]> git.proxmox.com Git - mirror_qemu.git/blob - target-ppc/op_helper.c
Allow use of SPE extension by all PowerPC targets,
[mirror_qemu.git] / target-ppc / op_helper.c
1 /*
2 * PowerPC emulation helpers for qemu.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec.h"
21 #include "host-utils.h"
22
23 #include "helper_regs.h"
24 #include "op_helper.h"
25
26 #define MEMSUFFIX _raw
27 #include "op_helper.h"
28 #include "op_helper_mem.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #define MEMSUFFIX _user
31 #include "op_helper.h"
32 #include "op_helper_mem.h"
33 #define MEMSUFFIX _kernel
34 #include "op_helper.h"
35 #include "op_helper_mem.h"
36 #if defined(TARGET_PPC64H)
37 #define MEMSUFFIX _hypv
38 #include "op_helper.h"
39 #include "op_helper_mem.h"
40 #endif
41 #endif
42
43 //#define DEBUG_OP
44 //#define DEBUG_EXCEPTIONS
45 //#define DEBUG_SOFTWARE_TLB
46
47 /*****************************************************************************/
48 /* Exceptions processing helpers */
49
50 void do_raise_exception_err (uint32_t exception, int error_code)
51 {
52 #if 0
53 printf("Raise exception %3x code : %d\n", exception, error_code);
54 #endif
55 env->exception_index = exception;
56 env->error_code = error_code;
57 cpu_loop_exit();
58 }
59
60 void do_raise_exception (uint32_t exception)
61 {
62 do_raise_exception_err(exception, 0);
63 }
64
65 void cpu_dump_EA (target_ulong EA);
66 void do_print_mem_EA (target_ulong EA)
67 {
68 cpu_dump_EA(EA);
69 }
70
71 /*****************************************************************************/
72 /* Registers load and stores */
73 void do_load_cr (void)
74 {
75 T0 = (env->crf[0] << 28) |
76 (env->crf[1] << 24) |
77 (env->crf[2] << 20) |
78 (env->crf[3] << 16) |
79 (env->crf[4] << 12) |
80 (env->crf[5] << 8) |
81 (env->crf[6] << 4) |
82 (env->crf[7] << 0);
83 }
84
85 void do_store_cr (uint32_t mask)
86 {
87 int i, sh;
88
89 for (i = 0, sh = 7; i < 8; i++, sh--) {
90 if (mask & (1 << sh))
91 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
92 }
93 }
94
95 #if defined(TARGET_PPC64)
96 void do_store_pri (int prio)
97 {
98 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
99 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
100 }
101 #endif
102
103 target_ulong ppc_load_dump_spr (int sprn)
104 {
105 if (loglevel != 0) {
106 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
107 sprn, sprn, env->spr[sprn]);
108 }
109
110 return env->spr[sprn];
111 }
112
113 void ppc_store_dump_spr (int sprn, target_ulong val)
114 {
115 if (loglevel != 0) {
116 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
117 sprn, sprn, env->spr[sprn], val);
118 }
119 env->spr[sprn] = val;
120 }
121
122 /*****************************************************************************/
123 /* Fixed point operations helpers */
124 void do_adde (void)
125 {
126 T2 = T0;
127 T0 += T1 + xer_ca;
128 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
129 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
130 xer_ca = 0;
131 } else {
132 xer_ca = 1;
133 }
134 }
135
136 #if defined(TARGET_PPC64)
137 void do_adde_64 (void)
138 {
139 T2 = T0;
140 T0 += T1 + xer_ca;
141 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
142 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
143 xer_ca = 0;
144 } else {
145 xer_ca = 1;
146 }
147 }
148 #endif
149
150 void do_addmeo (void)
151 {
152 T1 = T0;
153 T0 += xer_ca + (-1);
154 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
155 xer_so |= xer_ov;
156 if (likely(T1 != 0))
157 xer_ca = 1;
158 else
159 xer_ca = 0;
160 }
161
162 #if defined(TARGET_PPC64)
163 void do_addmeo_64 (void)
164 {
165 T1 = T0;
166 T0 += xer_ca + (-1);
167 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
168 xer_so |= xer_ov;
169 if (likely(T1 != 0))
170 xer_ca = 1;
171 else
172 xer_ca = 0;
173 }
174 #endif
175
176 void do_divwo (void)
177 {
178 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
179 (int32_t)T1 == 0))) {
180 xer_ov = 0;
181 T0 = (int32_t)T0 / (int32_t)T1;
182 } else {
183 xer_ov = 1;
184 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
185 }
186 xer_so |= xer_ov;
187 }
188
189 #if defined(TARGET_PPC64)
190 void do_divdo (void)
191 {
192 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
193 (int64_t)T1 == 0))) {
194 xer_ov = 0;
195 T0 = (int64_t)T0 / (int64_t)T1;
196 } else {
197 xer_ov = 1;
198 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
199 }
200 xer_so |= xer_ov;
201 }
202 #endif
203
204 void do_divwuo (void)
205 {
206 if (likely((uint32_t)T1 != 0)) {
207 xer_ov = 0;
208 T0 = (uint32_t)T0 / (uint32_t)T1;
209 } else {
210 xer_ov = 1;
211 xer_so = 1;
212 T0 = 0;
213 }
214 }
215
216 #if defined(TARGET_PPC64)
217 void do_divduo (void)
218 {
219 if (likely((uint64_t)T1 != 0)) {
220 xer_ov = 0;
221 T0 = (uint64_t)T0 / (uint64_t)T1;
222 } else {
223 xer_ov = 1;
224 xer_so = 1;
225 T0 = 0;
226 }
227 }
228 #endif
229
230 void do_mullwo (void)
231 {
232 int64_t res = (int64_t)T0 * (int64_t)T1;
233
234 if (likely((int32_t)res == res)) {
235 xer_ov = 0;
236 } else {
237 xer_ov = 1;
238 xer_so = 1;
239 }
240 T0 = (int32_t)res;
241 }
242
243 #if defined(TARGET_PPC64)
244 void do_mulldo (void)
245 {
246 int64_t th;
247 uint64_t tl;
248
249 muls64(&tl, &th, T0, T1);
250 T0 = (int64_t)tl;
251 /* If th != 0 && th != -1, then we had an overflow */
252 if (likely((uint64_t)(th + 1) <= 1)) {
253 xer_ov = 0;
254 } else {
255 xer_ov = 1;
256 }
257 xer_so |= xer_ov;
258 }
259 #endif
260
261 void do_nego (void)
262 {
263 if (likely((int32_t)T0 != INT32_MIN)) {
264 xer_ov = 0;
265 T0 = -(int32_t)T0;
266 } else {
267 xer_ov = 1;
268 xer_so = 1;
269 }
270 }
271
272 #if defined(TARGET_PPC64)
273 void do_nego_64 (void)
274 {
275 if (likely((int64_t)T0 != INT64_MIN)) {
276 xer_ov = 0;
277 T0 = -(int64_t)T0;
278 } else {
279 xer_ov = 1;
280 xer_so = 1;
281 }
282 }
283 #endif
284
285 void do_subfe (void)
286 {
287 T0 = T1 + ~T0 + xer_ca;
288 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
289 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
290 xer_ca = 0;
291 } else {
292 xer_ca = 1;
293 }
294 }
295
296 #if defined(TARGET_PPC64)
297 void do_subfe_64 (void)
298 {
299 T0 = T1 + ~T0 + xer_ca;
300 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
301 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
302 xer_ca = 0;
303 } else {
304 xer_ca = 1;
305 }
306 }
307 #endif
308
309 void do_subfmeo (void)
310 {
311 T1 = T0;
312 T0 = ~T0 + xer_ca - 1;
313 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
314 xer_so |= xer_ov;
315 if (likely((uint32_t)T1 != UINT32_MAX))
316 xer_ca = 1;
317 else
318 xer_ca = 0;
319 }
320
321 #if defined(TARGET_PPC64)
322 void do_subfmeo_64 (void)
323 {
324 T1 = T0;
325 T0 = ~T0 + xer_ca - 1;
326 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
327 xer_so |= xer_ov;
328 if (likely((uint64_t)T1 != UINT64_MAX))
329 xer_ca = 1;
330 else
331 xer_ca = 0;
332 }
333 #endif
334
335 void do_subfzeo (void)
336 {
337 T1 = T0;
338 T0 = ~T0 + xer_ca;
339 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
340 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
341 xer_so |= xer_ov;
342 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
343 xer_ca = 0;
344 } else {
345 xer_ca = 1;
346 }
347 }
348
349 #if defined(TARGET_PPC64)
350 void do_subfzeo_64 (void)
351 {
352 T1 = T0;
353 T0 = ~T0 + xer_ca;
354 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
355 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
356 xer_so |= xer_ov;
357 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
358 xer_ca = 0;
359 } else {
360 xer_ca = 1;
361 }
362 }
363 #endif
364
365 void do_cntlzw (void)
366 {
367 T0 = clz32(T0);
368 }
369
370 #if defined(TARGET_PPC64)
371 void do_cntlzd (void)
372 {
373 T0 = clz64(T0);
374 }
375 #endif
376
377 /* shift right arithmetic helper */
378 void do_sraw (void)
379 {
380 int32_t ret;
381
382 if (likely(!(T1 & 0x20UL))) {
383 if (likely((uint32_t)T1 != 0)) {
384 ret = (int32_t)T0 >> (T1 & 0x1fUL);
385 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
386 xer_ca = 0;
387 } else {
388 xer_ca = 1;
389 }
390 } else {
391 ret = T0;
392 xer_ca = 0;
393 }
394 } else {
395 ret = UINT32_MAX * ((uint32_t)T0 >> 31);
396 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
397 xer_ca = 0;
398 } else {
399 xer_ca = 1;
400 }
401 }
402 T0 = ret;
403 }
404
405 #if defined(TARGET_PPC64)
406 void do_srad (void)
407 {
408 int64_t ret;
409
410 if (likely(!(T1 & 0x40UL))) {
411 if (likely((uint64_t)T1 != 0)) {
412 ret = (int64_t)T0 >> (T1 & 0x3FUL);
413 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
414 xer_ca = 0;
415 } else {
416 xer_ca = 1;
417 }
418 } else {
419 ret = T0;
420 xer_ca = 0;
421 }
422 } else {
423 ret = UINT64_MAX * ((uint64_t)T0 >> 63);
424 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
425 xer_ca = 0;
426 } else {
427 xer_ca = 1;
428 }
429 }
430 T0 = ret;
431 }
432 #endif
433
434 void do_popcntb (void)
435 {
436 uint32_t ret;
437 int i;
438
439 ret = 0;
440 for (i = 0; i < 32; i += 8)
441 ret |= ctpop8((T0 >> i) & 0xFF) << i;
442 T0 = ret;
443 }
444
445 #if defined(TARGET_PPC64)
446 void do_popcntb_64 (void)
447 {
448 uint64_t ret;
449 int i;
450
451 ret = 0;
452 for (i = 0; i < 64; i += 8)
453 ret |= ctpop8((T0 >> i) & 0xFF) << i;
454 T0 = ret;
455 }
456 #endif
457
458 /*****************************************************************************/
459 /* Floating point operations helpers */
460 static always_inline int fpisneg (float64 f)
461 {
462 union {
463 float64 f;
464 uint64_t u;
465 } u;
466
467 u.f = f;
468
469 return u.u >> 63 != 0;
470 }
471
472 static always_inline int isden (float f)
473 {
474 union {
475 float64 f;
476 uint64_t u;
477 } u;
478
479 u.f = f;
480
481 return ((u.u >> 52) & 0x7FF) == 0;
482 }
483
484 static always_inline int iszero (float64 f)
485 {
486 union {
487 float64 f;
488 uint64_t u;
489 } u;
490
491 u.f = f;
492
493 return (u.u & ~0x8000000000000000ULL) == 0;
494 }
495
496 static always_inline int isinfinity (float64 f)
497 {
498 union {
499 float64 f;
500 uint64_t u;
501 } u;
502
503 u.f = f;
504
505 return ((u.u >> 52) & 0x7FF) == 0x7FF &&
506 (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
507 }
508
509 void do_compute_fprf (int set_fprf)
510 {
511 int isneg;
512
513 isneg = fpisneg(FT0);
514 if (unlikely(float64_is_nan(FT0))) {
515 if (float64_is_signaling_nan(FT0)) {
516 /* Signaling NaN: flags are undefined */
517 T0 = 0x00;
518 } else {
519 /* Quiet NaN */
520 T0 = 0x11;
521 }
522 } else if (unlikely(isinfinity(FT0))) {
523 /* +/- infinity */
524 if (isneg)
525 T0 = 0x09;
526 else
527 T0 = 0x05;
528 } else {
529 if (iszero(FT0)) {
530 /* +/- zero */
531 if (isneg)
532 T0 = 0x12;
533 else
534 T0 = 0x02;
535 } else {
536 if (isden(FT0)) {
537 /* Denormalized numbers */
538 T0 = 0x10;
539 } else {
540 /* Normalized numbers */
541 T0 = 0x00;
542 }
543 if (isneg) {
544 T0 |= 0x08;
545 } else {
546 T0 |= 0x04;
547 }
548 }
549 }
550 if (set_fprf) {
551 /* We update FPSCR_FPRF */
552 env->fpscr &= ~(0x1F << FPSCR_FPRF);
553 env->fpscr |= T0 << FPSCR_FPRF;
554 }
555 /* We just need fpcc to update Rc1 */
556 T0 &= 0xF;
557 }
558
559 /* Floating-point invalid operations exception */
560 static always_inline void fload_invalid_op_excp (int op)
561 {
562 int ve;
563
564 ve = fpscr_ve;
565 if (op & POWERPC_EXCP_FP_VXSNAN) {
566 /* Operation on signaling NaN */
567 env->fpscr |= 1 << FPSCR_VXSNAN;
568 }
569 if (op & POWERPC_EXCP_FP_VXSOFT) {
570 /* Software-defined condition */
571 env->fpscr |= 1 << FPSCR_VXSOFT;
572 }
573 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
574 case POWERPC_EXCP_FP_VXISI:
575 /* Magnitude subtraction of infinities */
576 env->fpscr |= 1 << FPSCR_VXISI;
577 goto update_arith;
578 case POWERPC_EXCP_FP_VXIDI:
579 /* Division of infinity by infinity */
580 env->fpscr |= 1 << FPSCR_VXIDI;
581 goto update_arith;
582 case POWERPC_EXCP_FP_VXZDZ:
583 /* Division of zero by zero */
584 env->fpscr |= 1 << FPSCR_VXZDZ;
585 goto update_arith;
586 case POWERPC_EXCP_FP_VXIMZ:
587 /* Multiplication of zero by infinity */
588 env->fpscr |= 1 << FPSCR_VXIMZ;
589 goto update_arith;
590 case POWERPC_EXCP_FP_VXVC:
591 /* Ordered comparison of NaN */
592 env->fpscr |= 1 << FPSCR_VXVC;
593 env->fpscr &= ~(0xF << FPSCR_FPCC);
594 env->fpscr |= 0x11 << FPSCR_FPCC;
595 /* We must update the target FPR before raising the exception */
596 if (ve != 0) {
597 env->exception_index = POWERPC_EXCP_PROGRAM;
598 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
599 /* Update the floating-point enabled exception summary */
600 env->fpscr |= 1 << FPSCR_FEX;
601 /* Exception is differed */
602 ve = 0;
603 }
604 break;
605 case POWERPC_EXCP_FP_VXSQRT:
606 /* Square root of a negative number */
607 env->fpscr |= 1 << FPSCR_VXSQRT;
608 update_arith:
609 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
610 if (ve == 0) {
611 /* Set the result to quiet NaN */
612 FT0 = UINT64_MAX;
613 env->fpscr &= ~(0xF << FPSCR_FPCC);
614 env->fpscr |= 0x11 << FPSCR_FPCC;
615 }
616 break;
617 case POWERPC_EXCP_FP_VXCVI:
618 /* Invalid conversion */
619 env->fpscr |= 1 << FPSCR_VXCVI;
620 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
621 if (ve == 0) {
622 /* Set the result to quiet NaN */
623 FT0 = UINT64_MAX;
624 env->fpscr &= ~(0xF << FPSCR_FPCC);
625 env->fpscr |= 0x11 << FPSCR_FPCC;
626 }
627 break;
628 }
629 /* Update the floating-point invalid operation summary */
630 env->fpscr |= 1 << FPSCR_VX;
631 /* Update the floating-point exception summary */
632 env->fpscr |= 1 << FPSCR_FX;
633 if (ve != 0) {
634 /* Update the floating-point enabled exception summary */
635 env->fpscr |= 1 << FPSCR_FEX;
636 if (msr_fe0 != 0 || msr_fe1 != 0)
637 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
638 }
639 }
640
641 static always_inline void float_zero_divide_excp (void)
642 {
643 union {
644 float64 f;
645 uint64_t u;
646 } u0, u1;
647
648 env->fpscr |= 1 << FPSCR_ZX;
649 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
650 /* Update the floating-point exception summary */
651 env->fpscr |= 1 << FPSCR_FX;
652 if (fpscr_ze != 0) {
653 /* Update the floating-point enabled exception summary */
654 env->fpscr |= 1 << FPSCR_FEX;
655 if (msr_fe0 != 0 || msr_fe1 != 0) {
656 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
657 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
658 }
659 } else {
660 /* Set the result to infinity */
661 u0.f = FT0;
662 u1.f = FT1;
663 u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
664 u0.u |= 0x7FFULL << 52;
665 FT0 = u0.f;
666 }
667 }
668
669 static always_inline void float_overflow_excp (void)
670 {
671 env->fpscr |= 1 << FPSCR_OX;
672 /* Update the floating-point exception summary */
673 env->fpscr |= 1 << FPSCR_FX;
674 if (fpscr_oe != 0) {
675 /* XXX: should adjust the result */
676 /* Update the floating-point enabled exception summary */
677 env->fpscr |= 1 << FPSCR_FEX;
678 /* We must update the target FPR before raising the exception */
679 env->exception_index = POWERPC_EXCP_PROGRAM;
680 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
681 } else {
682 env->fpscr |= 1 << FPSCR_XX;
683 env->fpscr |= 1 << FPSCR_FI;
684 }
685 }
686
687 static always_inline void float_underflow_excp (void)
688 {
689 env->fpscr |= 1 << FPSCR_UX;
690 /* Update the floating-point exception summary */
691 env->fpscr |= 1 << FPSCR_FX;
692 if (fpscr_ue != 0) {
693 /* XXX: should adjust the result */
694 /* Update the floating-point enabled exception summary */
695 env->fpscr |= 1 << FPSCR_FEX;
696 /* We must update the target FPR before raising the exception */
697 env->exception_index = POWERPC_EXCP_PROGRAM;
698 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
699 }
700 }
701
702 static always_inline void float_inexact_excp (void)
703 {
704 env->fpscr |= 1 << FPSCR_XX;
705 /* Update the floating-point exception summary */
706 env->fpscr |= 1 << FPSCR_FX;
707 if (fpscr_xe != 0) {
708 /* Update the floating-point enabled exception summary */
709 env->fpscr |= 1 << FPSCR_FEX;
710 /* We must update the target FPR before raising the exception */
711 env->exception_index = POWERPC_EXCP_PROGRAM;
712 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
713 }
714 }
715
716 static always_inline void fpscr_set_rounding_mode (void)
717 {
718 int rnd_type;
719
720 /* Set rounding mode */
721 switch (fpscr_rn) {
722 case 0:
723 /* Best approximation (round to nearest) */
724 rnd_type = float_round_nearest_even;
725 break;
726 case 1:
727 /* Smaller magnitude (round toward zero) */
728 rnd_type = float_round_to_zero;
729 break;
730 case 2:
731 /* Round toward +infinite */
732 rnd_type = float_round_up;
733 break;
734 default:
735 case 3:
736 /* Round toward -infinite */
737 rnd_type = float_round_down;
738 break;
739 }
740 set_float_rounding_mode(rnd_type, &env->fp_status);
741 }
742
743 void do_fpscr_setbit (int bit)
744 {
745 int prev;
746
747 prev = (env->fpscr >> bit) & 1;
748 env->fpscr |= 1 << bit;
749 if (prev == 0) {
750 switch (bit) {
751 case FPSCR_VX:
752 env->fpscr |= 1 << FPSCR_FX;
753 if (fpscr_ve)
754 goto raise_ve;
755 case FPSCR_OX:
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_oe)
758 goto raise_oe;
759 break;
760 case FPSCR_UX:
761 env->fpscr |= 1 << FPSCR_FX;
762 if (fpscr_ue)
763 goto raise_ue;
764 break;
765 case FPSCR_ZX:
766 env->fpscr |= 1 << FPSCR_FX;
767 if (fpscr_ze)
768 goto raise_ze;
769 break;
770 case FPSCR_XX:
771 env->fpscr |= 1 << FPSCR_FX;
772 if (fpscr_xe)
773 goto raise_xe;
774 break;
775 case FPSCR_VXSNAN:
776 case FPSCR_VXISI:
777 case FPSCR_VXIDI:
778 case FPSCR_VXZDZ:
779 case FPSCR_VXIMZ:
780 case FPSCR_VXVC:
781 case FPSCR_VXSOFT:
782 case FPSCR_VXSQRT:
783 case FPSCR_VXCVI:
784 env->fpscr |= 1 << FPSCR_VX;
785 env->fpscr |= 1 << FPSCR_FX;
786 if (fpscr_ve != 0)
787 goto raise_ve;
788 break;
789 case FPSCR_VE:
790 if (fpscr_vx != 0) {
791 raise_ve:
792 env->error_code = POWERPC_EXCP_FP;
793 if (fpscr_vxsnan)
794 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
795 if (fpscr_vxisi)
796 env->error_code |= POWERPC_EXCP_FP_VXISI;
797 if (fpscr_vxidi)
798 env->error_code |= POWERPC_EXCP_FP_VXIDI;
799 if (fpscr_vxzdz)
800 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
801 if (fpscr_vximz)
802 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
803 if (fpscr_vxvc)
804 env->error_code |= POWERPC_EXCP_FP_VXVC;
805 if (fpscr_vxsoft)
806 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
807 if (fpscr_vxsqrt)
808 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
809 if (fpscr_vxcvi)
810 env->error_code |= POWERPC_EXCP_FP_VXCVI;
811 goto raise_excp;
812 }
813 break;
814 case FPSCR_OE:
815 if (fpscr_ox != 0) {
816 raise_oe:
817 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
818 goto raise_excp;
819 }
820 break;
821 case FPSCR_UE:
822 if (fpscr_ux != 0) {
823 raise_ue:
824 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
825 goto raise_excp;
826 }
827 break;
828 case FPSCR_ZE:
829 if (fpscr_zx != 0) {
830 raise_ze:
831 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
832 goto raise_excp;
833 }
834 break;
835 case FPSCR_XE:
836 if (fpscr_xx != 0) {
837 raise_xe:
838 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
839 goto raise_excp;
840 }
841 break;
842 case FPSCR_RN1:
843 case FPSCR_RN:
844 fpscr_set_rounding_mode();
845 break;
846 default:
847 break;
848 raise_excp:
849 /* Update the floating-point enabled exception summary */
850 env->fpscr |= 1 << FPSCR_FEX;
851 /* We have to update Rc1 before raising the exception */
852 env->exception_index = POWERPC_EXCP_PROGRAM;
853 break;
854 }
855 }
856 }
857
858 #if defined(WORDS_BIGENDIAN)
859 #define WORD0 0
860 #define WORD1 1
861 #else
862 #define WORD0 1
863 #define WORD1 0
864 #endif
865 void do_store_fpscr (uint32_t mask)
866 {
867 /*
868 * We use only the 32 LSB of the incoming fpr
869 */
870 union {
871 double d;
872 struct {
873 uint32_t u[2];
874 } s;
875 } u;
876 uint32_t prev, new;
877 int i;
878
879 u.d = FT0;
880 prev = env->fpscr;
881 new = u.s.u[WORD1];
882 new &= ~0x90000000;
883 new |= prev & 0x90000000;
884 for (i = 0; i < 7; i++) {
885 if (mask & (1 << i)) {
886 env->fpscr &= ~(0xF << (4 * i));
887 env->fpscr |= new & (0xF << (4 * i));
888 }
889 }
890 /* Update VX and FEX */
891 if (fpscr_ix != 0)
892 env->fpscr |= 1 << FPSCR_VX;
893 if ((fpscr_ex & fpscr_eex) != 0) {
894 env->fpscr |= 1 << FPSCR_FEX;
895 env->exception_index = POWERPC_EXCP_PROGRAM;
896 /* XXX: we should compute it properly */
897 env->error_code = POWERPC_EXCP_FP;
898 }
899 fpscr_set_rounding_mode();
900 }
901 #undef WORD0
902 #undef WORD1
903
904 #ifdef CONFIG_SOFTFLOAT
905 void do_float_check_status (void)
906 {
907 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
908 (env->error_code & POWERPC_EXCP_FP)) {
909 /* Differred floating-point exception after target FPR update */
910 if (msr_fe0 != 0 || msr_fe1 != 0)
911 do_raise_exception_err(env->exception_index, env->error_code);
912 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
913 float_overflow_excp();
914 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
915 float_underflow_excp();
916 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
917 float_inexact_excp();
918 }
919 }
920 #endif
921
922 #if USE_PRECISE_EMULATION
923 void do_fadd (void)
924 {
925 if (unlikely(float64_is_signaling_nan(FT0) ||
926 float64_is_signaling_nan(FT1))) {
927 /* sNaN addition */
928 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
929 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
930 fpisneg(FT0) == fpisneg(FT1))) {
931 FT0 = float64_add(FT0, FT1, &env->fp_status);
932 } else {
933 /* Magnitude subtraction of infinities */
934 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
935 }
936 }
937
938 void do_fsub (void)
939 {
940 if (unlikely(float64_is_signaling_nan(FT0) ||
941 float64_is_signaling_nan(FT1))) {
942 /* sNaN subtraction */
943 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
944 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
945 fpisneg(FT0) != fpisneg(FT1))) {
946 FT0 = float64_sub(FT0, FT1, &env->fp_status);
947 } else {
948 /* Magnitude subtraction of infinities */
949 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
950 }
951 }
952
953 void do_fmul (void)
954 {
955 if (unlikely(float64_is_signaling_nan(FT0) ||
956 float64_is_signaling_nan(FT1))) {
957 /* sNaN multiplication */
958 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
959 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
960 (iszero(FT0) && isinfinity(FT1)))) {
961 /* Multiplication of zero by infinity */
962 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
963 } else {
964 FT0 = float64_mul(FT0, FT1, &env->fp_status);
965 }
966 }
967
968 void do_fdiv (void)
969 {
970 if (unlikely(float64_is_signaling_nan(FT0) ||
971 float64_is_signaling_nan(FT1))) {
972 /* sNaN division */
973 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
974 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
975 /* Division of infinity by infinity */
976 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
977 } else if (unlikely(iszero(FT1))) {
978 if (iszero(FT0)) {
979 /* Division of zero by zero */
980 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
981 } else {
982 /* Division by zero */
983 float_zero_divide_excp();
984 }
985 } else {
986 FT0 = float64_div(FT0, FT1, &env->fp_status);
987 }
988 }
989 #endif /* USE_PRECISE_EMULATION */
990
991 void do_fctiw (void)
992 {
993 union {
994 double d;
995 uint64_t i;
996 } p;
997
998 if (unlikely(float64_is_signaling_nan(FT0))) {
999 /* sNaN conversion */
1000 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1001 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1002 /* qNan / infinity conversion */
1003 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1004 } else {
1005 p.i = float64_to_int32(FT0, &env->fp_status);
1006 #if USE_PRECISE_EMULATION
1007 /* XXX: higher bits are not supposed to be significant.
1008 * to make tests easier, return the same as a real PowerPC 750
1009 */
1010 p.i |= 0xFFF80000ULL << 32;
1011 #endif
1012 FT0 = p.d;
1013 }
1014 }
1015
1016 void do_fctiwz (void)
1017 {
1018 union {
1019 double d;
1020 uint64_t i;
1021 } p;
1022
1023 if (unlikely(float64_is_signaling_nan(FT0))) {
1024 /* sNaN conversion */
1025 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1026 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1027 /* qNan / infinity conversion */
1028 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1029 } else {
1030 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1031 #if USE_PRECISE_EMULATION
1032 /* XXX: higher bits are not supposed to be significant.
1033 * to make tests easier, return the same as a real PowerPC 750
1034 */
1035 p.i |= 0xFFF80000ULL << 32;
1036 #endif
1037 FT0 = p.d;
1038 }
1039 }
1040
1041 #if defined(TARGET_PPC64)
1042 void do_fcfid (void)
1043 {
1044 union {
1045 double d;
1046 uint64_t i;
1047 } p;
1048
1049 p.d = FT0;
1050 FT0 = int64_to_float64(p.i, &env->fp_status);
1051 }
1052
1053 void do_fctid (void)
1054 {
1055 union {
1056 double d;
1057 uint64_t i;
1058 } p;
1059
1060 if (unlikely(float64_is_signaling_nan(FT0))) {
1061 /* sNaN conversion */
1062 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1063 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1064 /* qNan / infinity conversion */
1065 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1066 } else {
1067 p.i = float64_to_int64(FT0, &env->fp_status);
1068 FT0 = p.d;
1069 }
1070 }
1071
1072 void do_fctidz (void)
1073 {
1074 union {
1075 double d;
1076 uint64_t i;
1077 } p;
1078
1079 if (unlikely(float64_is_signaling_nan(FT0))) {
1080 /* sNaN conversion */
1081 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1082 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1083 /* qNan / infinity conversion */
1084 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1085 } else {
1086 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1087 FT0 = p.d;
1088 }
1089 }
1090
1091 #endif
1092
1093 static always_inline void do_fri (int rounding_mode)
1094 {
1095 if (unlikely(float64_is_signaling_nan(FT0))) {
1096 /* sNaN round */
1097 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1098 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1099 /* qNan / infinity round */
1100 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1101 } else {
1102 set_float_rounding_mode(rounding_mode, &env->fp_status);
1103 FT0 = float64_round_to_int(FT0, &env->fp_status);
1104 /* Restore rounding mode from FPSCR */
1105 fpscr_set_rounding_mode();
1106 }
1107 }
1108
1109 void do_frin (void)
1110 {
1111 do_fri(float_round_nearest_even);
1112 }
1113
1114 void do_friz (void)
1115 {
1116 do_fri(float_round_to_zero);
1117 }
1118
1119 void do_frip (void)
1120 {
1121 do_fri(float_round_up);
1122 }
1123
1124 void do_frim (void)
1125 {
1126 do_fri(float_round_down);
1127 }
1128
1129 #if USE_PRECISE_EMULATION
1130 void do_fmadd (void)
1131 {
1132 if (unlikely(float64_is_signaling_nan(FT0) ||
1133 float64_is_signaling_nan(FT1) ||
1134 float64_is_signaling_nan(FT2))) {
1135 /* sNaN operation */
1136 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1137 } else {
1138 #ifdef FLOAT128
1139 /* This is the way the PowerPC specification defines it */
1140 float128 ft0_128, ft1_128;
1141
1142 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1143 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1144 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1145 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1146 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1147 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1148 #else
1149 /* This is OK on x86 hosts */
1150 FT0 = (FT0 * FT1) + FT2;
1151 #endif
1152 }
1153 }
1154
1155 void do_fmsub (void)
1156 {
1157 if (unlikely(float64_is_signaling_nan(FT0) ||
1158 float64_is_signaling_nan(FT1) ||
1159 float64_is_signaling_nan(FT2))) {
1160 /* sNaN operation */
1161 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1162 } else {
1163 #ifdef FLOAT128
1164 /* This is the way the PowerPC specification defines it */
1165 float128 ft0_128, ft1_128;
1166
1167 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1168 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1169 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1170 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1171 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1172 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1173 #else
1174 /* This is OK on x86 hosts */
1175 FT0 = (FT0 * FT1) - FT2;
1176 #endif
1177 }
1178 }
1179 #endif /* USE_PRECISE_EMULATION */
1180
1181 void do_fnmadd (void)
1182 {
1183 if (unlikely(float64_is_signaling_nan(FT0) ||
1184 float64_is_signaling_nan(FT1) ||
1185 float64_is_signaling_nan(FT2))) {
1186 /* sNaN operation */
1187 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1188 } else {
1189 #if USE_PRECISE_EMULATION
1190 #ifdef FLOAT128
1191 /* This is the way the PowerPC specification defines it */
1192 float128 ft0_128, ft1_128;
1193
1194 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1195 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1196 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1197 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1198 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1199 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1200 #else
1201 /* This is OK on x86 hosts */
1202 FT0 = (FT0 * FT1) + FT2;
1203 #endif
1204 #else
1205 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1206 FT0 = float64_add(FT0, FT2, &env->fp_status);
1207 #endif
1208 if (likely(!isnan(FT0)))
1209 FT0 = float64_chs(FT0);
1210 }
1211 }
1212
1213 void do_fnmsub (void)
1214 {
1215 if (unlikely(float64_is_signaling_nan(FT0) ||
1216 float64_is_signaling_nan(FT1) ||
1217 float64_is_signaling_nan(FT2))) {
1218 /* sNaN operation */
1219 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1220 } else {
1221 #if USE_PRECISE_EMULATION
1222 #ifdef FLOAT128
1223 /* This is the way the PowerPC specification defines it */
1224 float128 ft0_128, ft1_128;
1225
1226 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1227 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1228 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1229 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1230 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1231 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1232 #else
1233 /* This is OK on x86 hosts */
1234 FT0 = (FT0 * FT1) - FT2;
1235 #endif
1236 #else
1237 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1238 FT0 = float64_sub(FT0, FT2, &env->fp_status);
1239 #endif
1240 if (likely(!isnan(FT0)))
1241 FT0 = float64_chs(FT0);
1242 }
1243 }
1244
1245 #if USE_PRECISE_EMULATION
1246 void do_frsp (void)
1247 {
1248 if (unlikely(float64_is_signaling_nan(FT0))) {
1249 /* sNaN square root */
1250 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1251 } else {
1252 FT0 = float64_to_float32(FT0, &env->fp_status);
1253 }
1254 }
1255 #endif /* USE_PRECISE_EMULATION */
1256
1257 void do_fsqrt (void)
1258 {
1259 if (unlikely(float64_is_signaling_nan(FT0))) {
1260 /* sNaN square root */
1261 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1262 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1263 /* Square root of a negative nonzero number */
1264 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1265 } else {
1266 FT0 = float64_sqrt(FT0, &env->fp_status);
1267 }
1268 }
1269
1270 void do_fre (void)
1271 {
1272 union {
1273 double d;
1274 uint64_t i;
1275 } p;
1276
1277 if (unlikely(float64_is_signaling_nan(FT0))) {
1278 /* sNaN reciprocal */
1279 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280 } else if (unlikely(iszero(FT0))) {
1281 /* Zero reciprocal */
1282 float_zero_divide_excp();
1283 } else if (likely(isnormal(FT0))) {
1284 FT0 = float64_div(1.0, FT0, &env->fp_status);
1285 } else {
1286 p.d = FT0;
1287 if (p.i == 0x8000000000000000ULL) {
1288 p.i = 0xFFF0000000000000ULL;
1289 } else if (p.i == 0x0000000000000000ULL) {
1290 p.i = 0x7FF0000000000000ULL;
1291 } else if (isnan(FT0)) {
1292 p.i = 0x7FF8000000000000ULL;
1293 } else if (fpisneg(FT0)) {
1294 p.i = 0x8000000000000000ULL;
1295 } else {
1296 p.i = 0x0000000000000000ULL;
1297 }
1298 FT0 = p.d;
1299 }
1300 }
1301
1302 void do_fres (void)
1303 {
1304 union {
1305 double d;
1306 uint64_t i;
1307 } p;
1308
1309 if (unlikely(float64_is_signaling_nan(FT0))) {
1310 /* sNaN reciprocal */
1311 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1312 } else if (unlikely(iszero(FT0))) {
1313 /* Zero reciprocal */
1314 float_zero_divide_excp();
1315 } else if (likely(isnormal(FT0))) {
1316 #if USE_PRECISE_EMULATION
1317 FT0 = float64_div(1.0, FT0, &env->fp_status);
1318 FT0 = float64_to_float32(FT0, &env->fp_status);
1319 #else
1320 FT0 = float32_div(1.0, FT0, &env->fp_status);
1321 #endif
1322 } else {
1323 p.d = FT0;
1324 if (p.i == 0x8000000000000000ULL) {
1325 p.i = 0xFFF0000000000000ULL;
1326 } else if (p.i == 0x0000000000000000ULL) {
1327 p.i = 0x7FF0000000000000ULL;
1328 } else if (isnan(FT0)) {
1329 p.i = 0x7FF8000000000000ULL;
1330 } else if (fpisneg(FT0)) {
1331 p.i = 0x8000000000000000ULL;
1332 } else {
1333 p.i = 0x0000000000000000ULL;
1334 }
1335 FT0 = p.d;
1336 }
1337 }
1338
1339 void do_frsqrte (void)
1340 {
1341 union {
1342 double d;
1343 uint64_t i;
1344 } p;
1345
1346 if (unlikely(float64_is_signaling_nan(FT0))) {
1347 /* sNaN reciprocal square root */
1348 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1349 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1350 /* Reciprocal square root of a negative nonzero number */
1351 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1352 } else if (likely(isnormal(FT0))) {
1353 FT0 = float64_sqrt(FT0, &env->fp_status);
1354 FT0 = float32_div(1.0, FT0, &env->fp_status);
1355 } else {
1356 p.d = FT0;
1357 if (p.i == 0x8000000000000000ULL) {
1358 p.i = 0xFFF0000000000000ULL;
1359 } else if (p.i == 0x0000000000000000ULL) {
1360 p.i = 0x7FF0000000000000ULL;
1361 } else if (isnan(FT0)) {
1362 p.i |= 0x000FFFFFFFFFFFFFULL;
1363 } else if (fpisneg(FT0)) {
1364 p.i = 0x7FF8000000000000ULL;
1365 } else {
1366 p.i = 0x0000000000000000ULL;
1367 }
1368 FT0 = p.d;
1369 }
1370 }
1371
1372 void do_fsel (void)
1373 {
1374 if (!fpisneg(FT0) || iszero(FT0))
1375 FT0 = FT1;
1376 else
1377 FT0 = FT2;
1378 }
1379
1380 void do_fcmpu (void)
1381 {
1382 if (unlikely(float64_is_signaling_nan(FT0) ||
1383 float64_is_signaling_nan(FT1))) {
1384 /* sNaN comparison */
1385 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1386 } else {
1387 if (float64_lt(FT0, FT1, &env->fp_status)) {
1388 T0 = 0x08UL;
1389 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1390 T0 = 0x04UL;
1391 } else {
1392 T0 = 0x02UL;
1393 }
1394 }
1395 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1396 env->fpscr |= T0 << FPSCR_FPRF;
1397 }
1398
1399 void do_fcmpo (void)
1400 {
1401 if (unlikely(float64_is_nan(FT0) ||
1402 float64_is_nan(FT1))) {
1403 if (float64_is_signaling_nan(FT0) ||
1404 float64_is_signaling_nan(FT1)) {
1405 /* sNaN comparison */
1406 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1407 POWERPC_EXCP_FP_VXVC);
1408 } else {
1409 /* qNaN comparison */
1410 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1411 }
1412 } else {
1413 if (float64_lt(FT0, FT1, &env->fp_status)) {
1414 T0 = 0x08UL;
1415 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1416 T0 = 0x04UL;
1417 } else {
1418 T0 = 0x02UL;
1419 }
1420 }
1421 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1422 env->fpscr |= T0 << FPSCR_FPRF;
1423 }
1424
1425 #if !defined (CONFIG_USER_ONLY)
1426 void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1427
1428 void do_store_msr (void)
1429 {
1430 T0 = hreg_store_msr(env, T0);
1431 if (T0 != 0) {
1432 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1433 do_raise_exception(T0);
1434 }
1435 }
1436
1437 static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1438 target_ulong msrm, int keep_msrh)
1439 {
1440 #if defined(TARGET_PPC64)
1441 if (msr & (1ULL << MSR_SF)) {
1442 nip = (uint64_t)nip;
1443 msr &= (uint64_t)msrm;
1444 } else {
1445 nip = (uint32_t)nip;
1446 msr = (uint32_t)(msr & msrm);
1447 if (keep_msrh)
1448 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1449 }
1450 #else
1451 nip = (uint32_t)nip;
1452 msr &= (uint32_t)msrm;
1453 #endif
1454 /* XXX: beware: this is false if VLE is supported */
1455 env->nip = nip & ~((target_ulong)0x00000003);
1456 hreg_store_msr(env, msr);
1457 #if defined (DEBUG_OP)
1458 cpu_dump_rfi(env->nip, env->msr);
1459 #endif
1460 /* No need to raise an exception here,
1461 * as rfi is always the last insn of a TB
1462 */
1463 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1464 }
1465
1466 void do_rfi (void)
1467 {
1468 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1469 ~((target_ulong)0xFFFF0000), 1);
1470 }
1471
1472 #if defined(TARGET_PPC64)
1473 void do_rfid (void)
1474 {
1475 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1476 ~((target_ulong)0xFFFF0000), 0);
1477 }
1478 #endif
1479 #if defined(TARGET_PPC64H)
1480 void do_hrfid (void)
1481 {
1482 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1483 ~((target_ulong)0xFFFF0000), 0);
1484 }
1485 #endif
1486 #endif
1487
1488 void do_tw (int flags)
1489 {
1490 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1491 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1492 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1493 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
1494 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
1495 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1496 }
1497 }
1498
1499 #if defined(TARGET_PPC64)
1500 void do_td (int flags)
1501 {
1502 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1503 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1504 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1505 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1506 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
1507 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1508 }
1509 #endif
1510
1511 /*****************************************************************************/
1512 /* PowerPC 601 specific instructions (POWER bridge) */
1513 void do_POWER_abso (void)
1514 {
1515 if ((int32_t)T0 == INT32_MIN) {
1516 T0 = INT32_MAX;
1517 xer_ov = 1;
1518 } else if ((int32_t)T0 < 0) {
1519 T0 = -T0;
1520 xer_ov = 0;
1521 } else {
1522 xer_ov = 0;
1523 }
1524 xer_so |= xer_ov;
1525 }
1526
1527 void do_POWER_clcs (void)
1528 {
1529 switch (T0) {
1530 case 0x0CUL:
1531 /* Instruction cache line size */
1532 T0 = env->icache_line_size;
1533 break;
1534 case 0x0DUL:
1535 /* Data cache line size */
1536 T0 = env->dcache_line_size;
1537 break;
1538 case 0x0EUL:
1539 /* Minimum cache line size */
1540 T0 = env->icache_line_size < env->dcache_line_size ?
1541 env->icache_line_size : env->dcache_line_size;
1542 break;
1543 case 0x0FUL:
1544 /* Maximum cache line size */
1545 T0 = env->icache_line_size > env->dcache_line_size ?
1546 env->icache_line_size : env->dcache_line_size;
1547 break;
1548 default:
1549 /* Undefined */
1550 break;
1551 }
1552 }
1553
1554 void do_POWER_div (void)
1555 {
1556 uint64_t tmp;
1557
1558 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1559 (int32_t)T1 == 0) {
1560 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1561 env->spr[SPR_MQ] = 0;
1562 } else {
1563 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1564 env->spr[SPR_MQ] = tmp % T1;
1565 T0 = tmp / (int32_t)T1;
1566 }
1567 }
1568
1569 void do_POWER_divo (void)
1570 {
1571 int64_t tmp;
1572
1573 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1574 (int32_t)T1 == 0) {
1575 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1576 env->spr[SPR_MQ] = 0;
1577 xer_ov = 1;
1578 } else {
1579 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1580 env->spr[SPR_MQ] = tmp % T1;
1581 tmp /= (int32_t)T1;
1582 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1583 xer_ov = 1;
1584 } else {
1585 xer_ov = 0;
1586 }
1587 T0 = tmp;
1588 }
1589 xer_so |= xer_ov;
1590 }
1591
1592 void do_POWER_divs (void)
1593 {
1594 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1595 (int32_t)T1 == 0) {
1596 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1597 env->spr[SPR_MQ] = 0;
1598 } else {
1599 env->spr[SPR_MQ] = T0 % T1;
1600 T0 = (int32_t)T0 / (int32_t)T1;
1601 }
1602 }
1603
1604 void do_POWER_divso (void)
1605 {
1606 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1607 (int32_t)T1 == 0) {
1608 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1609 env->spr[SPR_MQ] = 0;
1610 xer_ov = 1;
1611 } else {
1612 T0 = (int32_t)T0 / (int32_t)T1;
1613 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1614 xer_ov = 0;
1615 }
1616 xer_so |= xer_ov;
1617 }
1618
1619 void do_POWER_dozo (void)
1620 {
1621 if ((int32_t)T1 > (int32_t)T0) {
1622 T2 = T0;
1623 T0 = T1 - T0;
1624 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1625 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1626 xer_ov = 1;
1627 xer_so = 1;
1628 } else {
1629 xer_ov = 0;
1630 }
1631 } else {
1632 T0 = 0;
1633 xer_ov = 0;
1634 }
1635 }
1636
1637 void do_POWER_maskg (void)
1638 {
1639 uint32_t ret;
1640
1641 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1642 ret = UINT32_MAX;
1643 } else {
1644 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1645 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
1646 if ((uint32_t)T0 > (uint32_t)T1)
1647 ret = ~ret;
1648 }
1649 T0 = ret;
1650 }
1651
1652 void do_POWER_mulo (void)
1653 {
1654 uint64_t tmp;
1655
1656 tmp = (uint64_t)T0 * (uint64_t)T1;
1657 env->spr[SPR_MQ] = tmp >> 32;
1658 T0 = tmp;
1659 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1660 xer_ov = 1;
1661 xer_so = 1;
1662 } else {
1663 xer_ov = 0;
1664 }
1665 }
1666
1667 #if !defined (CONFIG_USER_ONLY)
1668 void do_POWER_rac (void)
1669 {
1670 mmu_ctx_t ctx;
1671 int nb_BATs;
1672
1673 /* We don't have to generate many instances of this instruction,
1674 * as rac is supervisor only.
1675 */
1676 /* XXX: FIX THIS: Pretend we have no BAT */
1677 nb_BATs = env->nb_BATs;
1678 env->nb_BATs = 0;
1679 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
1680 T0 = ctx.raddr;
1681 env->nb_BATs = nb_BATs;
1682 }
1683
1684 void do_POWER_rfsvc (void)
1685 {
1686 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1687 }
1688
1689 void do_store_hid0_601 (void)
1690 {
1691 uint32_t hid0;
1692
1693 hid0 = env->spr[SPR_HID0];
1694 if ((T0 ^ hid0) & 0x00000008) {
1695 /* Change current endianness */
1696 env->hflags &= ~(1 << MSR_LE);
1697 env->hflags_nmsr &= ~(1 << MSR_LE);
1698 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1699 env->hflags |= env->hflags_nmsr;
1700 if (loglevel != 0) {
1701 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1702 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1703 }
1704 }
1705 env->spr[SPR_HID0] = T0;
1706 }
1707 #endif
1708
1709 /*****************************************************************************/
1710 /* 602 specific instructions */
1711 /* mfrom is the most crazy instruction ever seen, imho ! */
1712 /* Real implementation uses a ROM table. Do the same */
1713 #define USE_MFROM_ROM_TABLE
1714 void do_op_602_mfrom (void)
1715 {
1716 if (likely(T0 < 602)) {
1717 #if defined(USE_MFROM_ROM_TABLE)
1718 #include "mfrom_table.c"
1719 T0 = mfrom_ROM_table[T0];
1720 #else
1721 double d;
1722 /* Extremly decomposed:
1723 * -T0 / 256
1724 * T0 = 256 * log10(10 + 1.0) + 0.5
1725 */
1726 d = T0;
1727 d = float64_div(d, 256, &env->fp_status);
1728 d = float64_chs(d);
1729 d = exp10(d); // XXX: use float emulation function
1730 d = float64_add(d, 1.0, &env->fp_status);
1731 d = log10(d); // XXX: use float emulation function
1732 d = float64_mul(d, 256, &env->fp_status);
1733 d = float64_add(d, 0.5, &env->fp_status);
1734 T0 = float64_round_to_int(d, &env->fp_status);
1735 #endif
1736 } else {
1737 T0 = 0;
1738 }
1739 }
1740
1741 /*****************************************************************************/
1742 /* Embedded PowerPC specific helpers */
1743 void do_405_check_sat (void)
1744 {
1745 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1746 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1747 /* Saturate result */
1748 if (T2 >> 31) {
1749 T0 = INT32_MIN;
1750 } else {
1751 T0 = INT32_MAX;
1752 }
1753 }
1754 }
1755
1756 /* XXX: to be improved to check access rights when in user-mode */
1757 void do_load_dcr (void)
1758 {
1759 target_ulong val;
1760
1761 if (unlikely(env->dcr_env == NULL)) {
1762 if (loglevel != 0) {
1763 fprintf(logfile, "No DCR environment\n");
1764 }
1765 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1766 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1767 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1768 if (loglevel != 0) {
1769 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1770 }
1771 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1772 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1773 } else {
1774 T0 = val;
1775 }
1776 }
1777
1778 void do_store_dcr (void)
1779 {
1780 if (unlikely(env->dcr_env == NULL)) {
1781 if (loglevel != 0) {
1782 fprintf(logfile, "No DCR environment\n");
1783 }
1784 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1785 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1786 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1787 if (loglevel != 0) {
1788 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1789 }
1790 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1791 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1792 }
1793 }
1794
1795 #if !defined(CONFIG_USER_ONLY)
1796 void do_40x_rfci (void)
1797 {
1798 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1799 ~((target_ulong)0xFFFF0000), 0);
1800 }
1801
1802 void do_rfci (void)
1803 {
1804 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1805 ~((target_ulong)0x3FFF0000), 0);
1806 }
1807
1808 void do_rfdi (void)
1809 {
1810 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1811 ~((target_ulong)0x3FFF0000), 0);
1812 }
1813
1814 void do_rfmci (void)
1815 {
1816 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1817 ~((target_ulong)0x3FFF0000), 0);
1818 }
1819
1820 void do_load_403_pb (int num)
1821 {
1822 T0 = env->pb[num];
1823 }
1824
1825 void do_store_403_pb (int num)
1826 {
1827 if (likely(env->pb[num] != T0)) {
1828 env->pb[num] = T0;
1829 /* Should be optimized */
1830 tlb_flush(env, 1);
1831 }
1832 }
1833 #endif
1834
1835 /* 440 specific */
1836 void do_440_dlmzb (void)
1837 {
1838 target_ulong mask;
1839 int i;
1840
1841 i = 1;
1842 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1843 if ((T0 & mask) == 0)
1844 goto done;
1845 i++;
1846 }
1847 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1848 if ((T1 & mask) == 0)
1849 break;
1850 i++;
1851 }
1852 done:
1853 T0 = i;
1854 }
1855
1856 /* SPE extension helpers */
1857 /* Use a table to make this quicker */
1858 static uint8_t hbrev[16] = {
1859 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1860 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1861 };
1862
1863 static always_inline uint8_t byte_reverse (uint8_t val)
1864 {
1865 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1866 }
1867
1868 static always_inline uint32_t word_reverse (uint32_t val)
1869 {
1870 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1871 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1872 }
1873
1874 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
1875 void do_brinc (void)
1876 {
1877 uint32_t a, b, d, mask;
1878
1879 mask = UINT32_MAX >> (32 - MASKBITS);
1880 a = T0 & mask;
1881 b = T1 & mask;
1882 d = word_reverse(1 + word_reverse(a | ~b));
1883 T0 = (T0 & ~mask) | (d & b);
1884 }
1885
1886 #define DO_SPE_OP2(name) \
1887 void do_ev##name (void) \
1888 { \
1889 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1890 (uint64_t)_do_e##name(T0_64, T1_64); \
1891 }
1892
1893 #define DO_SPE_OP1(name) \
1894 void do_ev##name (void) \
1895 { \
1896 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1897 (uint64_t)_do_e##name(T0_64); \
1898 }
1899
1900 /* Fixed-point vector arithmetic */
1901 static always_inline uint32_t _do_eabs (uint32_t val)
1902 {
1903 if ((val & 0x80000000) && val != 0x80000000)
1904 val -= val;
1905
1906 return val;
1907 }
1908
1909 static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1910 {
1911 return op1 + op2;
1912 }
1913
1914 static always_inline int _do_ecntlsw (uint32_t val)
1915 {
1916 if (val & 0x80000000)
1917 return clz32(~val);
1918 else
1919 return clz32(val);
1920 }
1921
1922 static always_inline int _do_ecntlzw (uint32_t val)
1923 {
1924 return clz32(val);
1925 }
1926
1927 static always_inline uint32_t _do_eneg (uint32_t val)
1928 {
1929 if (val != 0x80000000)
1930 val -= val;
1931
1932 return val;
1933 }
1934
1935 static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1936 {
1937 return rotl32(op1, op2);
1938 }
1939
1940 static always_inline uint32_t _do_erndw (uint32_t val)
1941 {
1942 return (val + 0x000080000000) & 0xFFFF0000;
1943 }
1944
1945 static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1946 {
1947 /* No error here: 6 bits are used */
1948 return op1 << (op2 & 0x3F);
1949 }
1950
1951 static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1952 {
1953 /* No error here: 6 bits are used */
1954 return op1 >> (op2 & 0x3F);
1955 }
1956
1957 static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1958 {
1959 /* No error here: 6 bits are used */
1960 return op1 >> (op2 & 0x3F);
1961 }
1962
1963 static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1964 {
1965 return op2 - op1;
1966 }
1967
1968 /* evabs */
1969 DO_SPE_OP1(abs);
1970 /* evaddw */
1971 DO_SPE_OP2(addw);
1972 /* evcntlsw */
1973 DO_SPE_OP1(cntlsw);
1974 /* evcntlzw */
1975 DO_SPE_OP1(cntlzw);
1976 /* evneg */
1977 DO_SPE_OP1(neg);
1978 /* evrlw */
1979 DO_SPE_OP2(rlw);
1980 /* evrnd */
1981 DO_SPE_OP1(rndw);
1982 /* evslw */
1983 DO_SPE_OP2(slw);
1984 /* evsrws */
1985 DO_SPE_OP2(srws);
1986 /* evsrwu */
1987 DO_SPE_OP2(srwu);
1988 /* evsubfw */
1989 DO_SPE_OP2(subfw);
1990
1991 /* evsel is a little bit more complicated... */
1992 static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1993 {
1994 if (n)
1995 return op1;
1996 else
1997 return op2;
1998 }
1999
2000 void do_evsel (void)
2001 {
2002 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2003 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2004 }
2005
2006 /* Fixed-point vector comparisons */
2007 #define DO_SPE_CMP(name) \
2008 void do_ev##name (void) \
2009 { \
2010 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2011 T1_64 >> 32) << 32, \
2012 _do_e##name(T0_64, T1_64)); \
2013 }
2014
2015 static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
2016 {
2017 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2018 }
2019 static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
2020 {
2021 return op1 == op2 ? 1 : 0;
2022 }
2023
2024 static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
2025 {
2026 return op1 > op2 ? 1 : 0;
2027 }
2028
2029 static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
2030 {
2031 return op1 > op2 ? 1 : 0;
2032 }
2033
2034 static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
2035 {
2036 return op1 < op2 ? 1 : 0;
2037 }
2038
2039 static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
2040 {
2041 return op1 < op2 ? 1 : 0;
2042 }
2043
2044 /* evcmpeq */
2045 DO_SPE_CMP(cmpeq);
2046 /* evcmpgts */
2047 DO_SPE_CMP(cmpgts);
2048 /* evcmpgtu */
2049 DO_SPE_CMP(cmpgtu);
2050 /* evcmplts */
2051 DO_SPE_CMP(cmplts);
2052 /* evcmpltu */
2053 DO_SPE_CMP(cmpltu);
2054
2055 /* Single precision floating-point conversions from/to integer */
2056 static always_inline uint32_t _do_efscfsi (int32_t val)
2057 {
2058 union {
2059 uint32_t u;
2060 float32 f;
2061 } u;
2062
2063 u.f = int32_to_float32(val, &env->spe_status);
2064
2065 return u.u;
2066 }
2067
2068 static always_inline uint32_t _do_efscfui (uint32_t val)
2069 {
2070 union {
2071 uint32_t u;
2072 float32 f;
2073 } u;
2074
2075 u.f = uint32_to_float32(val, &env->spe_status);
2076
2077 return u.u;
2078 }
2079
2080 static always_inline int32_t _do_efsctsi (uint32_t val)
2081 {
2082 union {
2083 int32_t u;
2084 float32 f;
2085 } u;
2086
2087 u.u = val;
2088 /* NaN are not treated the same way IEEE 754 does */
2089 if (unlikely(isnan(u.f)))
2090 return 0;
2091
2092 return float32_to_int32(u.f, &env->spe_status);
2093 }
2094
2095 static always_inline uint32_t _do_efsctui (uint32_t val)
2096 {
2097 union {
2098 int32_t u;
2099 float32 f;
2100 } u;
2101
2102 u.u = val;
2103 /* NaN are not treated the same way IEEE 754 does */
2104 if (unlikely(isnan(u.f)))
2105 return 0;
2106
2107 return float32_to_uint32(u.f, &env->spe_status);
2108 }
2109
2110 static always_inline int32_t _do_efsctsiz (uint32_t val)
2111 {
2112 union {
2113 int32_t u;
2114 float32 f;
2115 } u;
2116
2117 u.u = val;
2118 /* NaN are not treated the same way IEEE 754 does */
2119 if (unlikely(isnan(u.f)))
2120 return 0;
2121
2122 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2123 }
2124
2125 static always_inline uint32_t _do_efsctuiz (uint32_t val)
2126 {
2127 union {
2128 int32_t u;
2129 float32 f;
2130 } u;
2131
2132 u.u = val;
2133 /* NaN are not treated the same way IEEE 754 does */
2134 if (unlikely(isnan(u.f)))
2135 return 0;
2136
2137 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2138 }
2139
2140 void do_efscfsi (void)
2141 {
2142 T0_64 = _do_efscfsi(T0_64);
2143 }
2144
2145 void do_efscfui (void)
2146 {
2147 T0_64 = _do_efscfui(T0_64);
2148 }
2149
2150 void do_efsctsi (void)
2151 {
2152 T0_64 = _do_efsctsi(T0_64);
2153 }
2154
2155 void do_efsctui (void)
2156 {
2157 T0_64 = _do_efsctui(T0_64);
2158 }
2159
2160 void do_efsctsiz (void)
2161 {
2162 T0_64 = _do_efsctsiz(T0_64);
2163 }
2164
2165 void do_efsctuiz (void)
2166 {
2167 T0_64 = _do_efsctuiz(T0_64);
2168 }
2169
2170 /* Single precision floating-point conversion to/from fractional */
2171 static always_inline uint32_t _do_efscfsf (uint32_t val)
2172 {
2173 union {
2174 uint32_t u;
2175 float32 f;
2176 } u;
2177 float32 tmp;
2178
2179 u.f = int32_to_float32(val, &env->spe_status);
2180 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2181 u.f = float32_div(u.f, tmp, &env->spe_status);
2182
2183 return u.u;
2184 }
2185
2186 static always_inline uint32_t _do_efscfuf (uint32_t val)
2187 {
2188 union {
2189 uint32_t u;
2190 float32 f;
2191 } u;
2192 float32 tmp;
2193
2194 u.f = uint32_to_float32(val, &env->spe_status);
2195 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2196 u.f = float32_div(u.f, tmp, &env->spe_status);
2197
2198 return u.u;
2199 }
2200
2201 static always_inline int32_t _do_efsctsf (uint32_t val)
2202 {
2203 union {
2204 int32_t u;
2205 float32 f;
2206 } u;
2207 float32 tmp;
2208
2209 u.u = val;
2210 /* NaN are not treated the same way IEEE 754 does */
2211 if (unlikely(isnan(u.f)))
2212 return 0;
2213 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2214 u.f = float32_mul(u.f, tmp, &env->spe_status);
2215
2216 return float32_to_int32(u.f, &env->spe_status);
2217 }
2218
2219 static always_inline uint32_t _do_efsctuf (uint32_t val)
2220 {
2221 union {
2222 int32_t u;
2223 float32 f;
2224 } u;
2225 float32 tmp;
2226
2227 u.u = val;
2228 /* NaN are not treated the same way IEEE 754 does */
2229 if (unlikely(isnan(u.f)))
2230 return 0;
2231 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2232 u.f = float32_mul(u.f, tmp, &env->spe_status);
2233
2234 return float32_to_uint32(u.f, &env->spe_status);
2235 }
2236
2237 static always_inline int32_t _do_efsctsfz (uint32_t val)
2238 {
2239 union {
2240 int32_t u;
2241 float32 f;
2242 } u;
2243 float32 tmp;
2244
2245 u.u = val;
2246 /* NaN are not treated the same way IEEE 754 does */
2247 if (unlikely(isnan(u.f)))
2248 return 0;
2249 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2250 u.f = float32_mul(u.f, tmp, &env->spe_status);
2251
2252 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2253 }
2254
2255 static always_inline uint32_t _do_efsctufz (uint32_t val)
2256 {
2257 union {
2258 int32_t u;
2259 float32 f;
2260 } u;
2261 float32 tmp;
2262
2263 u.u = val;
2264 /* NaN are not treated the same way IEEE 754 does */
2265 if (unlikely(isnan(u.f)))
2266 return 0;
2267 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2268 u.f = float32_mul(u.f, tmp, &env->spe_status);
2269
2270 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2271 }
2272
2273 void do_efscfsf (void)
2274 {
2275 T0_64 = _do_efscfsf(T0_64);
2276 }
2277
2278 void do_efscfuf (void)
2279 {
2280 T0_64 = _do_efscfuf(T0_64);
2281 }
2282
2283 void do_efsctsf (void)
2284 {
2285 T0_64 = _do_efsctsf(T0_64);
2286 }
2287
2288 void do_efsctuf (void)
2289 {
2290 T0_64 = _do_efsctuf(T0_64);
2291 }
2292
2293 void do_efsctsfz (void)
2294 {
2295 T0_64 = _do_efsctsfz(T0_64);
2296 }
2297
2298 void do_efsctufz (void)
2299 {
2300 T0_64 = _do_efsctufz(T0_64);
2301 }
2302
2303 /* Double precision floating point helpers */
2304 static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
2305 {
2306 /* XXX: TODO: test special values (NaN, infinites, ...) */
2307 return _do_efdtstlt(op1, op2);
2308 }
2309
2310 static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
2311 {
2312 /* XXX: TODO: test special values (NaN, infinites, ...) */
2313 return _do_efdtstgt(op1, op2);
2314 }
2315
2316 static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
2317 {
2318 /* XXX: TODO: test special values (NaN, infinites, ...) */
2319 return _do_efdtsteq(op1, op2);
2320 }
2321
2322 void do_efdcmplt (void)
2323 {
2324 T0 = _do_efdcmplt(T0_64, T1_64);
2325 }
2326
2327 void do_efdcmpgt (void)
2328 {
2329 T0 = _do_efdcmpgt(T0_64, T1_64);
2330 }
2331
2332 void do_efdcmpeq (void)
2333 {
2334 T0 = _do_efdcmpeq(T0_64, T1_64);
2335 }
2336
2337 /* Double precision floating-point conversion to/from integer */
2338 static always_inline uint64_t _do_efdcfsi (int64_t val)
2339 {
2340 union {
2341 uint64_t u;
2342 float64 f;
2343 } u;
2344
2345 u.f = int64_to_float64(val, &env->spe_status);
2346
2347 return u.u;
2348 }
2349
2350 static always_inline uint64_t _do_efdcfui (uint64_t val)
2351 {
2352 union {
2353 uint64_t u;
2354 float64 f;
2355 } u;
2356
2357 u.f = uint64_to_float64(val, &env->spe_status);
2358
2359 return u.u;
2360 }
2361
2362 static always_inline int64_t _do_efdctsi (uint64_t val)
2363 {
2364 union {
2365 int64_t u;
2366 float64 f;
2367 } u;
2368
2369 u.u = val;
2370 /* NaN are not treated the same way IEEE 754 does */
2371 if (unlikely(isnan(u.f)))
2372 return 0;
2373
2374 return float64_to_int64(u.f, &env->spe_status);
2375 }
2376
2377 static always_inline uint64_t _do_efdctui (uint64_t val)
2378 {
2379 union {
2380 int64_t u;
2381 float64 f;
2382 } u;
2383
2384 u.u = val;
2385 /* NaN are not treated the same way IEEE 754 does */
2386 if (unlikely(isnan(u.f)))
2387 return 0;
2388
2389 return float64_to_uint64(u.f, &env->spe_status);
2390 }
2391
2392 static always_inline int64_t _do_efdctsiz (uint64_t val)
2393 {
2394 union {
2395 int64_t u;
2396 float64 f;
2397 } u;
2398
2399 u.u = val;
2400 /* NaN are not treated the same way IEEE 754 does */
2401 if (unlikely(isnan(u.f)))
2402 return 0;
2403
2404 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2405 }
2406
2407 static always_inline uint64_t _do_efdctuiz (uint64_t val)
2408 {
2409 union {
2410 int64_t u;
2411 float64 f;
2412 } u;
2413
2414 u.u = val;
2415 /* NaN are not treated the same way IEEE 754 does */
2416 if (unlikely(isnan(u.f)))
2417 return 0;
2418
2419 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2420 }
2421
2422 void do_efdcfsi (void)
2423 {
2424 T0_64 = _do_efdcfsi(T0_64);
2425 }
2426
2427 void do_efdcfui (void)
2428 {
2429 T0_64 = _do_efdcfui(T0_64);
2430 }
2431
2432 void do_efdctsi (void)
2433 {
2434 T0_64 = _do_efdctsi(T0_64);
2435 }
2436
2437 void do_efdctui (void)
2438 {
2439 T0_64 = _do_efdctui(T0_64);
2440 }
2441
2442 void do_efdctsiz (void)
2443 {
2444 T0_64 = _do_efdctsiz(T0_64);
2445 }
2446
2447 void do_efdctuiz (void)
2448 {
2449 T0_64 = _do_efdctuiz(T0_64);
2450 }
2451
2452 /* Double precision floating-point conversion to/from fractional */
2453 static always_inline uint64_t _do_efdcfsf (int64_t val)
2454 {
2455 union {
2456 uint64_t u;
2457 float64 f;
2458 } u;
2459 float64 tmp;
2460
2461 u.f = int32_to_float64(val, &env->spe_status);
2462 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2463 u.f = float64_div(u.f, tmp, &env->spe_status);
2464
2465 return u.u;
2466 }
2467
2468 static always_inline uint64_t _do_efdcfuf (uint64_t val)
2469 {
2470 union {
2471 uint64_t u;
2472 float64 f;
2473 } u;
2474 float64 tmp;
2475
2476 u.f = uint32_to_float64(val, &env->spe_status);
2477 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2478 u.f = float64_div(u.f, tmp, &env->spe_status);
2479
2480 return u.u;
2481 }
2482
2483 static always_inline int64_t _do_efdctsf (uint64_t val)
2484 {
2485 union {
2486 int64_t u;
2487 float64 f;
2488 } u;
2489 float64 tmp;
2490
2491 u.u = val;
2492 /* NaN are not treated the same way IEEE 754 does */
2493 if (unlikely(isnan(u.f)))
2494 return 0;
2495 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2496 u.f = float64_mul(u.f, tmp, &env->spe_status);
2497
2498 return float64_to_int32(u.f, &env->spe_status);
2499 }
2500
2501 static always_inline uint64_t _do_efdctuf (uint64_t val)
2502 {
2503 union {
2504 int64_t u;
2505 float64 f;
2506 } u;
2507 float64 tmp;
2508
2509 u.u = val;
2510 /* NaN are not treated the same way IEEE 754 does */
2511 if (unlikely(isnan(u.f)))
2512 return 0;
2513 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2514 u.f = float64_mul(u.f, tmp, &env->spe_status);
2515
2516 return float64_to_uint32(u.f, &env->spe_status);
2517 }
2518
2519 static always_inline int64_t _do_efdctsfz (uint64_t val)
2520 {
2521 union {
2522 int64_t u;
2523 float64 f;
2524 } u;
2525 float64 tmp;
2526
2527 u.u = val;
2528 /* NaN are not treated the same way IEEE 754 does */
2529 if (unlikely(isnan(u.f)))
2530 return 0;
2531 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2532 u.f = float64_mul(u.f, tmp, &env->spe_status);
2533
2534 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2535 }
2536
2537 static always_inline uint64_t _do_efdctufz (uint64_t val)
2538 {
2539 union {
2540 int64_t u;
2541 float64 f;
2542 } u;
2543 float64 tmp;
2544
2545 u.u = val;
2546 /* NaN are not treated the same way IEEE 754 does */
2547 if (unlikely(isnan(u.f)))
2548 return 0;
2549 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2550 u.f = float64_mul(u.f, tmp, &env->spe_status);
2551
2552 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2553 }
2554
2555 void do_efdcfsf (void)
2556 {
2557 T0_64 = _do_efdcfsf(T0_64);
2558 }
2559
2560 void do_efdcfuf (void)
2561 {
2562 T0_64 = _do_efdcfuf(T0_64);
2563 }
2564
2565 void do_efdctsf (void)
2566 {
2567 T0_64 = _do_efdctsf(T0_64);
2568 }
2569
2570 void do_efdctuf (void)
2571 {
2572 T0_64 = _do_efdctuf(T0_64);
2573 }
2574
2575 void do_efdctsfz (void)
2576 {
2577 T0_64 = _do_efdctsfz(T0_64);
2578 }
2579
2580 void do_efdctufz (void)
2581 {
2582 T0_64 = _do_efdctufz(T0_64);
2583 }
2584
2585 /* Floating point conversion between single and double precision */
2586 static always_inline uint32_t _do_efscfd (uint64_t val)
2587 {
2588 union {
2589 uint64_t u;
2590 float64 f;
2591 } u1;
2592 union {
2593 uint32_t u;
2594 float32 f;
2595 } u2;
2596
2597 u1.u = val;
2598 u2.f = float64_to_float32(u1.f, &env->spe_status);
2599
2600 return u2.u;
2601 }
2602
2603 static always_inline uint64_t _do_efdcfs (uint32_t val)
2604 {
2605 union {
2606 uint64_t u;
2607 float64 f;
2608 } u2;
2609 union {
2610 uint32_t u;
2611 float32 f;
2612 } u1;
2613
2614 u1.u = val;
2615 u2.f = float32_to_float64(u1.f, &env->spe_status);
2616
2617 return u2.u;
2618 }
2619
2620 void do_efscfd (void)
2621 {
2622 T0_64 = _do_efscfd(T0_64);
2623 }
2624
2625 void do_efdcfs (void)
2626 {
2627 T0_64 = _do_efdcfs(T0_64);
2628 }
2629
2630 /* Single precision fixed-point vector arithmetic */
2631 /* evfsabs */
2632 DO_SPE_OP1(fsabs);
2633 /* evfsnabs */
2634 DO_SPE_OP1(fsnabs);
2635 /* evfsneg */
2636 DO_SPE_OP1(fsneg);
2637 /* evfsadd */
2638 DO_SPE_OP2(fsadd);
2639 /* evfssub */
2640 DO_SPE_OP2(fssub);
2641 /* evfsmul */
2642 DO_SPE_OP2(fsmul);
2643 /* evfsdiv */
2644 DO_SPE_OP2(fsdiv);
2645
2646 /* Single-precision floating-point comparisons */
2647 static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2648 {
2649 /* XXX: TODO: test special values (NaN, infinites, ...) */
2650 return _do_efststlt(op1, op2);
2651 }
2652
2653 static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2654 {
2655 /* XXX: TODO: test special values (NaN, infinites, ...) */
2656 return _do_efststgt(op1, op2);
2657 }
2658
2659 static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2660 {
2661 /* XXX: TODO: test special values (NaN, infinites, ...) */
2662 return _do_efststeq(op1, op2);
2663 }
2664
2665 void do_efscmplt (void)
2666 {
2667 T0 = _do_efscmplt(T0_64, T1_64);
2668 }
2669
2670 void do_efscmpgt (void)
2671 {
2672 T0 = _do_efscmpgt(T0_64, T1_64);
2673 }
2674
2675 void do_efscmpeq (void)
2676 {
2677 T0 = _do_efscmpeq(T0_64, T1_64);
2678 }
2679
2680 /* Single-precision floating-point vector comparisons */
2681 /* evfscmplt */
2682 DO_SPE_CMP(fscmplt);
2683 /* evfscmpgt */
2684 DO_SPE_CMP(fscmpgt);
2685 /* evfscmpeq */
2686 DO_SPE_CMP(fscmpeq);
2687 /* evfststlt */
2688 DO_SPE_CMP(fststlt);
2689 /* evfststgt */
2690 DO_SPE_CMP(fststgt);
2691 /* evfststeq */
2692 DO_SPE_CMP(fststeq);
2693
2694 /* Single-precision floating-point vector conversions */
2695 /* evfscfsi */
2696 DO_SPE_OP1(fscfsi);
2697 /* evfscfui */
2698 DO_SPE_OP1(fscfui);
2699 /* evfscfuf */
2700 DO_SPE_OP1(fscfuf);
2701 /* evfscfsf */
2702 DO_SPE_OP1(fscfsf);
2703 /* evfsctsi */
2704 DO_SPE_OP1(fsctsi);
2705 /* evfsctui */
2706 DO_SPE_OP1(fsctui);
2707 /* evfsctsiz */
2708 DO_SPE_OP1(fsctsiz);
2709 /* evfsctuiz */
2710 DO_SPE_OP1(fsctuiz);
2711 /* evfsctsf */
2712 DO_SPE_OP1(fsctsf);
2713 /* evfsctuf */
2714 DO_SPE_OP1(fsctuf);
2715
2716 /*****************************************************************************/
2717 /* Softmmu support */
2718 #if !defined (CONFIG_USER_ONLY)
2719
2720 #define MMUSUFFIX _mmu
2721 #ifdef __s390__
2722 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2723 #else
2724 # define GETPC() (__builtin_return_address(0))
2725 #endif
2726
2727 #define SHIFT 0
2728 #include "softmmu_template.h"
2729
2730 #define SHIFT 1
2731 #include "softmmu_template.h"
2732
2733 #define SHIFT 2
2734 #include "softmmu_template.h"
2735
2736 #define SHIFT 3
2737 #include "softmmu_template.h"
2738
2739 /* try to fill the TLB and return an exception if error. If retaddr is
2740 NULL, it means that the function was called in C code (i.e. not
2741 from generated code or from helper.c) */
2742 /* XXX: fix it to restore all registers */
2743 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2744 {
2745 TranslationBlock *tb;
2746 CPUState *saved_env;
2747 unsigned long pc;
2748 int ret;
2749
2750 /* XXX: hack to restore env in all cases, even if not called from
2751 generated code */
2752 saved_env = env;
2753 env = cpu_single_env;
2754 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2755 if (unlikely(ret != 0)) {
2756 if (likely(retaddr)) {
2757 /* now we have a real cpu fault */
2758 pc = (unsigned long)retaddr;
2759 tb = tb_find_pc(pc);
2760 if (likely(tb)) {
2761 /* the PC is inside the translated code. It means that we have
2762 a virtual CPU fault */
2763 cpu_restore_state(tb, env, pc, NULL);
2764 }
2765 }
2766 do_raise_exception_err(env->exception_index, env->error_code);
2767 }
2768 env = saved_env;
2769 }
2770
2771 /* Software driven TLBs management */
2772 /* PowerPC 602/603 software TLB load instructions helpers */
2773 void do_load_6xx_tlb (int is_code)
2774 {
2775 target_ulong RPN, CMP, EPN;
2776 int way;
2777
2778 RPN = env->spr[SPR_RPA];
2779 if (is_code) {
2780 CMP = env->spr[SPR_ICMP];
2781 EPN = env->spr[SPR_IMISS];
2782 } else {
2783 CMP = env->spr[SPR_DCMP];
2784 EPN = env->spr[SPR_DMISS];
2785 }
2786 way = (env->spr[SPR_SRR1] >> 17) & 1;
2787 #if defined (DEBUG_SOFTWARE_TLB)
2788 if (loglevel != 0) {
2789 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2790 __func__, (unsigned long)T0, (unsigned long)EPN,
2791 (unsigned long)CMP, (unsigned long)RPN, way);
2792 }
2793 #endif
2794 /* Store this TLB */
2795 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2796 way, is_code, CMP, RPN);
2797 }
2798
2799 void do_load_74xx_tlb (int is_code)
2800 {
2801 target_ulong RPN, CMP, EPN;
2802 int way;
2803
2804 RPN = env->spr[SPR_PTELO];
2805 CMP = env->spr[SPR_PTEHI];
2806 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2807 way = env->spr[SPR_TLBMISS] & 0x3;
2808 #if defined (DEBUG_SOFTWARE_TLB)
2809 if (loglevel != 0) {
2810 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2811 __func__, (unsigned long)T0, (unsigned long)EPN,
2812 (unsigned long)CMP, (unsigned long)RPN, way);
2813 }
2814 #endif
2815 /* Store this TLB */
2816 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2817 way, is_code, CMP, RPN);
2818 }
2819
2820 static always_inline target_ulong booke_tlb_to_page_size (int size)
2821 {
2822 return 1024 << (2 * size);
2823 }
2824
2825 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2826 {
2827 int size;
2828
2829 switch (page_size) {
2830 case 0x00000400UL:
2831 size = 0x0;
2832 break;
2833 case 0x00001000UL:
2834 size = 0x1;
2835 break;
2836 case 0x00004000UL:
2837 size = 0x2;
2838 break;
2839 case 0x00010000UL:
2840 size = 0x3;
2841 break;
2842 case 0x00040000UL:
2843 size = 0x4;
2844 break;
2845 case 0x00100000UL:
2846 size = 0x5;
2847 break;
2848 case 0x00400000UL:
2849 size = 0x6;
2850 break;
2851 case 0x01000000UL:
2852 size = 0x7;
2853 break;
2854 case 0x04000000UL:
2855 size = 0x8;
2856 break;
2857 case 0x10000000UL:
2858 size = 0x9;
2859 break;
2860 case 0x40000000UL:
2861 size = 0xA;
2862 break;
2863 #if defined (TARGET_PPC64)
2864 case 0x000100000000ULL:
2865 size = 0xB;
2866 break;
2867 case 0x000400000000ULL:
2868 size = 0xC;
2869 break;
2870 case 0x001000000000ULL:
2871 size = 0xD;
2872 break;
2873 case 0x004000000000ULL:
2874 size = 0xE;
2875 break;
2876 case 0x010000000000ULL:
2877 size = 0xF;
2878 break;
2879 #endif
2880 default:
2881 size = -1;
2882 break;
2883 }
2884
2885 return size;
2886 }
2887
2888 /* Helpers for 4xx TLB management */
2889 void do_4xx_tlbre_lo (void)
2890 {
2891 ppcemb_tlb_t *tlb;
2892 int size;
2893
2894 T0 &= 0x3F;
2895 tlb = &env->tlb[T0].tlbe;
2896 T0 = tlb->EPN;
2897 if (tlb->prot & PAGE_VALID)
2898 T0 |= 0x400;
2899 size = booke_page_size_to_tlb(tlb->size);
2900 if (size < 0 || size > 0x7)
2901 size = 1;
2902 T0 |= size << 7;
2903 env->spr[SPR_40x_PID] = tlb->PID;
2904 }
2905
2906 void do_4xx_tlbre_hi (void)
2907 {
2908 ppcemb_tlb_t *tlb;
2909
2910 T0 &= 0x3F;
2911 tlb = &env->tlb[T0].tlbe;
2912 T0 = tlb->RPN;
2913 if (tlb->prot & PAGE_EXEC)
2914 T0 |= 0x200;
2915 if (tlb->prot & PAGE_WRITE)
2916 T0 |= 0x100;
2917 }
2918
2919 void do_4xx_tlbwe_hi (void)
2920 {
2921 ppcemb_tlb_t *tlb;
2922 target_ulong page, end;
2923
2924 #if defined (DEBUG_SOFTWARE_TLB)
2925 if (loglevel != 0) {
2926 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2927 }
2928 #endif
2929 T0 &= 0x3F;
2930 tlb = &env->tlb[T0].tlbe;
2931 /* Invalidate previous TLB (if it's valid) */
2932 if (tlb->prot & PAGE_VALID) {
2933 end = tlb->EPN + tlb->size;
2934 #if defined (DEBUG_SOFTWARE_TLB)
2935 if (loglevel != 0) {
2936 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2937 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2938 }
2939 #endif
2940 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2941 tlb_flush_page(env, page);
2942 }
2943 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2944 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2945 * If this ever occurs, one should use the ppcemb target instead
2946 * of the ppc or ppc64 one
2947 */
2948 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2949 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2950 "are not supported (%d)\n",
2951 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2952 }
2953 tlb->EPN = T1 & ~(tlb->size - 1);
2954 if (T1 & 0x40)
2955 tlb->prot |= PAGE_VALID;
2956 else
2957 tlb->prot &= ~PAGE_VALID;
2958 if (T1 & 0x20) {
2959 /* XXX: TO BE FIXED */
2960 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2961 }
2962 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2963 tlb->attr = T1 & 0xFF;
2964 #if defined (DEBUG_SOFTWARE_TLB)
2965 if (loglevel != 0) {
2966 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2967 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2968 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2969 tlb->prot & PAGE_READ ? 'r' : '-',
2970 tlb->prot & PAGE_WRITE ? 'w' : '-',
2971 tlb->prot & PAGE_EXEC ? 'x' : '-',
2972 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2973 }
2974 #endif
2975 /* Invalidate new TLB (if valid) */
2976 if (tlb->prot & PAGE_VALID) {
2977 end = tlb->EPN + tlb->size;
2978 #if defined (DEBUG_SOFTWARE_TLB)
2979 if (loglevel != 0) {
2980 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2981 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2982 }
2983 #endif
2984 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2985 tlb_flush_page(env, page);
2986 }
2987 }
2988
2989 void do_4xx_tlbwe_lo (void)
2990 {
2991 ppcemb_tlb_t *tlb;
2992
2993 #if defined (DEBUG_SOFTWARE_TLB)
2994 if (loglevel != 0) {
2995 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2996 }
2997 #endif
2998 T0 &= 0x3F;
2999 tlb = &env->tlb[T0].tlbe;
3000 tlb->RPN = T1 & 0xFFFFFC00;
3001 tlb->prot = PAGE_READ;
3002 if (T1 & 0x200)
3003 tlb->prot |= PAGE_EXEC;
3004 if (T1 & 0x100)
3005 tlb->prot |= PAGE_WRITE;
3006 #if defined (DEBUG_SOFTWARE_TLB)
3007 if (loglevel != 0) {
3008 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3009 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3010 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
3011 tlb->prot & PAGE_READ ? 'r' : '-',
3012 tlb->prot & PAGE_WRITE ? 'w' : '-',
3013 tlb->prot & PAGE_EXEC ? 'x' : '-',
3014 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3015 }
3016 #endif
3017 }
3018
3019 /* PowerPC 440 TLB management */
3020 void do_440_tlbwe (int word)
3021 {
3022 ppcemb_tlb_t *tlb;
3023 target_ulong EPN, RPN, size;
3024 int do_flush_tlbs;
3025
3026 #if defined (DEBUG_SOFTWARE_TLB)
3027 if (loglevel != 0) {
3028 fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
3029 __func__, word, T0, T1);
3030 }
3031 #endif
3032 do_flush_tlbs = 0;
3033 T0 &= 0x3F;
3034 tlb = &env->tlb[T0].tlbe;
3035 switch (word) {
3036 default:
3037 /* Just here to please gcc */
3038 case 0:
3039 EPN = T1 & 0xFFFFFC00;
3040 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3041 do_flush_tlbs = 1;
3042 tlb->EPN = EPN;
3043 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3044 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3045 do_flush_tlbs = 1;
3046 tlb->size = size;
3047 tlb->attr &= ~0x1;
3048 tlb->attr |= (T1 >> 8) & 1;
3049 if (T1 & 0x200) {
3050 tlb->prot |= PAGE_VALID;
3051 } else {
3052 if (tlb->prot & PAGE_VALID) {
3053 tlb->prot &= ~PAGE_VALID;
3054 do_flush_tlbs = 1;
3055 }
3056 }
3057 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3058 if (do_flush_tlbs)
3059 tlb_flush(env, 1);
3060 break;
3061 case 1:
3062 RPN = T1 & 0xFFFFFC0F;
3063 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3064 tlb_flush(env, 1);
3065 tlb->RPN = RPN;
3066 break;
3067 case 2:
3068 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3069 tlb->prot = tlb->prot & PAGE_VALID;
3070 if (T1 & 0x1)
3071 tlb->prot |= PAGE_READ << 4;
3072 if (T1 & 0x2)
3073 tlb->prot |= PAGE_WRITE << 4;
3074 if (T1 & 0x4)
3075 tlb->prot |= PAGE_EXEC << 4;
3076 if (T1 & 0x8)
3077 tlb->prot |= PAGE_READ;
3078 if (T1 & 0x10)
3079 tlb->prot |= PAGE_WRITE;
3080 if (T1 & 0x20)
3081 tlb->prot |= PAGE_EXEC;
3082 break;
3083 }
3084 }
3085
3086 void do_440_tlbre (int word)
3087 {
3088 ppcemb_tlb_t *tlb;
3089 int size;
3090
3091 T0 &= 0x3F;
3092 tlb = &env->tlb[T0].tlbe;
3093 switch (word) {
3094 default:
3095 /* Just here to please gcc */
3096 case 0:
3097 T0 = tlb->EPN;
3098 size = booke_page_size_to_tlb(tlb->size);
3099 if (size < 0 || size > 0xF)
3100 size = 1;
3101 T0 |= size << 4;
3102 if (tlb->attr & 0x1)
3103 T0 |= 0x100;
3104 if (tlb->prot & PAGE_VALID)
3105 T0 |= 0x200;
3106 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3107 env->spr[SPR_440_MMUCR] |= tlb->PID;
3108 break;
3109 case 1:
3110 T0 = tlb->RPN;
3111 break;
3112 case 2:
3113 T0 = tlb->attr & ~0x1;
3114 if (tlb->prot & (PAGE_READ << 4))
3115 T0 |= 0x1;
3116 if (tlb->prot & (PAGE_WRITE << 4))
3117 T0 |= 0x2;
3118 if (tlb->prot & (PAGE_EXEC << 4))
3119 T0 |= 0x4;
3120 if (tlb->prot & PAGE_READ)
3121 T0 |= 0x8;
3122 if (tlb->prot & PAGE_WRITE)
3123 T0 |= 0x10;
3124 if (tlb->prot & PAGE_EXEC)
3125 T0 |= 0x20;
3126 break;
3127 }
3128 }
3129 #endif /* !CONFIG_USER_ONLY */