get_float_exception_flags(&env->active_fpu.fp_status)
2687 & (float_flag_invalid | float_flag_overflow)) {
2688 wt2 = FP_TO_INT32_OVERFLOW;
2689 }
2690 update_fcr31(env, GETPC());
2691 return wt2;
2692 }
2693
2694 /* unary operations, not modifying fp status */
2695 #define FLOAT_UNOP(name) \
2696 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2697 { \
2698 return float64_ ## name(fdt0); \
2699 } \
2700 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2701 { \
2702 return float32_ ## name(fst0); \
2703 } \
2704 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2705 { \
2706 uint32_t wt0; \
2707 uint32_t wth0; \
2708 \
2709 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2710 wth0 = float32_ ## name(fdt0 >> 32); \
2711 return ((uint64_t)wth0 << 32) | wt0; \
2712 }
2713 FLOAT_UNOP(abs)
2714 FLOAT_UNOP(chs)
2715 #undef FLOAT_UNOP
2716
2717 /* MIPS specific unary operations */
2718 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
2719 {
2720 uint64_t fdt2;
2721
2722 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2723 update_fcr31(env, GETPC());
2724 return fdt2;
2725 }
2726
2727 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
2728 {
2729 uint32_t fst2;
2730
2731 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2732 update_fcr31(env, GETPC());
2733 return fst2;
2734 }
2735
2736 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
2737 {
2738 uint64_t fdt2;
2739
2740 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2741 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2742 update_fcr31(env, GETPC());
2743 return fdt2;
2744 }
2745
2746 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
2747 {
2748 uint32_t fst2;
2749
2750 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2751 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2752 update_fcr31(env, GETPC());
2753 return fst2;
2754 }
2755
2756 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
2757 {
2758 uint64_t fdt2;
2759
2760 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2761 update_fcr31(env, GETPC());
2762 return fdt2;
2763 }
2764
2765 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
2766 {
2767 uint32_t fst2;
2768
2769 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2770 update_fcr31(env, GETPC());
2771 return fst2;
2772 }
2773
2774 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
2775 {
2776 uint32_t fst2;
2777 uint32_t fsth2;
2778
2779 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2780 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
2781 update_fcr31(env, GETPC());
2782 return ((uint64_t)fsth2 << 32) | fst2;
2783 }
2784
2785 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
2786 {
2787 uint64_t fdt2;
2788
2789 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2790 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2791 update_fcr31(env, GETPC());
2792 return fdt2;
2793 }
2794
2795 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
2796 {
2797 uint32_t fst2;
2798
2799 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2800 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2801 update_fcr31(env, GETPC());
2802 return fst2;
2803 }
2804
2805 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
2806 {
2807 uint32_t fst2;
2808 uint32_t fsth2;
2809
2810 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2811 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2812 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2813 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
2814 update_fcr31(env, GETPC());
2815 return ((uint64_t)fsth2 << 32) | fst2;
2816 }
2817
2818 #define FLOAT_OP(name, p) void helper_float_##name##_##p(CPUMIPSState *env)
2819
2820 /* binary operations */
2821 #define FLOAT_BINOP(name) \
2822 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2823 uint64_t fdt0, uint64_t fdt1) \
2824 { \
2825 uint64_t dt2; \
2826 \
2827 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2828 update_fcr31(env, GETPC()); \
2829 return dt2; \
2830 } \
2831 \
2832 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2833 uint32_t fst0, uint32_t fst1) \
2834 { \
2835 uint32_t wt2; \
2836 \
2837 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2838 update_fcr31(env, GETPC()); \
2839 return wt2; \
2840 } \
2841 \
2842 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2843 uint64_t fdt0, \
2844 uint64_t fdt1) \
2845 { \
2846 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2847 uint32_t fsth0 = fdt0 >> 32; \
2848 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2849 uint32_t fsth1 = fdt1 >> 32; \
2850 uint32_t wt2; \
2851 uint32_t wth2; \
2852 \
2853 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2854 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2855 update_fcr31(env, GETPC()); \
2856 return ((uint64_t)wth2 << 32) | wt2; \
2857 }
2858
2859 FLOAT_BINOP(add)
2860 FLOAT_BINOP(sub)
2861 FLOAT_BINOP(mul)
2862 FLOAT_BINOP(div)
2863 #undef FLOAT_BINOP
2864
2865 /* FMA based operations */
2866 #define FLOAT_FMA(name, type) \
2867 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2868 uint64_t fdt0, uint64_t fdt1, \
2869 uint64_t fdt2) \
2870 { \
2871 fdt0 = float64_muladd(fdt0, fdt1, fdt2, type, \
2872 &env->active_fpu.fp_status); \
2873 update_fcr31(env, GETPC()); \
2874 return fdt0; \
2875 } \
2876 \
2877 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2878 uint32_t fst0, uint32_t fst1, \
2879 uint32_t fst2) \
2880 { \
2881 fst0 = float32_muladd(fst0, fst1, fst2, type, \
2882 &env->active_fpu.fp_status); \
2883 update_fcr31(env, GETPC()); \
2884 return fst0; \
2885 } \
2886 \
2887 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2888 uint64_t fdt0, uint64_t fdt1, \
2889 uint64_t fdt2) \
2890 { \
2891 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2892 uint32_t fsth0 = fdt0 >> 32; \
2893 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2894 uint32_t fsth1 = fdt1 >> 32; \
2895 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2896 uint32_t fsth2 = fdt2 >> 32; \
2897 \
2898 fst0 = float32_muladd(fst0, fst1, fst2, type, \
2899 &env->active_fpu.fp_status); \
2900 fsth0 = float32_muladd(fsth0, fsth1, fsth2, type, \
2901 &env->active_fpu.fp_status); \
2902 update_fcr31(env, GETPC()); \
2903 return ((uint64_t)fsth0 << 32) | fst0; \
2904 }
2905 FLOAT_FMA(madd, 0)
2906 FLOAT_FMA(msub, float_muladd_negate_c)
2907 FLOAT_FMA(nmadd, float_muladd_negate_result)
2908 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
2909 #undef FLOAT_FMA
2910
2911 /* MIPS specific binary operations */
2912 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2913 {
2914 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2915 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
2916 update_fcr31(env, GETPC());
2917 return fdt2;
2918 }
2919
2920 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2921 {
2922 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2923 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2924 update_fcr31(env, GETPC());
2925 return fst2;
2926 }
2927
2928 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2929 {
2930 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2931 uint32_t fsth0 = fdt0 >> 32;
2932 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2933 uint32_t fsth2 = fdt2 >> 32;
2934
2935 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2936 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2937 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2938 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
2939 update_fcr31(env, GETPC());
2940 return ((uint64_t)fsth2 << 32) | fst2;
2941 }
2942
2943 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2944 {
2945 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2946 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
2947 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2948 update_fcr31(env, GETPC());
2949 return fdt2;
2950 }
2951
2952 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2953 {
2954 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2955 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2956 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2957 update_fcr31(env, GETPC());
2958 return fst2;
2959 }
2960
2961 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2962 {
2963 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2964 uint32_t fsth0 = fdt0 >> 32;
2965 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2966 uint32_t fsth2 = fdt2 >> 32;
2967
2968 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2969 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2970 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2971 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
2972 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2973 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2974 update_fcr31(env, GETPC());
2975 return ((uint64_t)fsth2 << 32) | fst2;
2976 }
2977
2978 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
2979 {
2980 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2981 uint32_t fsth0 = fdt0 >> 32;
2982 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2983 uint32_t fsth1 = fdt1 >> 32;
2984 uint32_t fst2;
2985 uint32_t fsth2;
2986
2987 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2988 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2989 update_fcr31(env, GETPC());
2990 return ((uint64_t)fsth2 << 32) | fst2;
2991 }
2992
2993 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
2994 {
2995 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2996 uint32_t fsth0 = fdt0 >> 32;
2997 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2998 uint32_t fsth1 = fdt1 >> 32;
2999 uint32_t fst2;
3000 uint32_t fsth2;
3001
3002 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3003 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3004 update_fcr31(env, GETPC());
3005 return ((uint64_t)fsth2 << 32) | fst2;
3006 }
3007
3008 /* compare operations */
3009 #define FOP_COND_D(op, cond) \
3010 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3011 uint64_t fdt1, int cc) \
3012 { \
3013 int c; \
3014 c = cond; \
3015 update_fcr31(env, GETPC()); \
3016 if (c) \
3017 SET_FP_COND(cc, env->active_fpu); \
3018 else \
3019 CLEAR_FP_COND(cc, env->active_fpu); \
3020 } \
3021 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3022 uint64_t fdt1, int cc) \
3023 { \
3024 int c; \
3025 fdt0 = float64_abs(fdt0); \
3026 fdt1 = float64_abs(fdt1); \
3027 c = cond; \
3028 update_fcr31(env, GETPC()); \
3029 if (c) \
3030 SET_FP_COND(cc, env->active_fpu); \
3031 else \
3032 CLEAR_FP_COND(cc, env->active_fpu); \
3033 }
3034
3035 /* NOTE: the comma operator will make "cond" to eval to false,
3036 * but float64_unordered_quiet() is still called. */
3037 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3038 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3039 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3040 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3041 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3042 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3043 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3044 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3045 /* NOTE: the comma operator will make "cond" to eval to false,
3046 * but float64_unordered() is still called. */
3047 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3048 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3049 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3050 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3051 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3052 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3053 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3054 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3055
3056 #define FOP_COND_S(op, cond) \
3057 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3058 uint32_t fst1, int cc) \
3059 { \
3060 int c; \
3061 c = cond; \
3062 update_fcr31(env, GETPC()); \
3063 if (c) \
3064 SET_FP_COND(cc, env->active_fpu); \
3065 else \
3066 CLEAR_FP_COND(cc, env->active_fpu); \
3067 } \
3068 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3069 uint32_t fst1, int cc) \
3070 { \
3071 int c; \
3072 fst0 = float32_abs(fst0); \
3073 fst1 = float32_abs(fst1); \
3074 c = cond; \
3075 update_fcr31(env, GETPC()); \
3076 if (c) \
3077 SET_FP_COND(cc, env->active_fpu); \
3078 else \
3079 CLEAR_FP_COND(cc, env->active_fpu); \
3080 }
3081
3082 /* NOTE: the comma operator will make "cond" to eval to false,
3083 * but float32_unordered_quiet() is still called. */
3084 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3085 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3086 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3087 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3088 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3089 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3090 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3091 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3092 /* NOTE: the comma operator will make "cond" to eval to false,
3093 * but float32_unordered() is still called. */
3094 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3095 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3096 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3097 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3098 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3099 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3100 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3101 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3102
3103 #define FOP_COND_PS(op, condl, condh) \
3104 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3105 uint64_t fdt1, int cc) \
3106 { \
3107 uint32_t fst0, fsth0, fst1, fsth1; \
3108 int ch, cl; \
3109 fst0 = fdt0 & 0XFFFFFFFF; \
3110 fsth0 = fdt0 >> 32; \
3111 fst1 = fdt1 & 0XFFFFFFFF; \
3112 fsth1 = fdt1 >> 32; \
3113 cl = condl; \
3114 ch = condh; \
3115 update_fcr31(env, GETPC()); \
3116 if (cl) \
3117 SET_FP_COND(cc, env->active_fpu); \
3118 else \
3119 CLEAR_FP_COND(cc, env->active_fpu); \
3120 if (ch) \
3121 SET_FP_COND(cc + 1, env->active_fpu); \
3122 else \
3123 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3124 } \
3125 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3126 uint64_t fdt1, int cc) \
3127 { \
3128 uint32_t fst0, fsth0, fst1, fsth1; \
3129 int ch, cl; \
3130 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3131 fsth0 = float32_abs(fdt0 >> 32); \
3132 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3133 fsth1 = float32_abs(fdt1 >> 32); \
3134 cl = condl; \
3135 ch = condh; \
3136 update_fcr31(env, GETPC()); \
3137 if (cl) \
3138 SET_FP_COND(cc, env->active_fpu); \
3139 else \
3140 CLEAR_FP_COND(cc, env->active_fpu); \
3141 if (ch) \
3142 SET_FP_COND(cc + 1, env->active_fpu); \
3143 else \
3144 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3145 }
3146
3147 /* NOTE: the comma operator will make "cond" to eval to false,
3148 * but float32_unordered_quiet() is still called. */
3149 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3150 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3151 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3152 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3153 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3154 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3155 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3156 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3157 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3158 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3159 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3160 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3161 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3162 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3163 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3164 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3165 /* NOTE: the comma operator will make "cond" to eval to false,
3166 * but float32_unordered() is still called. */
3167 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3168 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3169 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3170 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3171 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3172 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3173 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3174 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3175 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3176 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3177 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3178 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3179 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3180 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3181 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3182 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))