]> git.proxmox.com Git - mirror_qemu.git/blob - target-s390x/kvm.c
Merge remote-tracking branch 'remotes/ehabkost/tags/x86-pull-request' into staging
[mirror_qemu.git] / target-s390x / kvm.c
1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
19 *
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include <sys/types.h>
25 #include <sys/ioctl.h>
26 #include <sys/mman.h>
27
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
30
31 #include "qemu-common.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/kvm.h"
35 #include "hw/hw.h"
36 #include "cpu.h"
37 #include "sysemu/device_tree.h"
38 #include "qapi/qmp/qjson.h"
39 #include "monitor/monitor.h"
40 #include "exec/gdbstub.h"
41 #include "trace.h"
42 #include "qapi-event.h"
43 #include "hw/s390x/s390-pci-inst.h"
44 #include "hw/s390x/s390-pci-bus.h"
45 #include "hw/s390x/ipl.h"
46
47 /* #define DEBUG_KVM */
48
49 #ifdef DEBUG_KVM
50 #define DPRINTF(fmt, ...) \
51 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #else
53 #define DPRINTF(fmt, ...) \
54 do { } while (0)
55 #endif
56
57 #define IPA0_DIAG 0x8300
58 #define IPA0_SIGP 0xae00
59 #define IPA0_B2 0xb200
60 #define IPA0_B9 0xb900
61 #define IPA0_EB 0xeb00
62 #define IPA0_E3 0xe300
63
64 #define PRIV_B2_SCLP_CALL 0x20
65 #define PRIV_B2_CSCH 0x30
66 #define PRIV_B2_HSCH 0x31
67 #define PRIV_B2_MSCH 0x32
68 #define PRIV_B2_SSCH 0x33
69 #define PRIV_B2_STSCH 0x34
70 #define PRIV_B2_TSCH 0x35
71 #define PRIV_B2_TPI 0x36
72 #define PRIV_B2_SAL 0x37
73 #define PRIV_B2_RSCH 0x38
74 #define PRIV_B2_STCRW 0x39
75 #define PRIV_B2_STCPS 0x3a
76 #define PRIV_B2_RCHP 0x3b
77 #define PRIV_B2_SCHM 0x3c
78 #define PRIV_B2_CHSC 0x5f
79 #define PRIV_B2_SIGA 0x74
80 #define PRIV_B2_XSCH 0x76
81
82 #define PRIV_EB_SQBS 0x8a
83 #define PRIV_EB_PCISTB 0xd0
84 #define PRIV_EB_SIC 0xd1
85
86 #define PRIV_B9_EQBS 0x9c
87 #define PRIV_B9_CLP 0xa0
88 #define PRIV_B9_PCISTG 0xd0
89 #define PRIV_B9_PCILG 0xd2
90 #define PRIV_B9_RPCIT 0xd3
91
92 #define PRIV_E3_MPCIFC 0xd0
93 #define PRIV_E3_STPCIFC 0xd4
94
95 #define DIAG_IPL 0x308
96 #define DIAG_KVM_HYPERCALL 0x500
97 #define DIAG_KVM_BREAKPOINT 0x501
98
99 #define ICPT_INSTRUCTION 0x04
100 #define ICPT_PROGRAM 0x08
101 #define ICPT_EXT_INT 0x14
102 #define ICPT_WAITPSW 0x1c
103 #define ICPT_SOFT_INTERCEPT 0x24
104 #define ICPT_CPU_STOP 0x28
105 #define ICPT_IO 0x40
106
107 static CPUWatchpoint hw_watchpoint;
108 /*
109 * We don't use a list because this structure is also used to transmit the
110 * hardware breakpoints to the kernel.
111 */
112 static struct kvm_hw_breakpoint *hw_breakpoints;
113 static int nb_hw_breakpoints;
114
115 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
116 KVM_CAP_LAST_INFO
117 };
118
119 static int cap_sync_regs;
120 static int cap_async_pf;
121
122 static void *legacy_s390_alloc(size_t size, uint64_t *align);
123
124 static int kvm_s390_check_clear_cmma(KVMState *s)
125 {
126 struct kvm_device_attr attr = {
127 .group = KVM_S390_VM_MEM_CTRL,
128 .attr = KVM_S390_VM_MEM_CLR_CMMA,
129 };
130
131 return kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attr);
132 }
133
134 static int kvm_s390_check_enable_cmma(KVMState *s)
135 {
136 struct kvm_device_attr attr = {
137 .group = KVM_S390_VM_MEM_CTRL,
138 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
139 };
140
141 return kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attr);
142 }
143
144 void kvm_s390_clear_cmma_callback(void *opaque)
145 {
146 int rc;
147 KVMState *s = opaque;
148 struct kvm_device_attr attr = {
149 .group = KVM_S390_VM_MEM_CTRL,
150 .attr = KVM_S390_VM_MEM_CLR_CMMA,
151 };
152
153 rc = kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
154 trace_kvm_clear_cmma(rc);
155 }
156
157 static void kvm_s390_enable_cmma(KVMState *s)
158 {
159 int rc;
160 struct kvm_device_attr attr = {
161 .group = KVM_S390_VM_MEM_CTRL,
162 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
163 };
164
165 if (kvm_s390_check_enable_cmma(s) || kvm_s390_check_clear_cmma(s)) {
166 return;
167 }
168
169 rc = kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
170 if (!rc) {
171 qemu_register_reset(kvm_s390_clear_cmma_callback, s);
172 }
173 trace_kvm_enable_cmma(rc);
174 }
175
176 int kvm_arch_init(KVMState *s)
177 {
178 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
179 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
180
181 if (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES)) {
182 kvm_s390_enable_cmma(s);
183 }
184
185 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
186 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
187 phys_mem_set_alloc(legacy_s390_alloc);
188 }
189 return 0;
190 }
191
192 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
193 {
194 return cpu->cpu_index;
195 }
196
197 int kvm_arch_init_vcpu(CPUState *cs)
198 {
199 S390CPU *cpu = S390_CPU(cs);
200 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
201 return 0;
202 }
203
204 void kvm_s390_reset_vcpu(S390CPU *cpu)
205 {
206 CPUState *cs = CPU(cpu);
207
208 /* The initial reset call is needed here to reset in-kernel
209 * vcpu data that we can't access directly from QEMU
210 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
211 * Before this ioctl cpu_synchronize_state() is called in common kvm
212 * code (kvm-all) */
213 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
214 error_report("Initial CPU reset failed on CPU %i\n", cs->cpu_index);
215 }
216 }
217
218 static int can_sync_regs(CPUState *cs, int regs)
219 {
220 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
221 }
222
223 int kvm_arch_put_registers(CPUState *cs, int level)
224 {
225 S390CPU *cpu = S390_CPU(cs);
226 CPUS390XState *env = &cpu->env;
227 struct kvm_sregs sregs;
228 struct kvm_regs regs;
229 struct kvm_fpu fpu = {};
230 int r;
231 int i;
232
233 /* always save the PSW and the GPRS*/
234 cs->kvm_run->psw_addr = env->psw.addr;
235 cs->kvm_run->psw_mask = env->psw.mask;
236
237 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
238 for (i = 0; i < 16; i++) {
239 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
240 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
241 }
242 } else {
243 for (i = 0; i < 16; i++) {
244 regs.gprs[i] = env->regs[i];
245 }
246 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
247 if (r < 0) {
248 return r;
249 }
250 }
251
252 /* Floating point */
253 for (i = 0; i < 16; i++) {
254 fpu.fprs[i] = env->fregs[i].ll;
255 }
256 fpu.fpc = env->fpc;
257
258 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
259 if (r < 0) {
260 return r;
261 }
262
263 /* Do we need to save more than that? */
264 if (level == KVM_PUT_RUNTIME_STATE) {
265 return 0;
266 }
267
268 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
269 cs->kvm_run->s.regs.cputm = env->cputm;
270 cs->kvm_run->s.regs.ckc = env->ckc;
271 cs->kvm_run->s.regs.todpr = env->todpr;
272 cs->kvm_run->s.regs.gbea = env->gbea;
273 cs->kvm_run->s.regs.pp = env->pp;
274 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
275 } else {
276 /*
277 * These ONE_REGS are not protected by a capability. As they are only
278 * necessary for migration we just trace a possible error, but don't
279 * return with an error return code.
280 */
281 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
282 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
283 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
284 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
285 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
286 }
287
288 /* pfault parameters */
289 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
290 cs->kvm_run->s.regs.pft = env->pfault_token;
291 cs->kvm_run->s.regs.pfs = env->pfault_select;
292 cs->kvm_run->s.regs.pfc = env->pfault_compare;
293 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
294 } else if (cap_async_pf) {
295 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
296 if (r < 0) {
297 return r;
298 }
299 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
300 if (r < 0) {
301 return r;
302 }
303 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
304 if (r < 0) {
305 return r;
306 }
307 }
308
309 /* access registers and control registers*/
310 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
311 for (i = 0; i < 16; i++) {
312 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
313 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
314 }
315 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
316 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
317 } else {
318 for (i = 0; i < 16; i++) {
319 sregs.acrs[i] = env->aregs[i];
320 sregs.crs[i] = env->cregs[i];
321 }
322 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
323 if (r < 0) {
324 return r;
325 }
326 }
327
328 /* Finally the prefix */
329 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
330 cs->kvm_run->s.regs.prefix = env->psa;
331 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
332 } else {
333 /* prefix is only supported via sync regs */
334 }
335 return 0;
336 }
337
338 int kvm_arch_get_registers(CPUState *cs)
339 {
340 S390CPU *cpu = S390_CPU(cs);
341 CPUS390XState *env = &cpu->env;
342 struct kvm_sregs sregs;
343 struct kvm_regs regs;
344 struct kvm_fpu fpu;
345 int i, r;
346
347 /* get the PSW */
348 env->psw.addr = cs->kvm_run->psw_addr;
349 env->psw.mask = cs->kvm_run->psw_mask;
350
351 /* the GPRS */
352 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
353 for (i = 0; i < 16; i++) {
354 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
355 }
356 } else {
357 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
358 if (r < 0) {
359 return r;
360 }
361 for (i = 0; i < 16; i++) {
362 env->regs[i] = regs.gprs[i];
363 }
364 }
365
366 /* The ACRS and CRS */
367 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
368 for (i = 0; i < 16; i++) {
369 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
370 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
371 }
372 } else {
373 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
374 if (r < 0) {
375 return r;
376 }
377 for (i = 0; i < 16; i++) {
378 env->aregs[i] = sregs.acrs[i];
379 env->cregs[i] = sregs.crs[i];
380 }
381 }
382
383 /* Floating point */
384 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
385 if (r < 0) {
386 return r;
387 }
388 for (i = 0; i < 16; i++) {
389 env->fregs[i].ll = fpu.fprs[i];
390 }
391 env->fpc = fpu.fpc;
392
393 /* The prefix */
394 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
395 env->psa = cs->kvm_run->s.regs.prefix;
396 }
397
398 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
399 env->cputm = cs->kvm_run->s.regs.cputm;
400 env->ckc = cs->kvm_run->s.regs.ckc;
401 env->todpr = cs->kvm_run->s.regs.todpr;
402 env->gbea = cs->kvm_run->s.regs.gbea;
403 env->pp = cs->kvm_run->s.regs.pp;
404 } else {
405 /*
406 * These ONE_REGS are not protected by a capability. As they are only
407 * necessary for migration we just trace a possible error, but don't
408 * return with an error return code.
409 */
410 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
411 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
412 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
413 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
414 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
415 }
416
417 /* pfault parameters */
418 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
419 env->pfault_token = cs->kvm_run->s.regs.pft;
420 env->pfault_select = cs->kvm_run->s.regs.pfs;
421 env->pfault_compare = cs->kvm_run->s.regs.pfc;
422 } else if (cap_async_pf) {
423 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
424 if (r < 0) {
425 return r;
426 }
427 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
428 if (r < 0) {
429 return r;
430 }
431 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
432 if (r < 0) {
433 return r;
434 }
435 }
436
437 return 0;
438 }
439
440 /*
441 * Legacy layout for s390:
442 * Older S390 KVM requires the topmost vma of the RAM to be
443 * smaller than an system defined value, which is at least 256GB.
444 * Larger systems have larger values. We put the guest between
445 * the end of data segment (system break) and this value. We
446 * use 32GB as a base to have enough room for the system break
447 * to grow. We also have to use MAP parameters that avoid
448 * read-only mapping of guest pages.
449 */
450 static void *legacy_s390_alloc(size_t size, uint64_t *align)
451 {
452 void *mem;
453
454 mem = mmap((void *) 0x800000000ULL, size,
455 PROT_EXEC|PROT_READ|PROT_WRITE,
456 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
457 return mem == MAP_FAILED ? NULL : mem;
458 }
459
460 /* DIAG 501 is used for sw breakpoints */
461 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
462
463 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
464 {
465
466 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
467 sizeof(diag_501), 0) ||
468 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)diag_501,
469 sizeof(diag_501), 1)) {
470 return -EINVAL;
471 }
472 return 0;
473 }
474
475 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
476 {
477 uint8_t t[sizeof(diag_501)];
478
479 if (cpu_memory_rw_debug(cs, bp->pc, t, sizeof(diag_501), 0)) {
480 return -EINVAL;
481 } else if (memcmp(t, diag_501, sizeof(diag_501))) {
482 return -EINVAL;
483 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
484 sizeof(diag_501), 1)) {
485 return -EINVAL;
486 }
487
488 return 0;
489 }
490
491 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
492 int len, int type)
493 {
494 int n;
495
496 for (n = 0; n < nb_hw_breakpoints; n++) {
497 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
498 (hw_breakpoints[n].len == len || len == -1)) {
499 return &hw_breakpoints[n];
500 }
501 }
502
503 return NULL;
504 }
505
506 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
507 {
508 int size;
509
510 if (find_hw_breakpoint(addr, len, type)) {
511 return -EEXIST;
512 }
513
514 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
515
516 if (!hw_breakpoints) {
517 nb_hw_breakpoints = 0;
518 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
519 } else {
520 hw_breakpoints =
521 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
522 }
523
524 if (!hw_breakpoints) {
525 nb_hw_breakpoints = 0;
526 return -ENOMEM;
527 }
528
529 hw_breakpoints[nb_hw_breakpoints].addr = addr;
530 hw_breakpoints[nb_hw_breakpoints].len = len;
531 hw_breakpoints[nb_hw_breakpoints].type = type;
532
533 nb_hw_breakpoints++;
534
535 return 0;
536 }
537
538 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
539 target_ulong len, int type)
540 {
541 switch (type) {
542 case GDB_BREAKPOINT_HW:
543 type = KVM_HW_BP;
544 break;
545 case GDB_WATCHPOINT_WRITE:
546 if (len < 1) {
547 return -EINVAL;
548 }
549 type = KVM_HW_WP_WRITE;
550 break;
551 default:
552 return -ENOSYS;
553 }
554 return insert_hw_breakpoint(addr, len, type);
555 }
556
557 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
558 target_ulong len, int type)
559 {
560 int size;
561 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
562
563 if (bp == NULL) {
564 return -ENOENT;
565 }
566
567 nb_hw_breakpoints--;
568 if (nb_hw_breakpoints > 0) {
569 /*
570 * In order to trim the array, move the last element to the position to
571 * be removed - if necessary.
572 */
573 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
574 *bp = hw_breakpoints[nb_hw_breakpoints];
575 }
576 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
577 hw_breakpoints =
578 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
579 } else {
580 g_free(hw_breakpoints);
581 hw_breakpoints = NULL;
582 }
583
584 return 0;
585 }
586
587 void kvm_arch_remove_all_hw_breakpoints(void)
588 {
589 nb_hw_breakpoints = 0;
590 g_free(hw_breakpoints);
591 hw_breakpoints = NULL;
592 }
593
594 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
595 {
596 int i;
597
598 if (nb_hw_breakpoints > 0) {
599 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
600 dbg->arch.hw_bp = hw_breakpoints;
601
602 for (i = 0; i < nb_hw_breakpoints; ++i) {
603 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
604 hw_breakpoints[i].addr);
605 }
606 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
607 } else {
608 dbg->arch.nr_hw_bp = 0;
609 dbg->arch.hw_bp = NULL;
610 }
611 }
612
613 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
614 {
615 }
616
617 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
618 {
619 }
620
621 int kvm_arch_process_async_events(CPUState *cs)
622 {
623 return cs->halted;
624 }
625
626 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
627 struct kvm_s390_interrupt *interrupt)
628 {
629 int r = 0;
630
631 interrupt->type = irq->type;
632 switch (irq->type) {
633 case KVM_S390_INT_VIRTIO:
634 interrupt->parm = irq->u.ext.ext_params;
635 /* fall through */
636 case KVM_S390_INT_PFAULT_INIT:
637 case KVM_S390_INT_PFAULT_DONE:
638 interrupt->parm64 = irq->u.ext.ext_params2;
639 break;
640 case KVM_S390_PROGRAM_INT:
641 interrupt->parm = irq->u.pgm.code;
642 break;
643 case KVM_S390_SIGP_SET_PREFIX:
644 interrupt->parm = irq->u.prefix.address;
645 break;
646 case KVM_S390_INT_SERVICE:
647 interrupt->parm = irq->u.ext.ext_params;
648 break;
649 case KVM_S390_MCHK:
650 interrupt->parm = irq->u.mchk.cr14;
651 interrupt->parm64 = irq->u.mchk.mcic;
652 break;
653 case KVM_S390_INT_EXTERNAL_CALL:
654 interrupt->parm = irq->u.extcall.code;
655 break;
656 case KVM_S390_INT_EMERGENCY:
657 interrupt->parm = irq->u.emerg.code;
658 break;
659 case KVM_S390_SIGP_STOP:
660 case KVM_S390_RESTART:
661 break; /* These types have no parameters */
662 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
663 interrupt->parm = irq->u.io.subchannel_id << 16;
664 interrupt->parm |= irq->u.io.subchannel_nr;
665 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
666 interrupt->parm64 |= irq->u.io.io_int_word;
667 break;
668 default:
669 r = -EINVAL;
670 break;
671 }
672 return r;
673 }
674
675 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
676 {
677 struct kvm_s390_interrupt kvmint = {};
678 CPUState *cs = CPU(cpu);
679 int r;
680
681 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
682 if (r < 0) {
683 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
684 exit(1);
685 }
686
687 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
688 if (r < 0) {
689 fprintf(stderr, "KVM failed to inject interrupt\n");
690 exit(1);
691 }
692 }
693
694 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
695 {
696 struct kvm_s390_interrupt kvmint = {};
697 int r;
698
699 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
700 if (r < 0) {
701 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
702 exit(1);
703 }
704
705 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
706 if (r < 0) {
707 fprintf(stderr, "KVM failed to inject interrupt\n");
708 exit(1);
709 }
710 }
711
712 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
713 {
714 static bool use_flic = true;
715 int r;
716
717 if (use_flic) {
718 r = kvm_s390_inject_flic(irq);
719 if (r == -ENOSYS) {
720 use_flic = false;
721 }
722 if (!r) {
723 return;
724 }
725 }
726 __kvm_s390_floating_interrupt(irq);
727 }
728
729 void kvm_s390_virtio_irq(int config_change, uint64_t token)
730 {
731 struct kvm_s390_irq irq = {
732 .type = KVM_S390_INT_VIRTIO,
733 .u.ext.ext_params = config_change,
734 .u.ext.ext_params2 = token,
735 };
736
737 kvm_s390_floating_interrupt(&irq);
738 }
739
740 void kvm_s390_service_interrupt(uint32_t parm)
741 {
742 struct kvm_s390_irq irq = {
743 .type = KVM_S390_INT_SERVICE,
744 .u.ext.ext_params = parm,
745 };
746
747 kvm_s390_floating_interrupt(&irq);
748 }
749
750 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
751 {
752 struct kvm_s390_irq irq = {
753 .type = KVM_S390_PROGRAM_INT,
754 .u.pgm.code = code,
755 };
756
757 kvm_s390_vcpu_interrupt(cpu, &irq);
758 }
759
760 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
761 {
762 struct kvm_s390_irq irq = {
763 .type = KVM_S390_PROGRAM_INT,
764 .u.pgm.code = code,
765 .u.pgm.trans_exc_code = te_code,
766 .u.pgm.exc_access_id = te_code & 3,
767 };
768
769 kvm_s390_vcpu_interrupt(cpu, &irq);
770 }
771
772 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
773 uint16_t ipbh0)
774 {
775 CPUS390XState *env = &cpu->env;
776 uint64_t sccb;
777 uint32_t code;
778 int r = 0;
779
780 cpu_synchronize_state(CPU(cpu));
781 sccb = env->regs[ipbh0 & 0xf];
782 code = env->regs[(ipbh0 & 0xf0) >> 4];
783
784 r = sclp_service_call(env, sccb, code);
785 if (r < 0) {
786 enter_pgmcheck(cpu, -r);
787 } else {
788 setcc(cpu, r);
789 }
790
791 return 0;
792 }
793
794 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
795 {
796 CPUS390XState *env = &cpu->env;
797 int rc = 0;
798 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
799
800 cpu_synchronize_state(CPU(cpu));
801
802 switch (ipa1) {
803 case PRIV_B2_XSCH:
804 ioinst_handle_xsch(cpu, env->regs[1]);
805 break;
806 case PRIV_B2_CSCH:
807 ioinst_handle_csch(cpu, env->regs[1]);
808 break;
809 case PRIV_B2_HSCH:
810 ioinst_handle_hsch(cpu, env->regs[1]);
811 break;
812 case PRIV_B2_MSCH:
813 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
814 break;
815 case PRIV_B2_SSCH:
816 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
817 break;
818 case PRIV_B2_STCRW:
819 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
820 break;
821 case PRIV_B2_STSCH:
822 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
823 break;
824 case PRIV_B2_TSCH:
825 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
826 fprintf(stderr, "Spurious tsch intercept\n");
827 break;
828 case PRIV_B2_CHSC:
829 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
830 break;
831 case PRIV_B2_TPI:
832 /* This should have been handled by kvm already. */
833 fprintf(stderr, "Spurious tpi intercept\n");
834 break;
835 case PRIV_B2_SCHM:
836 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
837 run->s390_sieic.ipb);
838 break;
839 case PRIV_B2_RSCH:
840 ioinst_handle_rsch(cpu, env->regs[1]);
841 break;
842 case PRIV_B2_RCHP:
843 ioinst_handle_rchp(cpu, env->regs[1]);
844 break;
845 case PRIV_B2_STCPS:
846 /* We do not provide this instruction, it is suppressed. */
847 break;
848 case PRIV_B2_SAL:
849 ioinst_handle_sal(cpu, env->regs[1]);
850 break;
851 case PRIV_B2_SIGA:
852 /* Not provided, set CC = 3 for subchannel not operational */
853 setcc(cpu, 3);
854 break;
855 case PRIV_B2_SCLP_CALL:
856 rc = kvm_sclp_service_call(cpu, run, ipbh0);
857 break;
858 default:
859 rc = -1;
860 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
861 break;
862 }
863
864 return rc;
865 }
866
867 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run)
868 {
869 CPUS390XState *env = &cpu->env;
870 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
871 uint32_t base2 = run->s390_sieic.ipb >> 28;
872 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
873 ((run->s390_sieic.ipb & 0xff00) << 4);
874
875 if (disp2 & 0x80000) {
876 disp2 += 0xfff00000;
877 }
878
879 return (base2 ? env->regs[base2] : 0) +
880 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
881 }
882
883 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run)
884 {
885 CPUS390XState *env = &cpu->env;
886 uint32_t base2 = run->s390_sieic.ipb >> 28;
887 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
888 ((run->s390_sieic.ipb & 0xff00) << 4);
889
890 if (disp2 & 0x80000) {
891 disp2 += 0xfff00000;
892 }
893
894 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
895 }
896
897 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
898 {
899 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
900
901 return clp_service_call(cpu, r2);
902 }
903
904 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
905 {
906 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
907 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
908
909 return pcilg_service_call(cpu, r1, r2);
910 }
911
912 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
913 {
914 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
915 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
916
917 return pcistg_service_call(cpu, r1, r2);
918 }
919
920 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
921 {
922 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
923 uint64_t fiba;
924
925 cpu_synchronize_state(CPU(cpu));
926 fiba = get_base_disp_rxy(cpu, run);
927
928 return stpcifc_service_call(cpu, r1, fiba);
929 }
930
931 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
932 {
933 /* NOOP */
934 return 0;
935 }
936
937 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
938 {
939 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
940 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
941
942 return rpcit_service_call(cpu, r1, r2);
943 }
944
945 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
946 {
947 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
948 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
949 uint64_t gaddr;
950
951 cpu_synchronize_state(CPU(cpu));
952 gaddr = get_base_disp_rsy(cpu, run);
953
954 return pcistb_service_call(cpu, r1, r3, gaddr);
955 }
956
957 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
958 {
959 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
960 uint64_t fiba;
961
962 cpu_synchronize_state(CPU(cpu));
963 fiba = get_base_disp_rxy(cpu, run);
964
965 return mpcifc_service_call(cpu, r1, fiba);
966 }
967
968 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
969 {
970 int r = 0;
971
972 switch (ipa1) {
973 case PRIV_B9_CLP:
974 r = kvm_clp_service_call(cpu, run);
975 break;
976 case PRIV_B9_PCISTG:
977 r = kvm_pcistg_service_call(cpu, run);
978 break;
979 case PRIV_B9_PCILG:
980 r = kvm_pcilg_service_call(cpu, run);
981 break;
982 case PRIV_B9_RPCIT:
983 r = kvm_rpcit_service_call(cpu, run);
984 break;
985 case PRIV_B9_EQBS:
986 /* just inject exception */
987 r = -1;
988 break;
989 default:
990 r = -1;
991 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
992 break;
993 }
994
995 return r;
996 }
997
998 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
999 {
1000 int r = 0;
1001
1002 switch (ipbl) {
1003 case PRIV_EB_PCISTB:
1004 r = kvm_pcistb_service_call(cpu, run);
1005 break;
1006 case PRIV_EB_SIC:
1007 r = kvm_sic_service_call(cpu, run);
1008 break;
1009 case PRIV_EB_SQBS:
1010 /* just inject exception */
1011 r = -1;
1012 break;
1013 default:
1014 r = -1;
1015 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1016 break;
1017 }
1018
1019 return r;
1020 }
1021
1022 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1023 {
1024 int r = 0;
1025
1026 switch (ipbl) {
1027 case PRIV_E3_MPCIFC:
1028 r = kvm_mpcifc_service_call(cpu, run);
1029 break;
1030 case PRIV_E3_STPCIFC:
1031 r = kvm_stpcifc_service_call(cpu, run);
1032 break;
1033 default:
1034 r = -1;
1035 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1036 break;
1037 }
1038
1039 return r;
1040 }
1041
1042 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1043 {
1044 CPUS390XState *env = &cpu->env;
1045 int ret;
1046
1047 cpu_synchronize_state(CPU(cpu));
1048 ret = s390_virtio_hypercall(env);
1049 if (ret == -EINVAL) {
1050 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1051 return 0;
1052 }
1053
1054 return ret;
1055 }
1056
1057 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1058 {
1059 uint64_t r1, r3;
1060
1061 cpu_synchronize_state(CPU(cpu));
1062 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1063 r3 = run->s390_sieic.ipa & 0x000f;
1064 handle_diag_308(&cpu->env, r1, r3);
1065 }
1066
1067 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1068 {
1069 CPUS390XState *env = &cpu->env;
1070 unsigned long pc;
1071
1072 cpu_synchronize_state(CPU(cpu));
1073
1074 pc = env->psw.addr - 4;
1075 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1076 env->psw.addr = pc;
1077 return EXCP_DEBUG;
1078 }
1079
1080 return -ENOENT;
1081 }
1082
1083 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1084
1085 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1086 {
1087 int r = 0;
1088 uint16_t func_code;
1089
1090 /*
1091 * For any diagnose call we support, bits 48-63 of the resulting
1092 * address specify the function code; the remainder is ignored.
1093 */
1094 func_code = decode_basedisp_rs(&cpu->env, ipb) & DIAG_KVM_CODE_MASK;
1095 switch (func_code) {
1096 case DIAG_IPL:
1097 kvm_handle_diag_308(cpu, run);
1098 break;
1099 case DIAG_KVM_HYPERCALL:
1100 r = handle_hypercall(cpu, run);
1101 break;
1102 case DIAG_KVM_BREAKPOINT:
1103 r = handle_sw_breakpoint(cpu, run);
1104 break;
1105 default:
1106 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1107 enter_pgmcheck(cpu, PGM_SPECIFICATION);
1108 break;
1109 }
1110
1111 return r;
1112 }
1113
1114 static void sigp_cpu_start(void *arg)
1115 {
1116 CPUState *cs = arg;
1117 S390CPU *cpu = S390_CPU(cs);
1118
1119 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1120 DPRINTF("DONE: KVM cpu start: %p\n", &cpu->env);
1121 }
1122
1123 static void sigp_cpu_restart(void *arg)
1124 {
1125 CPUState *cs = arg;
1126 S390CPU *cpu = S390_CPU(cs);
1127 struct kvm_s390_irq irq = {
1128 .type = KVM_S390_RESTART,
1129 };
1130
1131 kvm_s390_vcpu_interrupt(cpu, &irq);
1132 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1133 }
1134
1135 int kvm_s390_cpu_restart(S390CPU *cpu)
1136 {
1137 run_on_cpu(CPU(cpu), sigp_cpu_restart, CPU(cpu));
1138 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1139 return 0;
1140 }
1141
1142 static void sigp_initial_cpu_reset(void *arg)
1143 {
1144 CPUState *cpu = arg;
1145 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1146
1147 cpu_synchronize_state(cpu);
1148 scc->initial_cpu_reset(cpu);
1149 cpu_synchronize_post_reset(cpu);
1150 }
1151
1152 static void sigp_cpu_reset(void *arg)
1153 {
1154 CPUState *cpu = arg;
1155 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1156
1157 cpu_synchronize_state(cpu);
1158 scc->cpu_reset(cpu);
1159 cpu_synchronize_post_reset(cpu);
1160 }
1161
1162 #define SIGP_ORDER_MASK 0x000000ff
1163
1164 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1165 {
1166 CPUS390XState *env = &cpu->env;
1167 uint8_t order_code;
1168 uint16_t cpu_addr;
1169 S390CPU *target_cpu;
1170 uint64_t *statusreg = &env->regs[ipa1 >> 4];
1171 int cc;
1172
1173 cpu_synchronize_state(CPU(cpu));
1174
1175 /* get order code */
1176 order_code = decode_basedisp_rs(env, run->s390_sieic.ipb) & SIGP_ORDER_MASK;
1177
1178 cpu_addr = env->regs[ipa1 & 0x0f];
1179 target_cpu = s390_cpu_addr2state(cpu_addr);
1180 if (target_cpu == NULL) {
1181 cc = 3; /* not operational */
1182 goto out;
1183 }
1184
1185 switch (order_code) {
1186 case SIGP_START:
1187 run_on_cpu(CPU(target_cpu), sigp_cpu_start, CPU(target_cpu));
1188 cc = 0;
1189 break;
1190 case SIGP_RESTART:
1191 run_on_cpu(CPU(target_cpu), sigp_cpu_restart, CPU(target_cpu));
1192 cc = 0;
1193 break;
1194 case SIGP_SET_ARCH:
1195 *statusreg &= 0xffffffff00000000UL;
1196 *statusreg |= SIGP_STAT_INVALID_PARAMETER;
1197 cc = 1; /* status stored */
1198 break;
1199 case SIGP_INITIAL_CPU_RESET:
1200 run_on_cpu(CPU(target_cpu), sigp_initial_cpu_reset, CPU(target_cpu));
1201 cc = 0;
1202 break;
1203 case SIGP_CPU_RESET:
1204 run_on_cpu(CPU(target_cpu), sigp_cpu_reset, CPU(target_cpu));
1205 cc = 0;
1206 break;
1207 default:
1208 DPRINTF("KVM: unknown SIGP: 0x%x\n", order_code);
1209 *statusreg &= 0xffffffff00000000UL;
1210 *statusreg |= SIGP_STAT_INVALID_ORDER;
1211 cc = 1; /* status stored */
1212 break;
1213 }
1214
1215 out:
1216 setcc(cpu, cc);
1217 return 0;
1218 }
1219
1220 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1221 {
1222 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1223 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1224 int r = -1;
1225
1226 DPRINTF("handle_instruction 0x%x 0x%x\n",
1227 run->s390_sieic.ipa, run->s390_sieic.ipb);
1228 switch (ipa0) {
1229 case IPA0_B2:
1230 r = handle_b2(cpu, run, ipa1);
1231 break;
1232 case IPA0_B9:
1233 r = handle_b9(cpu, run, ipa1);
1234 break;
1235 case IPA0_EB:
1236 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1237 break;
1238 case IPA0_E3:
1239 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1240 break;
1241 case IPA0_DIAG:
1242 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1243 break;
1244 case IPA0_SIGP:
1245 r = handle_sigp(cpu, run, ipa1);
1246 break;
1247 }
1248
1249 if (r < 0) {
1250 r = 0;
1251 enter_pgmcheck(cpu, 0x0001);
1252 }
1253
1254 return r;
1255 }
1256
1257 static bool is_special_wait_psw(CPUState *cs)
1258 {
1259 /* signal quiesce */
1260 return cs->kvm_run->psw_addr == 0xfffUL;
1261 }
1262
1263 static void guest_panicked(void)
1264 {
1265 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE,
1266 &error_abort);
1267 vm_stop(RUN_STATE_GUEST_PANICKED);
1268 }
1269
1270 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1271 {
1272 CPUState *cs = CPU(cpu);
1273
1274 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1275 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1276 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1277 s390_cpu_halt(cpu);
1278 guest_panicked();
1279 }
1280
1281 static int handle_intercept(S390CPU *cpu)
1282 {
1283 CPUState *cs = CPU(cpu);
1284 struct kvm_run *run = cs->kvm_run;
1285 int icpt_code = run->s390_sieic.icptcode;
1286 int r = 0;
1287
1288 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1289 (long)cs->kvm_run->psw_addr);
1290 switch (icpt_code) {
1291 case ICPT_INSTRUCTION:
1292 r = handle_instruction(cpu, run);
1293 break;
1294 case ICPT_PROGRAM:
1295 unmanageable_intercept(cpu, "program interrupt",
1296 offsetof(LowCore, program_new_psw));
1297 r = EXCP_HALTED;
1298 break;
1299 case ICPT_EXT_INT:
1300 unmanageable_intercept(cpu, "external interrupt",
1301 offsetof(LowCore, external_new_psw));
1302 r = EXCP_HALTED;
1303 break;
1304 case ICPT_WAITPSW:
1305 /* disabled wait, since enabled wait is handled in kernel */
1306 cpu_synchronize_state(cs);
1307 if (s390_cpu_halt(cpu) == 0) {
1308 if (is_special_wait_psw(cs)) {
1309 qemu_system_shutdown_request();
1310 } else {
1311 guest_panicked();
1312 }
1313 }
1314 r = EXCP_HALTED;
1315 break;
1316 case ICPT_CPU_STOP:
1317 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1318 qemu_system_shutdown_request();
1319 }
1320 r = EXCP_HALTED;
1321 break;
1322 case ICPT_SOFT_INTERCEPT:
1323 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1324 exit(1);
1325 break;
1326 case ICPT_IO:
1327 fprintf(stderr, "KVM unimplemented icpt IO\n");
1328 exit(1);
1329 break;
1330 default:
1331 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1332 exit(1);
1333 break;
1334 }
1335
1336 return r;
1337 }
1338
1339 static int handle_tsch(S390CPU *cpu)
1340 {
1341 CPUState *cs = CPU(cpu);
1342 struct kvm_run *run = cs->kvm_run;
1343 int ret;
1344
1345 cpu_synchronize_state(cs);
1346
1347 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1348 if (ret < 0) {
1349 /*
1350 * Failure.
1351 * If an I/O interrupt had been dequeued, we have to reinject it.
1352 */
1353 if (run->s390_tsch.dequeued) {
1354 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1355 run->s390_tsch.subchannel_nr,
1356 run->s390_tsch.io_int_parm,
1357 run->s390_tsch.io_int_word);
1358 }
1359 ret = 0;
1360 }
1361 return ret;
1362 }
1363
1364 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1365 {
1366 CPUState *cs = CPU(cpu);
1367 struct kvm_run *run = cs->kvm_run;
1368
1369 int ret = 0;
1370 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1371
1372 switch (arch_info->type) {
1373 case KVM_HW_WP_WRITE:
1374 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1375 cs->watchpoint_hit = &hw_watchpoint;
1376 hw_watchpoint.vaddr = arch_info->addr;
1377 hw_watchpoint.flags = BP_MEM_WRITE;
1378 ret = EXCP_DEBUG;
1379 }
1380 break;
1381 case KVM_HW_BP:
1382 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1383 ret = EXCP_DEBUG;
1384 }
1385 break;
1386 case KVM_SINGLESTEP:
1387 if (cs->singlestep_enabled) {
1388 ret = EXCP_DEBUG;
1389 }
1390 break;
1391 default:
1392 ret = -ENOSYS;
1393 }
1394
1395 return ret;
1396 }
1397
1398 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1399 {
1400 S390CPU *cpu = S390_CPU(cs);
1401 int ret = 0;
1402
1403 switch (run->exit_reason) {
1404 case KVM_EXIT_S390_SIEIC:
1405 ret = handle_intercept(cpu);
1406 break;
1407 case KVM_EXIT_S390_RESET:
1408 s390_reipl_request();
1409 break;
1410 case KVM_EXIT_S390_TSCH:
1411 ret = handle_tsch(cpu);
1412 break;
1413 case KVM_EXIT_DEBUG:
1414 ret = kvm_arch_handle_debug_exit(cpu);
1415 break;
1416 default:
1417 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1418 break;
1419 }
1420
1421 if (ret == 0) {
1422 ret = EXCP_INTERRUPT;
1423 }
1424 return ret;
1425 }
1426
1427 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1428 {
1429 return true;
1430 }
1431
1432 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
1433 {
1434 return 1;
1435 }
1436
1437 int kvm_arch_on_sigbus(int code, void *addr)
1438 {
1439 return 1;
1440 }
1441
1442 void kvm_s390_io_interrupt(uint16_t subchannel_id,
1443 uint16_t subchannel_nr, uint32_t io_int_parm,
1444 uint32_t io_int_word)
1445 {
1446 struct kvm_s390_irq irq = {
1447 .u.io.subchannel_id = subchannel_id,
1448 .u.io.subchannel_nr = subchannel_nr,
1449 .u.io.io_int_parm = io_int_parm,
1450 .u.io.io_int_word = io_int_word,
1451 };
1452
1453 if (io_int_word & IO_INT_WORD_AI) {
1454 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
1455 } else {
1456 irq.type = ((subchannel_id & 0xff00) << 24) |
1457 ((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
1458 }
1459 kvm_s390_floating_interrupt(&irq);
1460 }
1461
1462 void kvm_s390_crw_mchk(void)
1463 {
1464 struct kvm_s390_irq irq = {
1465 .type = KVM_S390_MCHK,
1466 .u.mchk.cr14 = 1 << 28,
1467 .u.mchk.mcic = 0x00400f1d40330000ULL,
1468 };
1469 kvm_s390_floating_interrupt(&irq);
1470 }
1471
1472 void kvm_s390_enable_css_support(S390CPU *cpu)
1473 {
1474 int r;
1475
1476 /* Activate host kernel channel subsystem support. */
1477 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1478 assert(r == 0);
1479 }
1480
1481 void kvm_arch_init_irq_routing(KVMState *s)
1482 {
1483 /*
1484 * Note that while irqchip capabilities generally imply that cpustates
1485 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1486 * have to override the common code kvm_halt_in_kernel_allowed setting.
1487 */
1488 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1489 kvm_gsi_routing_allowed = true;
1490 kvm_halt_in_kernel_allowed = false;
1491 }
1492 }
1493
1494 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1495 int vq, bool assign)
1496 {
1497 struct kvm_ioeventfd kick = {
1498 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1499 KVM_IOEVENTFD_FLAG_DATAMATCH,
1500 .fd = event_notifier_get_fd(notifier),
1501 .datamatch = vq,
1502 .addr = sch,
1503 .len = 8,
1504 };
1505 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1506 return -ENOSYS;
1507 }
1508 if (!assign) {
1509 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1510 }
1511 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1512 }
1513
1514 int kvm_s390_get_memslot_count(KVMState *s)
1515 {
1516 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1517 }
1518
1519 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1520 {
1521 struct kvm_mp_state mp_state = {};
1522 int ret;
1523
1524 /* the kvm part might not have been initialized yet */
1525 if (CPU(cpu)->kvm_state == NULL) {
1526 return 0;
1527 }
1528
1529 switch (cpu_state) {
1530 case CPU_STATE_STOPPED:
1531 mp_state.mp_state = KVM_MP_STATE_STOPPED;
1532 break;
1533 case CPU_STATE_CHECK_STOP:
1534 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1535 break;
1536 case CPU_STATE_OPERATING:
1537 mp_state.mp_state = KVM_MP_STATE_OPERATING;
1538 break;
1539 case CPU_STATE_LOAD:
1540 mp_state.mp_state = KVM_MP_STATE_LOAD;
1541 break;
1542 default:
1543 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1544 cpu_state);
1545 exit(1);
1546 }
1547
1548 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1549 if (ret) {
1550 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1551 strerror(-ret));
1552 }
1553
1554 return ret;
1555 }
1556
1557 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1558 uint64_t address, uint32_t data)
1559 {
1560 S390PCIBusDevice *pbdev;
1561 uint32_t fid = data >> ZPCI_MSI_VEC_BITS;
1562 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
1563
1564 pbdev = s390_pci_find_dev_by_fid(fid);
1565 if (!pbdev) {
1566 DPRINTF("add_msi_route no dev\n");
1567 return -ENODEV;
1568 }
1569
1570 pbdev->routes.adapter.ind_offset = vec;
1571
1572 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
1573 route->flags = 0;
1574 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
1575 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
1576 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
1577 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
1578 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
1579 return 0;
1580 }