]> git.proxmox.com Git - mirror_qemu.git/blob - target-ppc/op_helper.c
Add missing PowerPC 64 instructions
[mirror_qemu.git] / target-ppc / op_helper.c
1 /*
2 * PowerPC emulation helpers for qemu.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec.h"
21
22 #include "op_helper.h"
23
24 #define MEMSUFFIX _raw
25 #include "op_helper.h"
26 #include "op_helper_mem.h"
27 #if !defined(CONFIG_USER_ONLY)
28 #define MEMSUFFIX _user
29 #include "op_helper.h"
30 #include "op_helper_mem.h"
31 #define MEMSUFFIX _kernel
32 #include "op_helper.h"
33 #include "op_helper_mem.h"
34 #endif
35
36 //#define DEBUG_OP
37 //#define DEBUG_EXCEPTIONS
38 //#define DEBUG_SOFTWARE_TLB
39 //#define FLUSH_ALL_TLBS
40
41 /*****************************************************************************/
42 /* Exceptions processing helpers */
43 void cpu_loop_exit (void)
44 {
45 longjmp(env->jmp_env, 1);
46 }
47
48 void do_raise_exception_err (uint32_t exception, int error_code)
49 {
50 #if 0
51 printf("Raise exception %3x code : %d\n", exception, error_code);
52 #endif
53 switch (exception) {
54 case EXCP_PROGRAM:
55 if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
56 return;
57 break;
58 default:
59 break;
60 }
61 env->exception_index = exception;
62 env->error_code = error_code;
63 cpu_loop_exit();
64 }
65
66 void do_raise_exception (uint32_t exception)
67 {
68 do_raise_exception_err(exception, 0);
69 }
70
71 /*****************************************************************************/
72 /* Registers load and stores */
73 void do_load_cr (void)
74 {
75 T0 = (env->crf[0] << 28) |
76 (env->crf[1] << 24) |
77 (env->crf[2] << 20) |
78 (env->crf[3] << 16) |
79 (env->crf[4] << 12) |
80 (env->crf[5] << 8) |
81 (env->crf[6] << 4) |
82 (env->crf[7] << 0);
83 }
84
85 void do_store_cr (uint32_t mask)
86 {
87 int i, sh;
88
89 for (i = 0, sh = 7; i < 8; i++, sh --) {
90 if (mask & (1 << sh))
91 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
92 }
93 }
94
95 void do_load_xer (void)
96 {
97 T0 = (xer_so << XER_SO) |
98 (xer_ov << XER_OV) |
99 (xer_ca << XER_CA) |
100 (xer_bc << XER_BC) |
101 (xer_cmp << XER_CMP);
102 }
103
104 void do_store_xer (void)
105 {
106 xer_so = (T0 >> XER_SO) & 0x01;
107 xer_ov = (T0 >> XER_OV) & 0x01;
108 xer_ca = (T0 >> XER_CA) & 0x01;
109 xer_cmp = (T0 >> XER_CMP) & 0xFF;
110 xer_bc = (T0 >> XER_BC) & 0x7F;
111 }
112
113 void do_load_fpscr (void)
114 {
115 /* The 32 MSB of the target fpr are undefined.
116 * They'll be zero...
117 */
118 union {
119 float64 d;
120 struct {
121 uint32_t u[2];
122 } s;
123 } u;
124 int i;
125
126 #if defined(WORDS_BIGENDIAN)
127 #define WORD0 0
128 #define WORD1 1
129 #else
130 #define WORD0 1
131 #define WORD1 0
132 #endif
133 u.s.u[WORD0] = 0;
134 u.s.u[WORD1] = 0;
135 for (i = 0; i < 8; i++)
136 u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
137 FT0 = u.d;
138 }
139
140 void do_store_fpscr (uint32_t mask)
141 {
142 /*
143 * We use only the 32 LSB of the incoming fpr
144 */
145 union {
146 double d;
147 struct {
148 uint32_t u[2];
149 } s;
150 } u;
151 int i, rnd_type;
152
153 u.d = FT0;
154 if (mask & 0x80)
155 env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
156 for (i = 1; i < 7; i++) {
157 if (mask & (1 << (7 - i)))
158 env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
159 }
160 /* TODO: update FEX & VX */
161 /* Set rounding mode */
162 switch (env->fpscr[0] & 0x3) {
163 case 0:
164 /* Best approximation (round to nearest) */
165 rnd_type = float_round_nearest_even;
166 break;
167 case 1:
168 /* Smaller magnitude (round toward zero) */
169 rnd_type = float_round_to_zero;
170 break;
171 case 2:
172 /* Round toward +infinite */
173 rnd_type = float_round_up;
174 break;
175 default:
176 case 3:
177 /* Round toward -infinite */
178 rnd_type = float_round_down;
179 break;
180 }
181 set_float_rounding_mode(rnd_type, &env->fp_status);
182 }
183
184 /*****************************************************************************/
185 /* Fixed point operations helpers */
186 #if defined(TARGET_PPC64)
187 static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
188 {
189 *plow += a;
190 /* carry test */
191 if (*plow < a)
192 (*phigh)++;
193 *phigh += b;
194 }
195
196 static void neg128 (uint64_t *plow, uint64_t *phigh)
197 {
198 *plow = ~ *plow;
199 *phigh = ~ *phigh;
200 add128(plow, phigh, 1, 0);
201 }
202
203 static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
204 {
205 uint32_t a0, a1, b0, b1;
206 uint64_t v;
207
208 a0 = a;
209 a1 = a >> 32;
210
211 b0 = b;
212 b1 = b >> 32;
213
214 v = (uint64_t)a0 * (uint64_t)b0;
215 *plow = v;
216 *phigh = 0;
217
218 v = (uint64_t)a0 * (uint64_t)b1;
219 add128(plow, phigh, v << 32, v >> 32);
220
221 v = (uint64_t)a1 * (uint64_t)b0;
222 add128(plow, phigh, v << 32, v >> 32);
223
224 v = (uint64_t)a1 * (uint64_t)b1;
225 *phigh += v;
226 #if defined(DEBUG_MULDIV)
227 printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
228 a, b, *phigh, *plow);
229 #endif
230 }
231
232 void do_mul64 (uint64_t *plow, uint64_t *phigh)
233 {
234 mul64(plow, phigh, T0, T1);
235 }
236
237 static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
238 {
239 int sa, sb;
240 sa = (a < 0);
241 if (sa)
242 a = -a;
243 sb = (b < 0);
244 if (sb)
245 b = -b;
246 mul64(plow, phigh, a, b);
247 if (sa ^ sb) {
248 neg128(plow, phigh);
249 }
250 }
251
252 void do_imul64 (uint64_t *plow, uint64_t *phigh)
253 {
254 imul64(plow, phigh, T0, T1);
255 }
256 #endif
257
258 void do_adde (void)
259 {
260 T2 = T0;
261 T0 += T1 + xer_ca;
262 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
263 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
264 xer_ca = 0;
265 } else {
266 xer_ca = 1;
267 }
268 }
269
270 #if defined(TARGET_PPC64)
271 void do_adde_64 (void)
272 {
273 T2 = T0;
274 T0 += T1 + xer_ca;
275 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
276 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
277 xer_ca = 0;
278 } else {
279 xer_ca = 1;
280 }
281 }
282 #endif
283
284 void do_addmeo (void)
285 {
286 T1 = T0;
287 T0 += xer_ca + (-1);
288 if (likely(!((uint32_t)T1 &
289 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
290 xer_ov = 0;
291 } else {
292 xer_so = 1;
293 xer_ov = 1;
294 }
295 if (likely(T1 != 0))
296 xer_ca = 1;
297 }
298
299 #if defined(TARGET_PPC64)
300 void do_addmeo_64 (void)
301 {
302 T1 = T0;
303 T0 += xer_ca + (-1);
304 if (likely(!((uint64_t)T1 &
305 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
306 xer_ov = 0;
307 } else {
308 xer_so = 1;
309 xer_ov = 1;
310 }
311 if (likely(T1 != 0))
312 xer_ca = 1;
313 }
314 #endif
315
316 void do_divwo (void)
317 {
318 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
319 (int32_t)T1 == 0))) {
320 xer_ov = 0;
321 T0 = (int32_t)T0 / (int32_t)T1;
322 } else {
323 xer_so = 1;
324 xer_ov = 1;
325 T0 = (-1) * ((uint32_t)T0 >> 31);
326 }
327 }
328
329 #if defined(TARGET_PPC64)
330 void do_divdo (void)
331 {
332 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
333 (int64_t)T1 == 0))) {
334 xer_ov = 0;
335 T0 = (int64_t)T0 / (int64_t)T1;
336 } else {
337 xer_so = 1;
338 xer_ov = 1;
339 T0 = (-1ULL) * ((uint64_t)T0 >> 63);
340 }
341 }
342 #endif
343
344 void do_divwuo (void)
345 {
346 if (likely((uint32_t)T1 != 0)) {
347 xer_ov = 0;
348 T0 = (uint32_t)T0 / (uint32_t)T1;
349 } else {
350 xer_so = 1;
351 xer_ov = 1;
352 T0 = 0;
353 }
354 }
355
356 #if defined(TARGET_PPC64)
357 void do_divduo (void)
358 {
359 if (likely((uint64_t)T1 != 0)) {
360 xer_ov = 0;
361 T0 = (uint64_t)T0 / (uint64_t)T1;
362 } else {
363 xer_so = 1;
364 xer_ov = 1;
365 T0 = 0;
366 }
367 }
368 #endif
369
370 void do_mullwo (void)
371 {
372 int64_t res = (int64_t)T0 * (int64_t)T1;
373
374 if (likely((int32_t)res == res)) {
375 xer_ov = 0;
376 } else {
377 xer_ov = 1;
378 xer_so = 1;
379 }
380 T0 = (int32_t)res;
381 }
382
383 #if defined(TARGET_PPC64)
384 void do_mulldo (void)
385 {
386 int64_t th;
387 uint64_t tl;
388
389 do_imul64(&tl, &th);
390 if (likely(th == 0)) {
391 xer_ov = 0;
392 } else {
393 xer_ov = 1;
394 xer_so = 1;
395 }
396 T0 = (int64_t)tl;
397 }
398 #endif
399
400 void do_nego (void)
401 {
402 if (likely((int32_t)T0 != INT32_MIN)) {
403 xer_ov = 0;
404 T0 = -(int32_t)T0;
405 } else {
406 xer_ov = 1;
407 xer_so = 1;
408 }
409 }
410
411 #if defined(TARGET_PPC64)
412 void do_nego_64 (void)
413 {
414 if (likely((int64_t)T0 != INT64_MIN)) {
415 xer_ov = 0;
416 T0 = -(int64_t)T0;
417 } else {
418 xer_ov = 1;
419 xer_so = 1;
420 }
421 }
422 #endif
423
424 void do_subfe (void)
425 {
426 T0 = T1 + ~T0 + xer_ca;
427 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
428 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
429 xer_ca = 0;
430 } else {
431 xer_ca = 1;
432 }
433 }
434
435 #if defined(TARGET_PPC64)
436 void do_subfe_64 (void)
437 {
438 T0 = T1 + ~T0 + xer_ca;
439 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
440 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
441 xer_ca = 0;
442 } else {
443 xer_ca = 1;
444 }
445 }
446 #endif
447
448 void do_subfmeo (void)
449 {
450 T1 = T0;
451 T0 = ~T0 + xer_ca - 1;
452 if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
453 (1UL << 31)))) {
454 xer_ov = 0;
455 } else {
456 xer_so = 1;
457 xer_ov = 1;
458 }
459 if (likely((uint32_t)T1 != UINT32_MAX))
460 xer_ca = 1;
461 }
462
463 #if defined(TARGET_PPC64)
464 void do_subfmeo_64 (void)
465 {
466 T1 = T0;
467 T0 = ~T0 + xer_ca - 1;
468 if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
469 (1ULL << 63)))) {
470 xer_ov = 0;
471 } else {
472 xer_so = 1;
473 xer_ov = 1;
474 }
475 if (likely((uint64_t)T1 != UINT64_MAX))
476 xer_ca = 1;
477 }
478 #endif
479
480 void do_subfzeo (void)
481 {
482 T1 = T0;
483 T0 = ~T0 + xer_ca;
484 if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
485 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
486 xer_ov = 0;
487 } else {
488 xer_ov = 1;
489 xer_so = 1;
490 }
491 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
492 xer_ca = 0;
493 } else {
494 xer_ca = 1;
495 }
496 }
497
498 #if defined(TARGET_PPC64)
499 void do_subfzeo_64 (void)
500 {
501 T1 = T0;
502 T0 = ~T0 + xer_ca;
503 if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
504 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
505 xer_ov = 0;
506 } else {
507 xer_ov = 1;
508 xer_so = 1;
509 }
510 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
511 xer_ca = 0;
512 } else {
513 xer_ca = 1;
514 }
515 }
516 #endif
517
518 /* shift right arithmetic helper */
519 void do_sraw (void)
520 {
521 int32_t ret;
522
523 if (likely(!(T1 & 0x20UL))) {
524 if (likely((uint32_t)T1 != 0)) {
525 ret = (int32_t)T0 >> (T1 & 0x1fUL);
526 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
527 xer_ca = 0;
528 } else {
529 xer_ca = 1;
530 }
531 } else {
532 ret = T0;
533 xer_ca = 0;
534 }
535 } else {
536 ret = (-1) * ((uint32_t)T0 >> 31);
537 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
538 xer_ca = 0;
539 } else {
540 xer_ca = 1;
541 }
542 }
543 T0 = ret;
544 }
545
546 #if defined(TARGET_PPC64)
547 void do_srad (void)
548 {
549 int64_t ret;
550
551 if (likely(!(T1 & 0x40UL))) {
552 if (likely((uint64_t)T1 != 0)) {
553 ret = (int64_t)T0 >> (T1 & 0x3FUL);
554 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
555 xer_ca = 0;
556 } else {
557 xer_ca = 1;
558 }
559 } else {
560 ret = T0;
561 xer_ca = 0;
562 }
563 } else {
564 ret = (-1) * ((uint64_t)T0 >> 63);
565 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
566 xer_ca = 0;
567 } else {
568 xer_ca = 1;
569 }
570 }
571 T0 = ret;
572 }
573 #endif
574
575 static inline int popcnt (uint32_t val)
576 {
577 int i;
578
579 for (i = 0; val != 0;)
580 val = val ^ (val - 1);
581
582 return i;
583 }
584
585 void do_popcntb (void)
586 {
587 uint32_t ret;
588 int i;
589
590 ret = 0;
591 for (i = 0; i < 32; i += 8)
592 ret |= popcnt((T0 >> i) & 0xFF) << i;
593 T0 = ret;
594 }
595
596 #if defined(TARGET_PPC64)
597 void do_popcntb_64 (void)
598 {
599 uint64_t ret;
600 int i;
601
602 ret = 0;
603 for (i = 0; i < 64; i += 8)
604 ret |= popcnt((T0 >> i) & 0xFF) << i;
605 T0 = ret;
606 }
607 #endif
608
609 /*****************************************************************************/
610 /* Floating point operations helpers */
611 void do_fctiw (void)
612 {
613 union {
614 double d;
615 uint64_t i;
616 } p;
617
618 p.i = float64_to_int32(FT0, &env->fp_status);
619 #if USE_PRECISE_EMULATION
620 /* XXX: higher bits are not supposed to be significant.
621 * to make tests easier, return the same as a real PowerPC 750 (aka G3)
622 */
623 p.i |= 0xFFF80000ULL << 32;
624 #endif
625 FT0 = p.d;
626 }
627
628 void do_fctiwz (void)
629 {
630 union {
631 double d;
632 uint64_t i;
633 } p;
634
635 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
636 #if USE_PRECISE_EMULATION
637 /* XXX: higher bits are not supposed to be significant.
638 * to make tests easier, return the same as a real PowerPC 750 (aka G3)
639 */
640 p.i |= 0xFFF80000ULL << 32;
641 #endif
642 FT0 = p.d;
643 }
644
645 #if defined(TARGET_PPC64)
646 void do_fcfid (void)
647 {
648 union {
649 double d;
650 uint64_t i;
651 } p;
652
653 p.d = FT0;
654 FT0 = int64_to_float64(p.i, &env->fp_status);
655 }
656
657 void do_fctid (void)
658 {
659 union {
660 double d;
661 uint64_t i;
662 } p;
663
664 p.i = float64_to_int64(FT0, &env->fp_status);
665 FT0 = p.d;
666 }
667
668 void do_fctidz (void)
669 {
670 union {
671 double d;
672 uint64_t i;
673 } p;
674
675 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
676 FT0 = p.d;
677 }
678
679 #endif
680
681 #if USE_PRECISE_EMULATION
682 void do_fmadd (void)
683 {
684 #ifdef FLOAT128
685 float128 ft0_128, ft1_128;
686
687 ft0_128 = float64_to_float128(FT0, &env->fp_status);
688 ft1_128 = float64_to_float128(FT1, &env->fp_status);
689 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
690 ft1_128 = float64_to_float128(FT2, &env->fp_status);
691 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
692 FT0 = float128_to_float64(ft0_128, &env->fp_status);
693 #else
694 /* This is OK on x86 hosts */
695 FT0 = (FT0 * FT1) + FT2;
696 #endif
697 }
698
699 void do_fmsub (void)
700 {
701 #ifdef FLOAT128
702 float128 ft0_128, ft1_128;
703
704 ft0_128 = float64_to_float128(FT0, &env->fp_status);
705 ft1_128 = float64_to_float128(FT1, &env->fp_status);
706 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
707 ft1_128 = float64_to_float128(FT2, &env->fp_status);
708 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
709 FT0 = float128_to_float64(ft0_128, &env->fp_status);
710 #else
711 /* This is OK on x86 hosts */
712 FT0 = (FT0 * FT1) - FT2;
713 #endif
714 }
715 #endif /* USE_PRECISE_EMULATION */
716
717 void do_fnmadd (void)
718 {
719 #if USE_PRECISE_EMULATION
720 #ifdef FLOAT128
721 float128 ft0_128, ft1_128;
722
723 ft0_128 = float64_to_float128(FT0, &env->fp_status);
724 ft1_128 = float64_to_float128(FT1, &env->fp_status);
725 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
726 ft1_128 = float64_to_float128(FT2, &env->fp_status);
727 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
728 FT0 = float128_to_float64(ft0_128, &env->fp_status);
729 #else
730 /* This is OK on x86 hosts */
731 FT0 = (FT0 * FT1) + FT2;
732 #endif
733 #else
734 FT0 = float64_mul(FT0, FT1, &env->fp_status);
735 FT0 = float64_add(FT0, FT2, &env->fp_status);
736 #endif
737 if (likely(!isnan(FT0)))
738 FT0 = float64_chs(FT0);
739 }
740
741 void do_fnmsub (void)
742 {
743 #if USE_PRECISE_EMULATION
744 #ifdef FLOAT128
745 float128 ft0_128, ft1_128;
746
747 ft0_128 = float64_to_float128(FT0, &env->fp_status);
748 ft1_128 = float64_to_float128(FT1, &env->fp_status);
749 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
750 ft1_128 = float64_to_float128(FT2, &env->fp_status);
751 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
752 FT0 = float128_to_float64(ft0_128, &env->fp_status);
753 #else
754 /* This is OK on x86 hosts */
755 FT0 = (FT0 * FT1) - FT2;
756 #endif
757 #else
758 FT0 = float64_mul(FT0, FT1, &env->fp_status);
759 FT0 = float64_sub(FT0, FT2, &env->fp_status);
760 #endif
761 if (likely(!isnan(FT0)))
762 FT0 = float64_chs(FT0);
763 }
764
765 void do_fsqrt (void)
766 {
767 FT0 = float64_sqrt(FT0, &env->fp_status);
768 }
769
770 void do_fres (void)
771 {
772 union {
773 double d;
774 uint64_t i;
775 } p;
776
777 if (likely(isnormal(FT0))) {
778 #if USE_PRECISE_EMULATION
779 FT0 = float64_div(1.0, FT0, &env->fp_status);
780 FT0 = float64_to_float32(FT0, &env->fp_status);
781 #else
782 FT0 = float32_div(1.0, FT0, &env->fp_status);
783 #endif
784 } else {
785 p.d = FT0;
786 if (p.i == 0x8000000000000000ULL) {
787 p.i = 0xFFF0000000000000ULL;
788 } else if (p.i == 0x0000000000000000ULL) {
789 p.i = 0x7FF0000000000000ULL;
790 } else if (isnan(FT0)) {
791 p.i = 0x7FF8000000000000ULL;
792 } else if (FT0 < 0.0) {
793 p.i = 0x8000000000000000ULL;
794 } else {
795 p.i = 0x0000000000000000ULL;
796 }
797 FT0 = p.d;
798 }
799 }
800
801 void do_frsqrte (void)
802 {
803 union {
804 double d;
805 uint64_t i;
806 } p;
807
808 if (likely(isnormal(FT0) && FT0 > 0.0)) {
809 FT0 = float64_sqrt(FT0, &env->fp_status);
810 FT0 = float32_div(1.0, FT0, &env->fp_status);
811 } else {
812 p.d = FT0;
813 if (p.i == 0x8000000000000000ULL) {
814 p.i = 0xFFF0000000000000ULL;
815 } else if (p.i == 0x0000000000000000ULL) {
816 p.i = 0x7FF0000000000000ULL;
817 } else if (isnan(FT0)) {
818 if (!(p.i & 0x0008000000000000ULL))
819 p.i |= 0x000FFFFFFFFFFFFFULL;
820 } else if (FT0 < 0) {
821 p.i = 0x7FF8000000000000ULL;
822 } else {
823 p.i = 0x0000000000000000ULL;
824 }
825 FT0 = p.d;
826 }
827 }
828
829 void do_fsel (void)
830 {
831 if (FT0 >= 0)
832 FT0 = FT1;
833 else
834 FT0 = FT2;
835 }
836
837 void do_fcmpu (void)
838 {
839 if (likely(!isnan(FT0) && !isnan(FT1))) {
840 if (float64_lt(FT0, FT1, &env->fp_status)) {
841 T0 = 0x08UL;
842 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
843 T0 = 0x04UL;
844 } else {
845 T0 = 0x02UL;
846 }
847 } else {
848 T0 = 0x01UL;
849 env->fpscr[4] |= 0x1;
850 env->fpscr[6] |= 0x1;
851 }
852 env->fpscr[3] = T0;
853 }
854
855 void do_fcmpo (void)
856 {
857 env->fpscr[4] &= ~0x1;
858 if (likely(!isnan(FT0) && !isnan(FT1))) {
859 if (float64_lt(FT0, FT1, &env->fp_status)) {
860 T0 = 0x08UL;
861 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
862 T0 = 0x04UL;
863 } else {
864 T0 = 0x02UL;
865 }
866 } else {
867 T0 = 0x01UL;
868 env->fpscr[4] |= 0x1;
869 if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
870 /* Quiet NaN case */
871 env->fpscr[6] |= 0x1;
872 if (!(env->fpscr[1] & 0x8))
873 env->fpscr[4] |= 0x8;
874 } else {
875 env->fpscr[4] |= 0x8;
876 }
877 }
878 env->fpscr[3] = T0;
879 }
880
881 #if !defined (CONFIG_USER_ONLY)
882 void do_rfi (void)
883 {
884 env->nip = (target_ulong)(env->spr[SPR_SRR0] & ~0x00000003);
885 T0 = (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL);
886 #if defined(TARGET_PPC64)
887 ppc_store_msr_32(env, T0);
888 #else
889 do_store_msr(env, T0);
890 #endif
891 #if defined (DEBUG_OP)
892 dump_rfi();
893 #endif
894 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
895 }
896
897 #if defined(TARGET_PPC64)
898 void do_rfi_32 (void)
899 {
900 env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
901 T0 = (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL);
902 ppc_store_msr_32(env, T0);
903 #if defined (DEBUG_OP)
904 dump_rfi();
905 #endif
906 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
907 }
908
909 void do_rfid (void)
910 {
911 env->nip = (target_ulong)(env->spr[SPR_SRR0] & ~0x00000003);
912 T0 = (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL);
913 do_store_msr(env, T0);
914 #if defined (DEBUG_OP)
915 dump_rfi();
916 #endif
917 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
918 }
919
920 void do_rfid_32 (void)
921 {
922 env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
923 T0 = (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL);
924 do_store_msr(env, T0);
925 #if defined (DEBUG_OP)
926 dump_rfi();
927 #endif
928 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
929 }
930 #endif
931 #endif
932
933 void do_tw (int flags)
934 {
935 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
936 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
937 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
938 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
939 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01)))))
940 do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
941 }
942
943 #if defined(TARGET_PPC64)
944 void do_td (int flags)
945 {
946 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
947 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
948 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
949 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
950 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
951 do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
952 }
953 #endif
954
955 /*****************************************************************************/
956 /* PowerPC 601 specific instructions (POWER bridge) */
957 void do_POWER_abso (void)
958 {
959 if ((uint32_t)T0 == INT32_MIN) {
960 T0 = INT32_MAX;
961 xer_ov = 1;
962 xer_so = 1;
963 } else {
964 T0 = -T0;
965 xer_ov = 0;
966 }
967 }
968
969 void do_POWER_clcs (void)
970 {
971 switch (T0) {
972 case 0x0CUL:
973 /* Instruction cache line size */
974 T0 = ICACHE_LINE_SIZE;
975 break;
976 case 0x0DUL:
977 /* Data cache line size */
978 T0 = DCACHE_LINE_SIZE;
979 break;
980 case 0x0EUL:
981 /* Minimum cache line size */
982 T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
983 ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
984 break;
985 case 0x0FUL:
986 /* Maximum cache line size */
987 T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
988 ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
989 break;
990 default:
991 /* Undefined */
992 break;
993 }
994 }
995
996 void do_POWER_div (void)
997 {
998 uint64_t tmp;
999
1000 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1001 T0 = (long)((-1) * (T0 >> 31));
1002 env->spr[SPR_MQ] = 0;
1003 } else {
1004 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1005 env->spr[SPR_MQ] = tmp % T1;
1006 T0 = tmp / (int32_t)T1;
1007 }
1008 }
1009
1010 void do_POWER_divo (void)
1011 {
1012 int64_t tmp;
1013
1014 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1015 T0 = (long)((-1) * (T0 >> 31));
1016 env->spr[SPR_MQ] = 0;
1017 xer_ov = 1;
1018 xer_so = 1;
1019 } else {
1020 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1021 env->spr[SPR_MQ] = tmp % T1;
1022 tmp /= (int32_t)T1;
1023 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1024 xer_ov = 1;
1025 xer_so = 1;
1026 } else {
1027 xer_ov = 0;
1028 }
1029 T0 = tmp;
1030 }
1031 }
1032
1033 void do_POWER_divs (void)
1034 {
1035 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1036 T0 = (long)((-1) * (T0 >> 31));
1037 env->spr[SPR_MQ] = 0;
1038 } else {
1039 env->spr[SPR_MQ] = T0 % T1;
1040 T0 = (int32_t)T0 / (int32_t)T1;
1041 }
1042 }
1043
1044 void do_POWER_divso (void)
1045 {
1046 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1047 T0 = (long)((-1) * (T0 >> 31));
1048 env->spr[SPR_MQ] = 0;
1049 xer_ov = 1;
1050 xer_so = 1;
1051 } else {
1052 T0 = (int32_t)T0 / (int32_t)T1;
1053 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1054 xer_ov = 0;
1055 }
1056 }
1057
1058 void do_POWER_dozo (void)
1059 {
1060 if ((int32_t)T1 > (int32_t)T0) {
1061 T2 = T0;
1062 T0 = T1 - T0;
1063 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1064 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1065 xer_so = 1;
1066 xer_ov = 1;
1067 } else {
1068 xer_ov = 0;
1069 }
1070 } else {
1071 T0 = 0;
1072 xer_ov = 0;
1073 }
1074 }
1075
1076 void do_POWER_maskg (void)
1077 {
1078 uint32_t ret;
1079
1080 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1081 ret = -1;
1082 } else {
1083 ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1084 (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1085 if ((uint32_t)T0 > (uint32_t)T1)
1086 ret = ~ret;
1087 }
1088 T0 = ret;
1089 }
1090
1091 void do_POWER_mulo (void)
1092 {
1093 uint64_t tmp;
1094
1095 tmp = (uint64_t)T0 * (uint64_t)T1;
1096 env->spr[SPR_MQ] = tmp >> 32;
1097 T0 = tmp;
1098 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1099 xer_ov = 1;
1100 xer_so = 1;
1101 } else {
1102 xer_ov = 0;
1103 }
1104 }
1105
1106 #if !defined (CONFIG_USER_ONLY)
1107 void do_POWER_rac (void)
1108 {
1109 #if 0
1110 mmu_ctx_t ctx;
1111
1112 /* We don't have to generate many instances of this instruction,
1113 * as rac is supervisor only.
1114 */
1115 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1116 T0 = ctx.raddr;
1117 #endif
1118 }
1119
1120 void do_POWER_rfsvc (void)
1121 {
1122 env->nip = env->lr & ~0x00000003UL;
1123 T0 = env->ctr & 0x0000FFFFUL;
1124 do_store_msr(env, T0);
1125 #if defined (DEBUG_OP)
1126 dump_rfi();
1127 #endif
1128 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1129 }
1130
1131 /* PowerPC 601 BAT management helper */
1132 void do_store_601_batu (int nr)
1133 {
1134 do_store_ibatu(env, nr, (uint32_t)T0);
1135 env->DBAT[0][nr] = env->IBAT[0][nr];
1136 env->DBAT[1][nr] = env->IBAT[1][nr];
1137 }
1138 #endif
1139
1140 /*****************************************************************************/
1141 /* 602 specific instructions */
1142 /* mfrom is the most crazy instruction ever seen, imho ! */
1143 /* Real implementation uses a ROM table. Do the same */
1144 #define USE_MFROM_ROM_TABLE
1145 void do_op_602_mfrom (void)
1146 {
1147 if (likely(T0 < 602)) {
1148 #if defined(USE_MFROM_ROM_TABLE)
1149 #include "mfrom_table.c"
1150 T0 = mfrom_ROM_table[T0];
1151 #else
1152 double d;
1153 /* Extremly decomposed:
1154 * -T0 / 256
1155 * T0 = 256 * log10(10 + 1.0) + 0.5
1156 */
1157 d = T0;
1158 d = float64_div(d, 256, &env->fp_status);
1159 d = float64_chs(d);
1160 d = exp10(d); // XXX: use float emulation function
1161 d = float64_add(d, 1.0, &env->fp_status);
1162 d = log10(d); // XXX: use float emulation function
1163 d = float64_mul(d, 256, &env->fp_status);
1164 d = float64_add(d, 0.5, &env->fp_status);
1165 T0 = float64_round_to_int(d, &env->fp_status);
1166 #endif
1167 } else {
1168 T0 = 0;
1169 }
1170 }
1171
1172 /*****************************************************************************/
1173 /* Embedded PowerPC specific helpers */
1174 void do_405_check_ov (void)
1175 {
1176 if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1177 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1178 xer_ov = 0;
1179 } else {
1180 xer_ov = 1;
1181 xer_so = 1;
1182 }
1183 }
1184
1185 void do_405_check_sat (void)
1186 {
1187 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1188 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1189 /* Saturate result */
1190 if (T2 >> 31) {
1191 T0 = INT32_MIN;
1192 } else {
1193 T0 = INT32_MAX;
1194 }
1195 }
1196 }
1197
1198 #if !defined(CONFIG_USER_ONLY)
1199 void do_4xx_rfci (void)
1200 {
1201 env->nip = env->spr[SPR_40x_SRR2];
1202 T0 = env->spr[SPR_40x_SRR3] & ~0xFFFF0000;
1203 do_store_msr(env, T0);
1204 #if defined (DEBUG_OP)
1205 dump_rfi();
1206 #endif
1207 env->interrupt_request = CPU_INTERRUPT_EXITTB;
1208 }
1209
1210 void do_4xx_load_dcr (int dcrn)
1211 {
1212 target_ulong val;
1213
1214 if (unlikely(env->dcr_read == NULL))
1215 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1216 else if (unlikely((*env->dcr_read)(env->dcr_env, dcrn, &val) != 0))
1217 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1218 else
1219 T0 = val;
1220 }
1221
1222 void do_4xx_store_dcr (int dcrn)
1223 {
1224 if (unlikely(env->dcr_write == NULL))
1225 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1226 else if (unlikely((*env->dcr_write)(env->dcr_env, dcrn, T0) != 0))
1227 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1228 }
1229
1230 void do_load_403_pb (int num)
1231 {
1232 T0 = env->pb[num];
1233 }
1234
1235 void do_store_403_pb (int num)
1236 {
1237 if (likely(env->pb[num] != T0)) {
1238 env->pb[num] = T0;
1239 /* Should be optimized */
1240 tlb_flush(env, 1);
1241 }
1242 }
1243 #endif
1244
1245 /* 440 specific */
1246 void do_440_dlmzb (void)
1247 {
1248 target_ulong mask;
1249 int i;
1250
1251 i = 1;
1252 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1253 if ((T0 & mask) == 0)
1254 goto done;
1255 i++;
1256 }
1257 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1258 if ((T1 & mask) == 0)
1259 break;
1260 i++;
1261 }
1262 done:
1263 T0 = i;
1264 }
1265
1266 #if defined(TARGET_PPCSPE)
1267 /* SPE extension helpers */
1268 /* Use a table to make this quicker */
1269 static uint8_t hbrev[16] = {
1270 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1271 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1272 };
1273
1274 static inline uint8_t byte_reverse (uint8_t val)
1275 {
1276 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1277 }
1278
1279 static inline uint32_t word_reverse (uint32_t val)
1280 {
1281 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1282 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1283 }
1284
1285 #define MASKBITS 16 // Random value - to be fixed
1286 void do_brinc (void)
1287 {
1288 uint32_t a, b, d, mask;
1289
1290 mask = (uint32_t)(-1UL) >> MASKBITS;
1291 b = T1_64 & mask;
1292 a = T0_64 & mask;
1293 d = word_reverse(1 + word_reverse(a | ~mask));
1294 T0_64 = (T0_64 & ~mask) | (d & mask);
1295 }
1296
1297 #define DO_SPE_OP2(name) \
1298 void do_ev##name (void) \
1299 { \
1300 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1301 (uint64_t)_do_e##name(T0_64, T1_64); \
1302 }
1303
1304 #define DO_SPE_OP1(name) \
1305 void do_ev##name (void) \
1306 { \
1307 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1308 (uint64_t)_do_e##name(T0_64); \
1309 }
1310
1311 /* Fixed-point vector arithmetic */
1312 static inline uint32_t _do_eabs (uint32_t val)
1313 {
1314 if (val != 0x80000000)
1315 val &= ~0x80000000;
1316
1317 return val;
1318 }
1319
1320 static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1321 {
1322 return op1 + op2;
1323 }
1324
1325 static inline int _do_ecntlsw (uint32_t val)
1326 {
1327 if (val & 0x80000000)
1328 return _do_cntlzw(~val);
1329 else
1330 return _do_cntlzw(val);
1331 }
1332
1333 static inline int _do_ecntlzw (uint32_t val)
1334 {
1335 return _do_cntlzw(val);
1336 }
1337
1338 static inline uint32_t _do_eneg (uint32_t val)
1339 {
1340 if (val != 0x80000000)
1341 val ^= 0x80000000;
1342
1343 return val;
1344 }
1345
1346 static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1347 {
1348 return rotl32(op1, op2);
1349 }
1350
1351 static inline uint32_t _do_erndw (uint32_t val)
1352 {
1353 return (val + 0x000080000000) & 0xFFFF0000;
1354 }
1355
1356 static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1357 {
1358 /* No error here: 6 bits are used */
1359 return op1 << (op2 & 0x3F);
1360 }
1361
1362 static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1363 {
1364 /* No error here: 6 bits are used */
1365 return op1 >> (op2 & 0x3F);
1366 }
1367
1368 static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1369 {
1370 /* No error here: 6 bits are used */
1371 return op1 >> (op2 & 0x3F);
1372 }
1373
1374 static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1375 {
1376 return op2 - op1;
1377 }
1378
1379 /* evabs */
1380 DO_SPE_OP1(abs);
1381 /* evaddw */
1382 DO_SPE_OP2(addw);
1383 /* evcntlsw */
1384 DO_SPE_OP1(cntlsw);
1385 /* evcntlzw */
1386 DO_SPE_OP1(cntlzw);
1387 /* evneg */
1388 DO_SPE_OP1(neg);
1389 /* evrlw */
1390 DO_SPE_OP2(rlw);
1391 /* evrnd */
1392 DO_SPE_OP1(rndw);
1393 /* evslw */
1394 DO_SPE_OP2(slw);
1395 /* evsrws */
1396 DO_SPE_OP2(srws);
1397 /* evsrwu */
1398 DO_SPE_OP2(srwu);
1399 /* evsubfw */
1400 DO_SPE_OP2(subfw);
1401
1402 /* evsel is a little bit more complicated... */
1403 static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1404 {
1405 if (n)
1406 return op1;
1407 else
1408 return op2;
1409 }
1410
1411 void do_evsel (void)
1412 {
1413 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1414 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1415 }
1416
1417 /* Fixed-point vector comparisons */
1418 #define DO_SPE_CMP(name) \
1419 void do_ev##name (void) \
1420 { \
1421 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
1422 T1_64 >> 32) << 32, \
1423 _do_e##name(T0_64, T1_64)); \
1424 }
1425
1426 static inline uint32_t _do_evcmp_merge (int t0, int t1)
1427 {
1428 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1429 }
1430 static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1431 {
1432 return op1 == op2 ? 1 : 0;
1433 }
1434
1435 static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1436 {
1437 return op1 > op2 ? 1 : 0;
1438 }
1439
1440 static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1441 {
1442 return op1 > op2 ? 1 : 0;
1443 }
1444
1445 static inline int _do_ecmplts (int32_t op1, int32_t op2)
1446 {
1447 return op1 < op2 ? 1 : 0;
1448 }
1449
1450 static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1451 {
1452 return op1 < op2 ? 1 : 0;
1453 }
1454
1455 /* evcmpeq */
1456 DO_SPE_CMP(cmpeq);
1457 /* evcmpgts */
1458 DO_SPE_CMP(cmpgts);
1459 /* evcmpgtu */
1460 DO_SPE_CMP(cmpgtu);
1461 /* evcmplts */
1462 DO_SPE_CMP(cmplts);
1463 /* evcmpltu */
1464 DO_SPE_CMP(cmpltu);
1465
1466 /* Single precision floating-point conversions from/to integer */
1467 static inline uint32_t _do_efscfsi (int32_t val)
1468 {
1469 union {
1470 uint32_t u;
1471 float32 f;
1472 } u;
1473
1474 u.f = int32_to_float32(val, &env->spe_status);
1475
1476 return u.u;
1477 }
1478
1479 static inline uint32_t _do_efscfui (uint32_t val)
1480 {
1481 union {
1482 uint32_t u;
1483 float32 f;
1484 } u;
1485
1486 u.f = uint32_to_float32(val, &env->spe_status);
1487
1488 return u.u;
1489 }
1490
1491 static inline int32_t _do_efsctsi (uint32_t val)
1492 {
1493 union {
1494 int32_t u;
1495 float32 f;
1496 } u;
1497
1498 u.u = val;
1499 /* NaN are not treated the same way IEEE 754 does */
1500 if (unlikely(isnan(u.f)))
1501 return 0;
1502
1503 return float32_to_int32(u.f, &env->spe_status);
1504 }
1505
1506 static inline uint32_t _do_efsctui (uint32_t val)
1507 {
1508 union {
1509 int32_t u;
1510 float32 f;
1511 } u;
1512
1513 u.u = val;
1514 /* NaN are not treated the same way IEEE 754 does */
1515 if (unlikely(isnan(u.f)))
1516 return 0;
1517
1518 return float32_to_uint32(u.f, &env->spe_status);
1519 }
1520
1521 static inline int32_t _do_efsctsiz (uint32_t val)
1522 {
1523 union {
1524 int32_t u;
1525 float32 f;
1526 } u;
1527
1528 u.u = val;
1529 /* NaN are not treated the same way IEEE 754 does */
1530 if (unlikely(isnan(u.f)))
1531 return 0;
1532
1533 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1534 }
1535
1536 static inline uint32_t _do_efsctuiz (uint32_t val)
1537 {
1538 union {
1539 int32_t u;
1540 float32 f;
1541 } u;
1542
1543 u.u = val;
1544 /* NaN are not treated the same way IEEE 754 does */
1545 if (unlikely(isnan(u.f)))
1546 return 0;
1547
1548 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1549 }
1550
1551 void do_efscfsi (void)
1552 {
1553 T0_64 = _do_efscfsi(T0_64);
1554 }
1555
1556 void do_efscfui (void)
1557 {
1558 T0_64 = _do_efscfui(T0_64);
1559 }
1560
1561 void do_efsctsi (void)
1562 {
1563 T0_64 = _do_efsctsi(T0_64);
1564 }
1565
1566 void do_efsctui (void)
1567 {
1568 T0_64 = _do_efsctui(T0_64);
1569 }
1570
1571 void do_efsctsiz (void)
1572 {
1573 T0_64 = _do_efsctsiz(T0_64);
1574 }
1575
1576 void do_efsctuiz (void)
1577 {
1578 T0_64 = _do_efsctuiz(T0_64);
1579 }
1580
1581 /* Single precision floating-point conversion to/from fractional */
1582 static inline uint32_t _do_efscfsf (uint32_t val)
1583 {
1584 union {
1585 uint32_t u;
1586 float32 f;
1587 } u;
1588 float32 tmp;
1589
1590 u.f = int32_to_float32(val, &env->spe_status);
1591 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1592 u.f = float32_div(u.f, tmp, &env->spe_status);
1593
1594 return u.u;
1595 }
1596
1597 static inline uint32_t _do_efscfuf (uint32_t val)
1598 {
1599 union {
1600 uint32_t u;
1601 float32 f;
1602 } u;
1603 float32 tmp;
1604
1605 u.f = uint32_to_float32(val, &env->spe_status);
1606 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1607 u.f = float32_div(u.f, tmp, &env->spe_status);
1608
1609 return u.u;
1610 }
1611
1612 static inline int32_t _do_efsctsf (uint32_t val)
1613 {
1614 union {
1615 int32_t u;
1616 float32 f;
1617 } u;
1618 float32 tmp;
1619
1620 u.u = val;
1621 /* NaN are not treated the same way IEEE 754 does */
1622 if (unlikely(isnan(u.f)))
1623 return 0;
1624 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1625 u.f = float32_mul(u.f, tmp, &env->spe_status);
1626
1627 return float32_to_int32(u.f, &env->spe_status);
1628 }
1629
1630 static inline uint32_t _do_efsctuf (uint32_t val)
1631 {
1632 union {
1633 int32_t u;
1634 float32 f;
1635 } u;
1636 float32 tmp;
1637
1638 u.u = val;
1639 /* NaN are not treated the same way IEEE 754 does */
1640 if (unlikely(isnan(u.f)))
1641 return 0;
1642 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1643 u.f = float32_mul(u.f, tmp, &env->spe_status);
1644
1645 return float32_to_uint32(u.f, &env->spe_status);
1646 }
1647
1648 static inline int32_t _do_efsctsfz (uint32_t val)
1649 {
1650 union {
1651 int32_t u;
1652 float32 f;
1653 } u;
1654 float32 tmp;
1655
1656 u.u = val;
1657 /* NaN are not treated the same way IEEE 754 does */
1658 if (unlikely(isnan(u.f)))
1659 return 0;
1660 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1661 u.f = float32_mul(u.f, tmp, &env->spe_status);
1662
1663 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1664 }
1665
1666 static inline uint32_t _do_efsctufz (uint32_t val)
1667 {
1668 union {
1669 int32_t u;
1670 float32 f;
1671 } u;
1672 float32 tmp;
1673
1674 u.u = val;
1675 /* NaN are not treated the same way IEEE 754 does */
1676 if (unlikely(isnan(u.f)))
1677 return 0;
1678 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1679 u.f = float32_mul(u.f, tmp, &env->spe_status);
1680
1681 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1682 }
1683
1684 void do_efscfsf (void)
1685 {
1686 T0_64 = _do_efscfsf(T0_64);
1687 }
1688
1689 void do_efscfuf (void)
1690 {
1691 T0_64 = _do_efscfuf(T0_64);
1692 }
1693
1694 void do_efsctsf (void)
1695 {
1696 T0_64 = _do_efsctsf(T0_64);
1697 }
1698
1699 void do_efsctuf (void)
1700 {
1701 T0_64 = _do_efsctuf(T0_64);
1702 }
1703
1704 void do_efsctsfz (void)
1705 {
1706 T0_64 = _do_efsctsfz(T0_64);
1707 }
1708
1709 void do_efsctufz (void)
1710 {
1711 T0_64 = _do_efsctufz(T0_64);
1712 }
1713
1714 /* Double precision floating point helpers */
1715 static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1716 {
1717 /* XXX: TODO: test special values (NaN, infinites, ...) */
1718 return _do_efdtstlt(op1, op2);
1719 }
1720
1721 static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1722 {
1723 /* XXX: TODO: test special values (NaN, infinites, ...) */
1724 return _do_efdtstgt(op1, op2);
1725 }
1726
1727 static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1728 {
1729 /* XXX: TODO: test special values (NaN, infinites, ...) */
1730 return _do_efdtsteq(op1, op2);
1731 }
1732
1733 void do_efdcmplt (void)
1734 {
1735 T0 = _do_efdcmplt(T0_64, T1_64);
1736 }
1737
1738 void do_efdcmpgt (void)
1739 {
1740 T0 = _do_efdcmpgt(T0_64, T1_64);
1741 }
1742
1743 void do_efdcmpeq (void)
1744 {
1745 T0 = _do_efdcmpeq(T0_64, T1_64);
1746 }
1747
1748 /* Double precision floating-point conversion to/from integer */
1749 static inline uint64_t _do_efdcfsi (int64_t val)
1750 {
1751 union {
1752 uint64_t u;
1753 float64 f;
1754 } u;
1755
1756 u.f = int64_to_float64(val, &env->spe_status);
1757
1758 return u.u;
1759 }
1760
1761 static inline uint64_t _do_efdcfui (uint64_t val)
1762 {
1763 union {
1764 uint64_t u;
1765 float64 f;
1766 } u;
1767
1768 u.f = uint64_to_float64(val, &env->spe_status);
1769
1770 return u.u;
1771 }
1772
1773 static inline int64_t _do_efdctsi (uint64_t val)
1774 {
1775 union {
1776 int64_t u;
1777 float64 f;
1778 } u;
1779
1780 u.u = val;
1781 /* NaN are not treated the same way IEEE 754 does */
1782 if (unlikely(isnan(u.f)))
1783 return 0;
1784
1785 return float64_to_int64(u.f, &env->spe_status);
1786 }
1787
1788 static inline uint64_t _do_efdctui (uint64_t val)
1789 {
1790 union {
1791 int64_t u;
1792 float64 f;
1793 } u;
1794
1795 u.u = val;
1796 /* NaN are not treated the same way IEEE 754 does */
1797 if (unlikely(isnan(u.f)))
1798 return 0;
1799
1800 return float64_to_uint64(u.f, &env->spe_status);
1801 }
1802
1803 static inline int64_t _do_efdctsiz (uint64_t val)
1804 {
1805 union {
1806 int64_t u;
1807 float64 f;
1808 } u;
1809
1810 u.u = val;
1811 /* NaN are not treated the same way IEEE 754 does */
1812 if (unlikely(isnan(u.f)))
1813 return 0;
1814
1815 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1816 }
1817
1818 static inline uint64_t _do_efdctuiz (uint64_t val)
1819 {
1820 union {
1821 int64_t u;
1822 float64 f;
1823 } u;
1824
1825 u.u = val;
1826 /* NaN are not treated the same way IEEE 754 does */
1827 if (unlikely(isnan(u.f)))
1828 return 0;
1829
1830 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1831 }
1832
1833 void do_efdcfsi (void)
1834 {
1835 T0_64 = _do_efdcfsi(T0_64);
1836 }
1837
1838 void do_efdcfui (void)
1839 {
1840 T0_64 = _do_efdcfui(T0_64);
1841 }
1842
1843 void do_efdctsi (void)
1844 {
1845 T0_64 = _do_efdctsi(T0_64);
1846 }
1847
1848 void do_efdctui (void)
1849 {
1850 T0_64 = _do_efdctui(T0_64);
1851 }
1852
1853 void do_efdctsiz (void)
1854 {
1855 T0_64 = _do_efdctsiz(T0_64);
1856 }
1857
1858 void do_efdctuiz (void)
1859 {
1860 T0_64 = _do_efdctuiz(T0_64);
1861 }
1862
1863 /* Double precision floating-point conversion to/from fractional */
1864 static inline uint64_t _do_efdcfsf (int64_t val)
1865 {
1866 union {
1867 uint64_t u;
1868 float64 f;
1869 } u;
1870 float64 tmp;
1871
1872 u.f = int32_to_float64(val, &env->spe_status);
1873 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1874 u.f = float64_div(u.f, tmp, &env->spe_status);
1875
1876 return u.u;
1877 }
1878
1879 static inline uint64_t _do_efdcfuf (uint64_t val)
1880 {
1881 union {
1882 uint64_t u;
1883 float64 f;
1884 } u;
1885 float64 tmp;
1886
1887 u.f = uint32_to_float64(val, &env->spe_status);
1888 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1889 u.f = float64_div(u.f, tmp, &env->spe_status);
1890
1891 return u.u;
1892 }
1893
1894 static inline int64_t _do_efdctsf (uint64_t val)
1895 {
1896 union {
1897 int64_t u;
1898 float64 f;
1899 } u;
1900 float64 tmp;
1901
1902 u.u = val;
1903 /* NaN are not treated the same way IEEE 754 does */
1904 if (unlikely(isnan(u.f)))
1905 return 0;
1906 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1907 u.f = float64_mul(u.f, tmp, &env->spe_status);
1908
1909 return float64_to_int32(u.f, &env->spe_status);
1910 }
1911
1912 static inline uint64_t _do_efdctuf (uint64_t val)
1913 {
1914 union {
1915 int64_t u;
1916 float64 f;
1917 } u;
1918 float64 tmp;
1919
1920 u.u = val;
1921 /* NaN are not treated the same way IEEE 754 does */
1922 if (unlikely(isnan(u.f)))
1923 return 0;
1924 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1925 u.f = float64_mul(u.f, tmp, &env->spe_status);
1926
1927 return float64_to_uint32(u.f, &env->spe_status);
1928 }
1929
1930 static inline int64_t _do_efdctsfz (uint64_t val)
1931 {
1932 union {
1933 int64_t u;
1934 float64 f;
1935 } u;
1936 float64 tmp;
1937
1938 u.u = val;
1939 /* NaN are not treated the same way IEEE 754 does */
1940 if (unlikely(isnan(u.f)))
1941 return 0;
1942 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1943 u.f = float64_mul(u.f, tmp, &env->spe_status);
1944
1945 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
1946 }
1947
1948 static inline uint64_t _do_efdctufz (uint64_t val)
1949 {
1950 union {
1951 int64_t u;
1952 float64 f;
1953 } u;
1954 float64 tmp;
1955
1956 u.u = val;
1957 /* NaN are not treated the same way IEEE 754 does */
1958 if (unlikely(isnan(u.f)))
1959 return 0;
1960 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1961 u.f = float64_mul(u.f, tmp, &env->spe_status);
1962
1963 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
1964 }
1965
1966 void do_efdcfsf (void)
1967 {
1968 T0_64 = _do_efdcfsf(T0_64);
1969 }
1970
1971 void do_efdcfuf (void)
1972 {
1973 T0_64 = _do_efdcfuf(T0_64);
1974 }
1975
1976 void do_efdctsf (void)
1977 {
1978 T0_64 = _do_efdctsf(T0_64);
1979 }
1980
1981 void do_efdctuf (void)
1982 {
1983 T0_64 = _do_efdctuf(T0_64);
1984 }
1985
1986 void do_efdctsfz (void)
1987 {
1988 T0_64 = _do_efdctsfz(T0_64);
1989 }
1990
1991 void do_efdctufz (void)
1992 {
1993 T0_64 = _do_efdctufz(T0_64);
1994 }
1995
1996 /* Floating point conversion between single and double precision */
1997 static inline uint32_t _do_efscfd (uint64_t val)
1998 {
1999 union {
2000 uint64_t u;
2001 float64 f;
2002 } u1;
2003 union {
2004 uint32_t u;
2005 float32 f;
2006 } u2;
2007
2008 u1.u = val;
2009 u2.f = float64_to_float32(u1.f, &env->spe_status);
2010
2011 return u2.u;
2012 }
2013
2014 static inline uint64_t _do_efdcfs (uint32_t val)
2015 {
2016 union {
2017 uint64_t u;
2018 float64 f;
2019 } u2;
2020 union {
2021 uint32_t u;
2022 float32 f;
2023 } u1;
2024
2025 u1.u = val;
2026 u2.f = float32_to_float64(u1.f, &env->spe_status);
2027
2028 return u2.u;
2029 }
2030
2031 void do_efscfd (void)
2032 {
2033 T0_64 = _do_efscfd(T0_64);
2034 }
2035
2036 void do_efdcfs (void)
2037 {
2038 T0_64 = _do_efdcfs(T0_64);
2039 }
2040
2041 /* Single precision fixed-point vector arithmetic */
2042 /* evfsabs */
2043 DO_SPE_OP1(fsabs);
2044 /* evfsnabs */
2045 DO_SPE_OP1(fsnabs);
2046 /* evfsneg */
2047 DO_SPE_OP1(fsneg);
2048 /* evfsadd */
2049 DO_SPE_OP2(fsadd);
2050 /* evfssub */
2051 DO_SPE_OP2(fssub);
2052 /* evfsmul */
2053 DO_SPE_OP2(fsmul);
2054 /* evfsdiv */
2055 DO_SPE_OP2(fsdiv);
2056
2057 /* Single-precision floating-point comparisons */
2058 static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2059 {
2060 /* XXX: TODO: test special values (NaN, infinites, ...) */
2061 return _do_efststlt(op1, op2);
2062 }
2063
2064 static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2065 {
2066 /* XXX: TODO: test special values (NaN, infinites, ...) */
2067 return _do_efststgt(op1, op2);
2068 }
2069
2070 static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2071 {
2072 /* XXX: TODO: test special values (NaN, infinites, ...) */
2073 return _do_efststeq(op1, op2);
2074 }
2075
2076 void do_efscmplt (void)
2077 {
2078 T0 = _do_efscmplt(T0_64, T1_64);
2079 }
2080
2081 void do_efscmpgt (void)
2082 {
2083 T0 = _do_efscmpgt(T0_64, T1_64);
2084 }
2085
2086 void do_efscmpeq (void)
2087 {
2088 T0 = _do_efscmpeq(T0_64, T1_64);
2089 }
2090
2091 /* Single-precision floating-point vector comparisons */
2092 /* evfscmplt */
2093 DO_SPE_CMP(fscmplt);
2094 /* evfscmpgt */
2095 DO_SPE_CMP(fscmpgt);
2096 /* evfscmpeq */
2097 DO_SPE_CMP(fscmpeq);
2098 /* evfststlt */
2099 DO_SPE_CMP(fststlt);
2100 /* evfststgt */
2101 DO_SPE_CMP(fststgt);
2102 /* evfststeq */
2103 DO_SPE_CMP(fststeq);
2104
2105 /* Single-precision floating-point vector conversions */
2106 /* evfscfsi */
2107 DO_SPE_OP1(fscfsi);
2108 /* evfscfui */
2109 DO_SPE_OP1(fscfui);
2110 /* evfscfuf */
2111 DO_SPE_OP1(fscfuf);
2112 /* evfscfsf */
2113 DO_SPE_OP1(fscfsf);
2114 /* evfsctsi */
2115 DO_SPE_OP1(fsctsi);
2116 /* evfsctui */
2117 DO_SPE_OP1(fsctui);
2118 /* evfsctsiz */
2119 DO_SPE_OP1(fsctsiz);
2120 /* evfsctuiz */
2121 DO_SPE_OP1(fsctuiz);
2122 /* evfsctsf */
2123 DO_SPE_OP1(fsctsf);
2124 /* evfsctuf */
2125 DO_SPE_OP1(fsctuf);
2126 #endif /* defined(TARGET_PPCSPE) */
2127
2128 /*****************************************************************************/
2129 /* Softmmu support */
2130 #if !defined (CONFIG_USER_ONLY)
2131
2132 #define MMUSUFFIX _mmu
2133 #define GETPC() (__builtin_return_address(0))
2134
2135 #define SHIFT 0
2136 #include "softmmu_template.h"
2137
2138 #define SHIFT 1
2139 #include "softmmu_template.h"
2140
2141 #define SHIFT 2
2142 #include "softmmu_template.h"
2143
2144 #define SHIFT 3
2145 #include "softmmu_template.h"
2146
2147 /* try to fill the TLB and return an exception if error. If retaddr is
2148 NULL, it means that the function was called in C code (i.e. not
2149 from generated code or from helper.c) */
2150 /* XXX: fix it to restore all registers */
2151 void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2152 {
2153 TranslationBlock *tb;
2154 CPUState *saved_env;
2155 target_phys_addr_t pc;
2156 int ret;
2157
2158 /* XXX: hack to restore env in all cases, even if not called from
2159 generated code */
2160 saved_env = env;
2161 env = cpu_single_env;
2162 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2163 if (unlikely(ret != 0)) {
2164 if (likely(retaddr)) {
2165 /* now we have a real cpu fault */
2166 pc = (target_phys_addr_t)retaddr;
2167 tb = tb_find_pc(pc);
2168 if (likely(tb)) {
2169 /* the PC is inside the translated code. It means that we have
2170 a virtual CPU fault */
2171 cpu_restore_state(tb, env, pc, NULL);
2172 }
2173 }
2174 do_raise_exception_err(env->exception_index, env->error_code);
2175 }
2176 env = saved_env;
2177 }
2178
2179 /* TLB invalidation helpers */
2180 void do_tlbia (void)
2181 {
2182 if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2183 ppc6xx_tlb_invalidate_all(env);
2184 } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2185 /* XXX: TODO */
2186 #if 0
2187 ppcbooke_tlb_invalidate_all(env);
2188 #endif
2189 } else {
2190 tlb_flush(env, 1);
2191 }
2192 }
2193
2194 void do_tlbie (void)
2195 {
2196 T0 = (uint32_t)T0;
2197 #if !defined(FLUSH_ALL_TLBS)
2198 if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2199 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2200 if (env->id_tlbs == 1)
2201 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2202 } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2203 /* XXX: TODO */
2204 #if 0
2205 ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2206 env->spr[SPR_BOOKE_PID]);
2207 #endif
2208 } else {
2209 /* tlbie invalidate TLBs for all segments */
2210 T0 &= TARGET_PAGE_MASK;
2211 T0 &= ~((target_ulong)-1 << 28);
2212 /* XXX: this case should be optimized,
2213 * giving a mask to tlb_flush_page
2214 */
2215 tlb_flush_page(env, T0 | (0x0 << 28));
2216 tlb_flush_page(env, T0 | (0x1 << 28));
2217 tlb_flush_page(env, T0 | (0x2 << 28));
2218 tlb_flush_page(env, T0 | (0x3 << 28));
2219 tlb_flush_page(env, T0 | (0x4 << 28));
2220 tlb_flush_page(env, T0 | (0x5 << 28));
2221 tlb_flush_page(env, T0 | (0x6 << 28));
2222 tlb_flush_page(env, T0 | (0x7 << 28));
2223 tlb_flush_page(env, T0 | (0x8 << 28));
2224 tlb_flush_page(env, T0 | (0x9 << 28));
2225 tlb_flush_page(env, T0 | (0xA << 28));
2226 tlb_flush_page(env, T0 | (0xB << 28));
2227 tlb_flush_page(env, T0 | (0xC << 28));
2228 tlb_flush_page(env, T0 | (0xD << 28));
2229 tlb_flush_page(env, T0 | (0xE << 28));
2230 tlb_flush_page(env, T0 | (0xF << 28));
2231 }
2232 #else
2233 do_tlbia();
2234 #endif
2235 }
2236
2237 #if defined(TARGET_PPC64)
2238 void do_tlbie_64 (void)
2239 {
2240 T0 = (uint64_t)T0;
2241 #if !defined(FLUSH_ALL_TLBS)
2242 if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2243 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2244 if (env->id_tlbs == 1)
2245 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2246 } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2247 /* XXX: TODO */
2248 #if 0
2249 ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2250 env->spr[SPR_BOOKE_PID]);
2251 #endif
2252 } else {
2253 /* tlbie invalidate TLBs for all segments
2254 * As we have 2^36 segments, invalidate all qemu TLBs
2255 */
2256 #if 0
2257 T0 &= TARGET_PAGE_MASK;
2258 T0 &= ~((target_ulong)-1 << 28);
2259 /* XXX: this case should be optimized,
2260 * giving a mask to tlb_flush_page
2261 */
2262 tlb_flush_page(env, T0 | (0x0 << 28));
2263 tlb_flush_page(env, T0 | (0x1 << 28));
2264 tlb_flush_page(env, T0 | (0x2 << 28));
2265 tlb_flush_page(env, T0 | (0x3 << 28));
2266 tlb_flush_page(env, T0 | (0x4 << 28));
2267 tlb_flush_page(env, T0 | (0x5 << 28));
2268 tlb_flush_page(env, T0 | (0x6 << 28));
2269 tlb_flush_page(env, T0 | (0x7 << 28));
2270 tlb_flush_page(env, T0 | (0x8 << 28));
2271 tlb_flush_page(env, T0 | (0x9 << 28));
2272 tlb_flush_page(env, T0 | (0xA << 28));
2273 tlb_flush_page(env, T0 | (0xB << 28));
2274 tlb_flush_page(env, T0 | (0xC << 28));
2275 tlb_flush_page(env, T0 | (0xD << 28));
2276 tlb_flush_page(env, T0 | (0xE << 28));
2277 tlb_flush_page(env, T0 | (0xF << 28));
2278 #else
2279 tlb_flush(env, 1);
2280 #endif
2281 }
2282 #else
2283 do_tlbia();
2284 #endif
2285 }
2286 #endif
2287
2288 #if defined(TARGET_PPC64)
2289 void do_slbia (void)
2290 {
2291 /* XXX: TODO */
2292 tlb_flush(env, 1);
2293 }
2294
2295 void do_slbie (void)
2296 {
2297 /* XXX: TODO */
2298 tlb_flush(env, 1);
2299 }
2300 #endif
2301
2302 /* Software driven TLBs management */
2303 /* PowerPC 602/603 software TLB load instructions helpers */
2304 void do_load_6xx_tlb (int is_code)
2305 {
2306 target_ulong RPN, CMP, EPN;
2307 int way;
2308
2309 RPN = env->spr[SPR_RPA];
2310 if (is_code) {
2311 CMP = env->spr[SPR_ICMP];
2312 EPN = env->spr[SPR_IMISS];
2313 } else {
2314 CMP = env->spr[SPR_DCMP];
2315 EPN = env->spr[SPR_DMISS];
2316 }
2317 way = (env->spr[SPR_SRR1] >> 17) & 1;
2318 #if defined (DEBUG_SOFTWARE_TLB)
2319 if (loglevel != 0) {
2320 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2321 __func__, (unsigned long)T0, (unsigned long)EPN,
2322 (unsigned long)CMP, (unsigned long)RPN, way);
2323 }
2324 #endif
2325 /* Store this TLB */
2326 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2327 way, is_code, CMP, RPN);
2328 }
2329
2330 /* Helpers for 4xx TLB management */
2331 void do_4xx_tlbia (void)
2332 {
2333 #if 0
2334 ppc_tlb_t *tlb;
2335 target_ulong page, end;
2336 int i;
2337
2338 for (i = 0; i < 64; i++) {
2339 tlb = &env->tlb[i];
2340 if (tlb->prot & PAGE_VALID) {
2341 end = tlb->EPN + tlb->size;
2342 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2343 tlb_flush_page(env, page);
2344 tlb->prot &= ~PAGE_VALID;
2345 }
2346 }
2347 #endif
2348 }
2349
2350 void do_4xx_tlbre_lo (void)
2351 {
2352 #if 0
2353 ppc_tlb_t *tlb;
2354
2355 T0 &= 0x3F;
2356 tlb = &env->tlb[T0];
2357 T0 = tlb->stor[0];
2358 env->spr[SPR_40x_PID] = tlb->pid;
2359 #endif
2360 }
2361
2362 void do_4xx_tlbre_hi (void)
2363 {
2364 #if 0
2365 ppc_tlb_t *tlb;
2366
2367 T0 &= 0x3F;
2368 tlb = &env->tlb[T0];
2369 T0 = tlb->stor[1];
2370 #endif
2371 }
2372
2373 static int tlb_4xx_search (target_ulong virtual)
2374 {
2375 #if 0
2376 ppc_tlb_t *tlb;
2377 target_ulong base, mask;
2378 int i, ret;
2379
2380 /* Default return value is no match */
2381 ret = -1;
2382 for (i = 0; i < 64; i++) {
2383 tlb = &env->tlb[i];
2384 /* Check TLB validity */
2385 if (!(tlb->prot & PAGE_VALID))
2386 continue;
2387 /* Check TLB PID vs current PID */
2388 if (tlb->pid != 0 && tlb->pid != env->spr[SPR_40x_PID])
2389 continue;
2390 /* Check TLB address vs virtual address */
2391 base = tlb->EPN;
2392 mask = ~(tlb->size - 1);
2393 if ((base & mask) != (virtual & mask))
2394 continue;
2395 ret = i;
2396 break;
2397 }
2398
2399 return ret;
2400 #else
2401 return -1;
2402 #endif
2403 }
2404
2405 void do_4xx_tlbsx (void)
2406 {
2407 T0 = tlb_4xx_search(T0);
2408 }
2409
2410 void do_4xx_tlbsx_ (void)
2411 {
2412 int tmp = xer_ov;
2413
2414 T0 = tlb_4xx_search(T0);
2415 if (T0 != -1)
2416 tmp |= 0x02;
2417 env->crf[0] = tmp;
2418 }
2419
2420 void do_4xx_tlbwe_lo (void)
2421 {
2422 #if 0
2423 ppc_tlb_t *tlb;
2424 target_ulong page, end;
2425
2426 T0 &= 0x3F;
2427 tlb = &env->tlb[T0];
2428 /* Invalidate previous TLB (if it's valid) */
2429 if (tlb->prot & PAGE_VALID) {
2430 end = tlb->EPN + tlb->size;
2431 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2432 tlb_flush_page(env, page);
2433 }
2434 tlb->size = 1024 << (2 * ((T1 >> 7) & 0x7));
2435 tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
2436 if (T1 & 0x400)
2437 tlb->prot |= PAGE_VALID;
2438 else
2439 tlb->prot &= ~PAGE_VALID;
2440 tlb->pid = env->spr[SPR_BOOKE_PID]; /* PID */
2441 /* Invalidate new TLB (if valid) */
2442 if (tlb->prot & PAGE_VALID) {
2443 end = tlb->EPN + tlb->size;
2444 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2445 tlb_flush_page(env, page);
2446 }
2447 #endif
2448 }
2449
2450 void do_4xx_tlbwe_hi (void)
2451 {
2452 #if 0
2453 ppc_tlb_t *tlb;
2454
2455 T0 &= 0x3F;
2456 tlb = &env->tlb[T0];
2457 tlb->RPN = T1 & 0xFFFFFC00;
2458 tlb->prot = PAGE_READ;
2459 if (T1 & 0x200)
2460 tlb->prot |= PAGE_EXEC;
2461 if (T1 & 0x100)
2462 tlb->prot |= PAGE_WRITE;
2463 #endif
2464 }
2465 #endif /* !CONFIG_USER_ONLY */