]> git.proxmox.com Git - mirror_qemu.git/blob - target-ppc/kvm.c
hw/ppc/spapr: Move code related to "ibm,pa-features" to a separate function
[mirror_qemu.git] / target-ppc / kvm.c
1 /*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21
22 #include <linux/kvm.h>
23
24 #include "qemu-common.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/kvm.h"
30 #include "sysemu/numa.h"
31 #include "kvm_ppc.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/device_tree.h"
34 #include "mmu-hash64.h"
35
36 #include "hw/sysbus.h"
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_vio.h"
39 #include "hw/ppc/ppc.h"
40 #include "sysemu/watchdog.h"
41 #include "trace.h"
42 #include "exec/gdbstub.h"
43 #include "exec/memattrs.h"
44 #include "sysemu/hostmem.h"
45 #include "qemu/cutils.h"
46 #if defined(TARGET_PPC64)
47 #include "hw/ppc/spapr_cpu_core.h"
48 #endif
49
50 //#define DEBUG_KVM
51
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
59
60 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
61
62 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
63 KVM_CAP_LAST_INFO
64 };
65
66 static int cap_interrupt_unset = false;
67 static int cap_interrupt_level = false;
68 static int cap_segstate;
69 static int cap_booke_sregs;
70 static int cap_ppc_smt;
71 static int cap_ppc_rma;
72 static int cap_spapr_tce;
73 static int cap_spapr_multitce;
74 static int cap_spapr_vfio;
75 static int cap_hior;
76 static int cap_one_reg;
77 static int cap_epr;
78 static int cap_ppc_watchdog;
79 static int cap_papr;
80 static int cap_htab_fd;
81 static int cap_fixup_hcalls;
82
83 static uint32_t debug_inst_opcode;
84
85 /* XXX We have a race condition where we actually have a level triggered
86 * interrupt, but the infrastructure can't expose that yet, so the guest
87 * takes but ignores it, goes to sleep and never gets notified that there's
88 * still an interrupt pending.
89 *
90 * As a quick workaround, let's just wake up again 20 ms after we injected
91 * an interrupt. That way we can assure that we're always reinjecting
92 * interrupts in case the guest swallowed them.
93 */
94 static QEMUTimer *idle_timer;
95
96 static void kvm_kick_cpu(void *opaque)
97 {
98 PowerPCCPU *cpu = opaque;
99
100 qemu_cpu_kick(CPU(cpu));
101 }
102
103 static int kvm_ppc_register_host_cpu_type(void);
104
105 int kvm_arch_init(MachineState *ms, KVMState *s)
106 {
107 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
108 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
109 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
110 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
111 cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
112 cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
113 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
114 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
115 cap_spapr_vfio = false;
116 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
117 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
118 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
119 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
120 /* Note: we don't set cap_papr here, because this capability is
121 * only activated after this by kvmppc_set_papr() */
122 cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
123 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
124
125 if (!cap_interrupt_level) {
126 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
127 "VM to stall at times!\n");
128 }
129
130 kvm_ppc_register_host_cpu_type();
131
132 return 0;
133 }
134
135 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
136 {
137 CPUPPCState *cenv = &cpu->env;
138 CPUState *cs = CPU(cpu);
139 struct kvm_sregs sregs;
140 int ret;
141
142 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
143 /* What we're really trying to say is "if we're on BookE, we use
144 the native PVR for now". This is the only sane way to check
145 it though, so we potentially confuse users that they can run
146 BookE guests on BookS. Let's hope nobody dares enough :) */
147 return 0;
148 } else {
149 if (!cap_segstate) {
150 fprintf(stderr, "kvm error: missing PVR setting capability\n");
151 return -ENOSYS;
152 }
153 }
154
155 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
156 if (ret) {
157 return ret;
158 }
159
160 sregs.pvr = cenv->spr[SPR_PVR];
161 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
162 }
163
164 /* Set up a shared TLB array with KVM */
165 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
166 {
167 CPUPPCState *env = &cpu->env;
168 CPUState *cs = CPU(cpu);
169 struct kvm_book3e_206_tlb_params params = {};
170 struct kvm_config_tlb cfg = {};
171 unsigned int entries = 0;
172 int ret, i;
173
174 if (!kvm_enabled() ||
175 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
176 return 0;
177 }
178
179 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
180
181 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
182 params.tlb_sizes[i] = booke206_tlb_size(env, i);
183 params.tlb_ways[i] = booke206_tlb_ways(env, i);
184 entries += params.tlb_sizes[i];
185 }
186
187 assert(entries == env->nb_tlb);
188 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
189
190 env->tlb_dirty = true;
191
192 cfg.array = (uintptr_t)env->tlb.tlbm;
193 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
194 cfg.params = (uintptr_t)&params;
195 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
196
197 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
198 if (ret < 0) {
199 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
200 __func__, strerror(-ret));
201 return ret;
202 }
203
204 env->kvm_sw_tlb = true;
205 return 0;
206 }
207
208
209 #if defined(TARGET_PPC64)
210 static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
211 struct kvm_ppc_smmu_info *info)
212 {
213 CPUPPCState *env = &cpu->env;
214 CPUState *cs = CPU(cpu);
215
216 memset(info, 0, sizeof(*info));
217
218 /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
219 * need to "guess" what the supported page sizes are.
220 *
221 * For that to work we make a few assumptions:
222 *
223 * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
224 * KVM which only supports 4K and 16M pages, but supports them
225 * regardless of the backing store characteritics. We also don't
226 * support 1T segments.
227 *
228 * This is safe as if HV KVM ever supports that capability or PR
229 * KVM grows supports for more page/segment sizes, those versions
230 * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
231 * will not hit this fallback
232 *
233 * - Else we are running HV KVM. This means we only support page
234 * sizes that fit in the backing store. Additionally we only
235 * advertize 64K pages if the processor is ARCH 2.06 and we assume
236 * P7 encodings for the SLB and hash table. Here too, we assume
237 * support for any newer processor will mean a kernel that
238 * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
239 * this fallback.
240 */
241 if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
242 /* No flags */
243 info->flags = 0;
244 info->slb_size = 64;
245
246 /* Standard 4k base page size segment */
247 info->sps[0].page_shift = 12;
248 info->sps[0].slb_enc = 0;
249 info->sps[0].enc[0].page_shift = 12;
250 info->sps[0].enc[0].pte_enc = 0;
251
252 /* Standard 16M large page size segment */
253 info->sps[1].page_shift = 24;
254 info->sps[1].slb_enc = SLB_VSID_L;
255 info->sps[1].enc[0].page_shift = 24;
256 info->sps[1].enc[0].pte_enc = 0;
257 } else {
258 int i = 0;
259
260 /* HV KVM has backing store size restrictions */
261 info->flags = KVM_PPC_PAGE_SIZES_REAL;
262
263 if (env->mmu_model & POWERPC_MMU_1TSEG) {
264 info->flags |= KVM_PPC_1T_SEGMENTS;
265 }
266
267 if (env->mmu_model == POWERPC_MMU_2_06 ||
268 env->mmu_model == POWERPC_MMU_2_07) {
269 info->slb_size = 32;
270 } else {
271 info->slb_size = 64;
272 }
273
274 /* Standard 4k base page size segment */
275 info->sps[i].page_shift = 12;
276 info->sps[i].slb_enc = 0;
277 info->sps[i].enc[0].page_shift = 12;
278 info->sps[i].enc[0].pte_enc = 0;
279 i++;
280
281 /* 64K on MMU 2.06 and later */
282 if (env->mmu_model == POWERPC_MMU_2_06 ||
283 env->mmu_model == POWERPC_MMU_2_07) {
284 info->sps[i].page_shift = 16;
285 info->sps[i].slb_enc = 0x110;
286 info->sps[i].enc[0].page_shift = 16;
287 info->sps[i].enc[0].pte_enc = 1;
288 i++;
289 }
290
291 /* Standard 16M large page size segment */
292 info->sps[i].page_shift = 24;
293 info->sps[i].slb_enc = SLB_VSID_L;
294 info->sps[i].enc[0].page_shift = 24;
295 info->sps[i].enc[0].pte_enc = 0;
296 }
297 }
298
299 static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
300 {
301 CPUState *cs = CPU(cpu);
302 int ret;
303
304 if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
305 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
306 if (ret == 0) {
307 return;
308 }
309 }
310
311 kvm_get_fallback_smmu_info(cpu, info);
312 }
313
314 static long gethugepagesize(const char *mem_path)
315 {
316 struct statfs fs;
317 int ret;
318
319 do {
320 ret = statfs(mem_path, &fs);
321 } while (ret != 0 && errno == EINTR);
322
323 if (ret != 0) {
324 fprintf(stderr, "Couldn't statfs() memory path: %s\n",
325 strerror(errno));
326 exit(1);
327 }
328
329 #define HUGETLBFS_MAGIC 0x958458f6
330
331 if (fs.f_type != HUGETLBFS_MAGIC) {
332 /* Explicit mempath, but it's ordinary pages */
333 return getpagesize();
334 }
335
336 /* It's hugepage, return the huge page size */
337 return fs.f_bsize;
338 }
339
340 /*
341 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
342 * may or may not name the same files / on the same filesystem now as
343 * when we actually open and map them. Iterate over the file
344 * descriptors instead, and use qemu_fd_getpagesize().
345 */
346 static int find_max_supported_pagesize(Object *obj, void *opaque)
347 {
348 char *mem_path;
349 long *hpsize_min = opaque;
350
351 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
352 mem_path = object_property_get_str(obj, "mem-path", NULL);
353 if (mem_path) {
354 long hpsize = gethugepagesize(mem_path);
355 if (hpsize < *hpsize_min) {
356 *hpsize_min = hpsize;
357 }
358 } else {
359 *hpsize_min = getpagesize();
360 }
361 }
362
363 return 0;
364 }
365
366 static long getrampagesize(void)
367 {
368 long hpsize = LONG_MAX;
369 long mainrampagesize;
370 Object *memdev_root;
371
372 if (mem_path) {
373 mainrampagesize = gethugepagesize(mem_path);
374 } else {
375 mainrampagesize = getpagesize();
376 }
377
378 /* it's possible we have memory-backend objects with
379 * hugepage-backed RAM. these may get mapped into system
380 * address space via -numa parameters or memory hotplug
381 * hooks. we want to take these into account, but we
382 * also want to make sure these supported hugepage
383 * sizes are applicable across the entire range of memory
384 * we may boot from, so we take the min across all
385 * backends, and assume normal pages in cases where a
386 * backend isn't backed by hugepages.
387 */
388 memdev_root = object_resolve_path("/objects", NULL);
389 if (memdev_root) {
390 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
391 }
392 if (hpsize == LONG_MAX) {
393 /* No additional memory regions found ==> Report main RAM page size */
394 return mainrampagesize;
395 }
396
397 /* If NUMA is disabled or the NUMA nodes are not backed with a
398 * memory-backend, then there is at least one node using "normal" RAM,
399 * so if its page size is smaller we have got to report that size instead.
400 */
401 if (hpsize > mainrampagesize &&
402 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
403 static bool warned;
404 if (!warned) {
405 error_report("Huge page support disabled (n/a for main memory).");
406 warned = true;
407 }
408 return mainrampagesize;
409 }
410
411 return hpsize;
412 }
413
414 static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
415 {
416 if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
417 return true;
418 }
419
420 return (1ul << shift) <= rampgsize;
421 }
422
423 static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
424 {
425 static struct kvm_ppc_smmu_info smmu_info;
426 static bool has_smmu_info;
427 CPUPPCState *env = &cpu->env;
428 long rampagesize;
429 int iq, ik, jq, jk;
430
431 /* We only handle page sizes for 64-bit server guests for now */
432 if (!(env->mmu_model & POWERPC_MMU_64)) {
433 return;
434 }
435
436 /* Collect MMU info from kernel if not already */
437 if (!has_smmu_info) {
438 kvm_get_smmu_info(cpu, &smmu_info);
439 has_smmu_info = true;
440 }
441
442 rampagesize = getrampagesize();
443
444 /* Convert to QEMU form */
445 memset(&env->sps, 0, sizeof(env->sps));
446
447 /* If we have HV KVM, we need to forbid CI large pages if our
448 * host page size is smaller than 64K.
449 */
450 if (smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL) {
451 env->ci_large_pages = getpagesize() >= 0x10000;
452 }
453
454 /*
455 * XXX This loop should be an entry wide AND of the capabilities that
456 * the selected CPU has with the capabilities that KVM supports.
457 */
458 for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
459 struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
460 struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
461
462 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
463 ksps->page_shift)) {
464 continue;
465 }
466 qsps->page_shift = ksps->page_shift;
467 qsps->slb_enc = ksps->slb_enc;
468 for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
469 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
470 ksps->enc[jk].page_shift)) {
471 continue;
472 }
473 qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
474 qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
475 if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
476 break;
477 }
478 }
479 if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
480 break;
481 }
482 }
483 env->slb_nr = smmu_info.slb_size;
484 if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
485 env->mmu_model &= ~POWERPC_MMU_1TSEG;
486 }
487 }
488 #else /* defined (TARGET_PPC64) */
489
490 static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
491 {
492 }
493
494 #endif /* !defined (TARGET_PPC64) */
495
496 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
497 {
498 return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
499 }
500
501 /* e500 supports 2 h/w breakpoint and 2 watchpoint.
502 * book3s supports only 1 watchpoint, so array size
503 * of 4 is sufficient for now.
504 */
505 #define MAX_HW_BKPTS 4
506
507 static struct HWBreakpoint {
508 target_ulong addr;
509 int type;
510 } hw_debug_points[MAX_HW_BKPTS];
511
512 static CPUWatchpoint hw_watchpoint;
513
514 /* Default there is no breakpoint and watchpoint supported */
515 static int max_hw_breakpoint;
516 static int max_hw_watchpoint;
517 static int nb_hw_breakpoint;
518 static int nb_hw_watchpoint;
519
520 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
521 {
522 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
523 max_hw_breakpoint = 2;
524 max_hw_watchpoint = 2;
525 }
526
527 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
528 fprintf(stderr, "Error initializing h/w breakpoints\n");
529 return;
530 }
531 }
532
533 int kvm_arch_init_vcpu(CPUState *cs)
534 {
535 PowerPCCPU *cpu = POWERPC_CPU(cs);
536 CPUPPCState *cenv = &cpu->env;
537 int ret;
538
539 /* Gather server mmu info from KVM and update the CPU state */
540 kvm_fixup_page_sizes(cpu);
541
542 /* Synchronize sregs with kvm */
543 ret = kvm_arch_sync_sregs(cpu);
544 if (ret) {
545 if (ret == -EINVAL) {
546 error_report("Register sync failed... If you're using kvm-hv.ko,"
547 " only \"-cpu host\" is possible");
548 }
549 return ret;
550 }
551
552 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
553
554 /* Some targets support access to KVM's guest TLB. */
555 switch (cenv->mmu_model) {
556 case POWERPC_MMU_BOOKE206:
557 ret = kvm_booke206_tlb_init(cpu);
558 break;
559 default:
560 break;
561 }
562
563 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
564 kvmppc_hw_debug_points_init(cenv);
565
566 return ret;
567 }
568
569 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
570 {
571 CPUPPCState *env = &cpu->env;
572 CPUState *cs = CPU(cpu);
573 struct kvm_dirty_tlb dirty_tlb;
574 unsigned char *bitmap;
575 int ret;
576
577 if (!env->kvm_sw_tlb) {
578 return;
579 }
580
581 bitmap = g_malloc((env->nb_tlb + 7) / 8);
582 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
583
584 dirty_tlb.bitmap = (uintptr_t)bitmap;
585 dirty_tlb.num_dirty = env->nb_tlb;
586
587 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
588 if (ret) {
589 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
590 __func__, strerror(-ret));
591 }
592
593 g_free(bitmap);
594 }
595
596 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
597 {
598 PowerPCCPU *cpu = POWERPC_CPU(cs);
599 CPUPPCState *env = &cpu->env;
600 union {
601 uint32_t u32;
602 uint64_t u64;
603 } val;
604 struct kvm_one_reg reg = {
605 .id = id,
606 .addr = (uintptr_t) &val,
607 };
608 int ret;
609
610 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
611 if (ret != 0) {
612 trace_kvm_failed_spr_get(spr, strerror(errno));
613 } else {
614 switch (id & KVM_REG_SIZE_MASK) {
615 case KVM_REG_SIZE_U32:
616 env->spr[spr] = val.u32;
617 break;
618
619 case KVM_REG_SIZE_U64:
620 env->spr[spr] = val.u64;
621 break;
622
623 default:
624 /* Don't handle this size yet */
625 abort();
626 }
627 }
628 }
629
630 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
631 {
632 PowerPCCPU *cpu = POWERPC_CPU(cs);
633 CPUPPCState *env = &cpu->env;
634 union {
635 uint32_t u32;
636 uint64_t u64;
637 } val;
638 struct kvm_one_reg reg = {
639 .id = id,
640 .addr = (uintptr_t) &val,
641 };
642 int ret;
643
644 switch (id & KVM_REG_SIZE_MASK) {
645 case KVM_REG_SIZE_U32:
646 val.u32 = env->spr[spr];
647 break;
648
649 case KVM_REG_SIZE_U64:
650 val.u64 = env->spr[spr];
651 break;
652
653 default:
654 /* Don't handle this size yet */
655 abort();
656 }
657
658 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
659 if (ret != 0) {
660 trace_kvm_failed_spr_set(spr, strerror(errno));
661 }
662 }
663
664 static int kvm_put_fp(CPUState *cs)
665 {
666 PowerPCCPU *cpu = POWERPC_CPU(cs);
667 CPUPPCState *env = &cpu->env;
668 struct kvm_one_reg reg;
669 int i;
670 int ret;
671
672 if (env->insns_flags & PPC_FLOAT) {
673 uint64_t fpscr = env->fpscr;
674 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
675
676 reg.id = KVM_REG_PPC_FPSCR;
677 reg.addr = (uintptr_t)&fpscr;
678 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
679 if (ret < 0) {
680 DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
681 return ret;
682 }
683
684 for (i = 0; i < 32; i++) {
685 uint64_t vsr[2];
686
687 #ifdef HOST_WORDS_BIGENDIAN
688 vsr[0] = float64_val(env->fpr[i]);
689 vsr[1] = env->vsr[i];
690 #else
691 vsr[0] = env->vsr[i];
692 vsr[1] = float64_val(env->fpr[i]);
693 #endif
694 reg.addr = (uintptr_t) &vsr;
695 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
696
697 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
698 if (ret < 0) {
699 DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
700 i, strerror(errno));
701 return ret;
702 }
703 }
704 }
705
706 if (env->insns_flags & PPC_ALTIVEC) {
707 reg.id = KVM_REG_PPC_VSCR;
708 reg.addr = (uintptr_t)&env->vscr;
709 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
710 if (ret < 0) {
711 DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
712 return ret;
713 }
714
715 for (i = 0; i < 32; i++) {
716 reg.id = KVM_REG_PPC_VR(i);
717 reg.addr = (uintptr_t)&env->avr[i];
718 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
719 if (ret < 0) {
720 DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
721 return ret;
722 }
723 }
724 }
725
726 return 0;
727 }
728
729 static int kvm_get_fp(CPUState *cs)
730 {
731 PowerPCCPU *cpu = POWERPC_CPU(cs);
732 CPUPPCState *env = &cpu->env;
733 struct kvm_one_reg reg;
734 int i;
735 int ret;
736
737 if (env->insns_flags & PPC_FLOAT) {
738 uint64_t fpscr;
739 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
740
741 reg.id = KVM_REG_PPC_FPSCR;
742 reg.addr = (uintptr_t)&fpscr;
743 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
744 if (ret < 0) {
745 DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
746 return ret;
747 } else {
748 env->fpscr = fpscr;
749 }
750
751 for (i = 0; i < 32; i++) {
752 uint64_t vsr[2];
753
754 reg.addr = (uintptr_t) &vsr;
755 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
756
757 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
758 if (ret < 0) {
759 DPRINTF("Unable to get %s%d from KVM: %s\n",
760 vsx ? "VSR" : "FPR", i, strerror(errno));
761 return ret;
762 } else {
763 #ifdef HOST_WORDS_BIGENDIAN
764 env->fpr[i] = vsr[0];
765 if (vsx) {
766 env->vsr[i] = vsr[1];
767 }
768 #else
769 env->fpr[i] = vsr[1];
770 if (vsx) {
771 env->vsr[i] = vsr[0];
772 }
773 #endif
774 }
775 }
776 }
777
778 if (env->insns_flags & PPC_ALTIVEC) {
779 reg.id = KVM_REG_PPC_VSCR;
780 reg.addr = (uintptr_t)&env->vscr;
781 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
782 if (ret < 0) {
783 DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
784 return ret;
785 }
786
787 for (i = 0; i < 32; i++) {
788 reg.id = KVM_REG_PPC_VR(i);
789 reg.addr = (uintptr_t)&env->avr[i];
790 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
791 if (ret < 0) {
792 DPRINTF("Unable to get VR%d from KVM: %s\n",
793 i, strerror(errno));
794 return ret;
795 }
796 }
797 }
798
799 return 0;
800 }
801
802 #if defined(TARGET_PPC64)
803 static int kvm_get_vpa(CPUState *cs)
804 {
805 PowerPCCPU *cpu = POWERPC_CPU(cs);
806 CPUPPCState *env = &cpu->env;
807 struct kvm_one_reg reg;
808 int ret;
809
810 reg.id = KVM_REG_PPC_VPA_ADDR;
811 reg.addr = (uintptr_t)&env->vpa_addr;
812 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
813 if (ret < 0) {
814 DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
815 return ret;
816 }
817
818 assert((uintptr_t)&env->slb_shadow_size
819 == ((uintptr_t)&env->slb_shadow_addr + 8));
820 reg.id = KVM_REG_PPC_VPA_SLB;
821 reg.addr = (uintptr_t)&env->slb_shadow_addr;
822 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
823 if (ret < 0) {
824 DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
825 strerror(errno));
826 return ret;
827 }
828
829 assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
830 reg.id = KVM_REG_PPC_VPA_DTL;
831 reg.addr = (uintptr_t)&env->dtl_addr;
832 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
833 if (ret < 0) {
834 DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
835 strerror(errno));
836 return ret;
837 }
838
839 return 0;
840 }
841
842 static int kvm_put_vpa(CPUState *cs)
843 {
844 PowerPCCPU *cpu = POWERPC_CPU(cs);
845 CPUPPCState *env = &cpu->env;
846 struct kvm_one_reg reg;
847 int ret;
848
849 /* SLB shadow or DTL can't be registered unless a master VPA is
850 * registered. That means when restoring state, if a VPA *is*
851 * registered, we need to set that up first. If not, we need to
852 * deregister the others before deregistering the master VPA */
853 assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));
854
855 if (env->vpa_addr) {
856 reg.id = KVM_REG_PPC_VPA_ADDR;
857 reg.addr = (uintptr_t)&env->vpa_addr;
858 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
859 if (ret < 0) {
860 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
861 return ret;
862 }
863 }
864
865 assert((uintptr_t)&env->slb_shadow_size
866 == ((uintptr_t)&env->slb_shadow_addr + 8));
867 reg.id = KVM_REG_PPC_VPA_SLB;
868 reg.addr = (uintptr_t)&env->slb_shadow_addr;
869 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
870 if (ret < 0) {
871 DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
872 return ret;
873 }
874
875 assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
876 reg.id = KVM_REG_PPC_VPA_DTL;
877 reg.addr = (uintptr_t)&env->dtl_addr;
878 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
879 if (ret < 0) {
880 DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
881 strerror(errno));
882 return ret;
883 }
884
885 if (!env->vpa_addr) {
886 reg.id = KVM_REG_PPC_VPA_ADDR;
887 reg.addr = (uintptr_t)&env->vpa_addr;
888 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
889 if (ret < 0) {
890 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
891 return ret;
892 }
893 }
894
895 return 0;
896 }
897 #endif /* TARGET_PPC64 */
898
899 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
900 {
901 CPUPPCState *env = &cpu->env;
902 struct kvm_sregs sregs;
903 int i;
904
905 sregs.pvr = env->spr[SPR_PVR];
906
907 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
908
909 /* Sync SLB */
910 #ifdef TARGET_PPC64
911 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
912 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
913 if (env->slb[i].esid & SLB_ESID_V) {
914 sregs.u.s.ppc64.slb[i].slbe |= i;
915 }
916 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
917 }
918 #endif
919
920 /* Sync SRs */
921 for (i = 0; i < 16; i++) {
922 sregs.u.s.ppc32.sr[i] = env->sr[i];
923 }
924
925 /* Sync BATs */
926 for (i = 0; i < 8; i++) {
927 /* Beware. We have to swap upper and lower bits here */
928 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
929 | env->DBAT[1][i];
930 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
931 | env->IBAT[1][i];
932 }
933
934 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
935 }
936
937 int kvm_arch_put_registers(CPUState *cs, int level)
938 {
939 PowerPCCPU *cpu = POWERPC_CPU(cs);
940 CPUPPCState *env = &cpu->env;
941 struct kvm_regs regs;
942 int ret;
943 int i;
944
945 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
946 if (ret < 0) {
947 return ret;
948 }
949
950 regs.ctr = env->ctr;
951 regs.lr = env->lr;
952 regs.xer = cpu_read_xer(env);
953 regs.msr = env->msr;
954 regs.pc = env->nip;
955
956 regs.srr0 = env->spr[SPR_SRR0];
957 regs.srr1 = env->spr[SPR_SRR1];
958
959 regs.sprg0 = env->spr[SPR_SPRG0];
960 regs.sprg1 = env->spr[SPR_SPRG1];
961 regs.sprg2 = env->spr[SPR_SPRG2];
962 regs.sprg3 = env->spr[SPR_SPRG3];
963 regs.sprg4 = env->spr[SPR_SPRG4];
964 regs.sprg5 = env->spr[SPR_SPRG5];
965 regs.sprg6 = env->spr[SPR_SPRG6];
966 regs.sprg7 = env->spr[SPR_SPRG7];
967
968 regs.pid = env->spr[SPR_BOOKE_PID];
969
970 for (i = 0;i < 32; i++)
971 regs.gpr[i] = env->gpr[i];
972
973 regs.cr = 0;
974 for (i = 0; i < 8; i++) {
975 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
976 }
977
978 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
979 if (ret < 0)
980 return ret;
981
982 kvm_put_fp(cs);
983
984 if (env->tlb_dirty) {
985 kvm_sw_tlb_put(cpu);
986 env->tlb_dirty = false;
987 }
988
989 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
990 ret = kvmppc_put_books_sregs(cpu);
991 if (ret < 0) {
992 return ret;
993 }
994 }
995
996 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
997 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
998 }
999
1000 if (cap_one_reg) {
1001 int i;
1002
1003 /* We deliberately ignore errors here, for kernels which have
1004 * the ONE_REG calls, but don't support the specific
1005 * registers, there's a reasonable chance things will still
1006 * work, at least until we try to migrate. */
1007 for (i = 0; i < 1024; i++) {
1008 uint64_t id = env->spr_cb[i].one_reg_id;
1009
1010 if (id != 0) {
1011 kvm_put_one_spr(cs, id, i);
1012 }
1013 }
1014
1015 #ifdef TARGET_PPC64
1016 if (msr_ts) {
1017 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1018 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1019 }
1020 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1021 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1022 }
1023 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1024 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1025 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1026 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1027 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1028 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1029 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1030 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1031 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1032 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1033 }
1034
1035 if (cap_papr) {
1036 if (kvm_put_vpa(cs) < 0) {
1037 DPRINTF("Warning: Unable to set VPA information to KVM\n");
1038 }
1039 }
1040
1041 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1042 #endif /* TARGET_PPC64 */
1043 }
1044
1045 return ret;
1046 }
1047
1048 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1049 {
1050 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1051 }
1052
1053 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1054 {
1055 CPUPPCState *env = &cpu->env;
1056 struct kvm_sregs sregs;
1057 int ret;
1058
1059 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1060 if (ret < 0) {
1061 return ret;
1062 }
1063
1064 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1065 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1066 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1067 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1068 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1069 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1070 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1071 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1072 env->spr[SPR_DECR] = sregs.u.e.dec;
1073 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1074 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1075 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1076 }
1077
1078 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1079 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1080 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1081 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1082 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1083 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1084 }
1085
1086 if (sregs.u.e.features & KVM_SREGS_E_64) {
1087 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1088 }
1089
1090 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1091 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1092 }
1093
1094 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1095 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1096 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1097 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1098 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1099 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1100 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1101 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1102 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1103 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1104 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1105 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1106 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1107 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1108 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1109 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1110 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1111 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1112 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1113 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1114 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1115 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1116 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1117 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1118 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1119 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1120 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1121 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1122 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1123 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1124 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1125 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1126 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1127
1128 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1129 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1130 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1131 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1132 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1133 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1134 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1135 }
1136
1137 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1138 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1139 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1140 }
1141
1142 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1143 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1144 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1145 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1146 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1147 }
1148 }
1149
1150 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1151 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1152 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1153 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1154 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1155 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1156 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1157 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1158 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1159 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1160 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1161 }
1162
1163 if (sregs.u.e.features & KVM_SREGS_EXP) {
1164 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1165 }
1166
1167 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1168 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1169 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1170 }
1171
1172 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1173 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1174 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1175 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1176
1177 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1178 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1179 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1180 }
1181 }
1182
1183 return 0;
1184 }
1185
1186 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1187 {
1188 CPUPPCState *env = &cpu->env;
1189 struct kvm_sregs sregs;
1190 int ret;
1191 int i;
1192
1193 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1194 if (ret < 0) {
1195 return ret;
1196 }
1197
1198 if (!env->external_htab) {
1199 ppc_store_sdr1(env, sregs.u.s.sdr1);
1200 }
1201
1202 /* Sync SLB */
1203 #ifdef TARGET_PPC64
1204 /*
1205 * The packed SLB array we get from KVM_GET_SREGS only contains
1206 * information about valid entries. So we flush our internal copy
1207 * to get rid of stale ones, then put all valid SLB entries back
1208 * in.
1209 */
1210 memset(env->slb, 0, sizeof(env->slb));
1211 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1212 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1213 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1214 /*
1215 * Only restore valid entries
1216 */
1217 if (rb & SLB_ESID_V) {
1218 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1219 }
1220 }
1221 #endif
1222
1223 /* Sync SRs */
1224 for (i = 0; i < 16; i++) {
1225 env->sr[i] = sregs.u.s.ppc32.sr[i];
1226 }
1227
1228 /* Sync BATs */
1229 for (i = 0; i < 8; i++) {
1230 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1231 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1232 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1233 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1234 }
1235
1236 return 0;
1237 }
1238
1239 int kvm_arch_get_registers(CPUState *cs)
1240 {
1241 PowerPCCPU *cpu = POWERPC_CPU(cs);
1242 CPUPPCState *env = &cpu->env;
1243 struct kvm_regs regs;
1244 uint32_t cr;
1245 int i, ret;
1246
1247 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1248 if (ret < 0)
1249 return ret;
1250
1251 cr = regs.cr;
1252 for (i = 7; i >= 0; i--) {
1253 env->crf[i] = cr & 15;
1254 cr >>= 4;
1255 }
1256
1257 env->ctr = regs.ctr;
1258 env->lr = regs.lr;
1259 cpu_write_xer(env, regs.xer);
1260 env->msr = regs.msr;
1261 env->nip = regs.pc;
1262
1263 env->spr[SPR_SRR0] = regs.srr0;
1264 env->spr[SPR_SRR1] = regs.srr1;
1265
1266 env->spr[SPR_SPRG0] = regs.sprg0;
1267 env->spr[SPR_SPRG1] = regs.sprg1;
1268 env->spr[SPR_SPRG2] = regs.sprg2;
1269 env->spr[SPR_SPRG3] = regs.sprg3;
1270 env->spr[SPR_SPRG4] = regs.sprg4;
1271 env->spr[SPR_SPRG5] = regs.sprg5;
1272 env->spr[SPR_SPRG6] = regs.sprg6;
1273 env->spr[SPR_SPRG7] = regs.sprg7;
1274
1275 env->spr[SPR_BOOKE_PID] = regs.pid;
1276
1277 for (i = 0;i < 32; i++)
1278 env->gpr[i] = regs.gpr[i];
1279
1280 kvm_get_fp(cs);
1281
1282 if (cap_booke_sregs) {
1283 ret = kvmppc_get_booke_sregs(cpu);
1284 if (ret < 0) {
1285 return ret;
1286 }
1287 }
1288
1289 if (cap_segstate) {
1290 ret = kvmppc_get_books_sregs(cpu);
1291 if (ret < 0) {
1292 return ret;
1293 }
1294 }
1295
1296 if (cap_hior) {
1297 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1298 }
1299
1300 if (cap_one_reg) {
1301 int i;
1302
1303 /* We deliberately ignore errors here, for kernels which have
1304 * the ONE_REG calls, but don't support the specific
1305 * registers, there's a reasonable chance things will still
1306 * work, at least until we try to migrate. */
1307 for (i = 0; i < 1024; i++) {
1308 uint64_t id = env->spr_cb[i].one_reg_id;
1309
1310 if (id != 0) {
1311 kvm_get_one_spr(cs, id, i);
1312 }
1313 }
1314
1315 #ifdef TARGET_PPC64
1316 if (msr_ts) {
1317 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1318 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1319 }
1320 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1321 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1322 }
1323 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1324 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1325 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1326 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1327 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1328 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1329 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1330 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1331 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1332 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1333 }
1334
1335 if (cap_papr) {
1336 if (kvm_get_vpa(cs) < 0) {
1337 DPRINTF("Warning: Unable to get VPA information from KVM\n");
1338 }
1339 }
1340
1341 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1342 #endif
1343 }
1344
1345 return 0;
1346 }
1347
1348 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1349 {
1350 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1351
1352 if (irq != PPC_INTERRUPT_EXT) {
1353 return 0;
1354 }
1355
1356 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1357 return 0;
1358 }
1359
1360 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1361
1362 return 0;
1363 }
1364
1365 #if defined(TARGET_PPCEMB)
1366 #define PPC_INPUT_INT PPC40x_INPUT_INT
1367 #elif defined(TARGET_PPC64)
1368 #define PPC_INPUT_INT PPC970_INPUT_INT
1369 #else
1370 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1371 #endif
1372
1373 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1374 {
1375 PowerPCCPU *cpu = POWERPC_CPU(cs);
1376 CPUPPCState *env = &cpu->env;
1377 int r;
1378 unsigned irq;
1379
1380 qemu_mutex_lock_iothread();
1381
1382 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
1383 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1384 if (!cap_interrupt_level &&
1385 run->ready_for_interrupt_injection &&
1386 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1387 (env->irq_input_state & (1<<PPC_INPUT_INT)))
1388 {
1389 /* For now KVM disregards the 'irq' argument. However, in the
1390 * future KVM could cache it in-kernel to avoid a heavyweight exit
1391 * when reading the UIC.
1392 */
1393 irq = KVM_INTERRUPT_SET;
1394
1395 DPRINTF("injected interrupt %d\n", irq);
1396 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1397 if (r < 0) {
1398 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1399 }
1400
1401 /* Always wake up soon in case the interrupt was level based */
1402 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1403 (NANOSECONDS_PER_SECOND / 50));
1404 }
1405
1406 /* We don't know if there are more interrupts pending after this. However,
1407 * the guest will return to userspace in the course of handling this one
1408 * anyways, so we will get a chance to deliver the rest. */
1409
1410 qemu_mutex_unlock_iothread();
1411 }
1412
1413 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1414 {
1415 return MEMTXATTRS_UNSPECIFIED;
1416 }
1417
1418 int kvm_arch_process_async_events(CPUState *cs)
1419 {
1420 return cs->halted;
1421 }
1422
1423 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1424 {
1425 CPUState *cs = CPU(cpu);
1426 CPUPPCState *env = &cpu->env;
1427
1428 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1429 cs->halted = 1;
1430 cs->exception_index = EXCP_HLT;
1431 }
1432
1433 return 0;
1434 }
1435
1436 /* map dcr access to existing qemu dcr emulation */
1437 static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
1438 {
1439 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
1440 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1441
1442 return 0;
1443 }
1444
1445 static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
1446 {
1447 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
1448 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1449
1450 return 0;
1451 }
1452
1453 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1454 {
1455 /* Mixed endian case is not handled */
1456 uint32_t sc = debug_inst_opcode;
1457
1458 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1459 sizeof(sc), 0) ||
1460 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1461 return -EINVAL;
1462 }
1463
1464 return 0;
1465 }
1466
1467 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1468 {
1469 uint32_t sc;
1470
1471 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1472 sc != debug_inst_opcode ||
1473 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1474 sizeof(sc), 1)) {
1475 return -EINVAL;
1476 }
1477
1478 return 0;
1479 }
1480
1481 static int find_hw_breakpoint(target_ulong addr, int type)
1482 {
1483 int n;
1484
1485 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1486 <= ARRAY_SIZE(hw_debug_points));
1487
1488 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1489 if (hw_debug_points[n].addr == addr &&
1490 hw_debug_points[n].type == type) {
1491 return n;
1492 }
1493 }
1494
1495 return -1;
1496 }
1497
1498 static int find_hw_watchpoint(target_ulong addr, int *flag)
1499 {
1500 int n;
1501
1502 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1503 if (n >= 0) {
1504 *flag = BP_MEM_ACCESS;
1505 return n;
1506 }
1507
1508 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1509 if (n >= 0) {
1510 *flag = BP_MEM_WRITE;
1511 return n;
1512 }
1513
1514 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1515 if (n >= 0) {
1516 *flag = BP_MEM_READ;
1517 return n;
1518 }
1519
1520 return -1;
1521 }
1522
1523 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1524 target_ulong len, int type)
1525 {
1526 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1527 return -ENOBUFS;
1528 }
1529
1530 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1531 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1532
1533 switch (type) {
1534 case GDB_BREAKPOINT_HW:
1535 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1536 return -ENOBUFS;
1537 }
1538
1539 if (find_hw_breakpoint(addr, type) >= 0) {
1540 return -EEXIST;
1541 }
1542
1543 nb_hw_breakpoint++;
1544 break;
1545
1546 case GDB_WATCHPOINT_WRITE:
1547 case GDB_WATCHPOINT_READ:
1548 case GDB_WATCHPOINT_ACCESS:
1549 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1550 return -ENOBUFS;
1551 }
1552
1553 if (find_hw_breakpoint(addr, type) >= 0) {
1554 return -EEXIST;
1555 }
1556
1557 nb_hw_watchpoint++;
1558 break;
1559
1560 default:
1561 return -ENOSYS;
1562 }
1563
1564 return 0;
1565 }
1566
1567 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1568 target_ulong len, int type)
1569 {
1570 int n;
1571
1572 n = find_hw_breakpoint(addr, type);
1573 if (n < 0) {
1574 return -ENOENT;
1575 }
1576
1577 switch (type) {
1578 case GDB_BREAKPOINT_HW:
1579 nb_hw_breakpoint--;
1580 break;
1581
1582 case GDB_WATCHPOINT_WRITE:
1583 case GDB_WATCHPOINT_READ:
1584 case GDB_WATCHPOINT_ACCESS:
1585 nb_hw_watchpoint--;
1586 break;
1587
1588 default:
1589 return -ENOSYS;
1590 }
1591 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1592
1593 return 0;
1594 }
1595
1596 void kvm_arch_remove_all_hw_breakpoints(void)
1597 {
1598 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1599 }
1600
1601 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1602 {
1603 int n;
1604
1605 /* Software Breakpoint updates */
1606 if (kvm_sw_breakpoints_active(cs)) {
1607 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1608 }
1609
1610 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1611 <= ARRAY_SIZE(hw_debug_points));
1612 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1613
1614 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1615 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1616 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1617 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1618 switch (hw_debug_points[n].type) {
1619 case GDB_BREAKPOINT_HW:
1620 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1621 break;
1622 case GDB_WATCHPOINT_WRITE:
1623 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1624 break;
1625 case GDB_WATCHPOINT_READ:
1626 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1627 break;
1628 case GDB_WATCHPOINT_ACCESS:
1629 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1630 KVMPPC_DEBUG_WATCH_READ;
1631 break;
1632 default:
1633 cpu_abort(cs, "Unsupported breakpoint type\n");
1634 }
1635 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1636 }
1637 }
1638 }
1639
1640 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1641 {
1642 CPUState *cs = CPU(cpu);
1643 CPUPPCState *env = &cpu->env;
1644 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1645 int handle = 0;
1646 int n;
1647 int flag = 0;
1648
1649 if (cs->singlestep_enabled) {
1650 handle = 1;
1651 } else if (arch_info->status) {
1652 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1653 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1654 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1655 if (n >= 0) {
1656 handle = 1;
1657 }
1658 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1659 KVMPPC_DEBUG_WATCH_WRITE)) {
1660 n = find_hw_watchpoint(arch_info->address, &flag);
1661 if (n >= 0) {
1662 handle = 1;
1663 cs->watchpoint_hit = &hw_watchpoint;
1664 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1665 hw_watchpoint.flags = flag;
1666 }
1667 }
1668 }
1669 } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1670 handle = 1;
1671 } else {
1672 /* QEMU is not able to handle debug exception, so inject
1673 * program exception to guest;
1674 * Yes program exception NOT debug exception !!
1675 * When QEMU is using debug resources then debug exception must
1676 * be always set. To achieve this we set MSR_DE and also set
1677 * MSRP_DEP so guest cannot change MSR_DE.
1678 * When emulating debug resource for guest we want guest
1679 * to control MSR_DE (enable/disable debug interrupt on need).
1680 * Supporting both configurations are NOT possible.
1681 * So the result is that we cannot share debug resources
1682 * between QEMU and Guest on BOOKE architecture.
1683 * In the current design QEMU gets the priority over guest,
1684 * this means that if QEMU is using debug resources then guest
1685 * cannot use them;
1686 * For software breakpoint QEMU uses a privileged instruction;
1687 * So there cannot be any reason that we are here for guest
1688 * set debug exception, only possibility is guest executed a
1689 * privileged / illegal instruction and that's why we are
1690 * injecting a program interrupt.
1691 */
1692
1693 cpu_synchronize_state(cs);
1694 /* env->nip is PC, so increment this by 4 to use
1695 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1696 */
1697 env->nip += 4;
1698 cs->exception_index = POWERPC_EXCP_PROGRAM;
1699 env->error_code = POWERPC_EXCP_INVAL;
1700 ppc_cpu_do_interrupt(cs);
1701 }
1702
1703 return handle;
1704 }
1705
1706 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1707 {
1708 PowerPCCPU *cpu = POWERPC_CPU(cs);
1709 CPUPPCState *env = &cpu->env;
1710 int ret;
1711
1712 qemu_mutex_lock_iothread();
1713
1714 switch (run->exit_reason) {
1715 case KVM_EXIT_DCR:
1716 if (run->dcr.is_write) {
1717 DPRINTF("handle dcr write\n");
1718 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1719 } else {
1720 DPRINTF("handle dcr read\n");
1721 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1722 }
1723 break;
1724 case KVM_EXIT_HLT:
1725 DPRINTF("handle halt\n");
1726 ret = kvmppc_handle_halt(cpu);
1727 break;
1728 #if defined(TARGET_PPC64)
1729 case KVM_EXIT_PAPR_HCALL:
1730 DPRINTF("handle PAPR hypercall\n");
1731 run->papr_hcall.ret = spapr_hypercall(cpu,
1732 run->papr_hcall.nr,
1733 run->papr_hcall.args);
1734 ret = 0;
1735 break;
1736 #endif
1737 case KVM_EXIT_EPR:
1738 DPRINTF("handle epr\n");
1739 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1740 ret = 0;
1741 break;
1742 case KVM_EXIT_WATCHDOG:
1743 DPRINTF("handle watchdog expiry\n");
1744 watchdog_perform_action();
1745 ret = 0;
1746 break;
1747
1748 case KVM_EXIT_DEBUG:
1749 DPRINTF("handle debug exception\n");
1750 if (kvm_handle_debug(cpu, run)) {
1751 ret = EXCP_DEBUG;
1752 break;
1753 }
1754 /* re-enter, this exception was guest-internal */
1755 ret = 0;
1756 break;
1757
1758 default:
1759 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1760 ret = -1;
1761 break;
1762 }
1763
1764 qemu_mutex_unlock_iothread();
1765 return ret;
1766 }
1767
1768 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1769 {
1770 CPUState *cs = CPU(cpu);
1771 uint32_t bits = tsr_bits;
1772 struct kvm_one_reg reg = {
1773 .id = KVM_REG_PPC_OR_TSR,
1774 .addr = (uintptr_t) &bits,
1775 };
1776
1777 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1778 }
1779
1780 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1781 {
1782
1783 CPUState *cs = CPU(cpu);
1784 uint32_t bits = tsr_bits;
1785 struct kvm_one_reg reg = {
1786 .id = KVM_REG_PPC_CLEAR_TSR,
1787 .addr = (uintptr_t) &bits,
1788 };
1789
1790 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1791 }
1792
1793 int kvmppc_set_tcr(PowerPCCPU *cpu)
1794 {
1795 CPUState *cs = CPU(cpu);
1796 CPUPPCState *env = &cpu->env;
1797 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1798
1799 struct kvm_one_reg reg = {
1800 .id = KVM_REG_PPC_TCR,
1801 .addr = (uintptr_t) &tcr,
1802 };
1803
1804 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1805 }
1806
1807 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1808 {
1809 CPUState *cs = CPU(cpu);
1810 int ret;
1811
1812 if (!kvm_enabled()) {
1813 return -1;
1814 }
1815
1816 if (!cap_ppc_watchdog) {
1817 printf("warning: KVM does not support watchdog");
1818 return -1;
1819 }
1820
1821 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1822 if (ret < 0) {
1823 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1824 __func__, strerror(-ret));
1825 return ret;
1826 }
1827
1828 return ret;
1829 }
1830
1831 static int read_cpuinfo(const char *field, char *value, int len)
1832 {
1833 FILE *f;
1834 int ret = -1;
1835 int field_len = strlen(field);
1836 char line[512];
1837
1838 f = fopen("/proc/cpuinfo", "r");
1839 if (!f) {
1840 return -1;
1841 }
1842
1843 do {
1844 if (!fgets(line, sizeof(line), f)) {
1845 break;
1846 }
1847 if (!strncmp(line, field, field_len)) {
1848 pstrcpy(value, len, line);
1849 ret = 0;
1850 break;
1851 }
1852 } while(*line);
1853
1854 fclose(f);
1855
1856 return ret;
1857 }
1858
1859 uint32_t kvmppc_get_tbfreq(void)
1860 {
1861 char line[512];
1862 char *ns;
1863 uint32_t retval = NANOSECONDS_PER_SECOND;
1864
1865 if (read_cpuinfo("timebase", line, sizeof(line))) {
1866 return retval;
1867 }
1868
1869 if (!(ns = strchr(line, ':'))) {
1870 return retval;
1871 }
1872
1873 ns++;
1874
1875 return atoi(ns);
1876 }
1877
1878 bool kvmppc_get_host_serial(char **value)
1879 {
1880 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1881 NULL);
1882 }
1883
1884 bool kvmppc_get_host_model(char **value)
1885 {
1886 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1887 }
1888
1889 /* Try to find a device tree node for a CPU with clock-frequency property */
1890 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1891 {
1892 struct dirent *dirp;
1893 DIR *dp;
1894
1895 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
1896 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1897 return -1;
1898 }
1899
1900 buf[0] = '\0';
1901 while ((dirp = readdir(dp)) != NULL) {
1902 FILE *f;
1903 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1904 dirp->d_name);
1905 f = fopen(buf, "r");
1906 if (f) {
1907 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1908 fclose(f);
1909 break;
1910 }
1911 buf[0] = '\0';
1912 }
1913 closedir(dp);
1914 if (buf[0] == '\0') {
1915 printf("Unknown host!\n");
1916 return -1;
1917 }
1918
1919 return 0;
1920 }
1921
1922 static uint64_t kvmppc_read_int_dt(const char *filename)
1923 {
1924 union {
1925 uint32_t v32;
1926 uint64_t v64;
1927 } u;
1928 FILE *f;
1929 int len;
1930
1931 f = fopen(filename, "rb");
1932 if (!f) {
1933 return -1;
1934 }
1935
1936 len = fread(&u, 1, sizeof(u), f);
1937 fclose(f);
1938 switch (len) {
1939 case 4:
1940 /* property is a 32-bit quantity */
1941 return be32_to_cpu(u.v32);
1942 case 8:
1943 return be64_to_cpu(u.v64);
1944 }
1945
1946 return 0;
1947 }
1948
1949 /* Read a CPU node property from the host device tree that's a single
1950 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1951 * (can't find or open the property, or doesn't understand the
1952 * format) */
1953 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1954 {
1955 char buf[PATH_MAX], *tmp;
1956 uint64_t val;
1957
1958 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1959 return -1;
1960 }
1961
1962 tmp = g_strdup_printf("%s/%s", buf, propname);
1963 val = kvmppc_read_int_dt(tmp);
1964 g_free(tmp);
1965
1966 return val;
1967 }
1968
1969 uint64_t kvmppc_get_clockfreq(void)
1970 {
1971 return kvmppc_read_int_cpu_dt("clock-frequency");
1972 }
1973
1974 uint32_t kvmppc_get_vmx(void)
1975 {
1976 return kvmppc_read_int_cpu_dt("ibm,vmx");
1977 }
1978
1979 uint32_t kvmppc_get_dfp(void)
1980 {
1981 return kvmppc_read_int_cpu_dt("ibm,dfp");
1982 }
1983
1984 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1985 {
1986 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1987 CPUState *cs = CPU(cpu);
1988
1989 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1990 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1991 return 0;
1992 }
1993
1994 return 1;
1995 }
1996
1997 int kvmppc_get_hasidle(CPUPPCState *env)
1998 {
1999 struct kvm_ppc_pvinfo pvinfo;
2000
2001 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
2002 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
2003 return 1;
2004 }
2005
2006 return 0;
2007 }
2008
2009 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2010 {
2011 uint32_t *hc = (uint32_t*)buf;
2012 struct kvm_ppc_pvinfo pvinfo;
2013
2014 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2015 memcpy(buf, pvinfo.hcall, buf_len);
2016 return 0;
2017 }
2018
2019 /*
2020 * Fallback to always fail hypercalls regardless of endianness:
2021 *
2022 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2023 * li r3, -1
2024 * b .+8 (becomes nop in wrong endian)
2025 * bswap32(li r3, -1)
2026 */
2027
2028 hc[0] = cpu_to_be32(0x08000048);
2029 hc[1] = cpu_to_be32(0x3860ffff);
2030 hc[2] = cpu_to_be32(0x48000008);
2031 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2032
2033 return 1;
2034 }
2035
2036 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2037 {
2038 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2039 }
2040
2041 void kvmppc_enable_logical_ci_hcalls(void)
2042 {
2043 /*
2044 * FIXME: it would be nice if we could detect the cases where
2045 * we're using a device which requires the in kernel
2046 * implementation of these hcalls, but the kernel lacks them and
2047 * produce a warning.
2048 */
2049 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2050 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2051 }
2052
2053 void kvmppc_enable_set_mode_hcall(void)
2054 {
2055 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2056 }
2057
2058 void kvmppc_set_papr(PowerPCCPU *cpu)
2059 {
2060 CPUState *cs = CPU(cpu);
2061 int ret;
2062
2063 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2064 if (ret) {
2065 error_report("This vCPU type or KVM version does not support PAPR");
2066 exit(1);
2067 }
2068
2069 /* Update the capability flag so we sync the right information
2070 * with kvm */
2071 cap_papr = 1;
2072 }
2073
2074 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version)
2075 {
2076 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version);
2077 }
2078
2079 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2080 {
2081 CPUState *cs = CPU(cpu);
2082 int ret;
2083
2084 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2085 if (ret && mpic_proxy) {
2086 error_report("This KVM version does not support EPR");
2087 exit(1);
2088 }
2089 }
2090
2091 int kvmppc_smt_threads(void)
2092 {
2093 return cap_ppc_smt ? cap_ppc_smt : 1;
2094 }
2095
2096 #ifdef TARGET_PPC64
2097 off_t kvmppc_alloc_rma(void **rma)
2098 {
2099 off_t size;
2100 int fd;
2101 struct kvm_allocate_rma ret;
2102
2103 /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
2104 * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
2105 * not necessary on this hardware
2106 * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
2107 *
2108 * FIXME: We should allow the user to force contiguous RMA
2109 * allocation in the cap_ppc_rma==1 case.
2110 */
2111 if (cap_ppc_rma < 2) {
2112 return 0;
2113 }
2114
2115 fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
2116 if (fd < 0) {
2117 fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
2118 strerror(errno));
2119 return -1;
2120 }
2121
2122 size = MIN(ret.rma_size, 256ul << 20);
2123
2124 *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2125 if (*rma == MAP_FAILED) {
2126 fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
2127 return -1;
2128 };
2129
2130 return size;
2131 }
2132
2133 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2134 {
2135 struct kvm_ppc_smmu_info info;
2136 long rampagesize, best_page_shift;
2137 int i;
2138
2139 if (cap_ppc_rma >= 2) {
2140 return current_size;
2141 }
2142
2143 /* Find the largest hardware supported page size that's less than
2144 * or equal to the (logical) backing page size of guest RAM */
2145 kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
2146 rampagesize = getrampagesize();
2147 best_page_shift = 0;
2148
2149 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2150 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2151
2152 if (!sps->page_shift) {
2153 continue;
2154 }
2155
2156 if ((sps->page_shift > best_page_shift)
2157 && ((1UL << sps->page_shift) <= rampagesize)) {
2158 best_page_shift = sps->page_shift;
2159 }
2160 }
2161
2162 return MIN(current_size,
2163 1ULL << (best_page_shift + hash_shift - 7));
2164 }
2165 #endif
2166
2167 bool kvmppc_spapr_use_multitce(void)
2168 {
2169 return cap_spapr_multitce;
2170 }
2171
2172 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd,
2173 bool need_vfio)
2174 {
2175 struct kvm_create_spapr_tce args = {
2176 .liobn = liobn,
2177 .window_size = window_size,
2178 };
2179 long len;
2180 int fd;
2181 void *table;
2182
2183 /* Must set fd to -1 so we don't try to munmap when called for
2184 * destroying the table, which the upper layers -will- do
2185 */
2186 *pfd = -1;
2187 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2188 return NULL;
2189 }
2190
2191 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2192 if (fd < 0) {
2193 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2194 liobn);
2195 return NULL;
2196 }
2197
2198 len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
2199 /* FIXME: round this up to page size */
2200
2201 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2202 if (table == MAP_FAILED) {
2203 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2204 liobn);
2205 close(fd);
2206 return NULL;
2207 }
2208
2209 *pfd = fd;
2210 return table;
2211 }
2212
2213 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2214 {
2215 long len;
2216
2217 if (fd < 0) {
2218 return -1;
2219 }
2220
2221 len = nb_table * sizeof(uint64_t);
2222 if ((munmap(table, len) < 0) ||
2223 (close(fd) < 0)) {
2224 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2225 strerror(errno));
2226 /* Leak the table */
2227 }
2228
2229 return 0;
2230 }
2231
2232 int kvmppc_reset_htab(int shift_hint)
2233 {
2234 uint32_t shift = shift_hint;
2235
2236 if (!kvm_enabled()) {
2237 /* Full emulation, tell caller to allocate htab itself */
2238 return 0;
2239 }
2240 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2241 int ret;
2242 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2243 if (ret == -ENOTTY) {
2244 /* At least some versions of PR KVM advertise the
2245 * capability, but don't implement the ioctl(). Oops.
2246 * Return 0 so that we allocate the htab in qemu, as is
2247 * correct for PR. */
2248 return 0;
2249 } else if (ret < 0) {
2250 return ret;
2251 }
2252 return shift;
2253 }
2254
2255 /* We have a kernel that predates the htab reset calls. For PR
2256 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2257 * this era, it has allocated a 16MB fixed size hash table
2258 * already. Kernels of this era have the GET_PVINFO capability
2259 * only on PR, so we use this hack to determine the right
2260 * answer */
2261 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
2262 /* PR - tell caller to allocate htab */
2263 return 0;
2264 } else {
2265 /* HV - assume 16MB kernel allocated htab */
2266 return 24;
2267 }
2268 }
2269
2270 static inline uint32_t mfpvr(void)
2271 {
2272 uint32_t pvr;
2273
2274 asm ("mfpvr %0"
2275 : "=r"(pvr));
2276 return pvr;
2277 }
2278
2279 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2280 {
2281 if (on) {
2282 *word |= flags;
2283 } else {
2284 *word &= ~flags;
2285 }
2286 }
2287
2288 static void kvmppc_host_cpu_initfn(Object *obj)
2289 {
2290 assert(kvm_enabled());
2291 }
2292
2293 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2294 {
2295 DeviceClass *dc = DEVICE_CLASS(oc);
2296 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2297 uint32_t vmx = kvmppc_get_vmx();
2298 uint32_t dfp = kvmppc_get_dfp();
2299 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2300 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2301
2302 /* Now fix up the class with information we can query from the host */
2303 pcc->pvr = mfpvr();
2304
2305 if (vmx != -1) {
2306 /* Only override when we know what the host supports */
2307 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
2308 alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
2309 }
2310 if (dfp != -1) {
2311 /* Only override when we know what the host supports */
2312 alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
2313 }
2314
2315 if (dcache_size != -1) {
2316 pcc->l1_dcache_size = dcache_size;
2317 }
2318
2319 if (icache_size != -1) {
2320 pcc->l1_icache_size = icache_size;
2321 }
2322
2323 /* Reason: kvmppc_host_cpu_initfn() dies when !kvm_enabled() */
2324 dc->cannot_destroy_with_object_finalize_yet = true;
2325 }
2326
2327 bool kvmppc_has_cap_epr(void)
2328 {
2329 return cap_epr;
2330 }
2331
2332 bool kvmppc_has_cap_htab_fd(void)
2333 {
2334 return cap_htab_fd;
2335 }
2336
2337 bool kvmppc_has_cap_fixup_hcalls(void)
2338 {
2339 return cap_fixup_hcalls;
2340 }
2341
2342 static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
2343 {
2344 ObjectClass *oc = OBJECT_CLASS(pcc);
2345
2346 while (oc && !object_class_is_abstract(oc)) {
2347 oc = object_class_get_parent(oc);
2348 }
2349 assert(oc);
2350
2351 return POWERPC_CPU_CLASS(oc);
2352 }
2353
2354 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2355 {
2356 uint32_t host_pvr = mfpvr();
2357 PowerPCCPUClass *pvr_pcc;
2358
2359 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2360 if (pvr_pcc == NULL) {
2361 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2362 }
2363
2364 return pvr_pcc;
2365 }
2366
2367 #if defined(TARGET_PPC64)
2368 static void spapr_cpu_core_host_initfn(Object *obj)
2369 {
2370 sPAPRCPUCore *core = SPAPR_CPU_CORE(obj);
2371 char *name = g_strdup_printf("%s-" TYPE_POWERPC_CPU, "host");
2372 ObjectClass *oc = object_class_by_name(name);
2373
2374 g_assert(oc);
2375 g_free((void *)name);
2376 core->cpu_class = oc;
2377 }
2378 #endif
2379
2380 static int kvm_ppc_register_host_cpu_type(void)
2381 {
2382 TypeInfo type_info = {
2383 .name = TYPE_HOST_POWERPC_CPU,
2384 .instance_init = kvmppc_host_cpu_initfn,
2385 .class_init = kvmppc_host_cpu_class_init,
2386 };
2387 PowerPCCPUClass *pvr_pcc;
2388 DeviceClass *dc;
2389
2390 pvr_pcc = kvm_ppc_get_host_cpu_class();
2391 if (pvr_pcc == NULL) {
2392 return -1;
2393 }
2394 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2395 type_register(&type_info);
2396
2397 /* Register generic family CPU class for a family */
2398 pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
2399 dc = DEVICE_CLASS(pvr_pcc);
2400 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2401 type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
2402 type_register(&type_info);
2403
2404 #if defined(TARGET_PPC64)
2405 type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, "host");
2406 type_info.parent = TYPE_SPAPR_CPU_CORE,
2407 type_info.instance_size = sizeof(sPAPRCPUCore),
2408 type_info.instance_init = spapr_cpu_core_host_initfn,
2409 type_info.class_init = NULL;
2410 type_register(&type_info);
2411 g_free((void *)type_info.name);
2412
2413 /* Register generic spapr CPU family class for current host CPU type */
2414 type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, dc->desc);
2415 type_register(&type_info);
2416 g_free((void *)type_info.name);
2417 #endif
2418
2419 return 0;
2420 }
2421
2422 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2423 {
2424 struct kvm_rtas_token_args args = {
2425 .token = token,
2426 };
2427
2428 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2429 return -ENOENT;
2430 }
2431
2432 strncpy(args.name, function, sizeof(args.name));
2433
2434 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2435 }
2436
2437 int kvmppc_get_htab_fd(bool write)
2438 {
2439 struct kvm_get_htab_fd s = {
2440 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2441 .start_index = 0,
2442 };
2443
2444 if (!cap_htab_fd) {
2445 fprintf(stderr, "KVM version doesn't support saving the hash table\n");
2446 return -1;
2447 }
2448
2449 return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2450 }
2451
2452 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2453 {
2454 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2455 uint8_t buf[bufsize];
2456 ssize_t rc;
2457
2458 do {
2459 rc = read(fd, buf, bufsize);
2460 if (rc < 0) {
2461 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2462 strerror(errno));
2463 return rc;
2464 } else if (rc) {
2465 uint8_t *buffer = buf;
2466 ssize_t n = rc;
2467 while (n) {
2468 struct kvm_get_htab_header *head =
2469 (struct kvm_get_htab_header *) buffer;
2470 size_t chunksize = sizeof(*head) +
2471 HASH_PTE_SIZE_64 * head->n_valid;
2472
2473 qemu_put_be32(f, head->index);
2474 qemu_put_be16(f, head->n_valid);
2475 qemu_put_be16(f, head->n_invalid);
2476 qemu_put_buffer(f, (void *)(head + 1),
2477 HASH_PTE_SIZE_64 * head->n_valid);
2478
2479 buffer += chunksize;
2480 n -= chunksize;
2481 }
2482 }
2483 } while ((rc != 0)
2484 && ((max_ns < 0)
2485 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2486
2487 return (rc == 0) ? 1 : 0;
2488 }
2489
2490 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2491 uint16_t n_valid, uint16_t n_invalid)
2492 {
2493 struct kvm_get_htab_header *buf;
2494 size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
2495 ssize_t rc;
2496
2497 buf = alloca(chunksize);
2498 buf->index = index;
2499 buf->n_valid = n_valid;
2500 buf->n_invalid = n_invalid;
2501
2502 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
2503
2504 rc = write(fd, buf, chunksize);
2505 if (rc < 0) {
2506 fprintf(stderr, "Error writing KVM hash table: %s\n",
2507 strerror(errno));
2508 return rc;
2509 }
2510 if (rc != chunksize) {
2511 /* We should never get a short write on a single chunk */
2512 fprintf(stderr, "Short write, restoring KVM hash table\n");
2513 return -1;
2514 }
2515 return 0;
2516 }
2517
2518 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2519 {
2520 return true;
2521 }
2522
2523 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2524 {
2525 return 1;
2526 }
2527
2528 int kvm_arch_on_sigbus(int code, void *addr)
2529 {
2530 return 1;
2531 }
2532
2533 void kvm_arch_init_irq_routing(KVMState *s)
2534 {
2535 }
2536
2537 struct kvm_get_htab_buf {
2538 struct kvm_get_htab_header header;
2539 /*
2540 * We require one extra byte for read
2541 */
2542 target_ulong hpte[(HPTES_PER_GROUP * 2) + 1];
2543 };
2544
2545 uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index)
2546 {
2547 int htab_fd;
2548 struct kvm_get_htab_fd ghf;
2549 struct kvm_get_htab_buf *hpte_buf;
2550
2551 ghf.flags = 0;
2552 ghf.start_index = pte_index;
2553 htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
2554 if (htab_fd < 0) {
2555 goto error_out;
2556 }
2557
2558 hpte_buf = g_malloc0(sizeof(*hpte_buf));
2559 /*
2560 * Read the hpte group
2561 */
2562 if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) {
2563 goto out_close;
2564 }
2565
2566 close(htab_fd);
2567 return (uint64_t)(uintptr_t) hpte_buf->hpte;
2568
2569 out_close:
2570 g_free(hpte_buf);
2571 close(htab_fd);
2572 error_out:
2573 return 0;
2574 }
2575
2576 void kvmppc_hash64_free_pteg(uint64_t token)
2577 {
2578 struct kvm_get_htab_buf *htab_buf;
2579
2580 htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf,
2581 hpte);
2582 g_free(htab_buf);
2583 return;
2584 }
2585
2586 void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index,
2587 target_ulong pte0, target_ulong pte1)
2588 {
2589 int htab_fd;
2590 struct kvm_get_htab_fd ghf;
2591 struct kvm_get_htab_buf hpte_buf;
2592
2593 ghf.flags = 0;
2594 ghf.start_index = 0; /* Ignored */
2595 htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
2596 if (htab_fd < 0) {
2597 goto error_out;
2598 }
2599
2600 hpte_buf.header.n_valid = 1;
2601 hpte_buf.header.n_invalid = 0;
2602 hpte_buf.header.index = pte_index;
2603 hpte_buf.hpte[0] = pte0;
2604 hpte_buf.hpte[1] = pte1;
2605 /*
2606 * Write the hpte entry.
2607 * CAUTION: write() has the warn_unused_result attribute. Hence we
2608 * need to check the return value, even though we do nothing.
2609 */
2610 if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) {
2611 goto out_close;
2612 }
2613
2614 out_close:
2615 close(htab_fd);
2616 return;
2617
2618 error_out:
2619 return;
2620 }
2621
2622 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2623 uint64_t address, uint32_t data, PCIDevice *dev)
2624 {
2625 return 0;
2626 }
2627
2628 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2629 int vector, PCIDevice *dev)
2630 {
2631 return 0;
2632 }
2633
2634 int kvm_arch_release_virq_post(int virq)
2635 {
2636 return 0;
2637 }
2638
2639 int kvm_arch_msi_data_to_gsi(uint32_t data)
2640 {
2641 return data & 0xffff;
2642 }
2643
2644 int kvmppc_enable_hwrng(void)
2645 {
2646 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2647 return -1;
2648 }
2649
2650 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2651 }