]> git.proxmox.com Git - mirror_qemu.git/blob - target-ppc/op_mem.h
Add missing PowerPC 64 instructions
[mirror_qemu.git] / target-ppc / op_mem.h
1 /*
2 * PowerPC emulation micro-operations for qemu.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 static inline uint16_t glue(ld16r, MEMSUFFIX) (target_ulong EA)
22 {
23 uint16_t tmp = glue(lduw, MEMSUFFIX)(EA);
24 return ((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8);
25 }
26
27 static inline int32_t glue(ld16rs, MEMSUFFIX) (target_ulong EA)
28 {
29 int16_t tmp = glue(lduw, MEMSUFFIX)(EA);
30 return (int16_t)((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8);
31 }
32
33 static inline uint32_t glue(ld32r, MEMSUFFIX) (target_ulong EA)
34 {
35 uint32_t tmp = glue(ldl, MEMSUFFIX)(EA);
36 return ((tmp & 0xFF000000) >> 24) | ((tmp & 0x00FF0000) >> 8) |
37 ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24);
38 }
39
40 #if defined(TARGET_PPC64) || defined(TARGET_PPCSPE)
41 static inline uint64_t glue(ld64r, MEMSUFFIX) (target_ulong EA)
42 {
43 uint64_t tmp = glue(ldq, MEMSUFFIX)(EA);
44 return ((tmp & 0xFF00000000000000ULL) >> 56) |
45 ((tmp & 0x00FF000000000000ULL) >> 40) |
46 ((tmp & 0x0000FF0000000000ULL) >> 24) |
47 ((tmp & 0x000000FF00000000ULL) >> 8) |
48 ((tmp & 0x00000000FF000000ULL) << 8) |
49 ((tmp & 0x0000000000FF0000ULL) << 24) |
50 ((tmp & 0x000000000000FF00ULL) << 40) |
51 ((tmp & 0x00000000000000FFULL) << 54);
52 }
53 #endif
54
55 #if defined(TARGET_PPC64)
56 static inline int64_t glue(ldsl, MEMSUFFIX) (target_ulong EA)
57 {
58 return (int32_t)glue(ldl, MEMSUFFIX)(EA);
59 }
60
61 static inline int64_t glue(ld32rs, MEMSUFFIX) (target_ulong EA)
62 {
63 uint32_t tmp = glue(ldl, MEMSUFFIX)(EA);
64 return (int32_t)((tmp & 0xFF000000) >> 24) | ((tmp & 0x00FF0000) >> 8) |
65 ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24);
66 }
67 #endif
68
69 static inline void glue(st16r, MEMSUFFIX) (target_ulong EA, uint16_t data)
70 {
71 uint16_t tmp = ((data & 0xFF00) >> 8) | ((data & 0x00FF) << 8);
72 glue(stw, MEMSUFFIX)(EA, tmp);
73 }
74
75 static inline void glue(st32r, MEMSUFFIX) (target_ulong EA, uint32_t data)
76 {
77 uint32_t tmp = ((data & 0xFF000000) >> 24) | ((data & 0x00FF0000) >> 8) |
78 ((data & 0x0000FF00) << 8) | ((data & 0x000000FF) << 24);
79 glue(stl, MEMSUFFIX)(EA, tmp);
80 }
81
82 #if defined(TARGET_PPC64) || defined(TARGET_PPCSPE)
83 static inline void glue(st64r, MEMSUFFIX) (target_ulong EA, uint64_t data)
84 {
85 uint64_t tmp = ((data & 0xFF00000000000000ULL) >> 56) |
86 ((data & 0x00FF000000000000ULL) >> 40) |
87 ((data & 0x0000FF0000000000ULL) >> 24) |
88 ((data & 0x000000FF00000000ULL) >> 8) |
89 ((data & 0x00000000FF000000ULL) << 8) |
90 ((data & 0x0000000000FF0000ULL) << 24) |
91 ((data & 0x000000000000FF00ULL) << 40) |
92 ((data & 0x00000000000000FFULL) << 56);
93 glue(stq, MEMSUFFIX)(EA, tmp);
94 }
95 #endif
96
97 /*** Integer load ***/
98 #define PPC_LD_OP(name, op) \
99 void OPPROTO glue(glue(op_l, name), MEMSUFFIX) (void) \
100 { \
101 T1 = glue(op, MEMSUFFIX)((uint32_t)T0); \
102 RETURN(); \
103 }
104
105 #if defined(TARGET_PPC64)
106 #define PPC_LD_OP_64(name, op) \
107 void OPPROTO glue(glue(glue(op_l, name), _64), MEMSUFFIX) (void) \
108 { \
109 T1 = glue(op, MEMSUFFIX)((uint64_t)T0); \
110 RETURN(); \
111 }
112 #endif
113
114 #define PPC_ST_OP(name, op) \
115 void OPPROTO glue(glue(op_st, name), MEMSUFFIX) (void) \
116 { \
117 glue(op, MEMSUFFIX)((uint32_t)T0, T1); \
118 RETURN(); \
119 }
120
121 #if defined(TARGET_PPC64)
122 #define PPC_ST_OP_64(name, op) \
123 void OPPROTO glue(glue(glue(op_st, name), _64), MEMSUFFIX) (void) \
124 { \
125 glue(op, MEMSUFFIX)((uint64_t)T0, T1); \
126 RETURN(); \
127 }
128 #endif
129
130 PPC_LD_OP(bz, ldub);
131 PPC_LD_OP(ha, ldsw);
132 PPC_LD_OP(hz, lduw);
133 PPC_LD_OP(wz, ldl);
134 #if defined(TARGET_PPC64)
135 PPC_LD_OP(d, ldq);
136 PPC_LD_OP(wa, ldsl);
137 PPC_LD_OP_64(d, ldq);
138 PPC_LD_OP_64(wa, ldsl);
139 PPC_LD_OP_64(bz, ldub);
140 PPC_LD_OP_64(ha, ldsw);
141 PPC_LD_OP_64(hz, lduw);
142 PPC_LD_OP_64(wz, ldl);
143 #endif
144
145 PPC_LD_OP(ha_le, ld16rs);
146 PPC_LD_OP(hz_le, ld16r);
147 PPC_LD_OP(wz_le, ld32r);
148 #if defined(TARGET_PPC64)
149 PPC_LD_OP(d_le, ld64r);
150 PPC_LD_OP(wa_le, ld32rs);
151 PPC_LD_OP_64(d_le, ld64r);
152 PPC_LD_OP_64(wa_le, ld32rs);
153 PPC_LD_OP_64(ha_le, ld16rs);
154 PPC_LD_OP_64(hz_le, ld16r);
155 PPC_LD_OP_64(wz_le, ld32r);
156 #endif
157
158 /*** Integer store ***/
159 PPC_ST_OP(b, stb);
160 PPC_ST_OP(h, stw);
161 PPC_ST_OP(w, stl);
162 #if defined(TARGET_PPC64)
163 PPC_ST_OP(d, stq);
164 PPC_ST_OP_64(d, stq);
165 PPC_ST_OP_64(b, stb);
166 PPC_ST_OP_64(h, stw);
167 PPC_ST_OP_64(w, stl);
168 #endif
169
170 PPC_ST_OP(h_le, st16r);
171 PPC_ST_OP(w_le, st32r);
172 #if defined(TARGET_PPC64)
173 PPC_ST_OP(d_le, st64r);
174 PPC_ST_OP_64(d_le, st64r);
175 PPC_ST_OP_64(h_le, st16r);
176 PPC_ST_OP_64(w_le, st32r);
177 #endif
178
179 /*** Integer load and store with byte reverse ***/
180 PPC_LD_OP(hbr, ld16r);
181 PPC_LD_OP(wbr, ld32r);
182 PPC_ST_OP(hbr, st16r);
183 PPC_ST_OP(wbr, st32r);
184 #if defined(TARGET_PPC64)
185 PPC_LD_OP_64(hbr, ld16r);
186 PPC_LD_OP_64(wbr, ld32r);
187 PPC_ST_OP_64(hbr, st16r);
188 PPC_ST_OP_64(wbr, st32r);
189 #endif
190
191 PPC_LD_OP(hbr_le, lduw);
192 PPC_LD_OP(wbr_le, ldl);
193 PPC_ST_OP(hbr_le, stw);
194 PPC_ST_OP(wbr_le, stl);
195 #if defined(TARGET_PPC64)
196 PPC_LD_OP_64(hbr_le, lduw);
197 PPC_LD_OP_64(wbr_le, ldl);
198 PPC_ST_OP_64(hbr_le, stw);
199 PPC_ST_OP_64(wbr_le, stl);
200 #endif
201
202 /*** Integer load and store multiple ***/
203 void OPPROTO glue(op_lmw, MEMSUFFIX) (void)
204 {
205 glue(do_lmw, MEMSUFFIX)(PARAM1);
206 RETURN();
207 }
208
209 #if defined(TARGET_PPC64)
210 void OPPROTO glue(op_lmw_64, MEMSUFFIX) (void)
211 {
212 glue(do_lmw_64, MEMSUFFIX)(PARAM1);
213 RETURN();
214 }
215 #endif
216
217 void OPPROTO glue(op_lmw_le, MEMSUFFIX) (void)
218 {
219 glue(do_lmw_le, MEMSUFFIX)(PARAM1);
220 RETURN();
221 }
222
223 #if defined(TARGET_PPC64)
224 void OPPROTO glue(op_lmw_le_64, MEMSUFFIX) (void)
225 {
226 glue(do_lmw_le_64, MEMSUFFIX)(PARAM1);
227 RETURN();
228 }
229 #endif
230
231 void OPPROTO glue(op_stmw, MEMSUFFIX) (void)
232 {
233 glue(do_stmw, MEMSUFFIX)(PARAM1);
234 RETURN();
235 }
236
237 #if defined(TARGET_PPC64)
238 void OPPROTO glue(op_stmw_64, MEMSUFFIX) (void)
239 {
240 glue(do_stmw_64, MEMSUFFIX)(PARAM1);
241 RETURN();
242 }
243 #endif
244
245 void OPPROTO glue(op_stmw_le, MEMSUFFIX) (void)
246 {
247 glue(do_stmw_le, MEMSUFFIX)(PARAM1);
248 RETURN();
249 }
250
251 #if defined(TARGET_PPC64)
252 void OPPROTO glue(op_stmw_le_64, MEMSUFFIX) (void)
253 {
254 glue(do_stmw_le_64, MEMSUFFIX)(PARAM1);
255 RETURN();
256 }
257 #endif
258
259 /*** Integer load and store strings ***/
260 void OPPROTO glue(op_lswi, MEMSUFFIX) (void)
261 {
262 glue(do_lsw, MEMSUFFIX)(PARAM1);
263 RETURN();
264 }
265
266 #if defined(TARGET_PPC64)
267 void OPPROTO glue(op_lswi_64, MEMSUFFIX) (void)
268 {
269 glue(do_lsw_64, MEMSUFFIX)(PARAM1);
270 RETURN();
271 }
272 #endif
273
274 void OPPROTO glue(op_lswi_le, MEMSUFFIX) (void)
275 {
276 glue(do_lsw_le, MEMSUFFIX)(PARAM1);
277 RETURN();
278 }
279
280 #if defined(TARGET_PPC64)
281 void OPPROTO glue(op_lswi_le_64, MEMSUFFIX) (void)
282 {
283 glue(do_lsw_le_64, MEMSUFFIX)(PARAM1);
284 RETURN();
285 }
286 #endif
287
288 /* PPC32 specification says we must generate an exception if
289 * rA is in the range of registers to be loaded.
290 * In an other hand, IBM says this is valid, but rA won't be loaded.
291 * For now, I'll follow the spec...
292 */
293 void OPPROTO glue(op_lswx, MEMSUFFIX) (void)
294 {
295 /* Note: T1 comes from xer_bc then no cast is needed */
296 if (likely(T1 != 0)) {
297 if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) ||
298 (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) {
299 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX);
300 } else {
301 glue(do_lsw, MEMSUFFIX)(PARAM1);
302 }
303 }
304 RETURN();
305 }
306
307 #if defined(TARGET_PPC64)
308 void OPPROTO glue(op_lswx_64, MEMSUFFIX) (void)
309 {
310 /* Note: T1 comes from xer_bc then no cast is needed */
311 if (likely(T1 != 0)) {
312 if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) ||
313 (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) {
314 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX);
315 } else {
316 glue(do_lsw_64, MEMSUFFIX)(PARAM1);
317 }
318 }
319 RETURN();
320 }
321 #endif
322
323 void OPPROTO glue(op_lswx_le, MEMSUFFIX) (void)
324 {
325 /* Note: T1 comes from xer_bc then no cast is needed */
326 if (likely(T1 != 0)) {
327 if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) ||
328 (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) {
329 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX);
330 } else {
331 glue(do_lsw_le, MEMSUFFIX)(PARAM1);
332 }
333 }
334 RETURN();
335 }
336
337 #if defined(TARGET_PPC64)
338 void OPPROTO glue(op_lswx_le_64, MEMSUFFIX) (void)
339 {
340 /* Note: T1 comes from xer_bc then no cast is needed */
341 if (likely(T1 != 0)) {
342 if (unlikely((PARAM1 < PARAM2 && (PARAM1 + T1) > PARAM2) ||
343 (PARAM1 < PARAM3 && (PARAM1 + T1) > PARAM3))) {
344 do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX);
345 } else {
346 glue(do_lsw_le_64, MEMSUFFIX)(PARAM1);
347 }
348 }
349 RETURN();
350 }
351 #endif
352
353 void OPPROTO glue(op_stsw, MEMSUFFIX) (void)
354 {
355 glue(do_stsw, MEMSUFFIX)(PARAM1);
356 RETURN();
357 }
358
359 #if defined(TARGET_PPC64)
360 void OPPROTO glue(op_stsw_64, MEMSUFFIX) (void)
361 {
362 glue(do_stsw_64, MEMSUFFIX)(PARAM1);
363 RETURN();
364 }
365 #endif
366
367 void OPPROTO glue(op_stsw_le, MEMSUFFIX) (void)
368 {
369 glue(do_stsw_le, MEMSUFFIX)(PARAM1);
370 RETURN();
371 }
372
373 #if defined(TARGET_PPC64)
374 void OPPROTO glue(op_stsw_le_64, MEMSUFFIX) (void)
375 {
376 glue(do_stsw_le_64, MEMSUFFIX)(PARAM1);
377 RETURN();
378 }
379 #endif
380
381 /*** Floating-point store ***/
382 #define PPC_STF_OP(name, op) \
383 void OPPROTO glue(glue(op_st, name), MEMSUFFIX) (void) \
384 { \
385 glue(op, MEMSUFFIX)((uint32_t)T0, FT0); \
386 RETURN(); \
387 }
388
389 #if defined(TARGET_PPC64)
390 #define PPC_STF_OP_64(name, op) \
391 void OPPROTO glue(glue(glue(op_st, name), _64), MEMSUFFIX) (void) \
392 { \
393 glue(op, MEMSUFFIX)((uint64_t)T0, FT0); \
394 RETURN(); \
395 }
396 #endif
397
398 PPC_STF_OP(fd, stfq);
399 PPC_STF_OP(fs, stfl);
400 #if defined(TARGET_PPC64)
401 PPC_STF_OP_64(fd, stfq);
402 PPC_STF_OP_64(fs, stfl);
403 #endif
404
405 static inline void glue(stfqr, MEMSUFFIX) (target_ulong EA, double d)
406 {
407 union {
408 double d;
409 uint64_t u;
410 } u;
411
412 u.d = d;
413 u.u = ((u.u & 0xFF00000000000000ULL) >> 56) |
414 ((u.u & 0x00FF000000000000ULL) >> 40) |
415 ((u.u & 0x0000FF0000000000ULL) >> 24) |
416 ((u.u & 0x000000FF00000000ULL) >> 8) |
417 ((u.u & 0x00000000FF000000ULL) << 8) |
418 ((u.u & 0x0000000000FF0000ULL) << 24) |
419 ((u.u & 0x000000000000FF00ULL) << 40) |
420 ((u.u & 0x00000000000000FFULL) << 56);
421 glue(stfq, MEMSUFFIX)(EA, u.d);
422 }
423
424 static inline void glue(stflr, MEMSUFFIX) (target_ulong EA, float f)
425 {
426 union {
427 float f;
428 uint32_t u;
429 } u;
430
431 u.f = f;
432 u.u = ((u.u & 0xFF000000UL) >> 24) |
433 ((u.u & 0x00FF0000ULL) >> 8) |
434 ((u.u & 0x0000FF00UL) << 8) |
435 ((u.u & 0x000000FFULL) << 24);
436 glue(stfl, MEMSUFFIX)(EA, u.f);
437 }
438
439 PPC_STF_OP(fd_le, stfqr);
440 PPC_STF_OP(fs_le, stflr);
441 #if defined(TARGET_PPC64)
442 PPC_STF_OP_64(fd_le, stfqr);
443 PPC_STF_OP_64(fs_le, stflr);
444 #endif
445
446 /*** Floating-point load ***/
447 #define PPC_LDF_OP(name, op) \
448 void OPPROTO glue(glue(op_l, name), MEMSUFFIX) (void) \
449 { \
450 FT0 = glue(op, MEMSUFFIX)((uint32_t)T0); \
451 RETURN(); \
452 }
453
454 #if defined(TARGET_PPC64)
455 #define PPC_LDF_OP_64(name, op) \
456 void OPPROTO glue(glue(glue(op_l, name), _64), MEMSUFFIX) (void) \
457 { \
458 FT0 = glue(op, MEMSUFFIX)((uint64_t)T0); \
459 RETURN(); \
460 }
461 #endif
462
463 PPC_LDF_OP(fd, ldfq);
464 PPC_LDF_OP(fs, ldfl);
465 #if defined(TARGET_PPC64)
466 PPC_LDF_OP_64(fd, ldfq);
467 PPC_LDF_OP_64(fs, ldfl);
468 #endif
469
470 static inline double glue(ldfqr, MEMSUFFIX) (target_ulong EA)
471 {
472 union {
473 double d;
474 uint64_t u;
475 } u;
476
477 u.d = glue(ldfq, MEMSUFFIX)(EA);
478 u.u = ((u.u & 0xFF00000000000000ULL) >> 56) |
479 ((u.u & 0x00FF000000000000ULL) >> 40) |
480 ((u.u & 0x0000FF0000000000ULL) >> 24) |
481 ((u.u & 0x000000FF00000000ULL) >> 8) |
482 ((u.u & 0x00000000FF000000ULL) << 8) |
483 ((u.u & 0x0000000000FF0000ULL) << 24) |
484 ((u.u & 0x000000000000FF00ULL) << 40) |
485 ((u.u & 0x00000000000000FFULL) << 56);
486
487 return u.d;
488 }
489
490 static inline float glue(ldflr, MEMSUFFIX) (target_ulong EA)
491 {
492 union {
493 float f;
494 uint32_t u;
495 } u;
496
497 u.f = glue(ldfl, MEMSUFFIX)(EA);
498 u.u = ((u.u & 0xFF000000UL) >> 24) |
499 ((u.u & 0x00FF0000ULL) >> 8) |
500 ((u.u & 0x0000FF00UL) << 8) |
501 ((u.u & 0x000000FFULL) << 24);
502
503 return u.f;
504 }
505
506 PPC_LDF_OP(fd_le, ldfqr);
507 PPC_LDF_OP(fs_le, ldflr);
508 #if defined(TARGET_PPC64)
509 PPC_LDF_OP_64(fd_le, ldfqr);
510 PPC_LDF_OP_64(fs_le, ldflr);
511 #endif
512
513 /* Load and set reservation */
514 void OPPROTO glue(op_lwarx, MEMSUFFIX) (void)
515 {
516 if (unlikely(T0 & 0x03)) {
517 do_raise_exception(EXCP_ALIGN);
518 } else {
519 T1 = glue(ldl, MEMSUFFIX)((uint32_t)T0);
520 regs->reserve = (uint32_t)T0;
521 }
522 RETURN();
523 }
524
525 #if defined(TARGET_PPC64)
526 void OPPROTO glue(op_lwarx_64, MEMSUFFIX) (void)
527 {
528 if (unlikely(T0 & 0x03)) {
529 do_raise_exception(EXCP_ALIGN);
530 } else {
531 T1 = glue(ldl, MEMSUFFIX)((uint64_t)T0);
532 regs->reserve = (uint64_t)T0;
533 }
534 RETURN();
535 }
536
537 void OPPROTO glue(op_ldarx, MEMSUFFIX) (void)
538 {
539 if (unlikely(T0 & 0x03)) {
540 do_raise_exception(EXCP_ALIGN);
541 } else {
542 T1 = glue(ldq, MEMSUFFIX)((uint32_t)T0);
543 regs->reserve = (uint32_t)T0;
544 }
545 RETURN();
546 }
547
548 void OPPROTO glue(op_ldarx_64, MEMSUFFIX) (void)
549 {
550 if (unlikely(T0 & 0x03)) {
551 do_raise_exception(EXCP_ALIGN);
552 } else {
553 T1 = glue(ldq, MEMSUFFIX)((uint64_t)T0);
554 regs->reserve = (uint64_t)T0;
555 }
556 RETURN();
557 }
558 #endif
559
560 void OPPROTO glue(op_lwarx_le, MEMSUFFIX) (void)
561 {
562 if (unlikely(T0 & 0x03)) {
563 do_raise_exception(EXCP_ALIGN);
564 } else {
565 T1 = glue(ld32r, MEMSUFFIX)((uint32_t)T0);
566 regs->reserve = (uint32_t)T0;
567 }
568 RETURN();
569 }
570
571 #if defined(TARGET_PPC64)
572 void OPPROTO glue(op_lwarx_le_64, MEMSUFFIX) (void)
573 {
574 if (unlikely(T0 & 0x03)) {
575 do_raise_exception(EXCP_ALIGN);
576 } else {
577 T1 = glue(ld32r, MEMSUFFIX)((uint64_t)T0);
578 regs->reserve = (uint64_t)T0;
579 }
580 RETURN();
581 }
582
583 void OPPROTO glue(op_ldarx_le, MEMSUFFIX) (void)
584 {
585 if (unlikely(T0 & 0x03)) {
586 do_raise_exception(EXCP_ALIGN);
587 } else {
588 T1 = glue(ld64r, MEMSUFFIX)((uint32_t)T0);
589 regs->reserve = (uint32_t)T0;
590 }
591 RETURN();
592 }
593
594 void OPPROTO glue(op_ldarx_le_64, MEMSUFFIX) (void)
595 {
596 if (unlikely(T0 & 0x03)) {
597 do_raise_exception(EXCP_ALIGN);
598 } else {
599 T1 = glue(ld64r, MEMSUFFIX)((uint64_t)T0);
600 regs->reserve = (uint64_t)T0;
601 }
602 RETURN();
603 }
604 #endif
605
606 /* Store with reservation */
607 void OPPROTO glue(op_stwcx, MEMSUFFIX) (void)
608 {
609 if (unlikely(T0 & 0x03)) {
610 do_raise_exception(EXCP_ALIGN);
611 } else {
612 if (unlikely(regs->reserve != (uint32_t)T0)) {
613 env->crf[0] = xer_ov;
614 } else {
615 glue(stl, MEMSUFFIX)((uint32_t)T0, T1);
616 env->crf[0] = xer_ov | 0x02;
617 }
618 }
619 regs->reserve = -1;
620 RETURN();
621 }
622
623 #if defined(TARGET_PPC64)
624 void OPPROTO glue(op_stwcx_64, MEMSUFFIX) (void)
625 {
626 if (unlikely(T0 & 0x03)) {
627 do_raise_exception(EXCP_ALIGN);
628 } else {
629 if (unlikely(regs->reserve != (uint64_t)T0)) {
630 env->crf[0] = xer_ov;
631 } else {
632 glue(stl, MEMSUFFIX)((uint64_t)T0, T1);
633 env->crf[0] = xer_ov | 0x02;
634 }
635 }
636 regs->reserve = -1;
637 RETURN();
638 }
639
640 void OPPROTO glue(op_stdcx, MEMSUFFIX) (void)
641 {
642 if (unlikely(T0 & 0x03)) {
643 do_raise_exception(EXCP_ALIGN);
644 } else {
645 if (unlikely(regs->reserve != (uint32_t)T0)) {
646 env->crf[0] = xer_ov;
647 } else {
648 glue(stq, MEMSUFFIX)((uint32_t)T0, T1);
649 env->crf[0] = xer_ov | 0x02;
650 }
651 }
652 regs->reserve = -1;
653 RETURN();
654 }
655
656 void OPPROTO glue(op_stdcx_64, MEMSUFFIX) (void)
657 {
658 if (unlikely(T0 & 0x03)) {
659 do_raise_exception(EXCP_ALIGN);
660 } else {
661 if (unlikely(regs->reserve != (uint64_t)T0)) {
662 env->crf[0] = xer_ov;
663 } else {
664 glue(stq, MEMSUFFIX)((uint64_t)T0, T1);
665 env->crf[0] = xer_ov | 0x02;
666 }
667 }
668 regs->reserve = -1;
669 RETURN();
670 }
671 #endif
672
673 void OPPROTO glue(op_stwcx_le, MEMSUFFIX) (void)
674 {
675 if (unlikely(T0 & 0x03)) {
676 do_raise_exception(EXCP_ALIGN);
677 } else {
678 if (unlikely(regs->reserve != (uint32_t)T0)) {
679 env->crf[0] = xer_ov;
680 } else {
681 glue(st32r, MEMSUFFIX)((uint32_t)T0, T1);
682 env->crf[0] = xer_ov | 0x02;
683 }
684 }
685 regs->reserve = -1;
686 RETURN();
687 }
688
689 #if defined(TARGET_PPC64)
690 void OPPROTO glue(op_stwcx_le_64, MEMSUFFIX) (void)
691 {
692 if (unlikely(T0 & 0x03)) {
693 do_raise_exception(EXCP_ALIGN);
694 } else {
695 if (unlikely(regs->reserve != (uint64_t)T0)) {
696 env->crf[0] = xer_ov;
697 } else {
698 glue(st32r, MEMSUFFIX)((uint64_t)T0, T1);
699 env->crf[0] = xer_ov | 0x02;
700 }
701 }
702 regs->reserve = -1;
703 RETURN();
704 }
705
706 void OPPROTO glue(op_stdcx_le, MEMSUFFIX) (void)
707 {
708 if (unlikely(T0 & 0x03)) {
709 do_raise_exception(EXCP_ALIGN);
710 } else {
711 if (unlikely(regs->reserve != (uint32_t)T0)) {
712 env->crf[0] = xer_ov;
713 } else {
714 glue(st64r, MEMSUFFIX)((uint32_t)T0, T1);
715 env->crf[0] = xer_ov | 0x02;
716 }
717 }
718 regs->reserve = -1;
719 RETURN();
720 }
721
722 void OPPROTO glue(op_stdcx_le_64, MEMSUFFIX) (void)
723 {
724 if (unlikely(T0 & 0x03)) {
725 do_raise_exception(EXCP_ALIGN);
726 } else {
727 if (unlikely(regs->reserve != (uint64_t)T0)) {
728 env->crf[0] = xer_ov;
729 } else {
730 glue(st64r, MEMSUFFIX)((uint64_t)T0, T1);
731 env->crf[0] = xer_ov | 0x02;
732 }
733 }
734 regs->reserve = -1;
735 RETURN();
736 }
737 #endif
738
739 void OPPROTO glue(op_dcbz, MEMSUFFIX) (void)
740 {
741 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x00), 0);
742 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x04), 0);
743 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x08), 0);
744 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x0C), 0);
745 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x10), 0);
746 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x14), 0);
747 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x18), 0);
748 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x1C), 0);
749 #if DCACHE_LINE_SIZE == 64
750 /* XXX: cache line size should be 64 for POWER & PowerPC 601 */
751 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x20UL), 0);
752 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x24UL), 0);
753 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x28UL), 0);
754 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x2CUL), 0);
755 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x30UL), 0);
756 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x34UL), 0);
757 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x38UL), 0);
758 glue(stl, MEMSUFFIX)((uint32_t)(T0 + 0x3CUL), 0);
759 #endif
760 RETURN();
761 }
762
763 #if defined(TARGET_PPC64)
764 void OPPROTO glue(op_dcbz_64, MEMSUFFIX) (void)
765 {
766 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x00), 0);
767 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x04), 0);
768 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x08), 0);
769 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x0C), 0);
770 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x10), 0);
771 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x14), 0);
772 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x18), 0);
773 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x1C), 0);
774 #if DCACHE_LINE_SIZE == 64
775 /* XXX: cache line size should be 64 for POWER & PowerPC 601 */
776 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x20UL), 0);
777 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x24UL), 0);
778 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x28UL), 0);
779 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x2CUL), 0);
780 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x30UL), 0);
781 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x34UL), 0);
782 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x38UL), 0);
783 glue(stl, MEMSUFFIX)((uint64_t)(T0 + 0x3CUL), 0);
784 #endif
785 RETURN();
786 }
787 #endif
788
789 /* Instruction cache block invalidate */
790 void OPPROTO glue(op_icbi, MEMSUFFIX) (void)
791 {
792 glue(do_icbi, MEMSUFFIX)();
793 RETURN();
794 }
795
796 #if defined(TARGET_PPC64)
797 void OPPROTO glue(op_icbi_64, MEMSUFFIX) (void)
798 {
799 glue(do_icbi_64, MEMSUFFIX)();
800 RETURN();
801 }
802 #endif
803
804 /* External access */
805 void OPPROTO glue(op_eciwx, MEMSUFFIX) (void)
806 {
807 T1 = glue(ldl, MEMSUFFIX)((uint32_t)T0);
808 RETURN();
809 }
810
811 #if defined(TARGET_PPC64)
812 void OPPROTO glue(op_eciwx_64, MEMSUFFIX) (void)
813 {
814 T1 = glue(ldl, MEMSUFFIX)((uint64_t)T0);
815 RETURN();
816 }
817 #endif
818
819 void OPPROTO glue(op_ecowx, MEMSUFFIX) (void)
820 {
821 glue(stl, MEMSUFFIX)((uint32_t)T0, T1);
822 RETURN();
823 }
824
825 #if defined(TARGET_PPC64)
826 void OPPROTO glue(op_ecowx_64, MEMSUFFIX) (void)
827 {
828 glue(stl, MEMSUFFIX)((uint64_t)T0, T1);
829 RETURN();
830 }
831 #endif
832
833 void OPPROTO glue(op_eciwx_le, MEMSUFFIX) (void)
834 {
835 T1 = glue(ld32r, MEMSUFFIX)((uint32_t)T0);
836 RETURN();
837 }
838
839 #if defined(TARGET_PPC64)
840 void OPPROTO glue(op_eciwx_le_64, MEMSUFFIX) (void)
841 {
842 T1 = glue(ld32r, MEMSUFFIX)((uint64_t)T0);
843 RETURN();
844 }
845 #endif
846
847 void OPPROTO glue(op_ecowx_le, MEMSUFFIX) (void)
848 {
849 glue(st32r, MEMSUFFIX)((uint32_t)T0, T1);
850 RETURN();
851 }
852
853 #if defined(TARGET_PPC64)
854 void OPPROTO glue(op_ecowx_le_64, MEMSUFFIX) (void)
855 {
856 glue(st32r, MEMSUFFIX)((uint64_t)T0, T1);
857 RETURN();
858 }
859 #endif
860
861 /* XXX: those micro-ops need tests ! */
862 /* PowerPC 601 specific instructions (POWER bridge) */
863 void OPPROTO glue(op_POWER_lscbx, MEMSUFFIX) (void)
864 {
865 /* When byte count is 0, do nothing */
866 if (likely(T1 != 0)) {
867 glue(do_POWER_lscbx, MEMSUFFIX)(PARAM1, PARAM2, PARAM3);
868 }
869 RETURN();
870 }
871
872 /* POWER2 quad load and store */
873 /* XXX: TAGs are not managed */
874 void OPPROTO glue(op_POWER2_lfq, MEMSUFFIX) (void)
875 {
876 glue(do_POWER2_lfq, MEMSUFFIX)();
877 RETURN();
878 }
879
880 void glue(op_POWER2_lfq_le, MEMSUFFIX) (void)
881 {
882 glue(do_POWER2_lfq_le, MEMSUFFIX)();
883 RETURN();
884 }
885
886 void OPPROTO glue(op_POWER2_stfq, MEMSUFFIX) (void)
887 {
888 glue(do_POWER2_stfq, MEMSUFFIX)();
889 RETURN();
890 }
891
892 void OPPROTO glue(op_POWER2_stfq_le, MEMSUFFIX) (void)
893 {
894 glue(do_POWER2_stfq_le, MEMSUFFIX)();
895 RETURN();
896 }
897
898 #if defined(TARGET_PPCSPE)
899 /* SPE extension */
900 #define _PPC_SPE_LD_OP(name, op) \
901 void OPPROTO glue(glue(op_spe_l, name), MEMSUFFIX) (void) \
902 { \
903 T1_64 = glue(op, MEMSUFFIX)((uint32_t)T0); \
904 RETURN(); \
905 }
906
907 #if defined(TARGET_PPC64)
908 #define _PPC_SPE_LD_OP_64(name, op) \
909 void OPPROTO glue(glue(glue(op_spe_l, name), _64), MEMSUFFIX) (void) \
910 { \
911 T1_64 = glue(op, MEMSUFFIX)((uint64_t)T0); \
912 RETURN(); \
913 }
914 #define PPC_SPE_LD_OP(name, op) \
915 _PPC_SPE_LD_OP(name, op); \
916 _PPC_SPE_LD_OP_64(name, op)
917 #else
918 #define PPC_SPE_LD_OP(name, op) \
919 _PPC_SPE_LD_OP(name, op)
920 #endif
921
922
923 #define _PPC_SPE_ST_OP(name, op) \
924 void OPPROTO glue(glue(op_spe_st, name), MEMSUFFIX) (void) \
925 { \
926 glue(op, MEMSUFFIX)((uint32_t)T0, T1_64); \
927 RETURN(); \
928 }
929
930 #if defined(TARGET_PPC64)
931 #define _PPC_SPE_ST_OP_64(name, op) \
932 void OPPROTO glue(glue(glue(op_spe_st, name), _64), MEMSUFFIX) (void) \
933 { \
934 glue(op, MEMSUFFIX)((uint64_t)T0, T1_64); \
935 RETURN(); \
936 }
937 #define PPC_SPE_ST_OP(name, op) \
938 _PPC_SPE_ST_OP(name, op); \
939 _PPC_SPE_ST_OP_64(name, op)
940 #else
941 #define PPC_SPE_ST_OP(name, op) \
942 _PPC_SPE_ST_OP(name, op)
943 #endif
944
945 #if !defined(TARGET_PPC64)
946 PPC_SPE_LD_OP(dd, ldq);
947 PPC_SPE_ST_OP(dd, stq);
948 PPC_SPE_LD_OP(dd_le, ld64r);
949 PPC_SPE_ST_OP(dd_le, st64r);
950 #endif
951 static inline uint64_t glue(spe_ldw, MEMSUFFIX) (target_ulong EA)
952 {
953 uint64_t ret;
954 ret = (uint64_t)glue(ldl, MEMSUFFIX)(EA) << 32;
955 ret |= (uint64_t)glue(ldl, MEMSUFFIX)(EA + 4);
956 return ret;
957 }
958 PPC_SPE_LD_OP(dw, spe_ldw);
959 static inline void glue(spe_stdw, MEMSUFFIX) (target_ulong EA, uint64_t data)
960 {
961 glue(stl, MEMSUFFIX)(EA, data >> 32);
962 glue(stl, MEMSUFFIX)(EA + 4, data);
963 }
964 PPC_SPE_ST_OP(dw, spe_stdw);
965 static inline uint64_t glue(spe_ldw_le, MEMSUFFIX) (target_ulong EA)
966 {
967 uint64_t ret;
968 ret = (uint64_t)glue(ld32r, MEMSUFFIX)(EA) << 32;
969 ret |= (uint64_t)glue(ld32r, MEMSUFFIX)(EA + 4);
970 return ret;
971 }
972 PPC_SPE_LD_OP(dw_le, spe_ldw_le);
973 static inline void glue(spe_stdw_le, MEMSUFFIX) (target_ulong EA,
974 uint64_t data)
975 {
976 glue(st32r, MEMSUFFIX)(EA, data >> 32);
977 glue(st32r, MEMSUFFIX)(EA + 4, data);
978 }
979 PPC_SPE_ST_OP(dw_le, spe_stdw_le);
980 static inline uint64_t glue(spe_ldh, MEMSUFFIX) (target_ulong EA)
981 {
982 uint64_t ret;
983 ret = (uint64_t)glue(lduw, MEMSUFFIX)(EA) << 48;
984 ret |= (uint64_t)glue(lduw, MEMSUFFIX)(EA + 2) << 32;
985 ret |= (uint64_t)glue(lduw, MEMSUFFIX)(EA + 4) << 16;
986 ret |= (uint64_t)glue(lduw, MEMSUFFIX)(EA + 6);
987 return ret;
988 }
989 PPC_SPE_LD_OP(dh, spe_ldh);
990 static inline void glue(spe_stdh, MEMSUFFIX) (target_ulong EA, uint64_t data)
991 {
992 glue(stw, MEMSUFFIX)(EA, data >> 48);
993 glue(stw, MEMSUFFIX)(EA + 2, data >> 32);
994 glue(stw, MEMSUFFIX)(EA + 4, data >> 16);
995 glue(stw, MEMSUFFIX)(EA + 6, data);
996 }
997 PPC_SPE_ST_OP(dh, spe_stdh);
998 static inline uint64_t glue(spe_ldh_le, MEMSUFFIX) (target_ulong EA)
999 {
1000 uint64_t ret;
1001 ret = (uint64_t)glue(ld16r, MEMSUFFIX)(EA) << 48;
1002 ret |= (uint64_t)glue(ld16r, MEMSUFFIX)(EA + 2) << 32;
1003 ret |= (uint64_t)glue(ld16r, MEMSUFFIX)(EA + 4) << 16;
1004 ret |= (uint64_t)glue(ld16r, MEMSUFFIX)(EA + 6);
1005 return ret;
1006 }
1007 PPC_SPE_LD_OP(dh_le, spe_ldh_le);
1008 static inline void glue(spe_stdh_le, MEMSUFFIX) (target_ulong EA,
1009 uint64_t data)
1010 {
1011 glue(st16r, MEMSUFFIX)(EA, data >> 48);
1012 glue(st16r, MEMSUFFIX)(EA + 2, data >> 32);
1013 glue(st16r, MEMSUFFIX)(EA + 4, data >> 16);
1014 glue(st16r, MEMSUFFIX)(EA + 6, data);
1015 }
1016 PPC_SPE_ST_OP(dh_le, spe_stdh_le);
1017 static inline uint64_t glue(spe_lwhe, MEMSUFFIX) (target_ulong EA)
1018 {
1019 uint64_t ret;
1020 ret = (uint64_t)glue(lduw, MEMSUFFIX)(EA) << 48;
1021 ret |= (uint64_t)glue(lduw, MEMSUFFIX)(EA + 2) << 16;
1022 return ret;
1023 }
1024 PPC_SPE_LD_OP(whe, spe_lwhe);
1025 static inline void glue(spe_stwhe, MEMSUFFIX) (target_ulong EA, uint64_t data)
1026 {
1027 glue(stw, MEMSUFFIX)(EA, data >> 48);
1028 glue(stw, MEMSUFFIX)(EA + 2, data >> 16);
1029 }
1030 PPC_SPE_ST_OP(whe, spe_stwhe);
1031 static inline uint64_t glue(spe_lwhe_le, MEMSUFFIX) (target_ulong EA)
1032 {
1033 uint64_t ret;
1034 ret = (uint64_t)glue(ld16r, MEMSUFFIX)(EA) << 48;
1035 ret |= (uint64_t)glue(ld16r, MEMSUFFIX)(EA + 2) << 16;
1036 return ret;
1037 }
1038 PPC_SPE_LD_OP(whe_le, spe_lwhe_le);
1039 static inline void glue(spe_stwhe_le, MEMSUFFIX) (target_ulong EA,
1040 uint64_t data)
1041 {
1042 glue(st16r, MEMSUFFIX)(EA, data >> 48);
1043 glue(st16r, MEMSUFFIX)(EA + 2, data >> 16);
1044 }
1045 PPC_SPE_ST_OP(whe_le, spe_stwhe_le);
1046 static inline uint64_t glue(spe_lwhou, MEMSUFFIX) (target_ulong EA)
1047 {
1048 uint64_t ret;
1049 ret = (uint64_t)glue(lduw, MEMSUFFIX)(EA) << 32;
1050 ret |= (uint64_t)glue(lduw, MEMSUFFIX)(EA + 2);
1051 return ret;
1052 }
1053 PPC_SPE_LD_OP(whou, spe_lwhou);
1054 static inline uint64_t glue(spe_lwhos, MEMSUFFIX) (target_ulong EA)
1055 {
1056 uint64_t ret;
1057 ret = ((uint64_t)((int32_t)glue(ldsw, MEMSUFFIX)(EA))) << 32;
1058 ret |= (uint64_t)((int32_t)glue(ldsw, MEMSUFFIX)(EA + 2));
1059 return ret;
1060 }
1061 PPC_SPE_LD_OP(whos, spe_lwhos);
1062 static inline void glue(spe_stwho, MEMSUFFIX) (target_ulong EA, uint64_t data)
1063 {
1064 glue(stw, MEMSUFFIX)(EA, data >> 32);
1065 glue(stw, MEMSUFFIX)(EA + 2, data);
1066 }
1067 PPC_SPE_ST_OP(who, spe_stwho);
1068 static inline uint64_t glue(spe_lwhou_le, MEMSUFFIX) (target_ulong EA)
1069 {
1070 uint64_t ret;
1071 ret = (uint64_t)glue(ld16r, MEMSUFFIX)(EA) << 32;
1072 ret |= (uint64_t)glue(ld16r, MEMSUFFIX)(EA + 2);
1073 return ret;
1074 }
1075 PPC_SPE_LD_OP(whou_le, spe_lwhou_le);
1076 static inline uint64_t glue(spe_lwhos_le, MEMSUFFIX) (target_ulong EA)
1077 {
1078 uint64_t ret;
1079 ret = ((uint64_t)((int32_t)glue(ld16rs, MEMSUFFIX)(EA))) << 32;
1080 ret |= (uint64_t)((int32_t)glue(ld16rs, MEMSUFFIX)(EA + 2));
1081 return ret;
1082 }
1083 PPC_SPE_LD_OP(whos_le, spe_lwhos_le);
1084 static inline void glue(spe_stwho_le, MEMSUFFIX) (target_ulong EA,
1085 uint64_t data)
1086 {
1087 glue(st16r, MEMSUFFIX)(EA, data >> 32);
1088 glue(st16r, MEMSUFFIX)(EA + 2, data);
1089 }
1090 PPC_SPE_ST_OP(who_le, spe_stwho_le);
1091 #if !defined(TARGET_PPC64)
1092 static inline void glue(spe_stwwo, MEMSUFFIX) (target_ulong EA, uint64_t data)
1093 {
1094 glue(stl, MEMSUFFIX)(EA, data);
1095 }
1096 PPC_SPE_ST_OP(wwo, spe_stwwo);
1097 static inline void glue(spe_stwwo_le, MEMSUFFIX) (target_ulong EA,
1098 uint64_t data)
1099 {
1100 glue(st32r, MEMSUFFIX)(EA, data);
1101 }
1102 PPC_SPE_ST_OP(wwo_le, spe_stwwo_le);
1103 #endif
1104 static inline uint64_t glue(spe_lh, MEMSUFFIX) (target_ulong EA)
1105 {
1106 uint16_t tmp;
1107 tmp = glue(lduw, MEMSUFFIX)(EA);
1108 return ((uint64_t)tmp << 48) | ((uint64_t)tmp << 16);
1109 }
1110 PPC_SPE_LD_OP(h, spe_lh);
1111 static inline uint64_t glue(spe_lh_le, MEMSUFFIX) (target_ulong EA)
1112 {
1113 uint16_t tmp;
1114 tmp = glue(ld16r, MEMSUFFIX)(EA);
1115 return ((uint64_t)tmp << 48) | ((uint64_t)tmp << 16);
1116 }
1117 PPC_SPE_LD_OP(h_le, spe_lh_le);
1118 static inline uint64_t glue(spe_lwwsplat, MEMSUFFIX) (target_ulong EA)
1119 {
1120 uint32_t tmp;
1121 tmp = glue(ldl, MEMSUFFIX)(EA);
1122 return ((uint64_t)tmp << 32) | (uint64_t)tmp;
1123 }
1124 PPC_SPE_LD_OP(wwsplat, spe_lwwsplat);
1125 static inline uint64_t glue(spe_lwwsplat_le, MEMSUFFIX) (target_ulong EA)
1126 {
1127 uint32_t tmp;
1128 tmp = glue(ld32r, MEMSUFFIX)(EA);
1129 return ((uint64_t)tmp << 32) | (uint64_t)tmp;
1130 }
1131 PPC_SPE_LD_OP(wwsplat_le, spe_lwwsplat_le);
1132 static inline uint64_t glue(spe_lwhsplat, MEMSUFFIX) (target_ulong EA)
1133 {
1134 uint64_t ret;
1135 uint16_t tmp;
1136 tmp = glue(lduw, MEMSUFFIX)(EA);
1137 ret = ((uint64_t)tmp << 48) | ((uint64_t)tmp << 32);
1138 tmp = glue(lduw, MEMSUFFIX)(EA + 2);
1139 ret |= ((uint64_t)tmp << 16) | (uint64_t)tmp;
1140 return ret;
1141 }
1142 PPC_SPE_LD_OP(whsplat, spe_lwhsplat);
1143 static inline uint64_t glue(spe_lwhsplat_le, MEMSUFFIX) (target_ulong EA)
1144 {
1145 uint64_t ret;
1146 uint16_t tmp;
1147 tmp = glue(ld16r, MEMSUFFIX)(EA);
1148 ret = ((uint64_t)tmp << 48) | ((uint64_t)tmp << 32);
1149 tmp = glue(ld16r, MEMSUFFIX)(EA + 2);
1150 ret |= ((uint64_t)tmp << 16) | (uint64_t)tmp;
1151 return ret;
1152 }
1153 PPC_SPE_LD_OP(whsplat_le, spe_lwhsplat_le);
1154 #endif /* defined(TARGET_PPCSPE) */
1155
1156 #undef MEMSUFFIX