]> git.proxmox.com Git - mirror_qemu.git/blob - target-sparc/fop_helper.c
Sparc: avoid AREG0 for float and VIS ops
[mirror_qemu.git] / target-sparc / fop_helper.c
1 /*
2 * FPU op helpers
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "cpu.h"
21 #include "helper.h"
22
23 #define DT0 (env->dt0)
24 #define DT1 (env->dt1)
25 #define QT0 (env->qt0)
26 #define QT1 (env->qt1)
27
28 #define F_HELPER(name, p) void helper_f##name##p(CPUState *env)
29
30 #define F_BINOP(name) \
31 float32 helper_f ## name ## s (CPUState * env, float32 src1,\
32 float32 src2) \
33 { \
34 return float32_ ## name (src1, src2, &env->fp_status); \
35 } \
36 F_HELPER(name, d) \
37 { \
38 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
39 } \
40 F_HELPER(name, q) \
41 { \
42 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
43 }
44
45 F_BINOP(add);
46 F_BINOP(sub);
47 F_BINOP(mul);
48 F_BINOP(div);
49 #undef F_BINOP
50
51 void helper_fsmuld(CPUState *env, float32 src1, float32 src2)
52 {
53 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
54 float32_to_float64(src2, &env->fp_status),
55 &env->fp_status);
56 }
57
58 void helper_fdmulq(CPUState *env)
59 {
60 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
61 float64_to_float128(DT1, &env->fp_status),
62 &env->fp_status);
63 }
64
65 float32 helper_fnegs(float32 src)
66 {
67 return float32_chs(src);
68 }
69
70 #ifdef TARGET_SPARC64
71 F_HELPER(neg, d)
72 {
73 DT0 = float64_chs(DT1);
74 }
75
76 F_HELPER(neg, q)
77 {
78 QT0 = float128_chs(QT1);
79 }
80 #endif
81
82 /* Integer to float conversion. */
83 float32 helper_fitos(CPUState *env, int32_t src)
84 {
85 return int32_to_float32(src, &env->fp_status);
86 }
87
88 void helper_fitod(CPUState *env, int32_t src)
89 {
90 DT0 = int32_to_float64(src, &env->fp_status);
91 }
92
93 void helper_fitoq(CPUState *env, int32_t src)
94 {
95 QT0 = int32_to_float128(src, &env->fp_status);
96 }
97
98 #ifdef TARGET_SPARC64
99 float32 helper_fxtos(CPUState *env)
100 {
101 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
102 }
103
104 F_HELPER(xto, d)
105 {
106 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
107 }
108
109 F_HELPER(xto, q)
110 {
111 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
112 }
113 #endif
114 #undef F_HELPER
115
116 /* floating point conversion */
117 float32 helper_fdtos(CPUState *env)
118 {
119 return float64_to_float32(DT1, &env->fp_status);
120 }
121
122 void helper_fstod(CPUState *env, float32 src)
123 {
124 DT0 = float32_to_float64(src, &env->fp_status);
125 }
126
127 float32 helper_fqtos(CPUState *env)
128 {
129 return float128_to_float32(QT1, &env->fp_status);
130 }
131
132 void helper_fstoq(CPUState *env, float32 src)
133 {
134 QT0 = float32_to_float128(src, &env->fp_status);
135 }
136
137 void helper_fqtod(CPUState *env)
138 {
139 DT0 = float128_to_float64(QT1, &env->fp_status);
140 }
141
142 void helper_fdtoq(CPUState *env)
143 {
144 QT0 = float64_to_float128(DT1, &env->fp_status);
145 }
146
147 /* Float to integer conversion. */
148 int32_t helper_fstoi(CPUState *env, float32 src)
149 {
150 return float32_to_int32_round_to_zero(src, &env->fp_status);
151 }
152
153 int32_t helper_fdtoi(CPUState *env)
154 {
155 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
156 }
157
158 int32_t helper_fqtoi(CPUState *env)
159 {
160 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
161 }
162
163 #ifdef TARGET_SPARC64
164 void helper_fstox(CPUState *env, float32 src)
165 {
166 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
167 }
168
169 void helper_fdtox(CPUState *env)
170 {
171 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
172 }
173
174 void helper_fqtox(CPUState *env)
175 {
176 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
177 }
178 #endif
179
180 float32 helper_fabss(float32 src)
181 {
182 return float32_abs(src);
183 }
184
185 #ifdef TARGET_SPARC64
186 void helper_fabsd(CPUState *env)
187 {
188 DT0 = float64_abs(DT1);
189 }
190
191 void helper_fabsq(CPUState *env)
192 {
193 QT0 = float128_abs(QT1);
194 }
195 #endif
196
197 float32 helper_fsqrts(CPUState *env, float32 src)
198 {
199 return float32_sqrt(src, &env->fp_status);
200 }
201
202 void helper_fsqrtd(CPUState *env)
203 {
204 DT0 = float64_sqrt(DT1, &env->fp_status);
205 }
206
207 void helper_fsqrtq(CPUState *env)
208 {
209 QT0 = float128_sqrt(QT1, &env->fp_status);
210 }
211
212 #define GEN_FCMP(name, size, reg1, reg2, FS, E) \
213 void glue(helper_, name) (CPUState *env) \
214 { \
215 env->fsr &= FSR_FTT_NMASK; \
216 if (E && (glue(size, _is_any_nan)(reg1) || \
217 glue(size, _is_any_nan)(reg2)) && \
218 (env->fsr & FSR_NVM)) { \
219 env->fsr |= FSR_NVC; \
220 env->fsr |= FSR_FTT_IEEE_EXCP; \
221 helper_raise_exception(env, TT_FP_EXCP); \
222 } \
223 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
224 case float_relation_unordered: \
225 if ((env->fsr & FSR_NVM)) { \
226 env->fsr |= FSR_NVC; \
227 env->fsr |= FSR_FTT_IEEE_EXCP; \
228 helper_raise_exception(env, TT_FP_EXCP); \
229 } else { \
230 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
231 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
232 env->fsr |= FSR_NVA; \
233 } \
234 break; \
235 case float_relation_less: \
236 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
237 env->fsr |= FSR_FCC0 << FS; \
238 break; \
239 case float_relation_greater: \
240 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
241 env->fsr |= FSR_FCC1 << FS; \
242 break; \
243 default: \
244 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
245 break; \
246 } \
247 }
248 #define GEN_FCMPS(name, size, FS, E) \
249 void glue(helper_, name)(CPUState *env, float32 src1, float32 src2) \
250 { \
251 env->fsr &= FSR_FTT_NMASK; \
252 if (E && (glue(size, _is_any_nan)(src1) || \
253 glue(size, _is_any_nan)(src2)) && \
254 (env->fsr & FSR_NVM)) { \
255 env->fsr |= FSR_NVC; \
256 env->fsr |= FSR_FTT_IEEE_EXCP; \
257 helper_raise_exception(env, TT_FP_EXCP); \
258 } \
259 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
260 case float_relation_unordered: \
261 if ((env->fsr & FSR_NVM)) { \
262 env->fsr |= FSR_NVC; \
263 env->fsr |= FSR_FTT_IEEE_EXCP; \
264 helper_raise_exception(env, TT_FP_EXCP); \
265 } else { \
266 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
267 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
268 env->fsr |= FSR_NVA; \
269 } \
270 break; \
271 case float_relation_less: \
272 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
273 env->fsr |= FSR_FCC0 << FS; \
274 break; \
275 case float_relation_greater: \
276 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
277 env->fsr |= FSR_FCC1 << FS; \
278 break; \
279 default: \
280 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
281 break; \
282 } \
283 }
284
285 GEN_FCMPS(fcmps, float32, 0, 0);
286 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
287
288 GEN_FCMPS(fcmpes, float32, 0, 1);
289 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
290
291 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
292 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
293
294 #ifdef TARGET_SPARC64
295 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
296 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
297 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
298
299 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
300 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
301 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
302
303 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
304 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
305 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
306
307 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
308 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
309 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
310
311 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
312 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
313 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
314
315 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
316 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
317 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
318 #endif
319 #undef GEN_FCMPS
320
321 void helper_check_ieee_exceptions(CPUState *env)
322 {
323 target_ulong status;
324
325 status = get_float_exception_flags(&env->fp_status);
326 if (status) {
327 /* Copy IEEE 754 flags into FSR */
328 if (status & float_flag_invalid) {
329 env->fsr |= FSR_NVC;
330 }
331 if (status & float_flag_overflow) {
332 env->fsr |= FSR_OFC;
333 }
334 if (status & float_flag_underflow) {
335 env->fsr |= FSR_UFC;
336 }
337 if (status & float_flag_divbyzero) {
338 env->fsr |= FSR_DZC;
339 }
340 if (status & float_flag_inexact) {
341 env->fsr |= FSR_NXC;
342 }
343
344 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
345 /* Unmasked exception, generate a trap */
346 env->fsr |= FSR_FTT_IEEE_EXCP;
347 helper_raise_exception(env, TT_FP_EXCP);
348 } else {
349 /* Accumulate exceptions */
350 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
351 }
352 }
353 }
354
355 void helper_clear_float_exceptions(CPUState *env)
356 {
357 set_float_exception_flags(0, &env->fp_status);
358 }
359
360 static inline void set_fsr(CPUState *env)
361 {
362 int rnd_mode;
363
364 switch (env->fsr & FSR_RD_MASK) {
365 case FSR_RD_NEAREST:
366 rnd_mode = float_round_nearest_even;
367 break;
368 default:
369 case FSR_RD_ZERO:
370 rnd_mode = float_round_to_zero;
371 break;
372 case FSR_RD_POS:
373 rnd_mode = float_round_up;
374 break;
375 case FSR_RD_NEG:
376 rnd_mode = float_round_down;
377 break;
378 }
379 set_float_rounding_mode(rnd_mode, &env->fp_status);
380 }
381
382 void helper_ldfsr(CPUState *env, uint32_t new_fsr)
383 {
384 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
385 set_fsr(env);
386 }
387
388 #ifdef TARGET_SPARC64
389 void helper_ldxfsr(CPUState *env, uint64_t new_fsr)
390 {
391 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
392 set_fsr(env);
393 }
394 #endif