]> git.proxmox.com Git - mirror_qemu.git/blob - target-s390x/mmu_helper.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20160115' into...
[mirror_qemu.git] / target-s390x / mmu_helper.c
1 /*
2 * S390x MMU related functions
3 *
4 * Copyright (c) 2011 Alexander Graf
5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include "qemu/error-report.h"
19 #include "exec/address-spaces.h"
20 #include "cpu.h"
21 #include "sysemu/kvm.h"
22 #include "trace.h"
23 #include "hw/s390x/storage-keys.h"
24
25 /* #define DEBUG_S390 */
26 /* #define DEBUG_S390_PTE */
27 /* #define DEBUG_S390_STDOUT */
28
29 #ifdef DEBUG_S390
30 #ifdef DEBUG_S390_STDOUT
31 #define DPRINTF(fmt, ...) \
32 do { fprintf(stderr, fmt, ## __VA_ARGS__); \
33 if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) \
36 do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
37 #endif
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 #ifdef DEBUG_S390_PTE
44 #define PTE_DPRINTF DPRINTF
45 #else
46 #define PTE_DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 /* Fetch/store bits in the translation exception code: */
51 #define FS_READ 0x800
52 #define FS_WRITE 0x400
53
54 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
55 uint32_t ilen, uint64_t tec)
56 {
57 S390CPU *cpu = s390_env_get_cpu(env);
58
59 if (kvm_enabled()) {
60 kvm_s390_access_exception(cpu, type, tec);
61 } else {
62 CPUState *cs = CPU(cpu);
63 stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
64 trigger_pgm_exception(env, type, ilen);
65 }
66 }
67
68 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr,
69 uint64_t asc, int rw, bool exc)
70 {
71 uint64_t tec;
72
73 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46;
74
75 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
76
77 if (!exc) {
78 return;
79 }
80
81 trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, tec);
82 }
83
84 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr,
85 uint32_t type, uint64_t asc, int rw, bool exc)
86 {
87 int ilen = ILEN_LATER;
88 uint64_t tec;
89
90 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46;
91
92 DPRINTF("%s: vaddr=%016" PRIx64 " bits=%d\n", __func__, vaddr, bits);
93
94 if (!exc) {
95 return;
96 }
97
98 /* Code accesses have an undefined ilc. */
99 if (rw == MMU_INST_FETCH) {
100 ilen = 2;
101 }
102
103 trigger_access_exception(env, type, ilen, tec);
104 }
105
106 /**
107 * Translate real address to absolute (= physical)
108 * address by taking care of the prefix mapping.
109 */
110 static target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
111 {
112 if (raddr < 0x2000) {
113 return raddr + env->psa; /* Map the lowcore. */
114 } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
115 return raddr - env->psa; /* Map the 0 page. */
116 }
117 return raddr;
118 }
119
120 /* Decode page table entry (normal 4KB page) */
121 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr,
122 uint64_t asc, uint64_t pt_entry,
123 target_ulong *raddr, int *flags, int rw, bool exc)
124 {
125 if (pt_entry & _PAGE_INVALID) {
126 DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry);
127 trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc);
128 return -1;
129 }
130 if (pt_entry & _PAGE_RES0) {
131 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
132 return -1;
133 }
134 if (pt_entry & _PAGE_RO) {
135 *flags &= ~PAGE_WRITE;
136 }
137
138 *raddr = pt_entry & _ASCE_ORIGIN;
139
140 PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry);
141
142 return 0;
143 }
144
145 #define VADDR_PX 0xff000 /* Page index bits */
146
147 /* Decode segment table entry */
148 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr,
149 uint64_t asc, uint64_t st_entry,
150 target_ulong *raddr, int *flags, int rw,
151 bool exc)
152 {
153 CPUState *cs = CPU(s390_env_get_cpu(env));
154 uint64_t origin, offs, pt_entry;
155
156 if (st_entry & _SEGMENT_ENTRY_RO) {
157 *flags &= ~PAGE_WRITE;
158 }
159
160 if ((st_entry & _SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) {
161 /* Decode EDAT1 segment frame absolute address (1MB page) */
162 *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff);
163 PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry);
164 return 0;
165 }
166
167 /* Look up 4KB page entry */
168 origin = st_entry & _SEGMENT_ENTRY_ORIGIN;
169 offs = (vaddr & VADDR_PX) >> 9;
170 pt_entry = ldq_phys(cs->as, origin + offs);
171 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
172 __func__, origin, offs, pt_entry);
173 return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc);
174 }
175
176 /* Decode region table entries */
177 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr,
178 uint64_t asc, uint64_t entry, int level,
179 target_ulong *raddr, int *flags, int rw,
180 bool exc)
181 {
182 CPUState *cs = CPU(s390_env_get_cpu(env));
183 uint64_t origin, offs, new_entry;
184 const int pchks[4] = {
185 PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS,
186 PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS
187 };
188
189 PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry);
190
191 origin = entry & _REGION_ENTRY_ORIGIN;
192 offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8;
193
194 new_entry = ldq_phys(cs->as, origin + offs);
195 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
196 __func__, origin, offs, new_entry);
197
198 if ((new_entry & _REGION_ENTRY_INV) != 0) {
199 DPRINTF("%s: invalid region\n", __func__);
200 trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc);
201 return -1;
202 }
203
204 if ((new_entry & _REGION_ENTRY_TYPE_MASK) != level) {
205 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
206 return -1;
207 }
208
209 if (level == _ASCE_TYPE_SEGMENT) {
210 return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags,
211 rw, exc);
212 }
213
214 /* Check region table offset and length */
215 offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3;
216 if (offs < ((new_entry & _REGION_ENTRY_TF) >> 6)
217 || offs > (new_entry & _REGION_ENTRY_LENGTH)) {
218 DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry);
219 trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc);
220 return -1;
221 }
222
223 if ((env->cregs[0] & CR0_EDAT) && (new_entry & _REGION_ENTRY_RO)) {
224 *flags &= ~PAGE_WRITE;
225 }
226
227 /* yet another region */
228 return mmu_translate_region(env, vaddr, asc, new_entry, level - 4,
229 raddr, flags, rw, exc);
230 }
231
232 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
233 uint64_t asc, uint64_t asce, target_ulong *raddr,
234 int *flags, int rw, bool exc)
235 {
236 int level;
237 int r;
238
239 if (asce & _ASCE_REAL_SPACE) {
240 /* direct mapping */
241 *raddr = vaddr;
242 return 0;
243 }
244
245 level = asce & _ASCE_TYPE_MASK;
246 switch (level) {
247 case _ASCE_TYPE_REGION1:
248 if ((vaddr >> 62) > (asce & _ASCE_TABLE_LENGTH)) {
249 trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc);
250 return -1;
251 }
252 break;
253 case _ASCE_TYPE_REGION2:
254 if (vaddr & 0xffe0000000000000ULL) {
255 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
256 " 0xffe0000000000000ULL\n", __func__, vaddr);
257 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
258 return -1;
259 }
260 if ((vaddr >> 51 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
261 trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc);
262 return -1;
263 }
264 break;
265 case _ASCE_TYPE_REGION3:
266 if (vaddr & 0xfffffc0000000000ULL) {
267 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
268 " 0xfffffc0000000000ULL\n", __func__, vaddr);
269 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
270 return -1;
271 }
272 if ((vaddr >> 40 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
273 trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc);
274 return -1;
275 }
276 break;
277 case _ASCE_TYPE_SEGMENT:
278 if (vaddr & 0xffffffff80000000ULL) {
279 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
280 " 0xffffffff80000000ULL\n", __func__, vaddr);
281 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
282 return -1;
283 }
284 if ((vaddr >> 29 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
285 trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc);
286 return -1;
287 }
288 break;
289 }
290
291 r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw,
292 exc);
293 if (rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) {
294 trigger_prot_fault(env, vaddr, asc, rw, exc);
295 return -1;
296 }
297
298 return r;
299 }
300
301 /**
302 * Translate a virtual (logical) address into a physical (absolute) address.
303 * @param vaddr the virtual address
304 * @param rw 0 = read, 1 = write, 2 = code fetch
305 * @param asc address space control (one of the PSW_ASC_* modes)
306 * @param raddr the translated address is stored to this pointer
307 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
308 * @param exc true = inject a program check if a fault occurred
309 * @return 0 if the translation was successful, -1 if a fault occurred
310 */
311 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
312 target_ulong *raddr, int *flags, bool exc)
313 {
314 static S390SKeysState *ss;
315 static S390SKeysClass *skeyclass;
316 int r = -1;
317 uint8_t key;
318
319 if (unlikely(!ss)) {
320 ss = s390_get_skeys_device();
321 skeyclass = S390_SKEYS_GET_CLASS(ss);
322 }
323
324 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
325 vaddr &= TARGET_PAGE_MASK;
326
327 if (!(env->psw.mask & PSW_MASK_DAT)) {
328 *raddr = vaddr;
329 r = 0;
330 goto out;
331 }
332
333 switch (asc) {
334 case PSW_ASC_PRIMARY:
335 PTE_DPRINTF("%s: asc=primary\n", __func__);
336 r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags,
337 rw, exc);
338 break;
339 case PSW_ASC_HOME:
340 PTE_DPRINTF("%s: asc=home\n", __func__);
341 r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags,
342 rw, exc);
343 break;
344 case PSW_ASC_SECONDARY:
345 PTE_DPRINTF("%s: asc=secondary\n", __func__);
346 /*
347 * Instruction: Primary
348 * Data: Secondary
349 */
350 if (rw == MMU_INST_FETCH) {
351 r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1],
352 raddr, flags, rw, exc);
353 *flags &= ~(PAGE_READ | PAGE_WRITE);
354 } else {
355 r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7],
356 raddr, flags, rw, exc);
357 *flags &= ~(PAGE_EXEC);
358 }
359 break;
360 case PSW_ASC_ACCREG:
361 default:
362 hw_error("guest switched to unknown asc mode\n");
363 break;
364 }
365
366 out:
367 /* Convert real address -> absolute address */
368 *raddr = mmu_real2abs(env, *raddr);
369
370 if (r == 0 && *raddr < ram_size) {
371 if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
372 trace_get_skeys_nonzero(r);
373 return 0;
374 }
375
376 if (*flags & PAGE_READ) {
377 key |= SK_R;
378 }
379
380 if (*flags & PAGE_WRITE) {
381 key |= SK_C;
382 }
383
384 if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
385 trace_set_skeys_nonzero(r);
386 return 0;
387 }
388 }
389
390 return r;
391 }
392
393 /**
394 * lowprot_enabled: Check whether low-address protection is enabled
395 */
396 static bool lowprot_enabled(const CPUS390XState *env)
397 {
398 if (!(env->cregs[0] & CR0_LOWPROT)) {
399 return false;
400 }
401 if (!(env->psw.mask & PSW_MASK_DAT)) {
402 return true;
403 }
404
405 /* Check the private-space control bit */
406 switch (env->psw.mask & PSW_MASK_ASC) {
407 case PSW_ASC_PRIMARY:
408 return !(env->cregs[1] & _ASCE_PRIVATE_SPACE);
409 case PSW_ASC_SECONDARY:
410 return !(env->cregs[7] & _ASCE_PRIVATE_SPACE);
411 case PSW_ASC_HOME:
412 return !(env->cregs[13] & _ASCE_PRIVATE_SPACE);
413 default:
414 /* We don't support access register mode */
415 error_report("unsupported addressing mode");
416 exit(1);
417 }
418 }
419
420 /**
421 * translate_pages: Translate a set of consecutive logical page addresses
422 * to absolute addresses
423 */
424 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
425 target_ulong *pages, bool is_write)
426 {
427 bool lowprot = is_write && lowprot_enabled(&cpu->env);
428 uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
429 CPUS390XState *env = &cpu->env;
430 int ret, i, pflags;
431
432 for (i = 0; i < nr_pages; i++) {
433 /* Low-address protection? */
434 if (lowprot && (addr < 512 || (addr >= 4096 && addr < 4096 + 512))) {
435 trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, 0);
436 return -EACCES;
437 }
438 ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
439 if (ret) {
440 return ret;
441 }
442 if (!address_space_access_valid(&address_space_memory, pages[i],
443 TARGET_PAGE_SIZE, is_write)) {
444 program_interrupt(env, PGM_ADDRESSING, 0);
445 return -EFAULT;
446 }
447 addr += TARGET_PAGE_SIZE;
448 }
449
450 return 0;
451 }
452
453 /**
454 * s390_cpu_virt_mem_rw:
455 * @laddr: the logical start address
456 * @ar: the access register number
457 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
458 * @len: length that should be transferred
459 * @is_write: true = write, false = read
460 * Returns: 0 on success, non-zero if an exception occurred
461 *
462 * Copy from/to guest memory using logical addresses. Note that we inject a
463 * program interrupt in case there is an error while accessing the memory.
464 */
465 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
466 int len, bool is_write)
467 {
468 int currlen, nr_pages, i;
469 target_ulong *pages;
470 int ret;
471
472 if (kvm_enabled()) {
473 ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
474 if (ret >= 0) {
475 return ret;
476 }
477 }
478
479 nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
480 + 1;
481 pages = g_malloc(nr_pages * sizeof(*pages));
482
483 ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
484 if (ret == 0 && hostbuf != NULL) {
485 /* Copy data by stepping through the area page by page */
486 for (i = 0; i < nr_pages; i++) {
487 currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
488 cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
489 hostbuf, currlen, is_write);
490 laddr += currlen;
491 hostbuf += currlen;
492 len -= currlen;
493 }
494 }
495
496 g_free(pages);
497 return ret;
498 }