]> git.proxmox.com Git - mirror_qemu.git/blob - target-ppc/op_helper.c
Clean up of some target specifics in exec.c/cpu-exec.c.
[mirror_qemu.git] / target-ppc / op_helper.c
1 /*
2 * PowerPC emulation helpers for qemu.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec.h"
21
22 #include "op_helper.h"
23
24 #define MEMSUFFIX _raw
25 #include "op_helper.h"
26 #include "op_helper_mem.h"
27 #if !defined(CONFIG_USER_ONLY)
28 #define MEMSUFFIX _user
29 #include "op_helper.h"
30 #include "op_helper_mem.h"
31 #define MEMSUFFIX _kernel
32 #include "op_helper.h"
33 #include "op_helper_mem.h"
34 #endif
35
36 //#define DEBUG_OP
37 //#define DEBUG_EXCEPTIONS
38 //#define DEBUG_SOFTWARE_TLB
39 //#define FLUSH_ALL_TLBS
40
41 /*****************************************************************************/
42 /* Exceptions processing helpers */
43
44 void do_raise_exception_err (uint32_t exception, int error_code)
45 {
46 #if 0
47 printf("Raise exception %3x code : %d\n", exception, error_code);
48 #endif
49 switch (exception) {
50 case EXCP_PROGRAM:
51 if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
52 return;
53 break;
54 default:
55 break;
56 }
57 env->exception_index = exception;
58 env->error_code = error_code;
59 cpu_loop_exit();
60 }
61
62 void do_raise_exception (uint32_t exception)
63 {
64 do_raise_exception_err(exception, 0);
65 }
66
67 void cpu_dump_EA (target_ulong EA);
68 void do_print_mem_EA (target_ulong EA)
69 {
70 cpu_dump_EA(EA);
71 }
72
73 /*****************************************************************************/
74 /* Registers load and stores */
75 void do_load_cr (void)
76 {
77 T0 = (env->crf[0] << 28) |
78 (env->crf[1] << 24) |
79 (env->crf[2] << 20) |
80 (env->crf[3] << 16) |
81 (env->crf[4] << 12) |
82 (env->crf[5] << 8) |
83 (env->crf[6] << 4) |
84 (env->crf[7] << 0);
85 }
86
87 void do_store_cr (uint32_t mask)
88 {
89 int i, sh;
90
91 for (i = 0, sh = 7; i < 8; i++, sh --) {
92 if (mask & (1 << sh))
93 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
94 }
95 }
96
97 void do_load_xer (void)
98 {
99 T0 = (xer_so << XER_SO) |
100 (xer_ov << XER_OV) |
101 (xer_ca << XER_CA) |
102 (xer_bc << XER_BC) |
103 (xer_cmp << XER_CMP);
104 }
105
106 void do_store_xer (void)
107 {
108 xer_so = (T0 >> XER_SO) & 0x01;
109 xer_ov = (T0 >> XER_OV) & 0x01;
110 xer_ca = (T0 >> XER_CA) & 0x01;
111 xer_cmp = (T0 >> XER_CMP) & 0xFF;
112 xer_bc = (T0 >> XER_BC) & 0x7F;
113 }
114
115 void do_load_fpscr (void)
116 {
117 /* The 32 MSB of the target fpr are undefined.
118 * They'll be zero...
119 */
120 union {
121 float64 d;
122 struct {
123 uint32_t u[2];
124 } s;
125 } u;
126 int i;
127
128 #if defined(WORDS_BIGENDIAN)
129 #define WORD0 0
130 #define WORD1 1
131 #else
132 #define WORD0 1
133 #define WORD1 0
134 #endif
135 u.s.u[WORD0] = 0;
136 u.s.u[WORD1] = 0;
137 for (i = 0; i < 8; i++)
138 u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
139 FT0 = u.d;
140 }
141
142 void do_store_fpscr (uint32_t mask)
143 {
144 /*
145 * We use only the 32 LSB of the incoming fpr
146 */
147 union {
148 double d;
149 struct {
150 uint32_t u[2];
151 } s;
152 } u;
153 int i, rnd_type;
154
155 u.d = FT0;
156 if (mask & 0x80)
157 env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
158 for (i = 1; i < 7; i++) {
159 if (mask & (1 << (7 - i)))
160 env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
161 }
162 /* TODO: update FEX & VX */
163 /* Set rounding mode */
164 switch (env->fpscr[0] & 0x3) {
165 case 0:
166 /* Best approximation (round to nearest) */
167 rnd_type = float_round_nearest_even;
168 break;
169 case 1:
170 /* Smaller magnitude (round toward zero) */
171 rnd_type = float_round_to_zero;
172 break;
173 case 2:
174 /* Round toward +infinite */
175 rnd_type = float_round_up;
176 break;
177 default:
178 case 3:
179 /* Round toward -infinite */
180 rnd_type = float_round_down;
181 break;
182 }
183 set_float_rounding_mode(rnd_type, &env->fp_status);
184 }
185
186 target_ulong ppc_load_dump_spr (int sprn)
187 {
188 if (loglevel != 0) {
189 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
190 sprn, sprn, env->spr[sprn]);
191 }
192
193 return env->spr[sprn];
194 }
195
196 void ppc_store_dump_spr (int sprn, target_ulong val)
197 {
198 if (loglevel != 0) {
199 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
200 sprn, sprn, env->spr[sprn], val);
201 }
202 env->spr[sprn] = val;
203 }
204
205 /*****************************************************************************/
206 /* Fixed point operations helpers */
207 #if defined(TARGET_PPC64)
208 static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
209 {
210 *plow += a;
211 /* carry test */
212 if (*plow < a)
213 (*phigh)++;
214 *phigh += b;
215 }
216
217 static void neg128 (uint64_t *plow, uint64_t *phigh)
218 {
219 *plow = ~ *plow;
220 *phigh = ~ *phigh;
221 add128(plow, phigh, 1, 0);
222 }
223
224 static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
225 {
226 uint32_t a0, a1, b0, b1;
227 uint64_t v;
228
229 a0 = a;
230 a1 = a >> 32;
231
232 b0 = b;
233 b1 = b >> 32;
234
235 v = (uint64_t)a0 * (uint64_t)b0;
236 *plow = v;
237 *phigh = 0;
238
239 v = (uint64_t)a0 * (uint64_t)b1;
240 add128(plow, phigh, v << 32, v >> 32);
241
242 v = (uint64_t)a1 * (uint64_t)b0;
243 add128(plow, phigh, v << 32, v >> 32);
244
245 v = (uint64_t)a1 * (uint64_t)b1;
246 *phigh += v;
247 #if defined(DEBUG_MULDIV)
248 printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
249 a, b, *phigh, *plow);
250 #endif
251 }
252
253 void do_mul64 (uint64_t *plow, uint64_t *phigh)
254 {
255 mul64(plow, phigh, T0, T1);
256 }
257
258 static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
259 {
260 int sa, sb;
261 sa = (a < 0);
262 if (sa)
263 a = -a;
264 sb = (b < 0);
265 if (sb)
266 b = -b;
267 mul64(plow, phigh, a, b);
268 if (sa ^ sb) {
269 neg128(plow, phigh);
270 }
271 }
272
273 void do_imul64 (uint64_t *plow, uint64_t *phigh)
274 {
275 imul64(plow, phigh, T0, T1);
276 }
277 #endif
278
279 void do_adde (void)
280 {
281 T2 = T0;
282 T0 += T1 + xer_ca;
283 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
284 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
285 xer_ca = 0;
286 } else {
287 xer_ca = 1;
288 }
289 }
290
291 #if defined(TARGET_PPC64)
292 void do_adde_64 (void)
293 {
294 T2 = T0;
295 T0 += T1 + xer_ca;
296 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
297 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
298 xer_ca = 0;
299 } else {
300 xer_ca = 1;
301 }
302 }
303 #endif
304
305 void do_addmeo (void)
306 {
307 T1 = T0;
308 T0 += xer_ca + (-1);
309 if (likely(!((uint32_t)T1 &
310 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
311 xer_ov = 0;
312 } else {
313 xer_so = 1;
314 xer_ov = 1;
315 }
316 if (likely(T1 != 0))
317 xer_ca = 1;
318 }
319
320 #if defined(TARGET_PPC64)
321 void do_addmeo_64 (void)
322 {
323 T1 = T0;
324 T0 += xer_ca + (-1);
325 if (likely(!((uint64_t)T1 &
326 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
327 xer_ov = 0;
328 } else {
329 xer_so = 1;
330 xer_ov = 1;
331 }
332 if (likely(T1 != 0))
333 xer_ca = 1;
334 }
335 #endif
336
337 void do_divwo (void)
338 {
339 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
340 (int32_t)T1 == 0))) {
341 xer_ov = 0;
342 T0 = (int32_t)T0 / (int32_t)T1;
343 } else {
344 xer_so = 1;
345 xer_ov = 1;
346 T0 = (-1) * ((uint32_t)T0 >> 31);
347 }
348 }
349
350 #if defined(TARGET_PPC64)
351 void do_divdo (void)
352 {
353 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
354 (int64_t)T1 == 0))) {
355 xer_ov = 0;
356 T0 = (int64_t)T0 / (int64_t)T1;
357 } else {
358 xer_so = 1;
359 xer_ov = 1;
360 T0 = (-1ULL) * ((uint64_t)T0 >> 63);
361 }
362 }
363 #endif
364
365 void do_divwuo (void)
366 {
367 if (likely((uint32_t)T1 != 0)) {
368 xer_ov = 0;
369 T0 = (uint32_t)T0 / (uint32_t)T1;
370 } else {
371 xer_so = 1;
372 xer_ov = 1;
373 T0 = 0;
374 }
375 }
376
377 #if defined(TARGET_PPC64)
378 void do_divduo (void)
379 {
380 if (likely((uint64_t)T1 != 0)) {
381 xer_ov = 0;
382 T0 = (uint64_t)T0 / (uint64_t)T1;
383 } else {
384 xer_so = 1;
385 xer_ov = 1;
386 T0 = 0;
387 }
388 }
389 #endif
390
391 void do_mullwo (void)
392 {
393 int64_t res = (int64_t)T0 * (int64_t)T1;
394
395 if (likely((int32_t)res == res)) {
396 xer_ov = 0;
397 } else {
398 xer_ov = 1;
399 xer_so = 1;
400 }
401 T0 = (int32_t)res;
402 }
403
404 #if defined(TARGET_PPC64)
405 void do_mulldo (void)
406 {
407 int64_t th;
408 uint64_t tl;
409
410 do_imul64(&tl, &th);
411 if (likely(th == 0)) {
412 xer_ov = 0;
413 } else {
414 xer_ov = 1;
415 xer_so = 1;
416 }
417 T0 = (int64_t)tl;
418 }
419 #endif
420
421 void do_nego (void)
422 {
423 if (likely((int32_t)T0 != INT32_MIN)) {
424 xer_ov = 0;
425 T0 = -(int32_t)T0;
426 } else {
427 xer_ov = 1;
428 xer_so = 1;
429 }
430 }
431
432 #if defined(TARGET_PPC64)
433 void do_nego_64 (void)
434 {
435 if (likely((int64_t)T0 != INT64_MIN)) {
436 xer_ov = 0;
437 T0 = -(int64_t)T0;
438 } else {
439 xer_ov = 1;
440 xer_so = 1;
441 }
442 }
443 #endif
444
445 void do_subfe (void)
446 {
447 T0 = T1 + ~T0 + xer_ca;
448 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
449 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
450 xer_ca = 0;
451 } else {
452 xer_ca = 1;
453 }
454 }
455
456 #if defined(TARGET_PPC64)
457 void do_subfe_64 (void)
458 {
459 T0 = T1 + ~T0 + xer_ca;
460 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
461 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
462 xer_ca = 0;
463 } else {
464 xer_ca = 1;
465 }
466 }
467 #endif
468
469 void do_subfmeo (void)
470 {
471 T1 = T0;
472 T0 = ~T0 + xer_ca - 1;
473 if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
474 (1UL << 31)))) {
475 xer_ov = 0;
476 } else {
477 xer_so = 1;
478 xer_ov = 1;
479 }
480 if (likely((uint32_t)T1 != UINT32_MAX))
481 xer_ca = 1;
482 }
483
484 #if defined(TARGET_PPC64)
485 void do_subfmeo_64 (void)
486 {
487 T1 = T0;
488 T0 = ~T0 + xer_ca - 1;
489 if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
490 (1ULL << 63)))) {
491 xer_ov = 0;
492 } else {
493 xer_so = 1;
494 xer_ov = 1;
495 }
496 if (likely((uint64_t)T1 != UINT64_MAX))
497 xer_ca = 1;
498 }
499 #endif
500
501 void do_subfzeo (void)
502 {
503 T1 = T0;
504 T0 = ~T0 + xer_ca;
505 if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
506 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
507 xer_ov = 0;
508 } else {
509 xer_ov = 1;
510 xer_so = 1;
511 }
512 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
513 xer_ca = 0;
514 } else {
515 xer_ca = 1;
516 }
517 }
518
519 #if defined(TARGET_PPC64)
520 void do_subfzeo_64 (void)
521 {
522 T1 = T0;
523 T0 = ~T0 + xer_ca;
524 if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
525 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
526 xer_ov = 0;
527 } else {
528 xer_ov = 1;
529 xer_so = 1;
530 }
531 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
532 xer_ca = 0;
533 } else {
534 xer_ca = 1;
535 }
536 }
537 #endif
538
539 /* shift right arithmetic helper */
540 void do_sraw (void)
541 {
542 int32_t ret;
543
544 if (likely(!(T1 & 0x20UL))) {
545 if (likely((uint32_t)T1 != 0)) {
546 ret = (int32_t)T0 >> (T1 & 0x1fUL);
547 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
548 xer_ca = 0;
549 } else {
550 xer_ca = 1;
551 }
552 } else {
553 ret = T0;
554 xer_ca = 0;
555 }
556 } else {
557 ret = (-1) * ((uint32_t)T0 >> 31);
558 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
559 xer_ca = 0;
560 } else {
561 xer_ca = 1;
562 }
563 }
564 T0 = ret;
565 }
566
567 #if defined(TARGET_PPC64)
568 void do_srad (void)
569 {
570 int64_t ret;
571
572 if (likely(!(T1 & 0x40UL))) {
573 if (likely((uint64_t)T1 != 0)) {
574 ret = (int64_t)T0 >> (T1 & 0x3FUL);
575 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
576 xer_ca = 0;
577 } else {
578 xer_ca = 1;
579 }
580 } else {
581 ret = T0;
582 xer_ca = 0;
583 }
584 } else {
585 ret = (-1) * ((uint64_t)T0 >> 63);
586 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
587 xer_ca = 0;
588 } else {
589 xer_ca = 1;
590 }
591 }
592 T0 = ret;
593 }
594 #endif
595
596 static inline int popcnt (uint32_t val)
597 {
598 int i;
599
600 for (i = 0; val != 0;)
601 val = val ^ (val - 1);
602
603 return i;
604 }
605
606 void do_popcntb (void)
607 {
608 uint32_t ret;
609 int i;
610
611 ret = 0;
612 for (i = 0; i < 32; i += 8)
613 ret |= popcnt((T0 >> i) & 0xFF) << i;
614 T0 = ret;
615 }
616
617 #if defined(TARGET_PPC64)
618 void do_popcntb_64 (void)
619 {
620 uint64_t ret;
621 int i;
622
623 ret = 0;
624 for (i = 0; i < 64; i += 8)
625 ret |= popcnt((T0 >> i) & 0xFF) << i;
626 T0 = ret;
627 }
628 #endif
629
630 /*****************************************************************************/
631 /* Floating point operations helpers */
632 void do_fctiw (void)
633 {
634 union {
635 double d;
636 uint64_t i;
637 } p;
638
639 p.i = float64_to_int32(FT0, &env->fp_status);
640 #if USE_PRECISE_EMULATION
641 /* XXX: higher bits are not supposed to be significant.
642 * to make tests easier, return the same as a real PowerPC 750 (aka G3)
643 */
644 p.i |= 0xFFF80000ULL << 32;
645 #endif
646 FT0 = p.d;
647 }
648
649 void do_fctiwz (void)
650 {
651 union {
652 double d;
653 uint64_t i;
654 } p;
655
656 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
657 #if USE_PRECISE_EMULATION
658 /* XXX: higher bits are not supposed to be significant.
659 * to make tests easier, return the same as a real PowerPC 750 (aka G3)
660 */
661 p.i |= 0xFFF80000ULL << 32;
662 #endif
663 FT0 = p.d;
664 }
665
666 #if defined(TARGET_PPC64)
667 void do_fcfid (void)
668 {
669 union {
670 double d;
671 uint64_t i;
672 } p;
673
674 p.d = FT0;
675 FT0 = int64_to_float64(p.i, &env->fp_status);
676 }
677
678 void do_fctid (void)
679 {
680 union {
681 double d;
682 uint64_t i;
683 } p;
684
685 p.i = float64_to_int64(FT0, &env->fp_status);
686 FT0 = p.d;
687 }
688
689 void do_fctidz (void)
690 {
691 union {
692 double d;
693 uint64_t i;
694 } p;
695
696 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
697 FT0 = p.d;
698 }
699
700 #endif
701
702 #if USE_PRECISE_EMULATION
703 void do_fmadd (void)
704 {
705 #ifdef FLOAT128
706 float128 ft0_128, ft1_128;
707
708 ft0_128 = float64_to_float128(FT0, &env->fp_status);
709 ft1_128 = float64_to_float128(FT1, &env->fp_status);
710 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
711 ft1_128 = float64_to_float128(FT2, &env->fp_status);
712 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
713 FT0 = float128_to_float64(ft0_128, &env->fp_status);
714 #else
715 /* This is OK on x86 hosts */
716 FT0 = (FT0 * FT1) + FT2;
717 #endif
718 }
719
720 void do_fmsub (void)
721 {
722 #ifdef FLOAT128
723 float128 ft0_128, ft1_128;
724
725 ft0_128 = float64_to_float128(FT0, &env->fp_status);
726 ft1_128 = float64_to_float128(FT1, &env->fp_status);
727 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
728 ft1_128 = float64_to_float128(FT2, &env->fp_status);
729 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
730 FT0 = float128_to_float64(ft0_128, &env->fp_status);
731 #else
732 /* This is OK on x86 hosts */
733 FT0 = (FT0 * FT1) - FT2;
734 #endif
735 }
736 #endif /* USE_PRECISE_EMULATION */
737
738 void do_fnmadd (void)
739 {
740 #if USE_PRECISE_EMULATION
741 #ifdef FLOAT128
742 float128 ft0_128, ft1_128;
743
744 ft0_128 = float64_to_float128(FT0, &env->fp_status);
745 ft1_128 = float64_to_float128(FT1, &env->fp_status);
746 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
747 ft1_128 = float64_to_float128(FT2, &env->fp_status);
748 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
749 FT0 = float128_to_float64(ft0_128, &env->fp_status);
750 #else
751 /* This is OK on x86 hosts */
752 FT0 = (FT0 * FT1) + FT2;
753 #endif
754 #else
755 FT0 = float64_mul(FT0, FT1, &env->fp_status);
756 FT0 = float64_add(FT0, FT2, &env->fp_status);
757 #endif
758 if (likely(!isnan(FT0)))
759 FT0 = float64_chs(FT0);
760 }
761
762 void do_fnmsub (void)
763 {
764 #if USE_PRECISE_EMULATION
765 #ifdef FLOAT128
766 float128 ft0_128, ft1_128;
767
768 ft0_128 = float64_to_float128(FT0, &env->fp_status);
769 ft1_128 = float64_to_float128(FT1, &env->fp_status);
770 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
771 ft1_128 = float64_to_float128(FT2, &env->fp_status);
772 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
773 FT0 = float128_to_float64(ft0_128, &env->fp_status);
774 #else
775 /* This is OK on x86 hosts */
776 FT0 = (FT0 * FT1) - FT2;
777 #endif
778 #else
779 FT0 = float64_mul(FT0, FT1, &env->fp_status);
780 FT0 = float64_sub(FT0, FT2, &env->fp_status);
781 #endif
782 if (likely(!isnan(FT0)))
783 FT0 = float64_chs(FT0);
784 }
785
786 void do_fsqrt (void)
787 {
788 FT0 = float64_sqrt(FT0, &env->fp_status);
789 }
790
791 void do_fres (void)
792 {
793 union {
794 double d;
795 uint64_t i;
796 } p;
797
798 if (likely(isnormal(FT0))) {
799 #if USE_PRECISE_EMULATION
800 FT0 = float64_div(1.0, FT0, &env->fp_status);
801 FT0 = float64_to_float32(FT0, &env->fp_status);
802 #else
803 FT0 = float32_div(1.0, FT0, &env->fp_status);
804 #endif
805 } else {
806 p.d = FT0;
807 if (p.i == 0x8000000000000000ULL) {
808 p.i = 0xFFF0000000000000ULL;
809 } else if (p.i == 0x0000000000000000ULL) {
810 p.i = 0x7FF0000000000000ULL;
811 } else if (isnan(FT0)) {
812 p.i = 0x7FF8000000000000ULL;
813 } else if (FT0 < 0.0) {
814 p.i = 0x8000000000000000ULL;
815 } else {
816 p.i = 0x0000000000000000ULL;
817 }
818 FT0 = p.d;
819 }
820 }
821
822 void do_frsqrte (void)
823 {
824 union {
825 double d;
826 uint64_t i;
827 } p;
828
829 if (likely(isnormal(FT0) && FT0 > 0.0)) {
830 FT0 = float64_sqrt(FT0, &env->fp_status);
831 FT0 = float32_div(1.0, FT0, &env->fp_status);
832 } else {
833 p.d = FT0;
834 if (p.i == 0x8000000000000000ULL) {
835 p.i = 0xFFF0000000000000ULL;
836 } else if (p.i == 0x0000000000000000ULL) {
837 p.i = 0x7FF0000000000000ULL;
838 } else if (isnan(FT0)) {
839 if (!(p.i & 0x0008000000000000ULL))
840 p.i |= 0x000FFFFFFFFFFFFFULL;
841 } else if (FT0 < 0) {
842 p.i = 0x7FF8000000000000ULL;
843 } else {
844 p.i = 0x0000000000000000ULL;
845 }
846 FT0 = p.d;
847 }
848 }
849
850 void do_fsel (void)
851 {
852 if (FT0 >= 0)
853 FT0 = FT1;
854 else
855 FT0 = FT2;
856 }
857
858 void do_fcmpu (void)
859 {
860 if (likely(!isnan(FT0) && !isnan(FT1))) {
861 if (float64_lt(FT0, FT1, &env->fp_status)) {
862 T0 = 0x08UL;
863 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
864 T0 = 0x04UL;
865 } else {
866 T0 = 0x02UL;
867 }
868 } else {
869 T0 = 0x01UL;
870 env->fpscr[4] |= 0x1;
871 env->fpscr[6] |= 0x1;
872 }
873 env->fpscr[3] = T0;
874 }
875
876 void do_fcmpo (void)
877 {
878 env->fpscr[4] &= ~0x1;
879 if (likely(!isnan(FT0) && !isnan(FT1))) {
880 if (float64_lt(FT0, FT1, &env->fp_status)) {
881 T0 = 0x08UL;
882 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
883 T0 = 0x04UL;
884 } else {
885 T0 = 0x02UL;
886 }
887 } else {
888 T0 = 0x01UL;
889 env->fpscr[4] |= 0x1;
890 if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
891 /* Quiet NaN case */
892 env->fpscr[6] |= 0x1;
893 if (!(env->fpscr[1] & 0x8))
894 env->fpscr[4] |= 0x8;
895 } else {
896 env->fpscr[4] |= 0x8;
897 }
898 }
899 env->fpscr[3] = T0;
900 }
901
902 #if !defined (CONFIG_USER_ONLY)
903 void cpu_dump_rfi (target_ulong RA, target_ulong msr);
904 void do_rfi (void)
905 {
906 #if defined(TARGET_PPC64)
907 if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
908 env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
909 do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
910 } else {
911 env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
912 ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
913 }
914 #else
915 env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
916 do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
917 #endif
918 #if defined (DEBUG_OP)
919 cpu_dump_rfi(env->nip, do_load_msr(env));
920 #endif
921 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
922 }
923
924 #if defined(TARGET_PPC64)
925 void do_rfid (void)
926 {
927 if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
928 env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
929 do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
930 } else {
931 env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
932 do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
933 }
934 #if defined (DEBUG_OP)
935 cpu_dump_rfi(env->nip, do_load_msr(env));
936 #endif
937 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
938 }
939 #endif
940 #endif
941
942 void do_tw (int flags)
943 {
944 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
945 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
946 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
947 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
948 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
949 do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
950 }
951 }
952
953 #if defined(TARGET_PPC64)
954 void do_td (int flags)
955 {
956 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
957 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
958 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
959 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
960 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
961 do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
962 }
963 #endif
964
965 /*****************************************************************************/
966 /* PowerPC 601 specific instructions (POWER bridge) */
967 void do_POWER_abso (void)
968 {
969 if ((uint32_t)T0 == INT32_MIN) {
970 T0 = INT32_MAX;
971 xer_ov = 1;
972 xer_so = 1;
973 } else {
974 T0 = -T0;
975 xer_ov = 0;
976 }
977 }
978
979 void do_POWER_clcs (void)
980 {
981 switch (T0) {
982 case 0x0CUL:
983 /* Instruction cache line size */
984 T0 = ICACHE_LINE_SIZE;
985 break;
986 case 0x0DUL:
987 /* Data cache line size */
988 T0 = DCACHE_LINE_SIZE;
989 break;
990 case 0x0EUL:
991 /* Minimum cache line size */
992 T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
993 ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
994 break;
995 case 0x0FUL:
996 /* Maximum cache line size */
997 T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
998 ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
999 break;
1000 default:
1001 /* Undefined */
1002 break;
1003 }
1004 }
1005
1006 void do_POWER_div (void)
1007 {
1008 uint64_t tmp;
1009
1010 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1011 T0 = (long)((-1) * (T0 >> 31));
1012 env->spr[SPR_MQ] = 0;
1013 } else {
1014 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1015 env->spr[SPR_MQ] = tmp % T1;
1016 T0 = tmp / (int32_t)T1;
1017 }
1018 }
1019
1020 void do_POWER_divo (void)
1021 {
1022 int64_t tmp;
1023
1024 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1025 T0 = (long)((-1) * (T0 >> 31));
1026 env->spr[SPR_MQ] = 0;
1027 xer_ov = 1;
1028 xer_so = 1;
1029 } else {
1030 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1031 env->spr[SPR_MQ] = tmp % T1;
1032 tmp /= (int32_t)T1;
1033 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1034 xer_ov = 1;
1035 xer_so = 1;
1036 } else {
1037 xer_ov = 0;
1038 }
1039 T0 = tmp;
1040 }
1041 }
1042
1043 void do_POWER_divs (void)
1044 {
1045 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1046 T0 = (long)((-1) * (T0 >> 31));
1047 env->spr[SPR_MQ] = 0;
1048 } else {
1049 env->spr[SPR_MQ] = T0 % T1;
1050 T0 = (int32_t)T0 / (int32_t)T1;
1051 }
1052 }
1053
1054 void do_POWER_divso (void)
1055 {
1056 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1057 T0 = (long)((-1) * (T0 >> 31));
1058 env->spr[SPR_MQ] = 0;
1059 xer_ov = 1;
1060 xer_so = 1;
1061 } else {
1062 T0 = (int32_t)T0 / (int32_t)T1;
1063 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1064 xer_ov = 0;
1065 }
1066 }
1067
1068 void do_POWER_dozo (void)
1069 {
1070 if ((int32_t)T1 > (int32_t)T0) {
1071 T2 = T0;
1072 T0 = T1 - T0;
1073 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1074 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1075 xer_so = 1;
1076 xer_ov = 1;
1077 } else {
1078 xer_ov = 0;
1079 }
1080 } else {
1081 T0 = 0;
1082 xer_ov = 0;
1083 }
1084 }
1085
1086 void do_POWER_maskg (void)
1087 {
1088 uint32_t ret;
1089
1090 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1091 ret = -1;
1092 } else {
1093 ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1094 (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1095 if ((uint32_t)T0 > (uint32_t)T1)
1096 ret = ~ret;
1097 }
1098 T0 = ret;
1099 }
1100
1101 void do_POWER_mulo (void)
1102 {
1103 uint64_t tmp;
1104
1105 tmp = (uint64_t)T0 * (uint64_t)T1;
1106 env->spr[SPR_MQ] = tmp >> 32;
1107 T0 = tmp;
1108 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1109 xer_ov = 1;
1110 xer_so = 1;
1111 } else {
1112 xer_ov = 0;
1113 }
1114 }
1115
1116 #if !defined (CONFIG_USER_ONLY)
1117 void do_POWER_rac (void)
1118 {
1119 #if 0
1120 mmu_ctx_t ctx;
1121
1122 /* We don't have to generate many instances of this instruction,
1123 * as rac is supervisor only.
1124 */
1125 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1126 T0 = ctx.raddr;
1127 #endif
1128 }
1129
1130 void do_POWER_rfsvc (void)
1131 {
1132 env->nip = env->lr & ~0x00000003UL;
1133 T0 = env->ctr & 0x0000FFFFUL;
1134 do_store_msr(env, T0);
1135 #if defined (DEBUG_OP)
1136 cpu_dump_rfi(env->nip, do_load_msr(env));
1137 #endif
1138 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1139 }
1140
1141 /* PowerPC 601 BAT management helper */
1142 void do_store_601_batu (int nr)
1143 {
1144 do_store_ibatu(env, nr, (uint32_t)T0);
1145 env->DBAT[0][nr] = env->IBAT[0][nr];
1146 env->DBAT[1][nr] = env->IBAT[1][nr];
1147 }
1148 #endif
1149
1150 /*****************************************************************************/
1151 /* 602 specific instructions */
1152 /* mfrom is the most crazy instruction ever seen, imho ! */
1153 /* Real implementation uses a ROM table. Do the same */
1154 #define USE_MFROM_ROM_TABLE
1155 void do_op_602_mfrom (void)
1156 {
1157 if (likely(T0 < 602)) {
1158 #if defined(USE_MFROM_ROM_TABLE)
1159 #include "mfrom_table.c"
1160 T0 = mfrom_ROM_table[T0];
1161 #else
1162 double d;
1163 /* Extremly decomposed:
1164 * -T0 / 256
1165 * T0 = 256 * log10(10 + 1.0) + 0.5
1166 */
1167 d = T0;
1168 d = float64_div(d, 256, &env->fp_status);
1169 d = float64_chs(d);
1170 d = exp10(d); // XXX: use float emulation function
1171 d = float64_add(d, 1.0, &env->fp_status);
1172 d = log10(d); // XXX: use float emulation function
1173 d = float64_mul(d, 256, &env->fp_status);
1174 d = float64_add(d, 0.5, &env->fp_status);
1175 T0 = float64_round_to_int(d, &env->fp_status);
1176 #endif
1177 } else {
1178 T0 = 0;
1179 }
1180 }
1181
1182 /*****************************************************************************/
1183 /* Embedded PowerPC specific helpers */
1184 void do_405_check_ov (void)
1185 {
1186 if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1187 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1188 xer_ov = 0;
1189 } else {
1190 xer_ov = 1;
1191 xer_so = 1;
1192 }
1193 }
1194
1195 void do_405_check_sat (void)
1196 {
1197 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1198 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1199 /* Saturate result */
1200 if (T2 >> 31) {
1201 T0 = INT32_MIN;
1202 } else {
1203 T0 = INT32_MAX;
1204 }
1205 }
1206 }
1207
1208 #if !defined(CONFIG_USER_ONLY)
1209 void do_40x_rfci (void)
1210 {
1211 env->nip = env->spr[SPR_40x_SRR2];
1212 do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
1213 #if defined (DEBUG_OP)
1214 cpu_dump_rfi(env->nip, do_load_msr(env));
1215 #endif
1216 env->interrupt_request = CPU_INTERRUPT_EXITTB;
1217 }
1218
1219 void do_rfci (void)
1220 {
1221 #if defined(TARGET_PPC64)
1222 if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
1223 env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
1224 } else
1225 #endif
1226 {
1227 env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
1228 }
1229 do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
1230 #if defined (DEBUG_OP)
1231 cpu_dump_rfi(env->nip, do_load_msr(env));
1232 #endif
1233 env->interrupt_request = CPU_INTERRUPT_EXITTB;
1234 }
1235
1236 void do_rfdi (void)
1237 {
1238 #if defined(TARGET_PPC64)
1239 if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
1240 env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
1241 } else
1242 #endif
1243 {
1244 env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
1245 }
1246 do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
1247 #if defined (DEBUG_OP)
1248 cpu_dump_rfi(env->nip, do_load_msr(env));
1249 #endif
1250 env->interrupt_request = CPU_INTERRUPT_EXITTB;
1251 }
1252
1253 void do_rfmci (void)
1254 {
1255 #if defined(TARGET_PPC64)
1256 if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
1257 env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
1258 } else
1259 #endif
1260 {
1261 env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
1262 }
1263 do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
1264 #if defined (DEBUG_OP)
1265 cpu_dump_rfi(env->nip, do_load_msr(env));
1266 #endif
1267 env->interrupt_request = CPU_INTERRUPT_EXITTB;
1268 }
1269
1270 void do_load_dcr (void)
1271 {
1272 target_ulong val;
1273
1274 if (unlikely(env->dcr_env == NULL)) {
1275 if (loglevel != 0) {
1276 fprintf(logfile, "No DCR environment\n");
1277 }
1278 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1279 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1280 if (loglevel != 0) {
1281 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1282 }
1283 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1284 } else {
1285 T0 = val;
1286 }
1287 }
1288
1289 void do_store_dcr (void)
1290 {
1291 if (unlikely(env->dcr_env == NULL)) {
1292 if (loglevel != 0) {
1293 fprintf(logfile, "No DCR environment\n");
1294 }
1295 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1296 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1297 if (loglevel != 0) {
1298 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1299 }
1300 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1301 }
1302 }
1303
1304 void do_load_403_pb (int num)
1305 {
1306 T0 = env->pb[num];
1307 }
1308
1309 void do_store_403_pb (int num)
1310 {
1311 if (likely(env->pb[num] != T0)) {
1312 env->pb[num] = T0;
1313 /* Should be optimized */
1314 tlb_flush(env, 1);
1315 }
1316 }
1317 #endif
1318
1319 /* 440 specific */
1320 void do_440_dlmzb (void)
1321 {
1322 target_ulong mask;
1323 int i;
1324
1325 i = 1;
1326 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1327 if ((T0 & mask) == 0)
1328 goto done;
1329 i++;
1330 }
1331 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1332 if ((T1 & mask) == 0)
1333 break;
1334 i++;
1335 }
1336 done:
1337 T0 = i;
1338 }
1339
1340 #if defined(TARGET_PPCEMB)
1341 /* SPE extension helpers */
1342 /* Use a table to make this quicker */
1343 static uint8_t hbrev[16] = {
1344 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1345 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1346 };
1347
1348 static inline uint8_t byte_reverse (uint8_t val)
1349 {
1350 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1351 }
1352
1353 static inline uint32_t word_reverse (uint32_t val)
1354 {
1355 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1356 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1357 }
1358
1359 #define MASKBITS 16 // Random value - to be fixed
1360 void do_brinc (void)
1361 {
1362 uint32_t a, b, d, mask;
1363
1364 mask = (uint32_t)(-1UL) >> MASKBITS;
1365 b = T1_64 & mask;
1366 a = T0_64 & mask;
1367 d = word_reverse(1 + word_reverse(a | ~mask));
1368 T0_64 = (T0_64 & ~mask) | (d & mask);
1369 }
1370
1371 #define DO_SPE_OP2(name) \
1372 void do_ev##name (void) \
1373 { \
1374 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1375 (uint64_t)_do_e##name(T0_64, T1_64); \
1376 }
1377
1378 #define DO_SPE_OP1(name) \
1379 void do_ev##name (void) \
1380 { \
1381 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1382 (uint64_t)_do_e##name(T0_64); \
1383 }
1384
1385 /* Fixed-point vector arithmetic */
1386 static inline uint32_t _do_eabs (uint32_t val)
1387 {
1388 if (val != 0x80000000)
1389 val &= ~0x80000000;
1390
1391 return val;
1392 }
1393
1394 static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1395 {
1396 return op1 + op2;
1397 }
1398
1399 static inline int _do_ecntlsw (uint32_t val)
1400 {
1401 if (val & 0x80000000)
1402 return _do_cntlzw(~val);
1403 else
1404 return _do_cntlzw(val);
1405 }
1406
1407 static inline int _do_ecntlzw (uint32_t val)
1408 {
1409 return _do_cntlzw(val);
1410 }
1411
1412 static inline uint32_t _do_eneg (uint32_t val)
1413 {
1414 if (val != 0x80000000)
1415 val ^= 0x80000000;
1416
1417 return val;
1418 }
1419
1420 static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1421 {
1422 return rotl32(op1, op2);
1423 }
1424
1425 static inline uint32_t _do_erndw (uint32_t val)
1426 {
1427 return (val + 0x000080000000) & 0xFFFF0000;
1428 }
1429
1430 static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1431 {
1432 /* No error here: 6 bits are used */
1433 return op1 << (op2 & 0x3F);
1434 }
1435
1436 static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1437 {
1438 /* No error here: 6 bits are used */
1439 return op1 >> (op2 & 0x3F);
1440 }
1441
1442 static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1443 {
1444 /* No error here: 6 bits are used */
1445 return op1 >> (op2 & 0x3F);
1446 }
1447
1448 static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1449 {
1450 return op2 - op1;
1451 }
1452
1453 /* evabs */
1454 DO_SPE_OP1(abs);
1455 /* evaddw */
1456 DO_SPE_OP2(addw);
1457 /* evcntlsw */
1458 DO_SPE_OP1(cntlsw);
1459 /* evcntlzw */
1460 DO_SPE_OP1(cntlzw);
1461 /* evneg */
1462 DO_SPE_OP1(neg);
1463 /* evrlw */
1464 DO_SPE_OP2(rlw);
1465 /* evrnd */
1466 DO_SPE_OP1(rndw);
1467 /* evslw */
1468 DO_SPE_OP2(slw);
1469 /* evsrws */
1470 DO_SPE_OP2(srws);
1471 /* evsrwu */
1472 DO_SPE_OP2(srwu);
1473 /* evsubfw */
1474 DO_SPE_OP2(subfw);
1475
1476 /* evsel is a little bit more complicated... */
1477 static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1478 {
1479 if (n)
1480 return op1;
1481 else
1482 return op2;
1483 }
1484
1485 void do_evsel (void)
1486 {
1487 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1488 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1489 }
1490
1491 /* Fixed-point vector comparisons */
1492 #define DO_SPE_CMP(name) \
1493 void do_ev##name (void) \
1494 { \
1495 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
1496 T1_64 >> 32) << 32, \
1497 _do_e##name(T0_64, T1_64)); \
1498 }
1499
1500 static inline uint32_t _do_evcmp_merge (int t0, int t1)
1501 {
1502 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1503 }
1504 static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1505 {
1506 return op1 == op2 ? 1 : 0;
1507 }
1508
1509 static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1510 {
1511 return op1 > op2 ? 1 : 0;
1512 }
1513
1514 static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1515 {
1516 return op1 > op2 ? 1 : 0;
1517 }
1518
1519 static inline int _do_ecmplts (int32_t op1, int32_t op2)
1520 {
1521 return op1 < op2 ? 1 : 0;
1522 }
1523
1524 static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1525 {
1526 return op1 < op2 ? 1 : 0;
1527 }
1528
1529 /* evcmpeq */
1530 DO_SPE_CMP(cmpeq);
1531 /* evcmpgts */
1532 DO_SPE_CMP(cmpgts);
1533 /* evcmpgtu */
1534 DO_SPE_CMP(cmpgtu);
1535 /* evcmplts */
1536 DO_SPE_CMP(cmplts);
1537 /* evcmpltu */
1538 DO_SPE_CMP(cmpltu);
1539
1540 /* Single precision floating-point conversions from/to integer */
1541 static inline uint32_t _do_efscfsi (int32_t val)
1542 {
1543 union {
1544 uint32_t u;
1545 float32 f;
1546 } u;
1547
1548 u.f = int32_to_float32(val, &env->spe_status);
1549
1550 return u.u;
1551 }
1552
1553 static inline uint32_t _do_efscfui (uint32_t val)
1554 {
1555 union {
1556 uint32_t u;
1557 float32 f;
1558 } u;
1559
1560 u.f = uint32_to_float32(val, &env->spe_status);
1561
1562 return u.u;
1563 }
1564
1565 static inline int32_t _do_efsctsi (uint32_t val)
1566 {
1567 union {
1568 int32_t u;
1569 float32 f;
1570 } u;
1571
1572 u.u = val;
1573 /* NaN are not treated the same way IEEE 754 does */
1574 if (unlikely(isnan(u.f)))
1575 return 0;
1576
1577 return float32_to_int32(u.f, &env->spe_status);
1578 }
1579
1580 static inline uint32_t _do_efsctui (uint32_t val)
1581 {
1582 union {
1583 int32_t u;
1584 float32 f;
1585 } u;
1586
1587 u.u = val;
1588 /* NaN are not treated the same way IEEE 754 does */
1589 if (unlikely(isnan(u.f)))
1590 return 0;
1591
1592 return float32_to_uint32(u.f, &env->spe_status);
1593 }
1594
1595 static inline int32_t _do_efsctsiz (uint32_t val)
1596 {
1597 union {
1598 int32_t u;
1599 float32 f;
1600 } u;
1601
1602 u.u = val;
1603 /* NaN are not treated the same way IEEE 754 does */
1604 if (unlikely(isnan(u.f)))
1605 return 0;
1606
1607 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1608 }
1609
1610 static inline uint32_t _do_efsctuiz (uint32_t val)
1611 {
1612 union {
1613 int32_t u;
1614 float32 f;
1615 } u;
1616
1617 u.u = val;
1618 /* NaN are not treated the same way IEEE 754 does */
1619 if (unlikely(isnan(u.f)))
1620 return 0;
1621
1622 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1623 }
1624
1625 void do_efscfsi (void)
1626 {
1627 T0_64 = _do_efscfsi(T0_64);
1628 }
1629
1630 void do_efscfui (void)
1631 {
1632 T0_64 = _do_efscfui(T0_64);
1633 }
1634
1635 void do_efsctsi (void)
1636 {
1637 T0_64 = _do_efsctsi(T0_64);
1638 }
1639
1640 void do_efsctui (void)
1641 {
1642 T0_64 = _do_efsctui(T0_64);
1643 }
1644
1645 void do_efsctsiz (void)
1646 {
1647 T0_64 = _do_efsctsiz(T0_64);
1648 }
1649
1650 void do_efsctuiz (void)
1651 {
1652 T0_64 = _do_efsctuiz(T0_64);
1653 }
1654
1655 /* Single precision floating-point conversion to/from fractional */
1656 static inline uint32_t _do_efscfsf (uint32_t val)
1657 {
1658 union {
1659 uint32_t u;
1660 float32 f;
1661 } u;
1662 float32 tmp;
1663
1664 u.f = int32_to_float32(val, &env->spe_status);
1665 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1666 u.f = float32_div(u.f, tmp, &env->spe_status);
1667
1668 return u.u;
1669 }
1670
1671 static inline uint32_t _do_efscfuf (uint32_t val)
1672 {
1673 union {
1674 uint32_t u;
1675 float32 f;
1676 } u;
1677 float32 tmp;
1678
1679 u.f = uint32_to_float32(val, &env->spe_status);
1680 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1681 u.f = float32_div(u.f, tmp, &env->spe_status);
1682
1683 return u.u;
1684 }
1685
1686 static inline int32_t _do_efsctsf (uint32_t val)
1687 {
1688 union {
1689 int32_t u;
1690 float32 f;
1691 } u;
1692 float32 tmp;
1693
1694 u.u = val;
1695 /* NaN are not treated the same way IEEE 754 does */
1696 if (unlikely(isnan(u.f)))
1697 return 0;
1698 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1699 u.f = float32_mul(u.f, tmp, &env->spe_status);
1700
1701 return float32_to_int32(u.f, &env->spe_status);
1702 }
1703
1704 static inline uint32_t _do_efsctuf (uint32_t val)
1705 {
1706 union {
1707 int32_t u;
1708 float32 f;
1709 } u;
1710 float32 tmp;
1711
1712 u.u = val;
1713 /* NaN are not treated the same way IEEE 754 does */
1714 if (unlikely(isnan(u.f)))
1715 return 0;
1716 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1717 u.f = float32_mul(u.f, tmp, &env->spe_status);
1718
1719 return float32_to_uint32(u.f, &env->spe_status);
1720 }
1721
1722 static inline int32_t _do_efsctsfz (uint32_t val)
1723 {
1724 union {
1725 int32_t u;
1726 float32 f;
1727 } u;
1728 float32 tmp;
1729
1730 u.u = val;
1731 /* NaN are not treated the same way IEEE 754 does */
1732 if (unlikely(isnan(u.f)))
1733 return 0;
1734 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1735 u.f = float32_mul(u.f, tmp, &env->spe_status);
1736
1737 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1738 }
1739
1740 static inline uint32_t _do_efsctufz (uint32_t val)
1741 {
1742 union {
1743 int32_t u;
1744 float32 f;
1745 } u;
1746 float32 tmp;
1747
1748 u.u = val;
1749 /* NaN are not treated the same way IEEE 754 does */
1750 if (unlikely(isnan(u.f)))
1751 return 0;
1752 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1753 u.f = float32_mul(u.f, tmp, &env->spe_status);
1754
1755 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1756 }
1757
1758 void do_efscfsf (void)
1759 {
1760 T0_64 = _do_efscfsf(T0_64);
1761 }
1762
1763 void do_efscfuf (void)
1764 {
1765 T0_64 = _do_efscfuf(T0_64);
1766 }
1767
1768 void do_efsctsf (void)
1769 {
1770 T0_64 = _do_efsctsf(T0_64);
1771 }
1772
1773 void do_efsctuf (void)
1774 {
1775 T0_64 = _do_efsctuf(T0_64);
1776 }
1777
1778 void do_efsctsfz (void)
1779 {
1780 T0_64 = _do_efsctsfz(T0_64);
1781 }
1782
1783 void do_efsctufz (void)
1784 {
1785 T0_64 = _do_efsctufz(T0_64);
1786 }
1787
1788 /* Double precision floating point helpers */
1789 static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1790 {
1791 /* XXX: TODO: test special values (NaN, infinites, ...) */
1792 return _do_efdtstlt(op1, op2);
1793 }
1794
1795 static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1796 {
1797 /* XXX: TODO: test special values (NaN, infinites, ...) */
1798 return _do_efdtstgt(op1, op2);
1799 }
1800
1801 static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1802 {
1803 /* XXX: TODO: test special values (NaN, infinites, ...) */
1804 return _do_efdtsteq(op1, op2);
1805 }
1806
1807 void do_efdcmplt (void)
1808 {
1809 T0 = _do_efdcmplt(T0_64, T1_64);
1810 }
1811
1812 void do_efdcmpgt (void)
1813 {
1814 T0 = _do_efdcmpgt(T0_64, T1_64);
1815 }
1816
1817 void do_efdcmpeq (void)
1818 {
1819 T0 = _do_efdcmpeq(T0_64, T1_64);
1820 }
1821
1822 /* Double precision floating-point conversion to/from integer */
1823 static inline uint64_t _do_efdcfsi (int64_t val)
1824 {
1825 union {
1826 uint64_t u;
1827 float64 f;
1828 } u;
1829
1830 u.f = int64_to_float64(val, &env->spe_status);
1831
1832 return u.u;
1833 }
1834
1835 static inline uint64_t _do_efdcfui (uint64_t val)
1836 {
1837 union {
1838 uint64_t u;
1839 float64 f;
1840 } u;
1841
1842 u.f = uint64_to_float64(val, &env->spe_status);
1843
1844 return u.u;
1845 }
1846
1847 static inline int64_t _do_efdctsi (uint64_t val)
1848 {
1849 union {
1850 int64_t u;
1851 float64 f;
1852 } u;
1853
1854 u.u = val;
1855 /* NaN are not treated the same way IEEE 754 does */
1856 if (unlikely(isnan(u.f)))
1857 return 0;
1858
1859 return float64_to_int64(u.f, &env->spe_status);
1860 }
1861
1862 static inline uint64_t _do_efdctui (uint64_t val)
1863 {
1864 union {
1865 int64_t u;
1866 float64 f;
1867 } u;
1868
1869 u.u = val;
1870 /* NaN are not treated the same way IEEE 754 does */
1871 if (unlikely(isnan(u.f)))
1872 return 0;
1873
1874 return float64_to_uint64(u.f, &env->spe_status);
1875 }
1876
1877 static inline int64_t _do_efdctsiz (uint64_t val)
1878 {
1879 union {
1880 int64_t u;
1881 float64 f;
1882 } u;
1883
1884 u.u = val;
1885 /* NaN are not treated the same way IEEE 754 does */
1886 if (unlikely(isnan(u.f)))
1887 return 0;
1888
1889 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1890 }
1891
1892 static inline uint64_t _do_efdctuiz (uint64_t val)
1893 {
1894 union {
1895 int64_t u;
1896 float64 f;
1897 } u;
1898
1899 u.u = val;
1900 /* NaN are not treated the same way IEEE 754 does */
1901 if (unlikely(isnan(u.f)))
1902 return 0;
1903
1904 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1905 }
1906
1907 void do_efdcfsi (void)
1908 {
1909 T0_64 = _do_efdcfsi(T0_64);
1910 }
1911
1912 void do_efdcfui (void)
1913 {
1914 T0_64 = _do_efdcfui(T0_64);
1915 }
1916
1917 void do_efdctsi (void)
1918 {
1919 T0_64 = _do_efdctsi(T0_64);
1920 }
1921
1922 void do_efdctui (void)
1923 {
1924 T0_64 = _do_efdctui(T0_64);
1925 }
1926
1927 void do_efdctsiz (void)
1928 {
1929 T0_64 = _do_efdctsiz(T0_64);
1930 }
1931
1932 void do_efdctuiz (void)
1933 {
1934 T0_64 = _do_efdctuiz(T0_64);
1935 }
1936
1937 /* Double precision floating-point conversion to/from fractional */
1938 static inline uint64_t _do_efdcfsf (int64_t val)
1939 {
1940 union {
1941 uint64_t u;
1942 float64 f;
1943 } u;
1944 float64 tmp;
1945
1946 u.f = int32_to_float64(val, &env->spe_status);
1947 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1948 u.f = float64_div(u.f, tmp, &env->spe_status);
1949
1950 return u.u;
1951 }
1952
1953 static inline uint64_t _do_efdcfuf (uint64_t val)
1954 {
1955 union {
1956 uint64_t u;
1957 float64 f;
1958 } u;
1959 float64 tmp;
1960
1961 u.f = uint32_to_float64(val, &env->spe_status);
1962 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1963 u.f = float64_div(u.f, tmp, &env->spe_status);
1964
1965 return u.u;
1966 }
1967
1968 static inline int64_t _do_efdctsf (uint64_t val)
1969 {
1970 union {
1971 int64_t u;
1972 float64 f;
1973 } u;
1974 float64 tmp;
1975
1976 u.u = val;
1977 /* NaN are not treated the same way IEEE 754 does */
1978 if (unlikely(isnan(u.f)))
1979 return 0;
1980 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1981 u.f = float64_mul(u.f, tmp, &env->spe_status);
1982
1983 return float64_to_int32(u.f, &env->spe_status);
1984 }
1985
1986 static inline uint64_t _do_efdctuf (uint64_t val)
1987 {
1988 union {
1989 int64_t u;
1990 float64 f;
1991 } u;
1992 float64 tmp;
1993
1994 u.u = val;
1995 /* NaN are not treated the same way IEEE 754 does */
1996 if (unlikely(isnan(u.f)))
1997 return 0;
1998 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1999 u.f = float64_mul(u.f, tmp, &env->spe_status);
2000
2001 return float64_to_uint32(u.f, &env->spe_status);
2002 }
2003
2004 static inline int64_t _do_efdctsfz (uint64_t val)
2005 {
2006 union {
2007 int64_t u;
2008 float64 f;
2009 } u;
2010 float64 tmp;
2011
2012 u.u = val;
2013 /* NaN are not treated the same way IEEE 754 does */
2014 if (unlikely(isnan(u.f)))
2015 return 0;
2016 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2017 u.f = float64_mul(u.f, tmp, &env->spe_status);
2018
2019 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2020 }
2021
2022 static inline uint64_t _do_efdctufz (uint64_t val)
2023 {
2024 union {
2025 int64_t u;
2026 float64 f;
2027 } u;
2028 float64 tmp;
2029
2030 u.u = val;
2031 /* NaN are not treated the same way IEEE 754 does */
2032 if (unlikely(isnan(u.f)))
2033 return 0;
2034 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2035 u.f = float64_mul(u.f, tmp, &env->spe_status);
2036
2037 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2038 }
2039
2040 void do_efdcfsf (void)
2041 {
2042 T0_64 = _do_efdcfsf(T0_64);
2043 }
2044
2045 void do_efdcfuf (void)
2046 {
2047 T0_64 = _do_efdcfuf(T0_64);
2048 }
2049
2050 void do_efdctsf (void)
2051 {
2052 T0_64 = _do_efdctsf(T0_64);
2053 }
2054
2055 void do_efdctuf (void)
2056 {
2057 T0_64 = _do_efdctuf(T0_64);
2058 }
2059
2060 void do_efdctsfz (void)
2061 {
2062 T0_64 = _do_efdctsfz(T0_64);
2063 }
2064
2065 void do_efdctufz (void)
2066 {
2067 T0_64 = _do_efdctufz(T0_64);
2068 }
2069
2070 /* Floating point conversion between single and double precision */
2071 static inline uint32_t _do_efscfd (uint64_t val)
2072 {
2073 union {
2074 uint64_t u;
2075 float64 f;
2076 } u1;
2077 union {
2078 uint32_t u;
2079 float32 f;
2080 } u2;
2081
2082 u1.u = val;
2083 u2.f = float64_to_float32(u1.f, &env->spe_status);
2084
2085 return u2.u;
2086 }
2087
2088 static inline uint64_t _do_efdcfs (uint32_t val)
2089 {
2090 union {
2091 uint64_t u;
2092 float64 f;
2093 } u2;
2094 union {
2095 uint32_t u;
2096 float32 f;
2097 } u1;
2098
2099 u1.u = val;
2100 u2.f = float32_to_float64(u1.f, &env->spe_status);
2101
2102 return u2.u;
2103 }
2104
2105 void do_efscfd (void)
2106 {
2107 T0_64 = _do_efscfd(T0_64);
2108 }
2109
2110 void do_efdcfs (void)
2111 {
2112 T0_64 = _do_efdcfs(T0_64);
2113 }
2114
2115 /* Single precision fixed-point vector arithmetic */
2116 /* evfsabs */
2117 DO_SPE_OP1(fsabs);
2118 /* evfsnabs */
2119 DO_SPE_OP1(fsnabs);
2120 /* evfsneg */
2121 DO_SPE_OP1(fsneg);
2122 /* evfsadd */
2123 DO_SPE_OP2(fsadd);
2124 /* evfssub */
2125 DO_SPE_OP2(fssub);
2126 /* evfsmul */
2127 DO_SPE_OP2(fsmul);
2128 /* evfsdiv */
2129 DO_SPE_OP2(fsdiv);
2130
2131 /* Single-precision floating-point comparisons */
2132 static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2133 {
2134 /* XXX: TODO: test special values (NaN, infinites, ...) */
2135 return _do_efststlt(op1, op2);
2136 }
2137
2138 static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2139 {
2140 /* XXX: TODO: test special values (NaN, infinites, ...) */
2141 return _do_efststgt(op1, op2);
2142 }
2143
2144 static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2145 {
2146 /* XXX: TODO: test special values (NaN, infinites, ...) */
2147 return _do_efststeq(op1, op2);
2148 }
2149
2150 void do_efscmplt (void)
2151 {
2152 T0 = _do_efscmplt(T0_64, T1_64);
2153 }
2154
2155 void do_efscmpgt (void)
2156 {
2157 T0 = _do_efscmpgt(T0_64, T1_64);
2158 }
2159
2160 void do_efscmpeq (void)
2161 {
2162 T0 = _do_efscmpeq(T0_64, T1_64);
2163 }
2164
2165 /* Single-precision floating-point vector comparisons */
2166 /* evfscmplt */
2167 DO_SPE_CMP(fscmplt);
2168 /* evfscmpgt */
2169 DO_SPE_CMP(fscmpgt);
2170 /* evfscmpeq */
2171 DO_SPE_CMP(fscmpeq);
2172 /* evfststlt */
2173 DO_SPE_CMP(fststlt);
2174 /* evfststgt */
2175 DO_SPE_CMP(fststgt);
2176 /* evfststeq */
2177 DO_SPE_CMP(fststeq);
2178
2179 /* Single-precision floating-point vector conversions */
2180 /* evfscfsi */
2181 DO_SPE_OP1(fscfsi);
2182 /* evfscfui */
2183 DO_SPE_OP1(fscfui);
2184 /* evfscfuf */
2185 DO_SPE_OP1(fscfuf);
2186 /* evfscfsf */
2187 DO_SPE_OP1(fscfsf);
2188 /* evfsctsi */
2189 DO_SPE_OP1(fsctsi);
2190 /* evfsctui */
2191 DO_SPE_OP1(fsctui);
2192 /* evfsctsiz */
2193 DO_SPE_OP1(fsctsiz);
2194 /* evfsctuiz */
2195 DO_SPE_OP1(fsctuiz);
2196 /* evfsctsf */
2197 DO_SPE_OP1(fsctsf);
2198 /* evfsctuf */
2199 DO_SPE_OP1(fsctuf);
2200 #endif /* defined(TARGET_PPCEMB) */
2201
2202 /*****************************************************************************/
2203 /* Softmmu support */
2204 #if !defined (CONFIG_USER_ONLY)
2205
2206 #define MMUSUFFIX _mmu
2207 #define GETPC() (__builtin_return_address(0))
2208
2209 #define SHIFT 0
2210 #include "softmmu_template.h"
2211
2212 #define SHIFT 1
2213 #include "softmmu_template.h"
2214
2215 #define SHIFT 2
2216 #include "softmmu_template.h"
2217
2218 #define SHIFT 3
2219 #include "softmmu_template.h"
2220
2221 /* try to fill the TLB and return an exception if error. If retaddr is
2222 NULL, it means that the function was called in C code (i.e. not
2223 from generated code or from helper.c) */
2224 /* XXX: fix it to restore all registers */
2225 void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2226 {
2227 TranslationBlock *tb;
2228 CPUState *saved_env;
2229 target_phys_addr_t pc;
2230 int ret;
2231
2232 /* XXX: hack to restore env in all cases, even if not called from
2233 generated code */
2234 saved_env = env;
2235 env = cpu_single_env;
2236 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2237 if (unlikely(ret != 0)) {
2238 if (likely(retaddr)) {
2239 /* now we have a real cpu fault */
2240 pc = (target_phys_addr_t)retaddr;
2241 tb = tb_find_pc(pc);
2242 if (likely(tb)) {
2243 /* the PC is inside the translated code. It means that we have
2244 a virtual CPU fault */
2245 cpu_restore_state(tb, env, pc, NULL);
2246 }
2247 }
2248 do_raise_exception_err(env->exception_index, env->error_code);
2249 }
2250 env = saved_env;
2251 }
2252
2253 /* TLB invalidation helpers */
2254 void do_tlbia (void)
2255 {
2256 ppc_tlb_invalidate_all(env);
2257 }
2258
2259 void do_tlbie (void)
2260 {
2261 T0 = (uint32_t)T0;
2262 #if !defined(FLUSH_ALL_TLBS)
2263 if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2264 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2265 if (env->id_tlbs == 1)
2266 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2267 } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2268 /* XXX: TODO */
2269 #if 0
2270 ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2271 env->spr[SPR_BOOKE_PID]);
2272 #endif
2273 } else {
2274 /* tlbie invalidate TLBs for all segments */
2275 T0 &= TARGET_PAGE_MASK;
2276 T0 &= ~((target_ulong)-1 << 28);
2277 /* XXX: this case should be optimized,
2278 * giving a mask to tlb_flush_page
2279 */
2280 tlb_flush_page(env, T0 | (0x0 << 28));
2281 tlb_flush_page(env, T0 | (0x1 << 28));
2282 tlb_flush_page(env, T0 | (0x2 << 28));
2283 tlb_flush_page(env, T0 | (0x3 << 28));
2284 tlb_flush_page(env, T0 | (0x4 << 28));
2285 tlb_flush_page(env, T0 | (0x5 << 28));
2286 tlb_flush_page(env, T0 | (0x6 << 28));
2287 tlb_flush_page(env, T0 | (0x7 << 28));
2288 tlb_flush_page(env, T0 | (0x8 << 28));
2289 tlb_flush_page(env, T0 | (0x9 << 28));
2290 tlb_flush_page(env, T0 | (0xA << 28));
2291 tlb_flush_page(env, T0 | (0xB << 28));
2292 tlb_flush_page(env, T0 | (0xC << 28));
2293 tlb_flush_page(env, T0 | (0xD << 28));
2294 tlb_flush_page(env, T0 | (0xE << 28));
2295 tlb_flush_page(env, T0 | (0xF << 28));
2296 }
2297 #else
2298 do_tlbia();
2299 #endif
2300 }
2301
2302 #if defined(TARGET_PPC64)
2303 void do_tlbie_64 (void)
2304 {
2305 T0 = (uint64_t)T0;
2306 #if !defined(FLUSH_ALL_TLBS)
2307 if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2308 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2309 if (env->id_tlbs == 1)
2310 ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2311 } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2312 /* XXX: TODO */
2313 #if 0
2314 ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2315 env->spr[SPR_BOOKE_PID]);
2316 #endif
2317 } else {
2318 /* tlbie invalidate TLBs for all segments
2319 * As we have 2^36 segments, invalidate all qemu TLBs
2320 */
2321 #if 0
2322 T0 &= TARGET_PAGE_MASK;
2323 T0 &= ~((target_ulong)-1 << 28);
2324 /* XXX: this case should be optimized,
2325 * giving a mask to tlb_flush_page
2326 */
2327 tlb_flush_page(env, T0 | (0x0 << 28));
2328 tlb_flush_page(env, T0 | (0x1 << 28));
2329 tlb_flush_page(env, T0 | (0x2 << 28));
2330 tlb_flush_page(env, T0 | (0x3 << 28));
2331 tlb_flush_page(env, T0 | (0x4 << 28));
2332 tlb_flush_page(env, T0 | (0x5 << 28));
2333 tlb_flush_page(env, T0 | (0x6 << 28));
2334 tlb_flush_page(env, T0 | (0x7 << 28));
2335 tlb_flush_page(env, T0 | (0x8 << 28));
2336 tlb_flush_page(env, T0 | (0x9 << 28));
2337 tlb_flush_page(env, T0 | (0xA << 28));
2338 tlb_flush_page(env, T0 | (0xB << 28));
2339 tlb_flush_page(env, T0 | (0xC << 28));
2340 tlb_flush_page(env, T0 | (0xD << 28));
2341 tlb_flush_page(env, T0 | (0xE << 28));
2342 tlb_flush_page(env, T0 | (0xF << 28));
2343 #else
2344 tlb_flush(env, 1);
2345 #endif
2346 }
2347 #else
2348 do_tlbia();
2349 #endif
2350 }
2351 #endif
2352
2353 #if defined(TARGET_PPC64)
2354 void do_slbia (void)
2355 {
2356 /* XXX: TODO */
2357 tlb_flush(env, 1);
2358 }
2359
2360 void do_slbie (void)
2361 {
2362 /* XXX: TODO */
2363 tlb_flush(env, 1);
2364 }
2365 #endif
2366
2367 /* Software driven TLBs management */
2368 /* PowerPC 602/603 software TLB load instructions helpers */
2369 void do_load_6xx_tlb (int is_code)
2370 {
2371 target_ulong RPN, CMP, EPN;
2372 int way;
2373
2374 RPN = env->spr[SPR_RPA];
2375 if (is_code) {
2376 CMP = env->spr[SPR_ICMP];
2377 EPN = env->spr[SPR_IMISS];
2378 } else {
2379 CMP = env->spr[SPR_DCMP];
2380 EPN = env->spr[SPR_DMISS];
2381 }
2382 way = (env->spr[SPR_SRR1] >> 17) & 1;
2383 #if defined (DEBUG_SOFTWARE_TLB)
2384 if (loglevel != 0) {
2385 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2386 __func__, (unsigned long)T0, (unsigned long)EPN,
2387 (unsigned long)CMP, (unsigned long)RPN, way);
2388 }
2389 #endif
2390 /* Store this TLB */
2391 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2392 way, is_code, CMP, RPN);
2393 }
2394
2395 static target_ulong booke_tlb_to_page_size (int size)
2396 {
2397 return 1024 << (2 * size);
2398 }
2399
2400 static int booke_page_size_to_tlb (target_ulong page_size)
2401 {
2402 int size;
2403
2404 switch (page_size) {
2405 case 0x00000400UL:
2406 size = 0x0;
2407 break;
2408 case 0x00001000UL:
2409 size = 0x1;
2410 break;
2411 case 0x00004000UL:
2412 size = 0x2;
2413 break;
2414 case 0x00010000UL:
2415 size = 0x3;
2416 break;
2417 case 0x00040000UL:
2418 size = 0x4;
2419 break;
2420 case 0x00100000UL:
2421 size = 0x5;
2422 break;
2423 case 0x00400000UL:
2424 size = 0x6;
2425 break;
2426 case 0x01000000UL:
2427 size = 0x7;
2428 break;
2429 case 0x04000000UL:
2430 size = 0x8;
2431 break;
2432 case 0x10000000UL:
2433 size = 0x9;
2434 break;
2435 case 0x40000000UL:
2436 size = 0xA;
2437 break;
2438 #if defined (TARGET_PPC64)
2439 case 0x000100000000ULL:
2440 size = 0xB;
2441 break;
2442 case 0x000400000000ULL:
2443 size = 0xC;
2444 break;
2445 case 0x001000000000ULL:
2446 size = 0xD;
2447 break;
2448 case 0x004000000000ULL:
2449 size = 0xE;
2450 break;
2451 case 0x010000000000ULL:
2452 size = 0xF;
2453 break;
2454 #endif
2455 default:
2456 size = -1;
2457 break;
2458 }
2459
2460 return size;
2461 }
2462
2463 /* Helpers for 4xx TLB management */
2464 void do_4xx_tlbre_lo (void)
2465 {
2466 ppcemb_tlb_t *tlb;
2467 int size;
2468
2469 T0 &= 0x3F;
2470 tlb = &env->tlb[T0].tlbe;
2471 T0 = tlb->EPN;
2472 if (tlb->prot & PAGE_VALID)
2473 T0 |= 0x400;
2474 size = booke_page_size_to_tlb(tlb->size);
2475 if (size < 0 || size > 0x7)
2476 size = 1;
2477 T0 |= size << 7;
2478 env->spr[SPR_40x_PID] = tlb->PID;
2479 }
2480
2481 void do_4xx_tlbre_hi (void)
2482 {
2483 ppcemb_tlb_t *tlb;
2484
2485 T0 &= 0x3F;
2486 tlb = &env->tlb[T0].tlbe;
2487 T0 = tlb->RPN;
2488 if (tlb->prot & PAGE_EXEC)
2489 T0 |= 0x200;
2490 if (tlb->prot & PAGE_WRITE)
2491 T0 |= 0x100;
2492 }
2493
2494 void do_4xx_tlbsx (void)
2495 {
2496 T0 = ppcemb_tlb_search(env, T0);
2497 }
2498
2499 void do_4xx_tlbsx_ (void)
2500 {
2501 int tmp = xer_ov;
2502
2503 T0 = ppcemb_tlb_search(env, T0);
2504 if (T0 != -1)
2505 tmp |= 0x02;
2506 env->crf[0] = tmp;
2507 }
2508
2509 void do_4xx_tlbwe_hi (void)
2510 {
2511 ppcemb_tlb_t *tlb;
2512 target_ulong page, end;
2513
2514 #if defined (DEBUG_SOFTWARE_TLB)
2515 if (loglevel != 0) {
2516 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2517 }
2518 #endif
2519 T0 &= 0x3F;
2520 tlb = &env->tlb[T0].tlbe;
2521 /* Invalidate previous TLB (if it's valid) */
2522 if (tlb->prot & PAGE_VALID) {
2523 end = tlb->EPN + tlb->size;
2524 #if defined (DEBUG_SOFTWARE_TLB)
2525 if (loglevel != 0) {
2526 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2527 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2528 }
2529 #endif
2530 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2531 tlb_flush_page(env, page);
2532 }
2533 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2534 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2535 * If this ever occurs, one should use the ppcemb target instead
2536 * of the ppc or ppc64 one
2537 */
2538 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2539 cpu_abort(env, "TLB size %u < %u are not supported (%d)\n",
2540 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2541 }
2542 tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
2543 if (T1 & 0x40)
2544 tlb->prot |= PAGE_VALID;
2545 else
2546 tlb->prot &= ~PAGE_VALID;
2547 if (T1 & 0x20) {
2548 /* XXX: TO BE FIXED */
2549 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2550 }
2551 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2552 tlb->attr = T1 & 0xFF;
2553 #if defined (DEBUG_SOFTWARE_TLB)
2554 if (loglevel != 0) {
2555 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2556 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2557 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2558 tlb->prot & PAGE_READ ? 'r' : '-',
2559 tlb->prot & PAGE_WRITE ? 'w' : '-',
2560 tlb->prot & PAGE_EXEC ? 'x' : '-',
2561 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2562 }
2563 #endif
2564 /* Invalidate new TLB (if valid) */
2565 if (tlb->prot & PAGE_VALID) {
2566 end = tlb->EPN + tlb->size;
2567 #if defined (DEBUG_SOFTWARE_TLB)
2568 if (loglevel != 0) {
2569 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2570 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2571 }
2572 #endif
2573 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2574 tlb_flush_page(env, page);
2575 }
2576 }
2577
2578 void do_4xx_tlbwe_lo (void)
2579 {
2580 ppcemb_tlb_t *tlb;
2581
2582 #if defined (DEBUG_SOFTWARE_TLB)
2583 if (loglevel != 0) {
2584 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2585 }
2586 #endif
2587 T0 &= 0x3F;
2588 tlb = &env->tlb[T0].tlbe;
2589 tlb->RPN = T1 & 0xFFFFFC00;
2590 tlb->prot = PAGE_READ;
2591 if (T1 & 0x200)
2592 tlb->prot |= PAGE_EXEC;
2593 if (T1 & 0x100)
2594 tlb->prot |= PAGE_WRITE;
2595 #if defined (DEBUG_SOFTWARE_TLB)
2596 if (loglevel != 0) {
2597 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2598 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2599 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2600 tlb->prot & PAGE_READ ? 'r' : '-',
2601 tlb->prot & PAGE_WRITE ? 'w' : '-',
2602 tlb->prot & PAGE_EXEC ? 'x' : '-',
2603 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2604 }
2605 #endif
2606 }
2607 #endif /* !CONFIG_USER_ONLY */