]> git.proxmox.com Git - mirror_qemu.git/blob - target-ppc/fpu_helper.c
qtest: Assure that init_socket()'s listen() does not fail
[mirror_qemu.git] / target-ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "cpu.h"
20 #include "helper.h"
21
22 /*****************************************************************************/
23 /* Floating point operations helpers */
24 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
25 {
26 CPU_FloatU f;
27 CPU_DoubleU d;
28
29 f.l = arg;
30 d.d = float32_to_float64(f.f, &env->fp_status);
31 return d.ll;
32 }
33
34 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
35 {
36 CPU_FloatU f;
37 CPU_DoubleU d;
38
39 d.ll = arg;
40 f.f = float64_to_float32(d.d, &env->fp_status);
41 return f.l;
42 }
43
44 static inline int isden(float64 d)
45 {
46 CPU_DoubleU u;
47
48 u.d = d;
49
50 return ((u.ll >> 52) & 0x7FF) == 0;
51 }
52
53 static inline int ppc_float32_get_unbiased_exp(float32 f)
54 {
55 return ((f >> 23) & 0xFF) - 127;
56 }
57
58 static inline int ppc_float64_get_unbiased_exp(float64 f)
59 {
60 return ((f >> 52) & 0x7FF) - 1023;
61 }
62
63 uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
64 {
65 CPU_DoubleU farg;
66 int isneg;
67 int ret;
68
69 farg.ll = arg;
70 isneg = float64_is_neg(farg.d);
71 if (unlikely(float64_is_any_nan(farg.d))) {
72 if (float64_is_signaling_nan(farg.d)) {
73 /* Signaling NaN: flags are undefined */
74 ret = 0x00;
75 } else {
76 /* Quiet NaN */
77 ret = 0x11;
78 }
79 } else if (unlikely(float64_is_infinity(farg.d))) {
80 /* +/- infinity */
81 if (isneg) {
82 ret = 0x09;
83 } else {
84 ret = 0x05;
85 }
86 } else {
87 if (float64_is_zero(farg.d)) {
88 /* +/- zero */
89 if (isneg) {
90 ret = 0x12;
91 } else {
92 ret = 0x02;
93 }
94 } else {
95 if (isden(farg.d)) {
96 /* Denormalized numbers */
97 ret = 0x10;
98 } else {
99 /* Normalized numbers */
100 ret = 0x00;
101 }
102 if (isneg) {
103 ret |= 0x08;
104 } else {
105 ret |= 0x04;
106 }
107 }
108 }
109 if (set_fprf) {
110 /* We update FPSCR_FPRF */
111 env->fpscr &= ~(0x1F << FPSCR_FPRF);
112 env->fpscr |= ret << FPSCR_FPRF;
113 }
114 /* We just need fpcc to update Rc1 */
115 return ret & 0xF;
116 }
117
118 /* Floating-point invalid operations exception */
119 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
120 int set_fpcc)
121 {
122 CPUState *cs = CPU(ppc_env_get_cpu(env));
123 uint64_t ret = 0;
124 int ve;
125
126 ve = fpscr_ve;
127 switch (op) {
128 case POWERPC_EXCP_FP_VXSNAN:
129 env->fpscr |= 1 << FPSCR_VXSNAN;
130 break;
131 case POWERPC_EXCP_FP_VXSOFT:
132 env->fpscr |= 1 << FPSCR_VXSOFT;
133 break;
134 case POWERPC_EXCP_FP_VXISI:
135 /* Magnitude subtraction of infinities */
136 env->fpscr |= 1 << FPSCR_VXISI;
137 goto update_arith;
138 case POWERPC_EXCP_FP_VXIDI:
139 /* Division of infinity by infinity */
140 env->fpscr |= 1 << FPSCR_VXIDI;
141 goto update_arith;
142 case POWERPC_EXCP_FP_VXZDZ:
143 /* Division of zero by zero */
144 env->fpscr |= 1 << FPSCR_VXZDZ;
145 goto update_arith;
146 case POWERPC_EXCP_FP_VXIMZ:
147 /* Multiplication of zero by infinity */
148 env->fpscr |= 1 << FPSCR_VXIMZ;
149 goto update_arith;
150 case POWERPC_EXCP_FP_VXVC:
151 /* Ordered comparison of NaN */
152 env->fpscr |= 1 << FPSCR_VXVC;
153 if (set_fpcc) {
154 env->fpscr &= ~(0xF << FPSCR_FPCC);
155 env->fpscr |= 0x11 << FPSCR_FPCC;
156 }
157 /* We must update the target FPR before raising the exception */
158 if (ve != 0) {
159 cs->exception_index = POWERPC_EXCP_PROGRAM;
160 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
161 /* Update the floating-point enabled exception summary */
162 env->fpscr |= 1 << FPSCR_FEX;
163 /* Exception is differed */
164 ve = 0;
165 }
166 break;
167 case POWERPC_EXCP_FP_VXSQRT:
168 /* Square root of a negative number */
169 env->fpscr |= 1 << FPSCR_VXSQRT;
170 update_arith:
171 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
172 if (ve == 0) {
173 /* Set the result to quiet NaN */
174 ret = 0x7FF8000000000000ULL;
175 if (set_fpcc) {
176 env->fpscr &= ~(0xF << FPSCR_FPCC);
177 env->fpscr |= 0x11 << FPSCR_FPCC;
178 }
179 }
180 break;
181 case POWERPC_EXCP_FP_VXCVI:
182 /* Invalid conversion */
183 env->fpscr |= 1 << FPSCR_VXCVI;
184 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
185 if (ve == 0) {
186 /* Set the result to quiet NaN */
187 ret = 0x7FF8000000000000ULL;
188 if (set_fpcc) {
189 env->fpscr &= ~(0xF << FPSCR_FPCC);
190 env->fpscr |= 0x11 << FPSCR_FPCC;
191 }
192 }
193 break;
194 }
195 /* Update the floating-point invalid operation summary */
196 env->fpscr |= 1 << FPSCR_VX;
197 /* Update the floating-point exception summary */
198 env->fpscr |= 1 << FPSCR_FX;
199 if (ve != 0) {
200 /* Update the floating-point enabled exception summary */
201 env->fpscr |= 1 << FPSCR_FEX;
202 if (msr_fe0 != 0 || msr_fe1 != 0) {
203 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
204 POWERPC_EXCP_FP | op);
205 }
206 }
207 return ret;
208 }
209
210 static inline void float_zero_divide_excp(CPUPPCState *env)
211 {
212 env->fpscr |= 1 << FPSCR_ZX;
213 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
214 /* Update the floating-point exception summary */
215 env->fpscr |= 1 << FPSCR_FX;
216 if (fpscr_ze != 0) {
217 /* Update the floating-point enabled exception summary */
218 env->fpscr |= 1 << FPSCR_FEX;
219 if (msr_fe0 != 0 || msr_fe1 != 0) {
220 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
221 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
222 }
223 }
224 }
225
226 static inline void float_overflow_excp(CPUPPCState *env)
227 {
228 CPUState *cs = CPU(ppc_env_get_cpu(env));
229
230 env->fpscr |= 1 << FPSCR_OX;
231 /* Update the floating-point exception summary */
232 env->fpscr |= 1 << FPSCR_FX;
233 if (fpscr_oe != 0) {
234 /* XXX: should adjust the result */
235 /* Update the floating-point enabled exception summary */
236 env->fpscr |= 1 << FPSCR_FEX;
237 /* We must update the target FPR before raising the exception */
238 cs->exception_index = POWERPC_EXCP_PROGRAM;
239 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
240 } else {
241 env->fpscr |= 1 << FPSCR_XX;
242 env->fpscr |= 1 << FPSCR_FI;
243 }
244 }
245
246 static inline void float_underflow_excp(CPUPPCState *env)
247 {
248 CPUState *cs = CPU(ppc_env_get_cpu(env));
249
250 env->fpscr |= 1 << FPSCR_UX;
251 /* Update the floating-point exception summary */
252 env->fpscr |= 1 << FPSCR_FX;
253 if (fpscr_ue != 0) {
254 /* XXX: should adjust the result */
255 /* Update the floating-point enabled exception summary */
256 env->fpscr |= 1 << FPSCR_FEX;
257 /* We must update the target FPR before raising the exception */
258 cs->exception_index = POWERPC_EXCP_PROGRAM;
259 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
260 }
261 }
262
263 static inline void float_inexact_excp(CPUPPCState *env)
264 {
265 CPUState *cs = CPU(ppc_env_get_cpu(env));
266
267 env->fpscr |= 1 << FPSCR_XX;
268 /* Update the floating-point exception summary */
269 env->fpscr |= 1 << FPSCR_FX;
270 if (fpscr_xe != 0) {
271 /* Update the floating-point enabled exception summary */
272 env->fpscr |= 1 << FPSCR_FEX;
273 /* We must update the target FPR before raising the exception */
274 cs->exception_index = POWERPC_EXCP_PROGRAM;
275 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
276 }
277 }
278
279 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
280 {
281 int rnd_type;
282
283 /* Set rounding mode */
284 switch (fpscr_rn) {
285 case 0:
286 /* Best approximation (round to nearest) */
287 rnd_type = float_round_nearest_even;
288 break;
289 case 1:
290 /* Smaller magnitude (round toward zero) */
291 rnd_type = float_round_to_zero;
292 break;
293 case 2:
294 /* Round toward +infinite */
295 rnd_type = float_round_up;
296 break;
297 default:
298 case 3:
299 /* Round toward -infinite */
300 rnd_type = float_round_down;
301 break;
302 }
303 set_float_rounding_mode(rnd_type, &env->fp_status);
304 }
305
306 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
307 {
308 int prev;
309
310 prev = (env->fpscr >> bit) & 1;
311 env->fpscr &= ~(1 << bit);
312 if (prev == 1) {
313 switch (bit) {
314 case FPSCR_RN1:
315 case FPSCR_RN:
316 fpscr_set_rounding_mode(env);
317 break;
318 default:
319 break;
320 }
321 }
322 }
323
324 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
325 {
326 CPUState *cs = CPU(ppc_env_get_cpu(env));
327 int prev;
328
329 prev = (env->fpscr >> bit) & 1;
330 env->fpscr |= 1 << bit;
331 if (prev == 0) {
332 switch (bit) {
333 case FPSCR_VX:
334 env->fpscr |= 1 << FPSCR_FX;
335 if (fpscr_ve) {
336 goto raise_ve;
337 }
338 break;
339 case FPSCR_OX:
340 env->fpscr |= 1 << FPSCR_FX;
341 if (fpscr_oe) {
342 goto raise_oe;
343 }
344 break;
345 case FPSCR_UX:
346 env->fpscr |= 1 << FPSCR_FX;
347 if (fpscr_ue) {
348 goto raise_ue;
349 }
350 break;
351 case FPSCR_ZX:
352 env->fpscr |= 1 << FPSCR_FX;
353 if (fpscr_ze) {
354 goto raise_ze;
355 }
356 break;
357 case FPSCR_XX:
358 env->fpscr |= 1 << FPSCR_FX;
359 if (fpscr_xe) {
360 goto raise_xe;
361 }
362 break;
363 case FPSCR_VXSNAN:
364 case FPSCR_VXISI:
365 case FPSCR_VXIDI:
366 case FPSCR_VXZDZ:
367 case FPSCR_VXIMZ:
368 case FPSCR_VXVC:
369 case FPSCR_VXSOFT:
370 case FPSCR_VXSQRT:
371 case FPSCR_VXCVI:
372 env->fpscr |= 1 << FPSCR_VX;
373 env->fpscr |= 1 << FPSCR_FX;
374 if (fpscr_ve != 0) {
375 goto raise_ve;
376 }
377 break;
378 case FPSCR_VE:
379 if (fpscr_vx != 0) {
380 raise_ve:
381 env->error_code = POWERPC_EXCP_FP;
382 if (fpscr_vxsnan) {
383 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
384 }
385 if (fpscr_vxisi) {
386 env->error_code |= POWERPC_EXCP_FP_VXISI;
387 }
388 if (fpscr_vxidi) {
389 env->error_code |= POWERPC_EXCP_FP_VXIDI;
390 }
391 if (fpscr_vxzdz) {
392 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
393 }
394 if (fpscr_vximz) {
395 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
396 }
397 if (fpscr_vxvc) {
398 env->error_code |= POWERPC_EXCP_FP_VXVC;
399 }
400 if (fpscr_vxsoft) {
401 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
402 }
403 if (fpscr_vxsqrt) {
404 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
405 }
406 if (fpscr_vxcvi) {
407 env->error_code |= POWERPC_EXCP_FP_VXCVI;
408 }
409 goto raise_excp;
410 }
411 break;
412 case FPSCR_OE:
413 if (fpscr_ox != 0) {
414 raise_oe:
415 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
416 goto raise_excp;
417 }
418 break;
419 case FPSCR_UE:
420 if (fpscr_ux != 0) {
421 raise_ue:
422 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
423 goto raise_excp;
424 }
425 break;
426 case FPSCR_ZE:
427 if (fpscr_zx != 0) {
428 raise_ze:
429 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
430 goto raise_excp;
431 }
432 break;
433 case FPSCR_XE:
434 if (fpscr_xx != 0) {
435 raise_xe:
436 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
437 goto raise_excp;
438 }
439 break;
440 case FPSCR_RN1:
441 case FPSCR_RN:
442 fpscr_set_rounding_mode(env);
443 break;
444 default:
445 break;
446 raise_excp:
447 /* Update the floating-point enabled exception summary */
448 env->fpscr |= 1 << FPSCR_FEX;
449 /* We have to update Rc1 before raising the exception */
450 cs->exception_index = POWERPC_EXCP_PROGRAM;
451 break;
452 }
453 }
454 }
455
456 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
457 {
458 CPUState *cs = CPU(ppc_env_get_cpu(env));
459 target_ulong prev, new;
460 int i;
461
462 prev = env->fpscr;
463 new = (target_ulong)arg;
464 new &= ~0x60000000LL;
465 new |= prev & 0x60000000LL;
466 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
467 if (mask & (1 << i)) {
468 env->fpscr &= ~(0xFLL << (4 * i));
469 env->fpscr |= new & (0xFLL << (4 * i));
470 }
471 }
472 /* Update VX and FEX */
473 if (fpscr_ix != 0) {
474 env->fpscr |= 1 << FPSCR_VX;
475 } else {
476 env->fpscr &= ~(1 << FPSCR_VX);
477 }
478 if ((fpscr_ex & fpscr_eex) != 0) {
479 env->fpscr |= 1 << FPSCR_FEX;
480 cs->exception_index = POWERPC_EXCP_PROGRAM;
481 /* XXX: we should compute it properly */
482 env->error_code = POWERPC_EXCP_FP;
483 } else {
484 env->fpscr &= ~(1 << FPSCR_FEX);
485 }
486 fpscr_set_rounding_mode(env);
487 }
488
489 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
490 {
491 helper_store_fpscr(env, arg, mask);
492 }
493
494 void helper_float_check_status(CPUPPCState *env)
495 {
496 CPUState *cs = CPU(ppc_env_get_cpu(env));
497 int status = get_float_exception_flags(&env->fp_status);
498
499 if (status & float_flag_divbyzero) {
500 float_zero_divide_excp(env);
501 } else if (status & float_flag_overflow) {
502 float_overflow_excp(env);
503 } else if (status & float_flag_underflow) {
504 float_underflow_excp(env);
505 } else if (status & float_flag_inexact) {
506 float_inexact_excp(env);
507 }
508
509 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
510 (env->error_code & POWERPC_EXCP_FP)) {
511 /* Differred floating-point exception after target FPR update */
512 if (msr_fe0 != 0 || msr_fe1 != 0) {
513 helper_raise_exception_err(env, cs->exception_index,
514 env->error_code);
515 }
516 }
517 }
518
519 void helper_reset_fpstatus(CPUPPCState *env)
520 {
521 set_float_exception_flags(0, &env->fp_status);
522 }
523
524 /* fadd - fadd. */
525 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
526 {
527 CPU_DoubleU farg1, farg2;
528
529 farg1.ll = arg1;
530 farg2.ll = arg2;
531
532 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
533 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
534 /* Magnitude subtraction of infinities */
535 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
536 } else {
537 if (unlikely(float64_is_signaling_nan(farg1.d) ||
538 float64_is_signaling_nan(farg2.d))) {
539 /* sNaN addition */
540 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
541 }
542 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
543 }
544
545 return farg1.ll;
546 }
547
548 /* fsub - fsub. */
549 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
550 {
551 CPU_DoubleU farg1, farg2;
552
553 farg1.ll = arg1;
554 farg2.ll = arg2;
555
556 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
557 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
558 /* Magnitude subtraction of infinities */
559 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
560 } else {
561 if (unlikely(float64_is_signaling_nan(farg1.d) ||
562 float64_is_signaling_nan(farg2.d))) {
563 /* sNaN subtraction */
564 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
565 }
566 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
567 }
568
569 return farg1.ll;
570 }
571
572 /* fmul - fmul. */
573 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
574 {
575 CPU_DoubleU farg1, farg2;
576
577 farg1.ll = arg1;
578 farg2.ll = arg2;
579
580 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
581 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
582 /* Multiplication of zero by infinity */
583 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
584 } else {
585 if (unlikely(float64_is_signaling_nan(farg1.d) ||
586 float64_is_signaling_nan(farg2.d))) {
587 /* sNaN multiplication */
588 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
589 }
590 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
591 }
592
593 return farg1.ll;
594 }
595
596 /* fdiv - fdiv. */
597 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
598 {
599 CPU_DoubleU farg1, farg2;
600
601 farg1.ll = arg1;
602 farg2.ll = arg2;
603
604 if (unlikely(float64_is_infinity(farg1.d) &&
605 float64_is_infinity(farg2.d))) {
606 /* Division of infinity by infinity */
607 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
608 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
609 /* Division of zero by zero */
610 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
611 } else {
612 if (unlikely(float64_is_signaling_nan(farg1.d) ||
613 float64_is_signaling_nan(farg2.d))) {
614 /* sNaN division */
615 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
616 }
617 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
618 }
619
620 return farg1.ll;
621 }
622
623
624 #define FPU_FCTI(op, cvt, nanval) \
625 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
626 { \
627 CPU_DoubleU farg; \
628 \
629 farg.ll = arg; \
630 farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \
631 \
632 if (unlikely(env->fp_status.float_exception_flags)) { \
633 if (float64_is_any_nan(arg)) { \
634 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
635 if (float64_is_signaling_nan(arg)) { \
636 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
637 } \
638 farg.ll = nanval; \
639 } else if (env->fp_status.float_exception_flags & \
640 float_flag_invalid) { \
641 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \
642 } \
643 helper_float_check_status(env); \
644 } \
645 return farg.ll; \
646 }
647
648 FPU_FCTI(fctiw, int32, 0x80000000U)
649 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
650 FPU_FCTI(fctiwu, uint32, 0x00000000U)
651 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
652 #if defined(TARGET_PPC64)
653 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
654 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
655 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
656 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
657 #endif
658
659 #if defined(TARGET_PPC64)
660
661 #define FPU_FCFI(op, cvtr, is_single) \
662 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
663 { \
664 CPU_DoubleU farg; \
665 \
666 if (is_single) { \
667 float32 tmp = cvtr(arg, &env->fp_status); \
668 farg.d = float32_to_float64(tmp, &env->fp_status); \
669 } else { \
670 farg.d = cvtr(arg, &env->fp_status); \
671 } \
672 helper_float_check_status(env); \
673 return farg.ll; \
674 }
675
676 FPU_FCFI(fcfid, int64_to_float64, 0)
677 FPU_FCFI(fcfids, int64_to_float32, 1)
678 FPU_FCFI(fcfidu, uint64_to_float64, 0)
679 FPU_FCFI(fcfidus, uint64_to_float32, 1)
680
681 #endif
682
683 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
684 int rounding_mode)
685 {
686 CPU_DoubleU farg;
687
688 farg.ll = arg;
689
690 if (unlikely(float64_is_signaling_nan(farg.d))) {
691 /* sNaN round */
692 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
693 farg.ll = arg | 0x0008000000000000ULL;
694 } else {
695 int inexact = get_float_exception_flags(&env->fp_status) &
696 float_flag_inexact;
697 set_float_rounding_mode(rounding_mode, &env->fp_status);
698 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
699 /* Restore rounding mode from FPSCR */
700 fpscr_set_rounding_mode(env);
701
702 /* fri* does not set FPSCR[XX] */
703 if (!inexact) {
704 env->fp_status.float_exception_flags &= ~float_flag_inexact;
705 }
706 }
707 helper_float_check_status(env);
708 return farg.ll;
709 }
710
711 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
712 {
713 return do_fri(env, arg, float_round_ties_away);
714 }
715
716 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
717 {
718 return do_fri(env, arg, float_round_to_zero);
719 }
720
721 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
722 {
723 return do_fri(env, arg, float_round_up);
724 }
725
726 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
727 {
728 return do_fri(env, arg, float_round_down);
729 }
730
731 /* fmadd - fmadd. */
732 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
733 uint64_t arg3)
734 {
735 CPU_DoubleU farg1, farg2, farg3;
736
737 farg1.ll = arg1;
738 farg2.ll = arg2;
739 farg3.ll = arg3;
740
741 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
742 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
743 /* Multiplication of zero by infinity */
744 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
745 } else {
746 if (unlikely(float64_is_signaling_nan(farg1.d) ||
747 float64_is_signaling_nan(farg2.d) ||
748 float64_is_signaling_nan(farg3.d))) {
749 /* sNaN operation */
750 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
751 }
752 /* This is the way the PowerPC specification defines it */
753 float128 ft0_128, ft1_128;
754
755 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
756 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
757 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
758 if (unlikely(float128_is_infinity(ft0_128) &&
759 float64_is_infinity(farg3.d) &&
760 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
761 /* Magnitude subtraction of infinities */
762 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
763 } else {
764 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
765 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
766 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
767 }
768 }
769
770 return farg1.ll;
771 }
772
773 /* fmsub - fmsub. */
774 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
775 uint64_t arg3)
776 {
777 CPU_DoubleU farg1, farg2, farg3;
778
779 farg1.ll = arg1;
780 farg2.ll = arg2;
781 farg3.ll = arg3;
782
783 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
784 (float64_is_zero(farg1.d) &&
785 float64_is_infinity(farg2.d)))) {
786 /* Multiplication of zero by infinity */
787 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
788 } else {
789 if (unlikely(float64_is_signaling_nan(farg1.d) ||
790 float64_is_signaling_nan(farg2.d) ||
791 float64_is_signaling_nan(farg3.d))) {
792 /* sNaN operation */
793 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
794 }
795 /* This is the way the PowerPC specification defines it */
796 float128 ft0_128, ft1_128;
797
798 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
799 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
800 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
801 if (unlikely(float128_is_infinity(ft0_128) &&
802 float64_is_infinity(farg3.d) &&
803 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
804 /* Magnitude subtraction of infinities */
805 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
806 } else {
807 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
808 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
809 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
810 }
811 }
812 return farg1.ll;
813 }
814
815 /* fnmadd - fnmadd. */
816 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
817 uint64_t arg3)
818 {
819 CPU_DoubleU farg1, farg2, farg3;
820
821 farg1.ll = arg1;
822 farg2.ll = arg2;
823 farg3.ll = arg3;
824
825 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
826 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
827 /* Multiplication of zero by infinity */
828 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
829 } else {
830 if (unlikely(float64_is_signaling_nan(farg1.d) ||
831 float64_is_signaling_nan(farg2.d) ||
832 float64_is_signaling_nan(farg3.d))) {
833 /* sNaN operation */
834 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
835 }
836 /* This is the way the PowerPC specification defines it */
837 float128 ft0_128, ft1_128;
838
839 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
840 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
841 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
842 if (unlikely(float128_is_infinity(ft0_128) &&
843 float64_is_infinity(farg3.d) &&
844 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
845 /* Magnitude subtraction of infinities */
846 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
847 } else {
848 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
849 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
850 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
851 }
852 if (likely(!float64_is_any_nan(farg1.d))) {
853 farg1.d = float64_chs(farg1.d);
854 }
855 }
856 return farg1.ll;
857 }
858
859 /* fnmsub - fnmsub. */
860 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
861 uint64_t arg3)
862 {
863 CPU_DoubleU farg1, farg2, farg3;
864
865 farg1.ll = arg1;
866 farg2.ll = arg2;
867 farg3.ll = arg3;
868
869 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
870 (float64_is_zero(farg1.d) &&
871 float64_is_infinity(farg2.d)))) {
872 /* Multiplication of zero by infinity */
873 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
874 } else {
875 if (unlikely(float64_is_signaling_nan(farg1.d) ||
876 float64_is_signaling_nan(farg2.d) ||
877 float64_is_signaling_nan(farg3.d))) {
878 /* sNaN operation */
879 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
880 }
881 /* This is the way the PowerPC specification defines it */
882 float128 ft0_128, ft1_128;
883
884 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
885 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
886 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
887 if (unlikely(float128_is_infinity(ft0_128) &&
888 float64_is_infinity(farg3.d) &&
889 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
890 /* Magnitude subtraction of infinities */
891 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
892 } else {
893 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
894 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
895 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
896 }
897 if (likely(!float64_is_any_nan(farg1.d))) {
898 farg1.d = float64_chs(farg1.d);
899 }
900 }
901 return farg1.ll;
902 }
903
904 /* frsp - frsp. */
905 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
906 {
907 CPU_DoubleU farg;
908 float32 f32;
909
910 farg.ll = arg;
911
912 if (unlikely(float64_is_signaling_nan(farg.d))) {
913 /* sNaN square root */
914 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
915 }
916 f32 = float64_to_float32(farg.d, &env->fp_status);
917 farg.d = float32_to_float64(f32, &env->fp_status);
918
919 return farg.ll;
920 }
921
922 /* fsqrt - fsqrt. */
923 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
924 {
925 CPU_DoubleU farg;
926
927 farg.ll = arg;
928
929 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
930 /* Square root of a negative nonzero number */
931 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
932 } else {
933 if (unlikely(float64_is_signaling_nan(farg.d))) {
934 /* sNaN square root */
935 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
936 }
937 farg.d = float64_sqrt(farg.d, &env->fp_status);
938 }
939 return farg.ll;
940 }
941
942 /* fre - fre. */
943 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
944 {
945 CPU_DoubleU farg;
946
947 farg.ll = arg;
948
949 if (unlikely(float64_is_signaling_nan(farg.d))) {
950 /* sNaN reciprocal */
951 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
952 }
953 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
954 return farg.d;
955 }
956
957 /* fres - fres. */
958 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
959 {
960 CPU_DoubleU farg;
961 float32 f32;
962
963 farg.ll = arg;
964
965 if (unlikely(float64_is_signaling_nan(farg.d))) {
966 /* sNaN reciprocal */
967 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
968 }
969 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
970 f32 = float64_to_float32(farg.d, &env->fp_status);
971 farg.d = float32_to_float64(f32, &env->fp_status);
972
973 return farg.ll;
974 }
975
976 /* frsqrte - frsqrte. */
977 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
978 {
979 CPU_DoubleU farg;
980 float32 f32;
981
982 farg.ll = arg;
983
984 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
985 /* Reciprocal square root of a negative nonzero number */
986 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
987 } else {
988 if (unlikely(float64_is_signaling_nan(farg.d))) {
989 /* sNaN reciprocal square root */
990 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
991 }
992 farg.d = float64_sqrt(farg.d, &env->fp_status);
993 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
994 f32 = float64_to_float32(farg.d, &env->fp_status);
995 farg.d = float32_to_float64(f32, &env->fp_status);
996 }
997 return farg.ll;
998 }
999
1000 /* fsel - fsel. */
1001 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1002 uint64_t arg3)
1003 {
1004 CPU_DoubleU farg1;
1005
1006 farg1.ll = arg1;
1007
1008 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1009 !float64_is_any_nan(farg1.d)) {
1010 return arg2;
1011 } else {
1012 return arg3;
1013 }
1014 }
1015
1016 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1017 {
1018 int fe_flag = 0;
1019 int fg_flag = 0;
1020
1021 if (unlikely(float64_is_infinity(fra) ||
1022 float64_is_infinity(frb) ||
1023 float64_is_zero(frb))) {
1024 fe_flag = 1;
1025 fg_flag = 1;
1026 } else {
1027 int e_a = ppc_float64_get_unbiased_exp(fra);
1028 int e_b = ppc_float64_get_unbiased_exp(frb);
1029
1030 if (unlikely(float64_is_any_nan(fra) ||
1031 float64_is_any_nan(frb))) {
1032 fe_flag = 1;
1033 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1034 fe_flag = 1;
1035 } else if (!float64_is_zero(fra) &&
1036 (((e_a - e_b) >= 1023) ||
1037 ((e_a - e_b) <= -1021) ||
1038 (e_a <= -970))) {
1039 fe_flag = 1;
1040 }
1041
1042 if (unlikely(float64_is_zero_or_denormal(frb))) {
1043 /* XB is not zero because of the above check and */
1044 /* so must be denormalized. */
1045 fg_flag = 1;
1046 }
1047 }
1048
1049 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1050 }
1051
1052 uint32_t helper_ftsqrt(uint64_t frb)
1053 {
1054 int fe_flag = 0;
1055 int fg_flag = 0;
1056
1057 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1058 fe_flag = 1;
1059 fg_flag = 1;
1060 } else {
1061 int e_b = ppc_float64_get_unbiased_exp(frb);
1062
1063 if (unlikely(float64_is_any_nan(frb))) {
1064 fe_flag = 1;
1065 } else if (unlikely(float64_is_zero(frb))) {
1066 fe_flag = 1;
1067 } else if (unlikely(float64_is_neg(frb))) {
1068 fe_flag = 1;
1069 } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1070 fe_flag = 1;
1071 }
1072
1073 if (unlikely(float64_is_zero_or_denormal(frb))) {
1074 /* XB is not zero because of the above check and */
1075 /* therefore must be denormalized. */
1076 fg_flag = 1;
1077 }
1078 }
1079
1080 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1081 }
1082
1083 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1084 uint32_t crfD)
1085 {
1086 CPU_DoubleU farg1, farg2;
1087 uint32_t ret = 0;
1088
1089 farg1.ll = arg1;
1090 farg2.ll = arg2;
1091
1092 if (unlikely(float64_is_any_nan(farg1.d) ||
1093 float64_is_any_nan(farg2.d))) {
1094 ret = 0x01UL;
1095 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1096 ret = 0x08UL;
1097 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1098 ret = 0x04UL;
1099 } else {
1100 ret = 0x02UL;
1101 }
1102
1103 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1104 env->fpscr |= ret << FPSCR_FPRF;
1105 env->crf[crfD] = ret;
1106 if (unlikely(ret == 0x01UL
1107 && (float64_is_signaling_nan(farg1.d) ||
1108 float64_is_signaling_nan(farg2.d)))) {
1109 /* sNaN comparison */
1110 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1111 }
1112 }
1113
1114 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1115 uint32_t crfD)
1116 {
1117 CPU_DoubleU farg1, farg2;
1118 uint32_t ret = 0;
1119
1120 farg1.ll = arg1;
1121 farg2.ll = arg2;
1122
1123 if (unlikely(float64_is_any_nan(farg1.d) ||
1124 float64_is_any_nan(farg2.d))) {
1125 ret = 0x01UL;
1126 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1127 ret = 0x08UL;
1128 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1129 ret = 0x04UL;
1130 } else {
1131 ret = 0x02UL;
1132 }
1133
1134 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1135 env->fpscr |= ret << FPSCR_FPRF;
1136 env->crf[crfD] = ret;
1137 if (unlikely(ret == 0x01UL)) {
1138 if (float64_is_signaling_nan(farg1.d) ||
1139 float64_is_signaling_nan(farg2.d)) {
1140 /* sNaN comparison */
1141 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1142 POWERPC_EXCP_FP_VXVC, 1);
1143 } else {
1144 /* qNaN comparison */
1145 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1146 }
1147 }
1148 }
1149
1150 /* Single-precision floating-point conversions */
1151 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1152 {
1153 CPU_FloatU u;
1154
1155 u.f = int32_to_float32(val, &env->vec_status);
1156
1157 return u.l;
1158 }
1159
1160 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1161 {
1162 CPU_FloatU u;
1163
1164 u.f = uint32_to_float32(val, &env->vec_status);
1165
1166 return u.l;
1167 }
1168
1169 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1170 {
1171 CPU_FloatU u;
1172
1173 u.l = val;
1174 /* NaN are not treated the same way IEEE 754 does */
1175 if (unlikely(float32_is_quiet_nan(u.f))) {
1176 return 0;
1177 }
1178
1179 return float32_to_int32(u.f, &env->vec_status);
1180 }
1181
1182 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1183 {
1184 CPU_FloatU u;
1185
1186 u.l = val;
1187 /* NaN are not treated the same way IEEE 754 does */
1188 if (unlikely(float32_is_quiet_nan(u.f))) {
1189 return 0;
1190 }
1191
1192 return float32_to_uint32(u.f, &env->vec_status);
1193 }
1194
1195 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1196 {
1197 CPU_FloatU u;
1198
1199 u.l = val;
1200 /* NaN are not treated the same way IEEE 754 does */
1201 if (unlikely(float32_is_quiet_nan(u.f))) {
1202 return 0;
1203 }
1204
1205 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1206 }
1207
1208 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1209 {
1210 CPU_FloatU u;
1211
1212 u.l = val;
1213 /* NaN are not treated the same way IEEE 754 does */
1214 if (unlikely(float32_is_quiet_nan(u.f))) {
1215 return 0;
1216 }
1217
1218 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1219 }
1220
1221 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1222 {
1223 CPU_FloatU u;
1224 float32 tmp;
1225
1226 u.f = int32_to_float32(val, &env->vec_status);
1227 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1228 u.f = float32_div(u.f, tmp, &env->vec_status);
1229
1230 return u.l;
1231 }
1232
1233 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1234 {
1235 CPU_FloatU u;
1236 float32 tmp;
1237
1238 u.f = uint32_to_float32(val, &env->vec_status);
1239 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1240 u.f = float32_div(u.f, tmp, &env->vec_status);
1241
1242 return u.l;
1243 }
1244
1245 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1246 {
1247 CPU_FloatU u;
1248 float32 tmp;
1249
1250 u.l = val;
1251 /* NaN are not treated the same way IEEE 754 does */
1252 if (unlikely(float32_is_quiet_nan(u.f))) {
1253 return 0;
1254 }
1255 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1256 u.f = float32_mul(u.f, tmp, &env->vec_status);
1257
1258 return float32_to_int32(u.f, &env->vec_status);
1259 }
1260
1261 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1262 {
1263 CPU_FloatU u;
1264 float32 tmp;
1265
1266 u.l = val;
1267 /* NaN are not treated the same way IEEE 754 does */
1268 if (unlikely(float32_is_quiet_nan(u.f))) {
1269 return 0;
1270 }
1271 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1272 u.f = float32_mul(u.f, tmp, &env->vec_status);
1273
1274 return float32_to_uint32(u.f, &env->vec_status);
1275 }
1276
1277 #define HELPER_SPE_SINGLE_CONV(name) \
1278 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1279 { \
1280 return e##name(env, val); \
1281 }
1282 /* efscfsi */
1283 HELPER_SPE_SINGLE_CONV(fscfsi);
1284 /* efscfui */
1285 HELPER_SPE_SINGLE_CONV(fscfui);
1286 /* efscfuf */
1287 HELPER_SPE_SINGLE_CONV(fscfuf);
1288 /* efscfsf */
1289 HELPER_SPE_SINGLE_CONV(fscfsf);
1290 /* efsctsi */
1291 HELPER_SPE_SINGLE_CONV(fsctsi);
1292 /* efsctui */
1293 HELPER_SPE_SINGLE_CONV(fsctui);
1294 /* efsctsiz */
1295 HELPER_SPE_SINGLE_CONV(fsctsiz);
1296 /* efsctuiz */
1297 HELPER_SPE_SINGLE_CONV(fsctuiz);
1298 /* efsctsf */
1299 HELPER_SPE_SINGLE_CONV(fsctsf);
1300 /* efsctuf */
1301 HELPER_SPE_SINGLE_CONV(fsctuf);
1302
1303 #define HELPER_SPE_VECTOR_CONV(name) \
1304 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1305 { \
1306 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1307 (uint64_t)e##name(env, val); \
1308 }
1309 /* evfscfsi */
1310 HELPER_SPE_VECTOR_CONV(fscfsi);
1311 /* evfscfui */
1312 HELPER_SPE_VECTOR_CONV(fscfui);
1313 /* evfscfuf */
1314 HELPER_SPE_VECTOR_CONV(fscfuf);
1315 /* evfscfsf */
1316 HELPER_SPE_VECTOR_CONV(fscfsf);
1317 /* evfsctsi */
1318 HELPER_SPE_VECTOR_CONV(fsctsi);
1319 /* evfsctui */
1320 HELPER_SPE_VECTOR_CONV(fsctui);
1321 /* evfsctsiz */
1322 HELPER_SPE_VECTOR_CONV(fsctsiz);
1323 /* evfsctuiz */
1324 HELPER_SPE_VECTOR_CONV(fsctuiz);
1325 /* evfsctsf */
1326 HELPER_SPE_VECTOR_CONV(fsctsf);
1327 /* evfsctuf */
1328 HELPER_SPE_VECTOR_CONV(fsctuf);
1329
1330 /* Single-precision floating-point arithmetic */
1331 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1332 {
1333 CPU_FloatU u1, u2;
1334
1335 u1.l = op1;
1336 u2.l = op2;
1337 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1338 return u1.l;
1339 }
1340
1341 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1342 {
1343 CPU_FloatU u1, u2;
1344
1345 u1.l = op1;
1346 u2.l = op2;
1347 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1348 return u1.l;
1349 }
1350
1351 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1352 {
1353 CPU_FloatU u1, u2;
1354
1355 u1.l = op1;
1356 u2.l = op2;
1357 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1358 return u1.l;
1359 }
1360
1361 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1362 {
1363 CPU_FloatU u1, u2;
1364
1365 u1.l = op1;
1366 u2.l = op2;
1367 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1368 return u1.l;
1369 }
1370
1371 #define HELPER_SPE_SINGLE_ARITH(name) \
1372 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1373 { \
1374 return e##name(env, op1, op2); \
1375 }
1376 /* efsadd */
1377 HELPER_SPE_SINGLE_ARITH(fsadd);
1378 /* efssub */
1379 HELPER_SPE_SINGLE_ARITH(fssub);
1380 /* efsmul */
1381 HELPER_SPE_SINGLE_ARITH(fsmul);
1382 /* efsdiv */
1383 HELPER_SPE_SINGLE_ARITH(fsdiv);
1384
1385 #define HELPER_SPE_VECTOR_ARITH(name) \
1386 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1387 { \
1388 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1389 (uint64_t)e##name(env, op1, op2); \
1390 }
1391 /* evfsadd */
1392 HELPER_SPE_VECTOR_ARITH(fsadd);
1393 /* evfssub */
1394 HELPER_SPE_VECTOR_ARITH(fssub);
1395 /* evfsmul */
1396 HELPER_SPE_VECTOR_ARITH(fsmul);
1397 /* evfsdiv */
1398 HELPER_SPE_VECTOR_ARITH(fsdiv);
1399
1400 /* Single-precision floating-point comparisons */
1401 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1402 {
1403 CPU_FloatU u1, u2;
1404
1405 u1.l = op1;
1406 u2.l = op2;
1407 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1408 }
1409
1410 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1411 {
1412 CPU_FloatU u1, u2;
1413
1414 u1.l = op1;
1415 u2.l = op2;
1416 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1417 }
1418
1419 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1420 {
1421 CPU_FloatU u1, u2;
1422
1423 u1.l = op1;
1424 u2.l = op2;
1425 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1426 }
1427
1428 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1429 {
1430 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1431 return efscmplt(env, op1, op2);
1432 }
1433
1434 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1435 {
1436 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1437 return efscmpgt(env, op1, op2);
1438 }
1439
1440 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1441 {
1442 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1443 return efscmpeq(env, op1, op2);
1444 }
1445
1446 #define HELPER_SINGLE_SPE_CMP(name) \
1447 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1448 { \
1449 return e##name(env, op1, op2) << 2; \
1450 }
1451 /* efststlt */
1452 HELPER_SINGLE_SPE_CMP(fststlt);
1453 /* efststgt */
1454 HELPER_SINGLE_SPE_CMP(fststgt);
1455 /* efststeq */
1456 HELPER_SINGLE_SPE_CMP(fststeq);
1457 /* efscmplt */
1458 HELPER_SINGLE_SPE_CMP(fscmplt);
1459 /* efscmpgt */
1460 HELPER_SINGLE_SPE_CMP(fscmpgt);
1461 /* efscmpeq */
1462 HELPER_SINGLE_SPE_CMP(fscmpeq);
1463
1464 static inline uint32_t evcmp_merge(int t0, int t1)
1465 {
1466 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1467 }
1468
1469 #define HELPER_VECTOR_SPE_CMP(name) \
1470 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1471 { \
1472 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1473 e##name(env, op1, op2)); \
1474 }
1475 /* evfststlt */
1476 HELPER_VECTOR_SPE_CMP(fststlt);
1477 /* evfststgt */
1478 HELPER_VECTOR_SPE_CMP(fststgt);
1479 /* evfststeq */
1480 HELPER_VECTOR_SPE_CMP(fststeq);
1481 /* evfscmplt */
1482 HELPER_VECTOR_SPE_CMP(fscmplt);
1483 /* evfscmpgt */
1484 HELPER_VECTOR_SPE_CMP(fscmpgt);
1485 /* evfscmpeq */
1486 HELPER_VECTOR_SPE_CMP(fscmpeq);
1487
1488 /* Double-precision floating-point conversion */
1489 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1490 {
1491 CPU_DoubleU u;
1492
1493 u.d = int32_to_float64(val, &env->vec_status);
1494
1495 return u.ll;
1496 }
1497
1498 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1499 {
1500 CPU_DoubleU u;
1501
1502 u.d = int64_to_float64(val, &env->vec_status);
1503
1504 return u.ll;
1505 }
1506
1507 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1508 {
1509 CPU_DoubleU u;
1510
1511 u.d = uint32_to_float64(val, &env->vec_status);
1512
1513 return u.ll;
1514 }
1515
1516 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1517 {
1518 CPU_DoubleU u;
1519
1520 u.d = uint64_to_float64(val, &env->vec_status);
1521
1522 return u.ll;
1523 }
1524
1525 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1526 {
1527 CPU_DoubleU u;
1528
1529 u.ll = val;
1530 /* NaN are not treated the same way IEEE 754 does */
1531 if (unlikely(float64_is_any_nan(u.d))) {
1532 return 0;
1533 }
1534
1535 return float64_to_int32(u.d, &env->vec_status);
1536 }
1537
1538 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1539 {
1540 CPU_DoubleU u;
1541
1542 u.ll = val;
1543 /* NaN are not treated the same way IEEE 754 does */
1544 if (unlikely(float64_is_any_nan(u.d))) {
1545 return 0;
1546 }
1547
1548 return float64_to_uint32(u.d, &env->vec_status);
1549 }
1550
1551 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1552 {
1553 CPU_DoubleU u;
1554
1555 u.ll = val;
1556 /* NaN are not treated the same way IEEE 754 does */
1557 if (unlikely(float64_is_any_nan(u.d))) {
1558 return 0;
1559 }
1560
1561 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1562 }
1563
1564 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1565 {
1566 CPU_DoubleU u;
1567
1568 u.ll = val;
1569 /* NaN are not treated the same way IEEE 754 does */
1570 if (unlikely(float64_is_any_nan(u.d))) {
1571 return 0;
1572 }
1573
1574 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1575 }
1576
1577 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1578 {
1579 CPU_DoubleU u;
1580
1581 u.ll = val;
1582 /* NaN are not treated the same way IEEE 754 does */
1583 if (unlikely(float64_is_any_nan(u.d))) {
1584 return 0;
1585 }
1586
1587 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1588 }
1589
1590 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1591 {
1592 CPU_DoubleU u;
1593
1594 u.ll = val;
1595 /* NaN are not treated the same way IEEE 754 does */
1596 if (unlikely(float64_is_any_nan(u.d))) {
1597 return 0;
1598 }
1599
1600 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1601 }
1602
1603 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1604 {
1605 CPU_DoubleU u;
1606 float64 tmp;
1607
1608 u.d = int32_to_float64(val, &env->vec_status);
1609 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1610 u.d = float64_div(u.d, tmp, &env->vec_status);
1611
1612 return u.ll;
1613 }
1614
1615 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1616 {
1617 CPU_DoubleU u;
1618 float64 tmp;
1619
1620 u.d = uint32_to_float64(val, &env->vec_status);
1621 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1622 u.d = float64_div(u.d, tmp, &env->vec_status);
1623
1624 return u.ll;
1625 }
1626
1627 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1628 {
1629 CPU_DoubleU u;
1630 float64 tmp;
1631
1632 u.ll = val;
1633 /* NaN are not treated the same way IEEE 754 does */
1634 if (unlikely(float64_is_any_nan(u.d))) {
1635 return 0;
1636 }
1637 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1638 u.d = float64_mul(u.d, tmp, &env->vec_status);
1639
1640 return float64_to_int32(u.d, &env->vec_status);
1641 }
1642
1643 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1644 {
1645 CPU_DoubleU u;
1646 float64 tmp;
1647
1648 u.ll = val;
1649 /* NaN are not treated the same way IEEE 754 does */
1650 if (unlikely(float64_is_any_nan(u.d))) {
1651 return 0;
1652 }
1653 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1654 u.d = float64_mul(u.d, tmp, &env->vec_status);
1655
1656 return float64_to_uint32(u.d, &env->vec_status);
1657 }
1658
1659 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1660 {
1661 CPU_DoubleU u1;
1662 CPU_FloatU u2;
1663
1664 u1.ll = val;
1665 u2.f = float64_to_float32(u1.d, &env->vec_status);
1666
1667 return u2.l;
1668 }
1669
1670 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1671 {
1672 CPU_DoubleU u2;
1673 CPU_FloatU u1;
1674
1675 u1.l = val;
1676 u2.d = float32_to_float64(u1.f, &env->vec_status);
1677
1678 return u2.ll;
1679 }
1680
1681 /* Double precision fixed-point arithmetic */
1682 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1683 {
1684 CPU_DoubleU u1, u2;
1685
1686 u1.ll = op1;
1687 u2.ll = op2;
1688 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1689 return u1.ll;
1690 }
1691
1692 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1693 {
1694 CPU_DoubleU u1, u2;
1695
1696 u1.ll = op1;
1697 u2.ll = op2;
1698 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1699 return u1.ll;
1700 }
1701
1702 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1703 {
1704 CPU_DoubleU u1, u2;
1705
1706 u1.ll = op1;
1707 u2.ll = op2;
1708 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1709 return u1.ll;
1710 }
1711
1712 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1713 {
1714 CPU_DoubleU u1, u2;
1715
1716 u1.ll = op1;
1717 u2.ll = op2;
1718 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1719 return u1.ll;
1720 }
1721
1722 /* Double precision floating point helpers */
1723 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1724 {
1725 CPU_DoubleU u1, u2;
1726
1727 u1.ll = op1;
1728 u2.ll = op2;
1729 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1730 }
1731
1732 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1733 {
1734 CPU_DoubleU u1, u2;
1735
1736 u1.ll = op1;
1737 u2.ll = op2;
1738 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1739 }
1740
1741 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1742 {
1743 CPU_DoubleU u1, u2;
1744
1745 u1.ll = op1;
1746 u2.ll = op2;
1747 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1748 }
1749
1750 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1751 {
1752 /* XXX: TODO: test special values (NaN, infinites, ...) */
1753 return helper_efdtstlt(env, op1, op2);
1754 }
1755
1756 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1757 {
1758 /* XXX: TODO: test special values (NaN, infinites, ...) */
1759 return helper_efdtstgt(env, op1, op2);
1760 }
1761
1762 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1763 {
1764 /* XXX: TODO: test special values (NaN, infinites, ...) */
1765 return helper_efdtsteq(env, op1, op2);
1766 }
1767
1768 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1769 (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \
1770 (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1771
1772 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1773 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1774 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1775 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5)
1776 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1777
1778 typedef union _ppc_vsr_t {
1779 uint64_t u64[2];
1780 uint32_t u32[4];
1781 float32 f32[4];
1782 float64 f64[2];
1783 } ppc_vsr_t;
1784
1785 #if defined(HOST_WORDS_BIGENDIAN)
1786 #define VsrW(i) u32[i]
1787 #define VsrD(i) u64[i]
1788 #else
1789 #define VsrW(i) u32[3-(i)]
1790 #define VsrD(i) u64[1-(i)]
1791 #endif
1792
1793 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1794 {
1795 if (n < 32) {
1796 vsr->VsrD(0) = env->fpr[n];
1797 vsr->VsrD(1) = env->vsr[n];
1798 } else {
1799 vsr->u64[0] = env->avr[n-32].u64[0];
1800 vsr->u64[1] = env->avr[n-32].u64[1];
1801 }
1802 }
1803
1804 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1805 {
1806 if (n < 32) {
1807 env->fpr[n] = vsr->VsrD(0);
1808 env->vsr[n] = vsr->VsrD(1);
1809 } else {
1810 env->avr[n-32].u64[0] = vsr->u64[0];
1811 env->avr[n-32].u64[1] = vsr->u64[1];
1812 }
1813 }
1814
1815 #define float64_to_float64(x, env) x
1816
1817
1818 /* VSX_ADD_SUB - VSX floating point add/subract
1819 * name - instruction mnemonic
1820 * op - operation (add or sub)
1821 * nels - number of elements (1, 2 or 4)
1822 * tp - type (float32 or float64)
1823 * fld - vsr_t field (VsrD(*) or VsrW(*))
1824 * sfprf - set FPRF
1825 */
1826 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1827 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1828 { \
1829 ppc_vsr_t xt, xa, xb; \
1830 int i; \
1831 \
1832 getVSR(xA(opcode), &xa, env); \
1833 getVSR(xB(opcode), &xb, env); \
1834 getVSR(xT(opcode), &xt, env); \
1835 helper_reset_fpstatus(env); \
1836 \
1837 for (i = 0; i < nels; i++) { \
1838 float_status tstat = env->fp_status; \
1839 set_float_exception_flags(0, &tstat); \
1840 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1841 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1842 \
1843 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1844 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1845 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
1846 } else if (tp##_is_signaling_nan(xa.fld) || \
1847 tp##_is_signaling_nan(xb.fld)) { \
1848 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1849 } \
1850 } \
1851 \
1852 if (r2sp) { \
1853 xt.fld = helper_frsp(env, xt.fld); \
1854 } \
1855 \
1856 if (sfprf) { \
1857 helper_compute_fprf(env, xt.fld, sfprf); \
1858 } \
1859 } \
1860 putVSR(xT(opcode), &xt, env); \
1861 helper_float_check_status(env); \
1862 }
1863
1864 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1865 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1866 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1867 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1868 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1869 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1870 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1871 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1872
1873 /* VSX_MUL - VSX floating point multiply
1874 * op - instruction mnemonic
1875 * nels - number of elements (1, 2 or 4)
1876 * tp - type (float32 or float64)
1877 * fld - vsr_t field (VsrD(*) or VsrW(*))
1878 * sfprf - set FPRF
1879 */
1880 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1881 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1882 { \
1883 ppc_vsr_t xt, xa, xb; \
1884 int i; \
1885 \
1886 getVSR(xA(opcode), &xa, env); \
1887 getVSR(xB(opcode), &xb, env); \
1888 getVSR(xT(opcode), &xt, env); \
1889 helper_reset_fpstatus(env); \
1890 \
1891 for (i = 0; i < nels; i++) { \
1892 float_status tstat = env->fp_status; \
1893 set_float_exception_flags(0, &tstat); \
1894 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1895 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1896 \
1897 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1898 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) || \
1899 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) { \
1900 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \
1901 } else if (tp##_is_signaling_nan(xa.fld) || \
1902 tp##_is_signaling_nan(xb.fld)) { \
1903 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1904 } \
1905 } \
1906 \
1907 if (r2sp) { \
1908 xt.fld = helper_frsp(env, xt.fld); \
1909 } \
1910 \
1911 if (sfprf) { \
1912 helper_compute_fprf(env, xt.fld, sfprf); \
1913 } \
1914 } \
1915 \
1916 putVSR(xT(opcode), &xt, env); \
1917 helper_float_check_status(env); \
1918 }
1919
1920 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1921 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1922 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1923 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1924
1925 /* VSX_DIV - VSX floating point divide
1926 * op - instruction mnemonic
1927 * nels - number of elements (1, 2 or 4)
1928 * tp - type (float32 or float64)
1929 * fld - vsr_t field (VsrD(*) or VsrW(*))
1930 * sfprf - set FPRF
1931 */
1932 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1933 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1934 { \
1935 ppc_vsr_t xt, xa, xb; \
1936 int i; \
1937 \
1938 getVSR(xA(opcode), &xa, env); \
1939 getVSR(xB(opcode), &xb, env); \
1940 getVSR(xT(opcode), &xt, env); \
1941 helper_reset_fpstatus(env); \
1942 \
1943 for (i = 0; i < nels; i++) { \
1944 float_status tstat = env->fp_status; \
1945 set_float_exception_flags(0, &tstat); \
1946 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1947 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1948 \
1949 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1950 if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) { \
1951 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \
1952 } else if (tp##_is_zero(xa.fld) && \
1953 tp##_is_zero(xb.fld)) { \
1954 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \
1955 } else if (tp##_is_signaling_nan(xa.fld) || \
1956 tp##_is_signaling_nan(xb.fld)) { \
1957 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1958 } \
1959 } \
1960 \
1961 if (r2sp) { \
1962 xt.fld = helper_frsp(env, xt.fld); \
1963 } \
1964 \
1965 if (sfprf) { \
1966 helper_compute_fprf(env, xt.fld, sfprf); \
1967 } \
1968 } \
1969 \
1970 putVSR(xT(opcode), &xt, env); \
1971 helper_float_check_status(env); \
1972 }
1973
1974 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1975 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1976 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1977 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1978
1979 /* VSX_RE - VSX floating point reciprocal estimate
1980 * op - instruction mnemonic
1981 * nels - number of elements (1, 2 or 4)
1982 * tp - type (float32 or float64)
1983 * fld - vsr_t field (VsrD(*) or VsrW(*))
1984 * sfprf - set FPRF
1985 */
1986 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
1987 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1988 { \
1989 ppc_vsr_t xt, xb; \
1990 int i; \
1991 \
1992 getVSR(xB(opcode), &xb, env); \
1993 getVSR(xT(opcode), &xt, env); \
1994 helper_reset_fpstatus(env); \
1995 \
1996 for (i = 0; i < nels; i++) { \
1997 if (unlikely(tp##_is_signaling_nan(xb.fld))) { \
1998 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
1999 } \
2000 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
2001 \
2002 if (r2sp) { \
2003 xt.fld = helper_frsp(env, xt.fld); \
2004 } \
2005 \
2006 if (sfprf) { \
2007 helper_compute_fprf(env, xt.fld, sfprf); \
2008 } \
2009 } \
2010 \
2011 putVSR(xT(opcode), &xt, env); \
2012 helper_float_check_status(env); \
2013 }
2014
2015 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2016 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2017 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2018 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2019
2020 /* VSX_SQRT - VSX floating point square root
2021 * op - instruction mnemonic
2022 * nels - number of elements (1, 2 or 4)
2023 * tp - type (float32 or float64)
2024 * fld - vsr_t field (VsrD(*) or VsrW(*))
2025 * sfprf - set FPRF
2026 */
2027 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2028 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2029 { \
2030 ppc_vsr_t xt, xb; \
2031 int i; \
2032 \
2033 getVSR(xB(opcode), &xb, env); \
2034 getVSR(xT(opcode), &xt, env); \
2035 helper_reset_fpstatus(env); \
2036 \
2037 for (i = 0; i < nels; i++) { \
2038 float_status tstat = env->fp_status; \
2039 set_float_exception_flags(0, &tstat); \
2040 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2041 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2042 \
2043 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2044 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2045 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2046 } else if (tp##_is_signaling_nan(xb.fld)) { \
2047 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2048 } \
2049 } \
2050 \
2051 if (r2sp) { \
2052 xt.fld = helper_frsp(env, xt.fld); \
2053 } \
2054 \
2055 if (sfprf) { \
2056 helper_compute_fprf(env, xt.fld, sfprf); \
2057 } \
2058 } \
2059 \
2060 putVSR(xT(opcode), &xt, env); \
2061 helper_float_check_status(env); \
2062 }
2063
2064 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2065 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2066 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2067 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2068
2069 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2070 * op - instruction mnemonic
2071 * nels - number of elements (1, 2 or 4)
2072 * tp - type (float32 or float64)
2073 * fld - vsr_t field (VsrD(*) or VsrW(*))
2074 * sfprf - set FPRF
2075 */
2076 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2077 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2078 { \
2079 ppc_vsr_t xt, xb; \
2080 int i; \
2081 \
2082 getVSR(xB(opcode), &xb, env); \
2083 getVSR(xT(opcode), &xt, env); \
2084 helper_reset_fpstatus(env); \
2085 \
2086 for (i = 0; i < nels; i++) { \
2087 float_status tstat = env->fp_status; \
2088 set_float_exception_flags(0, &tstat); \
2089 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2090 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2091 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2092 \
2093 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2094 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2095 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \
2096 } else if (tp##_is_signaling_nan(xb.fld)) { \
2097 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2098 } \
2099 } \
2100 \
2101 if (r2sp) { \
2102 xt.fld = helper_frsp(env, xt.fld); \
2103 } \
2104 \
2105 if (sfprf) { \
2106 helper_compute_fprf(env, xt.fld, sfprf); \
2107 } \
2108 } \
2109 \
2110 putVSR(xT(opcode), &xt, env); \
2111 helper_float_check_status(env); \
2112 }
2113
2114 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2115 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2116 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2117 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2118
2119 /* VSX_TDIV - VSX floating point test for divide
2120 * op - instruction mnemonic
2121 * nels - number of elements (1, 2 or 4)
2122 * tp - type (float32 or float64)
2123 * fld - vsr_t field (VsrD(*) or VsrW(*))
2124 * emin - minimum unbiased exponent
2125 * emax - maximum unbiased exponent
2126 * nbits - number of fraction bits
2127 */
2128 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2129 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2130 { \
2131 ppc_vsr_t xa, xb; \
2132 int i; \
2133 int fe_flag = 0; \
2134 int fg_flag = 0; \
2135 \
2136 getVSR(xA(opcode), &xa, env); \
2137 getVSR(xB(opcode), &xb, env); \
2138 \
2139 for (i = 0; i < nels; i++) { \
2140 if (unlikely(tp##_is_infinity(xa.fld) || \
2141 tp##_is_infinity(xb.fld) || \
2142 tp##_is_zero(xb.fld))) { \
2143 fe_flag = 1; \
2144 fg_flag = 1; \
2145 } else { \
2146 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2147 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2148 \
2149 if (unlikely(tp##_is_any_nan(xa.fld) || \
2150 tp##_is_any_nan(xb.fld))) { \
2151 fe_flag = 1; \
2152 } else if ((e_b <= emin) || (e_b >= (emax-2))) { \
2153 fe_flag = 1; \
2154 } else if (!tp##_is_zero(xa.fld) && \
2155 (((e_a - e_b) >= emax) || \
2156 ((e_a - e_b) <= (emin+1)) || \
2157 (e_a <= (emin+nbits)))) { \
2158 fe_flag = 1; \
2159 } \
2160 \
2161 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2162 /* XB is not zero because of the above check and */ \
2163 /* so must be denormalized. */ \
2164 fg_flag = 1; \
2165 } \
2166 } \
2167 } \
2168 \
2169 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2170 }
2171
2172 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2173 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2174 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2175
2176 /* VSX_TSQRT - VSX floating point test for square root
2177 * op - instruction mnemonic
2178 * nels - number of elements (1, 2 or 4)
2179 * tp - type (float32 or float64)
2180 * fld - vsr_t field (VsrD(*) or VsrW(*))
2181 * emin - minimum unbiased exponent
2182 * emax - maximum unbiased exponent
2183 * nbits - number of fraction bits
2184 */
2185 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2186 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2187 { \
2188 ppc_vsr_t xa, xb; \
2189 int i; \
2190 int fe_flag = 0; \
2191 int fg_flag = 0; \
2192 \
2193 getVSR(xA(opcode), &xa, env); \
2194 getVSR(xB(opcode), &xb, env); \
2195 \
2196 for (i = 0; i < nels; i++) { \
2197 if (unlikely(tp##_is_infinity(xb.fld) || \
2198 tp##_is_zero(xb.fld))) { \
2199 fe_flag = 1; \
2200 fg_flag = 1; \
2201 } else { \
2202 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2203 \
2204 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2205 fe_flag = 1; \
2206 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2207 fe_flag = 1; \
2208 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2209 fe_flag = 1; \
2210 } else if (!tp##_is_zero(xb.fld) && \
2211 (e_b <= (emin+nbits))) { \
2212 fe_flag = 1; \
2213 } \
2214 \
2215 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2216 /* XB is not zero because of the above check and */ \
2217 /* therefore must be denormalized. */ \
2218 fg_flag = 1; \
2219 } \
2220 } \
2221 } \
2222 \
2223 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2224 }
2225
2226 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2227 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2228 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2229
2230 /* VSX_MADD - VSX floating point muliply/add variations
2231 * op - instruction mnemonic
2232 * nels - number of elements (1, 2 or 4)
2233 * tp - type (float32 or float64)
2234 * fld - vsr_t field (VsrD(*) or VsrW(*))
2235 * maddflgs - flags for the float*muladd routine that control the
2236 * various forms (madd, msub, nmadd, nmsub)
2237 * afrm - A form (1=A, 0=M)
2238 * sfprf - set FPRF
2239 */
2240 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2241 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2242 { \
2243 ppc_vsr_t xt_in, xa, xb, xt_out; \
2244 ppc_vsr_t *b, *c; \
2245 int i; \
2246 \
2247 if (afrm) { /* AxB + T */ \
2248 b = &xb; \
2249 c = &xt_in; \
2250 } else { /* AxT + B */ \
2251 b = &xt_in; \
2252 c = &xb; \
2253 } \
2254 \
2255 getVSR(xA(opcode), &xa, env); \
2256 getVSR(xB(opcode), &xb, env); \
2257 getVSR(xT(opcode), &xt_in, env); \
2258 \
2259 xt_out = xt_in; \
2260 \
2261 helper_reset_fpstatus(env); \
2262 \
2263 for (i = 0; i < nels; i++) { \
2264 float_status tstat = env->fp_status; \
2265 set_float_exception_flags(0, &tstat); \
2266 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2267 /* Avoid double rounding errors by rounding the intermediate */ \
2268 /* result to odd. */ \
2269 set_float_rounding_mode(float_round_to_zero, &tstat); \
2270 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2271 maddflgs, &tstat); \
2272 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2273 float_flag_inexact) != 0; \
2274 } else { \
2275 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2276 maddflgs, &tstat); \
2277 } \
2278 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2279 \
2280 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2281 if (tp##_is_signaling_nan(xa.fld) || \
2282 tp##_is_signaling_nan(b->fld) || \
2283 tp##_is_signaling_nan(c->fld)) { \
2284 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \
2285 tstat.float_exception_flags &= ~float_flag_invalid; \
2286 } \
2287 if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) || \
2288 (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) { \
2289 xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env, \
2290 POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \
2291 tstat.float_exception_flags &= ~float_flag_invalid; \
2292 } \
2293 if ((tstat.float_exception_flags & float_flag_invalid) && \
2294 ((tp##_is_infinity(xa.fld) || \
2295 tp##_is_infinity(b->fld)) && \
2296 tp##_is_infinity(c->fld))) { \
2297 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \
2298 } \
2299 } \
2300 \
2301 if (r2sp) { \
2302 xt_out.fld = helper_frsp(env, xt_out.fld); \
2303 } \
2304 \
2305 if (sfprf) { \
2306 helper_compute_fprf(env, xt_out.fld, sfprf); \
2307 } \
2308 } \
2309 putVSR(xT(opcode), &xt_out, env); \
2310 helper_float_check_status(env); \
2311 }
2312
2313 #define MADD_FLGS 0
2314 #define MSUB_FLGS float_muladd_negate_c
2315 #define NMADD_FLGS float_muladd_negate_result
2316 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2317
2318 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2319 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2320 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2321 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2322 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2323 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2324 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2325 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2326
2327 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2328 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2329 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2330 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2331 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2332 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2333 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2334 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2335
2336 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2337 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2338 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2339 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2340 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2341 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2342 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2343 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2344
2345 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2346 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2347 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2348 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2349 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2350 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2351 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2352 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2353
2354 #define VSX_SCALAR_CMP(op, ordered) \
2355 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2356 { \
2357 ppc_vsr_t xa, xb; \
2358 uint32_t cc = 0; \
2359 \
2360 getVSR(xA(opcode), &xa, env); \
2361 getVSR(xB(opcode), &xb, env); \
2362 \
2363 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2364 float64_is_any_nan(xb.VsrD(0)))) { \
2365 if (float64_is_signaling_nan(xa.VsrD(0)) || \
2366 float64_is_signaling_nan(xb.VsrD(0))) { \
2367 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2368 } \
2369 if (ordered) { \
2370 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2371 } \
2372 cc = 1; \
2373 } else { \
2374 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2375 cc = 8; \
2376 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), \
2377 &env->fp_status)) { \
2378 cc = 4; \
2379 } else { \
2380 cc = 2; \
2381 } \
2382 } \
2383 \
2384 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2385 env->fpscr |= cc << FPSCR_FPRF; \
2386 env->crf[BF(opcode)] = cc; \
2387 \
2388 helper_float_check_status(env); \
2389 }
2390
2391 VSX_SCALAR_CMP(xscmpodp, 1)
2392 VSX_SCALAR_CMP(xscmpudp, 0)
2393
2394 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
2395 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
2396
2397 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2398 * name - instruction mnemonic
2399 * op - operation (max or min)
2400 * nels - number of elements (1, 2 or 4)
2401 * tp - type (float32 or float64)
2402 * fld - vsr_t field (VsrD(*) or VsrW(*))
2403 */
2404 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2405 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2406 { \
2407 ppc_vsr_t xt, xa, xb; \
2408 int i; \
2409 \
2410 getVSR(xA(opcode), &xa, env); \
2411 getVSR(xB(opcode), &xb, env); \
2412 getVSR(xT(opcode), &xt, env); \
2413 \
2414 for (i = 0; i < nels; i++) { \
2415 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2416 if (unlikely(tp##_is_signaling_nan(xa.fld) || \
2417 tp##_is_signaling_nan(xb.fld))) { \
2418 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2419 } \
2420 } \
2421 \
2422 putVSR(xT(opcode), &xt, env); \
2423 helper_float_check_status(env); \
2424 }
2425
2426 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2427 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2428 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2429 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2430 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2431 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2432
2433 /* VSX_CMP - VSX floating point compare
2434 * op - instruction mnemonic
2435 * nels - number of elements (1, 2 or 4)
2436 * tp - type (float32 or float64)
2437 * fld - vsr_t field (VsrD(*) or VsrW(*))
2438 * cmp - comparison operation
2439 * svxvc - set VXVC bit
2440 */
2441 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc) \
2442 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2443 { \
2444 ppc_vsr_t xt, xa, xb; \
2445 int i; \
2446 int all_true = 1; \
2447 int all_false = 1; \
2448 \
2449 getVSR(xA(opcode), &xa, env); \
2450 getVSR(xB(opcode), &xb, env); \
2451 getVSR(xT(opcode), &xt, env); \
2452 \
2453 for (i = 0; i < nels; i++) { \
2454 if (unlikely(tp##_is_any_nan(xa.fld) || \
2455 tp##_is_any_nan(xb.fld))) { \
2456 if (tp##_is_signaling_nan(xa.fld) || \
2457 tp##_is_signaling_nan(xb.fld)) { \
2458 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2459 } \
2460 if (svxvc) { \
2461 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \
2462 } \
2463 xt.fld = 0; \
2464 all_true = 0; \
2465 } else { \
2466 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) { \
2467 xt.fld = -1; \
2468 all_false = 0; \
2469 } else { \
2470 xt.fld = 0; \
2471 all_true = 0; \
2472 } \
2473 } \
2474 } \
2475 \
2476 putVSR(xT(opcode), &xt, env); \
2477 if ((opcode >> (31-21)) & 1) { \
2478 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2479 } \
2480 helper_float_check_status(env); \
2481 }
2482
2483 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2484 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2485 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2486 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2487 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2488 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2489
2490 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2491 * op - instruction mnemonic
2492 * nels - number of elements (1, 2 or 4)
2493 * stp - source type (float32 or float64)
2494 * ttp - target type (float32 or float64)
2495 * sfld - source vsr_t field
2496 * tfld - target vsr_t field (f32 or f64)
2497 * sfprf - set FPRF
2498 */
2499 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2500 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2501 { \
2502 ppc_vsr_t xt, xb; \
2503 int i; \
2504 \
2505 getVSR(xB(opcode), &xb, env); \
2506 getVSR(xT(opcode), &xt, env); \
2507 \
2508 for (i = 0; i < nels; i++) { \
2509 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2510 if (unlikely(stp##_is_signaling_nan(xb.sfld))) { \
2511 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2512 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2513 } \
2514 if (sfprf) { \
2515 helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \
2516 &env->fp_status), sfprf); \
2517 } \
2518 } \
2519 \
2520 putVSR(xT(opcode), &xt, env); \
2521 helper_float_check_status(env); \
2522 }
2523
2524 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2525 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2526 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2527 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2528
2529 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2530 {
2531 float_status tstat = env->fp_status;
2532 set_float_exception_flags(0, &tstat);
2533
2534 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2535 }
2536
2537 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2538 {
2539 float_status tstat = env->fp_status;
2540 set_float_exception_flags(0, &tstat);
2541
2542 return float32_to_float64(xb >> 32, &tstat);
2543 }
2544
2545 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2546 * op - instruction mnemonic
2547 * nels - number of elements (1, 2 or 4)
2548 * stp - source type (float32 or float64)
2549 * ttp - target type (int32, uint32, int64 or uint64)
2550 * sfld - source vsr_t field
2551 * tfld - target vsr_t field
2552 * rnan - resulting NaN
2553 */
2554 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2555 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2556 { \
2557 ppc_vsr_t xt, xb; \
2558 int i; \
2559 \
2560 getVSR(xB(opcode), &xb, env); \
2561 getVSR(xT(opcode), &xt, env); \
2562 \
2563 for (i = 0; i < nels; i++) { \
2564 if (unlikely(stp##_is_any_nan(xb.sfld))) { \
2565 if (stp##_is_signaling_nan(xb.sfld)) { \
2566 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2567 } \
2568 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2569 xt.tfld = rnan; \
2570 } else { \
2571 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, \
2572 &env->fp_status); \
2573 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2574 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \
2575 } \
2576 } \
2577 } \
2578 \
2579 putVSR(xT(opcode), &xt, env); \
2580 helper_float_check_status(env); \
2581 }
2582
2583 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2584 0x8000000000000000ULL)
2585 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2586 0x80000000U)
2587 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2588 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2589 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2590 0x8000000000000000ULL)
2591 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2592 0x80000000U)
2593 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2594 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2595 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2596 0x8000000000000000ULL)
2597 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2598 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2599 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2600
2601 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2602 * op - instruction mnemonic
2603 * nels - number of elements (1, 2 or 4)
2604 * stp - source type (int32, uint32, int64 or uint64)
2605 * ttp - target type (float32 or float64)
2606 * sfld - source vsr_t field
2607 * tfld - target vsr_t field
2608 * jdef - definition of the j index (i or 2*i)
2609 * sfprf - set FPRF
2610 */
2611 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
2612 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2613 { \
2614 ppc_vsr_t xt, xb; \
2615 int i; \
2616 \
2617 getVSR(xB(opcode), &xb, env); \
2618 getVSR(xT(opcode), &xt, env); \
2619 \
2620 for (i = 0; i < nels; i++) { \
2621 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2622 if (r2sp) { \
2623 xt.tfld = helper_frsp(env, xt.tfld); \
2624 } \
2625 if (sfprf) { \
2626 helper_compute_fprf(env, xt.tfld, sfprf); \
2627 } \
2628 } \
2629 \
2630 putVSR(xT(opcode), &xt, env); \
2631 helper_float_check_status(env); \
2632 }
2633
2634 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2635 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2636 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2637 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2638 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2639 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2640 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2641 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2642 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2643 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2644 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2645 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2646
2647 /* For "use current rounding mode", define a value that will not be one of
2648 * the existing rounding model enums.
2649 */
2650 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2651 float_round_up + float_round_to_zero)
2652
2653 /* VSX_ROUND - VSX floating point round
2654 * op - instruction mnemonic
2655 * nels - number of elements (1, 2 or 4)
2656 * tp - type (float32 or float64)
2657 * fld - vsr_t field (VsrD(*) or VsrW(*))
2658 * rmode - rounding mode
2659 * sfprf - set FPRF
2660 */
2661 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
2662 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2663 { \
2664 ppc_vsr_t xt, xb; \
2665 int i; \
2666 getVSR(xB(opcode), &xb, env); \
2667 getVSR(xT(opcode), &xt, env); \
2668 \
2669 if (rmode != FLOAT_ROUND_CURRENT) { \
2670 set_float_rounding_mode(rmode, &env->fp_status); \
2671 } \
2672 \
2673 for (i = 0; i < nels; i++) { \
2674 if (unlikely(tp##_is_signaling_nan(xb.fld))) { \
2675 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2676 xt.fld = tp##_snan_to_qnan(xb.fld); \
2677 } else { \
2678 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
2679 } \
2680 if (sfprf) { \
2681 helper_compute_fprf(env, xt.fld, sfprf); \
2682 } \
2683 } \
2684 \
2685 /* If this is not a "use current rounding mode" instruction, \
2686 * then inhibit setting of the XX bit and restore rounding \
2687 * mode from FPSCR */ \
2688 if (rmode != FLOAT_ROUND_CURRENT) { \
2689 fpscr_set_rounding_mode(env); \
2690 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
2691 } \
2692 \
2693 putVSR(xT(opcode), &xt, env); \
2694 helper_float_check_status(env); \
2695 }
2696
2697 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1)
2698 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2699 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2700 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2701 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2702
2703 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0)
2704 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2705 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2706 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2707 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2708
2709 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0)
2710 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2711 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2712 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2713 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2714
2715 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2716 {
2717 helper_reset_fpstatus(env);
2718
2719 uint64_t xt = helper_frsp(env, xb);
2720
2721 helper_compute_fprf(env, xt, 1);
2722 helper_float_check_status(env);
2723 return xt;
2724 }