]> git.proxmox.com Git - qemu.git/blob - target-s390x/fpu_helper.c
b0c18ee7c2cf6e10cd0295f3b81c6e1816dbac89
[qemu.git] / target-s390x / fpu_helper.c
1 /*
2 * S/390 FPU helper routines
3 *
4 * Copyright (c) 2009 Ulrich Hecht
5 * Copyright (c) 2009 Alexander Graf
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "cpu.h"
22 #include "helper.h"
23
24 #if !defined(CONFIG_USER_ONLY)
25 #include "exec/softmmu_exec.h"
26 #endif
27
28 /* #define DEBUG_HELPER */
29 #ifdef DEBUG_HELPER
30 #define HELPER_LOG(x...) qemu_log(x)
31 #else
32 #define HELPER_LOG(x...)
33 #endif
34
35 #define RET128(F) (env->retxl = F.low, F.high)
36
37 #define convert_bit(mask, from, to) \
38 (to < from \
39 ? (mask / (from / to)) & to \
40 : (mask & from) * (to / from))
41
42 static void ieee_exception(CPUS390XState *env, uint32_t dxc, uintptr_t retaddr)
43 {
44 /* Install the DXC code. */
45 env->fpc = (env->fpc & ~0xff00) | (dxc << 8);
46 /* Trap. */
47 runtime_exception(env, PGM_DATA, retaddr);
48 }
49
50 /* Should be called after any operation that may raise IEEE exceptions. */
51 static void handle_exceptions(CPUS390XState *env, uintptr_t retaddr)
52 {
53 unsigned s390_exc, qemu_exc;
54
55 /* Get the exceptions raised by the current operation. Reset the
56 fpu_status contents so that the next operation has a clean slate. */
57 qemu_exc = env->fpu_status.float_exception_flags;
58 if (qemu_exc == 0) {
59 return;
60 }
61 env->fpu_status.float_exception_flags = 0;
62
63 /* Convert softfloat exception bits to s390 exception bits. */
64 s390_exc = 0;
65 s390_exc |= convert_bit(qemu_exc, float_flag_invalid, 0x80);
66 s390_exc |= convert_bit(qemu_exc, float_flag_divbyzero, 0x40);
67 s390_exc |= convert_bit(qemu_exc, float_flag_overflow, 0x20);
68 s390_exc |= convert_bit(qemu_exc, float_flag_underflow, 0x10);
69 s390_exc |= convert_bit(qemu_exc, float_flag_inexact, 0x08);
70
71 /* Install the exceptions that we raised. */
72 env->fpc |= s390_exc << 16;
73
74 /* Send signals for enabled exceptions. */
75 s390_exc &= env->fpc >> 24;
76 if (s390_exc) {
77 ieee_exception(env, s390_exc, retaddr);
78 }
79 }
80
81 static inline int float_comp_to_cc(CPUS390XState *env, int float_compare)
82 {
83 switch (float_compare) {
84 case float_relation_equal:
85 return 0;
86 case float_relation_less:
87 return 1;
88 case float_relation_greater:
89 return 2;
90 case float_relation_unordered:
91 return 3;
92 default:
93 cpu_abort(env, "unknown return value for float compare\n");
94 }
95 }
96
97 /* condition codes for unary FP ops */
98 uint32_t set_cc_nz_f32(float32 v)
99 {
100 if (float32_is_any_nan(v)) {
101 return 3;
102 } else if (float32_is_zero(v)) {
103 return 0;
104 } else if (float32_is_neg(v)) {
105 return 1;
106 } else {
107 return 2;
108 }
109 }
110
111 uint32_t set_cc_nz_f64(float64 v)
112 {
113 if (float64_is_any_nan(v)) {
114 return 3;
115 } else if (float64_is_zero(v)) {
116 return 0;
117 } else if (float64_is_neg(v)) {
118 return 1;
119 } else {
120 return 2;
121 }
122 }
123
124 uint32_t set_cc_nz_f128(float128 v)
125 {
126 if (float128_is_any_nan(v)) {
127 return 3;
128 } else if (float128_is_zero(v)) {
129 return 0;
130 } else if (float128_is_neg(v)) {
131 return 1;
132 } else {
133 return 2;
134 }
135 }
136
137 /* convert 32-bit int to 64-bit float */
138 void HELPER(cdfbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
139 {
140 HELPER_LOG("%s: converting %d to f%d\n", __func__, v2, f1);
141 env->fregs[f1].d = int32_to_float64(v2, &env->fpu_status);
142 }
143
144 /* convert 32-bit int to 128-bit float */
145 void HELPER(cxfbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
146 {
147 CPU_QuadU v1;
148
149 v1.q = int32_to_float128(v2, &env->fpu_status);
150 env->fregs[f1].ll = v1.ll.upper;
151 env->fregs[f1 + 2].ll = v1.ll.lower;
152 }
153
154 /* convert 64-bit int to 32-bit float */
155 void HELPER(cegbr)(CPUS390XState *env, uint32_t f1, int64_t v2)
156 {
157 HELPER_LOG("%s: converting %ld to f%d\n", __func__, v2, f1);
158 env->fregs[f1].l.upper = int64_to_float32(v2, &env->fpu_status);
159 }
160
161 /* convert 64-bit int to 64-bit float */
162 void HELPER(cdgbr)(CPUS390XState *env, uint32_t f1, int64_t v2)
163 {
164 HELPER_LOG("%s: converting %ld to f%d\n", __func__, v2, f1);
165 env->fregs[f1].d = int64_to_float64(v2, &env->fpu_status);
166 }
167
168 /* convert 64-bit int to 128-bit float */
169 void HELPER(cxgbr)(CPUS390XState *env, uint32_t f1, int64_t v2)
170 {
171 CPU_QuadU x1;
172
173 x1.q = int64_to_float128(v2, &env->fpu_status);
174 HELPER_LOG("%s: converted %ld to 0x%lx and 0x%lx\n", __func__, v2,
175 x1.ll.upper, x1.ll.lower);
176 env->fregs[f1].ll = x1.ll.upper;
177 env->fregs[f1 + 2].ll = x1.ll.lower;
178 }
179
180 /* convert 32-bit int to 32-bit float */
181 void HELPER(cefbr)(CPUS390XState *env, uint32_t f1, int32_t v2)
182 {
183 env->fregs[f1].l.upper = int32_to_float32(v2, &env->fpu_status);
184 HELPER_LOG("%s: converting %d to 0x%d in f%d\n", __func__, v2,
185 env->fregs[f1].l.upper, f1);
186 }
187
188 /* 32-bit FP addition */
189 uint64_t HELPER(aeb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
190 {
191 float32 ret = float32_add(f1, f2, &env->fpu_status);
192 handle_exceptions(env, GETPC());
193 return ret;
194 }
195
196 /* 64-bit FP addition */
197 uint64_t HELPER(adb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
198 {
199 float64 ret = float64_add(f1, f2, &env->fpu_status);
200 handle_exceptions(env, GETPC());
201 return ret;
202 }
203
204 /* 128-bit FP addition */
205 uint64_t HELPER(axb)(CPUS390XState *env, uint64_t ah, uint64_t al,
206 uint64_t bh, uint64_t bl)
207 {
208 float128 ret = float128_add(make_float128(ah, al),
209 make_float128(bh, bl),
210 &env->fpu_status);
211 handle_exceptions(env, GETPC());
212 return RET128(ret);
213 }
214
215 /* 32-bit FP subtraction */
216 uint64_t HELPER(seb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
217 {
218 float32 ret = float32_sub(f1, f2, &env->fpu_status);
219 handle_exceptions(env, GETPC());
220 return ret;
221 }
222
223 /* 64-bit FP subtraction */
224 uint64_t HELPER(sdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
225 {
226 float64 ret = float64_sub(f1, f2, &env->fpu_status);
227 handle_exceptions(env, GETPC());
228 return ret;
229 }
230
231 /* 128-bit FP subtraction */
232 uint64_t HELPER(sxb)(CPUS390XState *env, uint64_t ah, uint64_t al,
233 uint64_t bh, uint64_t bl)
234 {
235 float128 ret = float128_sub(make_float128(ah, al),
236 make_float128(bh, bl),
237 &env->fpu_status);
238 handle_exceptions(env, GETPC());
239 return RET128(ret);
240 }
241
242 /* 32-bit FP division */
243 uint64_t HELPER(deb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
244 {
245 float32 ret = float32_div(f1, f2, &env->fpu_status);
246 handle_exceptions(env, GETPC());
247 return ret;
248 }
249
250 /* 64-bit FP division */
251 uint64_t HELPER(ddb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
252 {
253 float64 ret = float64_div(f1, f2, &env->fpu_status);
254 handle_exceptions(env, GETPC());
255 return ret;
256 }
257
258 /* 128-bit FP division */
259 uint64_t HELPER(dxb)(CPUS390XState *env, uint64_t ah, uint64_t al,
260 uint64_t bh, uint64_t bl)
261 {
262 float128 ret = float128_div(make_float128(ah, al),
263 make_float128(bh, bl),
264 &env->fpu_status);
265 handle_exceptions(env, GETPC());
266 return RET128(ret);
267 }
268
269 /* 64-bit FP multiplication RR */
270 void HELPER(mdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
271 {
272 env->fregs[f1].d = float64_mul(env->fregs[f1].d, env->fregs[f2].d,
273 &env->fpu_status);
274 }
275
276 /* 128-bit FP multiplication RR */
277 void HELPER(mxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
278 {
279 CPU_QuadU v1;
280 CPU_QuadU v2;
281 CPU_QuadU res;
282
283 v1.ll.upper = env->fregs[f1].ll;
284 v1.ll.lower = env->fregs[f1 + 2].ll;
285 v2.ll.upper = env->fregs[f2].ll;
286 v2.ll.lower = env->fregs[f2 + 2].ll;
287 res.q = float128_mul(v1.q, v2.q, &env->fpu_status);
288 env->fregs[f1].ll = res.ll.upper;
289 env->fregs[f1 + 2].ll = res.ll.lower;
290 }
291
292 /* convert 32-bit float to 64-bit float */
293 uint64_t HELPER(ldeb)(CPUS390XState *env, uint64_t f2)
294 {
295 float64 ret = float32_to_float64(f2, &env->fpu_status);
296 handle_exceptions(env, GETPC());
297 return ret;
298 }
299
300 /* convert 128-bit float to 64-bit float */
301 uint64_t HELPER(ldxb)(CPUS390XState *env, uint64_t ah, uint64_t al)
302 {
303 float64 ret = float128_to_float64(make_float128(ah, al), &env->fpu_status);
304 handle_exceptions(env, GETPC());
305 return ret;
306 }
307
308 /* convert 64-bit float to 128-bit float */
309 uint64_t HELPER(lxdb)(CPUS390XState *env, uint64_t f2)
310 {
311 float128 ret = float64_to_float128(f2, &env->fpu_status);
312 handle_exceptions(env, GETPC());
313 return RET128(ret);
314 }
315
316 /* convert 32-bit float to 128-bit float */
317 uint64_t HELPER(lxeb)(CPUS390XState *env, uint64_t f2)
318 {
319 float128 ret = float32_to_float128(f2, &env->fpu_status);
320 handle_exceptions(env, GETPC());
321 return RET128(ret);
322 }
323
324 /* convert 64-bit float to 32-bit float */
325 uint64_t HELPER(ledb)(CPUS390XState *env, uint64_t f2)
326 {
327 float32 ret = float64_to_float32(f2, &env->fpu_status);
328 handle_exceptions(env, GETPC());
329 return ret;
330 }
331
332 /* convert 128-bit float to 32-bit float */
333 uint64_t HELPER(lexb)(CPUS390XState *env, uint64_t ah, uint64_t al)
334 {
335 float32 ret = float128_to_float32(make_float128(ah, al), &env->fpu_status);
336 handle_exceptions(env, GETPC());
337 return ret;
338 }
339
340 /* absolute value of 32-bit float */
341 uint32_t HELPER(lpebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
342 {
343 float32 v1;
344 float32 v2 = env->fregs[f2].d;
345
346 v1 = float32_abs(v2);
347 env->fregs[f1].d = v1;
348 return set_cc_nz_f32(v1);
349 }
350
351 /* absolute value of 64-bit float */
352 uint32_t HELPER(lpdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
353 {
354 float64 v1;
355 float64 v2 = env->fregs[f2].d;
356
357 v1 = float64_abs(v2);
358 env->fregs[f1].d = v1;
359 return set_cc_nz_f64(v1);
360 }
361
362 /* absolute value of 128-bit float */
363 uint32_t HELPER(lpxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
364 {
365 CPU_QuadU v1;
366 CPU_QuadU v2;
367
368 v2.ll.upper = env->fregs[f2].ll;
369 v2.ll.lower = env->fregs[f2 + 2].ll;
370 v1.q = float128_abs(v2.q);
371 env->fregs[f1].ll = v1.ll.upper;
372 env->fregs[f1 + 2].ll = v1.ll.lower;
373 return set_cc_nz_f128(v1.q);
374 }
375
376 /* load complement of 32-bit float */
377 uint32_t HELPER(lcebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
378 {
379 env->fregs[f1].l.upper = float32_chs(env->fregs[f2].l.upper);
380
381 return set_cc_nz_f32(env->fregs[f1].l.upper);
382 }
383
384 /* load complement of 64-bit float */
385 uint32_t HELPER(lcdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
386 {
387 env->fregs[f1].d = float64_chs(env->fregs[f2].d);
388
389 return set_cc_nz_f64(env->fregs[f1].d);
390 }
391
392 /* load complement of 128-bit float */
393 uint32_t HELPER(lcxbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
394 {
395 CPU_QuadU x1, x2;
396
397 x2.ll.upper = env->fregs[f2].ll;
398 x2.ll.lower = env->fregs[f2 + 2].ll;
399 x1.q = float128_chs(x2.q);
400 env->fregs[f1].ll = x1.ll.upper;
401 env->fregs[f1 + 2].ll = x1.ll.lower;
402 return set_cc_nz_f128(x1.q);
403 }
404
405 /* 32-bit FP multiplication RM */
406 void HELPER(meeb)(CPUS390XState *env, uint32_t f1, uint32_t val)
407 {
408 float32 v1 = env->fregs[f1].l.upper;
409 CPU_FloatU v2;
410
411 v2.l = val;
412 HELPER_LOG("%s: multiplying 0x%d from f%d and 0x%d\n", __func__,
413 v1, f1, v2.f);
414 env->fregs[f1].l.upper = float32_mul(v1, v2.f, &env->fpu_status);
415 }
416
417 /* 32-bit FP compare */
418 uint32_t HELPER(ceb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
419 {
420 int cmp = float32_compare_quiet(f1, f2, &env->fpu_status);
421 handle_exceptions(env, GETPC());
422 return float_comp_to_cc(env, cmp);
423 }
424
425 /* 64-bit FP compare */
426 uint32_t HELPER(cdb)(CPUS390XState *env, uint64_t f1, uint64_t f2)
427 {
428 int cmp = float64_compare_quiet(f1, f2, &env->fpu_status);
429 handle_exceptions(env, GETPC());
430 return float_comp_to_cc(env, cmp);
431 }
432
433 /* 128-bit FP compare */
434 uint32_t HELPER(cxb)(CPUS390XState *env, uint64_t ah, uint64_t al,
435 uint64_t bh, uint64_t bl)
436 {
437 int cmp = float128_compare_quiet(make_float128(ah, al),
438 make_float128(bh, bl),
439 &env->fpu_status);
440 handle_exceptions(env, GETPC());
441 return float_comp_to_cc(env, cmp);
442 }
443
444 /* 64-bit FP multiplication RM */
445 void HELPER(mdb)(CPUS390XState *env, uint32_t f1, uint64_t a2)
446 {
447 float64 v1 = env->fregs[f1].d;
448 CPU_DoubleU v2;
449
450 v2.ll = cpu_ldq_data(env, a2);
451 HELPER_LOG("%s: multiplying 0x%lx from f%d and 0x%ld\n", __func__,
452 v1, f1, v2.d);
453 env->fregs[f1].d = float64_mul(v1, v2.d, &env->fpu_status);
454 }
455
456 static void set_round_mode(CPUS390XState *env, int m3)
457 {
458 switch (m3) {
459 case 0:
460 /* current mode */
461 break;
462 case 1:
463 /* biased round no nearest */
464 case 4:
465 /* round to nearest */
466 set_float_rounding_mode(float_round_nearest_even, &env->fpu_status);
467 break;
468 case 5:
469 /* round to zero */
470 set_float_rounding_mode(float_round_to_zero, &env->fpu_status);
471 break;
472 case 6:
473 /* round to +inf */
474 set_float_rounding_mode(float_round_up, &env->fpu_status);
475 break;
476 case 7:
477 /* round to -inf */
478 set_float_rounding_mode(float_round_down, &env->fpu_status);
479 break;
480 }
481 }
482
483 /* convert 32-bit float to 64-bit int */
484 uint32_t HELPER(cgebr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
485 uint32_t m3)
486 {
487 float32 v2 = env->fregs[f2].l.upper;
488
489 set_round_mode(env, m3);
490 env->regs[r1] = float32_to_int64(v2, &env->fpu_status);
491 return set_cc_nz_f32(v2);
492 }
493
494 /* convert 64-bit float to 64-bit int */
495 uint32_t HELPER(cgdbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
496 uint32_t m3)
497 {
498 float64 v2 = env->fregs[f2].d;
499
500 set_round_mode(env, m3);
501 env->regs[r1] = float64_to_int64(v2, &env->fpu_status);
502 return set_cc_nz_f64(v2);
503 }
504
505 /* convert 128-bit float to 64-bit int */
506 uint32_t HELPER(cgxbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
507 uint32_t m3)
508 {
509 CPU_QuadU v2;
510
511 v2.ll.upper = env->fregs[f2].ll;
512 v2.ll.lower = env->fregs[f2 + 2].ll;
513 set_round_mode(env, m3);
514 env->regs[r1] = float128_to_int64(v2.q, &env->fpu_status);
515 if (float128_is_any_nan(v2.q)) {
516 return 3;
517 } else if (float128_is_zero(v2.q)) {
518 return 0;
519 } else if (float128_is_neg(v2.q)) {
520 return 1;
521 } else {
522 return 2;
523 }
524 }
525
526 /* convert 32-bit float to 32-bit int */
527 uint32_t HELPER(cfebr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
528 uint32_t m3)
529 {
530 float32 v2 = env->fregs[f2].l.upper;
531
532 set_round_mode(env, m3);
533 env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) |
534 float32_to_int32(v2, &env->fpu_status);
535 return set_cc_nz_f32(v2);
536 }
537
538 /* convert 64-bit float to 32-bit int */
539 uint32_t HELPER(cfdbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
540 uint32_t m3)
541 {
542 float64 v2 = env->fregs[f2].d;
543
544 set_round_mode(env, m3);
545 env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) |
546 float64_to_int32(v2, &env->fpu_status);
547 return set_cc_nz_f64(v2);
548 }
549
550 /* convert 128-bit float to 32-bit int */
551 uint32_t HELPER(cfxbr)(CPUS390XState *env, uint32_t r1, uint32_t f2,
552 uint32_t m3)
553 {
554 CPU_QuadU v2;
555
556 v2.ll.upper = env->fregs[f2].ll;
557 v2.ll.lower = env->fregs[f2 + 2].ll;
558 env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) |
559 float128_to_int32(v2.q, &env->fpu_status);
560 return set_cc_nz_f128(v2.q);
561 }
562
563 /* load 32-bit FP zero */
564 void HELPER(lzer)(CPUS390XState *env, uint32_t f1)
565 {
566 env->fregs[f1].l.upper = float32_zero;
567 }
568
569 /* load 64-bit FP zero */
570 void HELPER(lzdr)(CPUS390XState *env, uint32_t f1)
571 {
572 env->fregs[f1].d = float64_zero;
573 }
574
575 /* load 128-bit FP zero */
576 void HELPER(lzxr)(CPUS390XState *env, uint32_t f1)
577 {
578 CPU_QuadU x;
579
580 x.q = float64_to_float128(float64_zero, &env->fpu_status);
581 env->fregs[f1].ll = x.ll.upper;
582 env->fregs[f1 + 1].ll = x.ll.lower;
583 }
584
585 /* 32-bit FP multiplication RR */
586 void HELPER(meebr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
587 {
588 env->fregs[f1].l.upper = float32_mul(env->fregs[f1].l.upper,
589 env->fregs[f2].l.upper,
590 &env->fpu_status);
591 }
592
593 /* 64-bit FP multiply and add RM */
594 void HELPER(madb)(CPUS390XState *env, uint32_t f1, uint64_t a2, uint32_t f3)
595 {
596 CPU_DoubleU v2;
597
598 HELPER_LOG("%s: f1 %d a2 0x%lx f3 %d\n", __func__, f1, a2, f3);
599 v2.ll = cpu_ldq_data(env, a2);
600 env->fregs[f1].d = float64_add(env->fregs[f1].d,
601 float64_mul(v2.d, env->fregs[f3].d,
602 &env->fpu_status),
603 &env->fpu_status);
604 }
605
606 /* 64-bit FP multiply and add RR */
607 void HELPER(madbr)(CPUS390XState *env, uint32_t f1, uint32_t f3, uint32_t f2)
608 {
609 HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __func__, f1, f2, f3);
610 env->fregs[f1].d = float64_add(float64_mul(env->fregs[f2].d,
611 env->fregs[f3].d,
612 &env->fpu_status),
613 env->fregs[f1].d, &env->fpu_status);
614 }
615
616 /* 64-bit FP multiply and subtract RR */
617 void HELPER(msdbr)(CPUS390XState *env, uint32_t f1, uint32_t f3, uint32_t f2)
618 {
619 HELPER_LOG("%s: f1 %d f2 %d f3 %d\n", __func__, f1, f2, f3);
620 env->fregs[f1].d = float64_sub(float64_mul(env->fregs[f2].d,
621 env->fregs[f3].d,
622 &env->fpu_status),
623 env->fregs[f1].d, &env->fpu_status);
624 }
625
626 /* 32-bit FP multiply and add RR */
627 void HELPER(maebr)(CPUS390XState *env, uint32_t f1, uint32_t f3, uint32_t f2)
628 {
629 env->fregs[f1].l.upper = float32_add(env->fregs[f1].l.upper,
630 float32_mul(env->fregs[f2].l.upper,
631 env->fregs[f3].l.upper,
632 &env->fpu_status),
633 &env->fpu_status);
634 }
635
636 /* test data class 32-bit */
637 uint32_t HELPER(tceb)(CPUS390XState *env, uint32_t f1, uint64_t m2)
638 {
639 float32 v1 = env->fregs[f1].l.upper;
640 int neg = float32_is_neg(v1);
641 uint32_t cc = 0;
642
643 HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __func__, (long)v1, m2, neg);
644 if ((float32_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
645 (float32_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
646 (float32_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
647 (float32_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
648 cc = 1;
649 } else if (m2 & (1 << (9-neg))) {
650 /* assume normalized number */
651 cc = 1;
652 }
653
654 /* FIXME: denormalized? */
655 return cc;
656 }
657
658 /* test data class 64-bit */
659 uint32_t HELPER(tcdb)(CPUS390XState *env, uint32_t f1, uint64_t m2)
660 {
661 float64 v1 = env->fregs[f1].d;
662 int neg = float64_is_neg(v1);
663 uint32_t cc = 0;
664
665 HELPER_LOG("%s: v1 0x%lx m2 0x%lx neg %d\n", __func__, v1, m2, neg);
666 if ((float64_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
667 (float64_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
668 (float64_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
669 (float64_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
670 cc = 1;
671 } else if (m2 & (1 << (9-neg))) {
672 /* assume normalized number */
673 cc = 1;
674 }
675 /* FIXME: denormalized? */
676 return cc;
677 }
678
679 /* test data class 128-bit */
680 uint32_t HELPER(tcxb)(CPUS390XState *env, uint32_t f1, uint64_t m2)
681 {
682 CPU_QuadU v1;
683 uint32_t cc = 0;
684 int neg;
685
686 v1.ll.upper = env->fregs[f1].ll;
687 v1.ll.lower = env->fregs[f1 + 2].ll;
688
689 neg = float128_is_neg(v1.q);
690 if ((float128_is_zero(v1.q) && (m2 & (1 << (11-neg)))) ||
691 (float128_is_infinity(v1.q) && (m2 & (1 << (5-neg)))) ||
692 (float128_is_any_nan(v1.q) && (m2 & (1 << (3-neg)))) ||
693 (float128_is_signaling_nan(v1.q) && (m2 & (1 << (1-neg))))) {
694 cc = 1;
695 } else if (m2 & (1 << (9-neg))) {
696 /* assume normalized number */
697 cc = 1;
698 }
699 /* FIXME: denormalized? */
700 return cc;
701 }
702
703 /* square root 64-bit RR */
704 void HELPER(sqdbr)(CPUS390XState *env, uint32_t f1, uint32_t f2)
705 {
706 env->fregs[f1].d = float64_sqrt(env->fregs[f2].d, &env->fpu_status);
707 }