]> git.proxmox.com Git - mirror_qemu.git/blob - target-sparc/ldst_helper.c
Merge remote-tracking branch 'sstabellini/tags/xen-20161122-tag' into staging
[mirror_qemu.git] / target-sparc / ldst_helper.c
1 /*
2 * Helpers for loads and stores
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "tcg.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "asi.h"
27
28 //#define DEBUG_MMU
29 //#define DEBUG_MXCC
30 //#define DEBUG_UNALIGNED
31 //#define DEBUG_UNASSIGNED
32 //#define DEBUG_ASI
33 //#define DEBUG_CACHE_CONTROL
34
35 #ifdef DEBUG_MMU
36 #define DPRINTF_MMU(fmt, ...) \
37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
40 #endif
41
42 #ifdef DEBUG_MXCC
43 #define DPRINTF_MXCC(fmt, ...) \
44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
47 #endif
48
49 #ifdef DEBUG_ASI
50 #define DPRINTF_ASI(fmt, ...) \
51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
52 #endif
53
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
59 #endif
60
61 #ifdef TARGET_SPARC64
62 #ifndef TARGET_ABI32
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
64 #else
65 #define AM_CHECK(env1) (1)
66 #endif
67 #endif
68
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
71
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size 8k or 64k */
74 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
75 uint64_t tag_access_register,
76 int page_size)
77 {
78 uint64_t tsb_base = tsb_register & ~0x1fffULL;
79 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
80 int tsb_size = tsb_register & 0xf;
81
82 /* discard lower 13 bits which hold tag access context */
83 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
84
85 /* now reorder bits */
86 uint64_t tsb_base_mask = ~0x1fffULL;
87 uint64_t va = tag_access_va;
88
89 /* move va bits to correct position */
90 if (page_size == 8*1024) {
91 va >>= 9;
92 } else if (page_size == 64*1024) {
93 va >>= 12;
94 }
95
96 if (tsb_size) {
97 tsb_base_mask <<= tsb_size;
98 }
99
100 /* calculate tsb_base mask and adjust va if split is in use */
101 if (tsb_split) {
102 if (page_size == 8*1024) {
103 va &= ~(1ULL << (13 + tsb_size));
104 } else if (page_size == 64*1024) {
105 va |= (1ULL << (13 + tsb_size));
106 }
107 tsb_base_mask <<= 1;
108 }
109
110 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
111 }
112
113 /* Calculates tag target register value by reordering bits
114 in tag access register */
115 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
116 {
117 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
118 }
119
120 static void replace_tlb_entry(SparcTLBEntry *tlb,
121 uint64_t tlb_tag, uint64_t tlb_tte,
122 CPUSPARCState *env1)
123 {
124 target_ulong mask, size, va, offset;
125
126 /* flush page range if translation is valid */
127 if (TTE_IS_VALID(tlb->tte)) {
128 CPUState *cs = CPU(sparc_env_get_cpu(env1));
129
130 mask = 0xffffffffffffe000ULL;
131 mask <<= 3 * ((tlb->tte >> 61) & 3);
132 size = ~mask + 1;
133
134 va = tlb->tag & mask;
135
136 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
137 tlb_flush_page(cs, va + offset);
138 }
139 }
140
141 tlb->tag = tlb_tag;
142 tlb->tte = tlb_tte;
143 }
144
145 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
146 const char *strmmu, CPUSPARCState *env1)
147 {
148 unsigned int i;
149 target_ulong mask;
150 uint64_t context;
151
152 int is_demap_context = (demap_addr >> 6) & 1;
153
154 /* demap context */
155 switch ((demap_addr >> 4) & 3) {
156 case 0: /* primary */
157 context = env1->dmmu.mmu_primary_context;
158 break;
159 case 1: /* secondary */
160 context = env1->dmmu.mmu_secondary_context;
161 break;
162 case 2: /* nucleus */
163 context = 0;
164 break;
165 case 3: /* reserved */
166 default:
167 return;
168 }
169
170 for (i = 0; i < 64; i++) {
171 if (TTE_IS_VALID(tlb[i].tte)) {
172
173 if (is_demap_context) {
174 /* will remove non-global entries matching context value */
175 if (TTE_IS_GLOBAL(tlb[i].tte) ||
176 !tlb_compare_context(&tlb[i], context)) {
177 continue;
178 }
179 } else {
180 /* demap page
181 will remove any entry matching VA */
182 mask = 0xffffffffffffe000ULL;
183 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
184
185 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
186 continue;
187 }
188
189 /* entry should be global or matching context value */
190 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
191 !tlb_compare_context(&tlb[i], context)) {
192 continue;
193 }
194 }
195
196 replace_tlb_entry(&tlb[i], 0, 0, env1);
197 #ifdef DEBUG_MMU
198 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
199 dump_mmu(stdout, fprintf, env1);
200 #endif
201 }
202 }
203 }
204
205 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
206 uint64_t tlb_tag, uint64_t tlb_tte,
207 const char *strmmu, CPUSPARCState *env1)
208 {
209 unsigned int i, replace_used;
210
211 /* Try replacing invalid entry */
212 for (i = 0; i < 64; i++) {
213 if (!TTE_IS_VALID(tlb[i].tte)) {
214 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
215 #ifdef DEBUG_MMU
216 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
217 dump_mmu(stdout, fprintf, env1);
218 #endif
219 return;
220 }
221 }
222
223 /* All entries are valid, try replacing unlocked entry */
224
225 for (replace_used = 0; replace_used < 2; ++replace_used) {
226
227 /* Used entries are not replaced on first pass */
228
229 for (i = 0; i < 64; i++) {
230 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
231
232 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
233 #ifdef DEBUG_MMU
234 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
235 strmmu, (replace_used ? "used" : "unused"), i);
236 dump_mmu(stdout, fprintf, env1);
237 #endif
238 return;
239 }
240 }
241
242 /* Now reset used bit and search for unused entries again */
243
244 for (i = 0; i < 64; i++) {
245 TTE_SET_UNUSED(tlb[i].tte);
246 }
247 }
248
249 #ifdef DEBUG_MMU
250 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
251 #endif
252 /* error state? */
253 }
254
255 #endif
256
257 #ifdef TARGET_SPARC64
258 /* returns true if access using this ASI is to have address translated by MMU
259 otherwise access is to raw physical address */
260 /* TODO: check sparc32 bits */
261 static inline int is_translating_asi(int asi)
262 {
263 /* Ultrasparc IIi translating asi
264 - note this list is defined by cpu implementation
265 */
266 switch (asi) {
267 case 0x04 ... 0x11:
268 case 0x16 ... 0x19:
269 case 0x1E ... 0x1F:
270 case 0x24 ... 0x2C:
271 case 0x70 ... 0x73:
272 case 0x78 ... 0x79:
273 case 0x80 ... 0xFF:
274 return 1;
275
276 default:
277 return 0;
278 }
279 }
280
281 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
282 {
283 if (AM_CHECK(env1)) {
284 addr &= 0xffffffffULL;
285 }
286 return addr;
287 }
288
289 static inline target_ulong asi_address_mask(CPUSPARCState *env,
290 int asi, target_ulong addr)
291 {
292 if (is_translating_asi(asi)) {
293 addr = address_mask(env, addr);
294 }
295 return addr;
296 }
297 #endif
298
299 static void do_check_align(CPUSPARCState *env, target_ulong addr,
300 uint32_t align, uintptr_t ra)
301 {
302 if (addr & align) {
303 #ifdef DEBUG_UNALIGNED
304 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
305 "\n", addr, env->pc);
306 #endif
307 cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
308 }
309 }
310
311 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
312 {
313 do_check_align(env, addr, align, GETPC());
314 }
315
316 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
317 defined(DEBUG_MXCC)
318 static void dump_mxcc(CPUSPARCState *env)
319 {
320 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
321 "\n",
322 env->mxccdata[0], env->mxccdata[1],
323 env->mxccdata[2], env->mxccdata[3]);
324 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
325 "\n"
326 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
327 "\n",
328 env->mxccregs[0], env->mxccregs[1],
329 env->mxccregs[2], env->mxccregs[3],
330 env->mxccregs[4], env->mxccregs[5],
331 env->mxccregs[6], env->mxccregs[7]);
332 }
333 #endif
334
335 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
336 && defined(DEBUG_ASI)
337 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
338 uint64_t r1)
339 {
340 switch (size) {
341 case 1:
342 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
343 addr, asi, r1 & 0xff);
344 break;
345 case 2:
346 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
347 addr, asi, r1 & 0xffff);
348 break;
349 case 4:
350 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
351 addr, asi, r1 & 0xffffffff);
352 break;
353 case 8:
354 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
355 addr, asi, r1);
356 break;
357 }
358 }
359 #endif
360
361 #ifndef TARGET_SPARC64
362 #ifndef CONFIG_USER_ONLY
363
364
365 /* Leon3 cache control */
366
367 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
368 uint64_t val, int size)
369 {
370 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
371 addr, val, size);
372
373 if (size != 4) {
374 DPRINTF_CACHE_CONTROL("32bits only\n");
375 return;
376 }
377
378 switch (addr) {
379 case 0x00: /* Cache control */
380
381 /* These values must always be read as zeros */
382 val &= ~CACHE_CTRL_FD;
383 val &= ~CACHE_CTRL_FI;
384 val &= ~CACHE_CTRL_IB;
385 val &= ~CACHE_CTRL_IP;
386 val &= ~CACHE_CTRL_DP;
387
388 env->cache_control = val;
389 break;
390 case 0x04: /* Instruction cache configuration */
391 case 0x08: /* Data cache configuration */
392 /* Read Only */
393 break;
394 default:
395 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
396 break;
397 };
398 }
399
400 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
401 int size)
402 {
403 uint64_t ret = 0;
404
405 if (size != 4) {
406 DPRINTF_CACHE_CONTROL("32bits only\n");
407 return 0;
408 }
409
410 switch (addr) {
411 case 0x00: /* Cache control */
412 ret = env->cache_control;
413 break;
414
415 /* Configuration registers are read and only always keep those
416 predefined values */
417
418 case 0x04: /* Instruction cache configuration */
419 ret = 0x10220000;
420 break;
421 case 0x08: /* Data cache configuration */
422 ret = 0x18220000;
423 break;
424 default:
425 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
426 break;
427 };
428 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
429 addr, ret, size);
430 return ret;
431 }
432
433 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
434 int asi, uint32_t memop)
435 {
436 int size = 1 << (memop & MO_SIZE);
437 int sign = memop & MO_SIGN;
438 CPUState *cs = CPU(sparc_env_get_cpu(env));
439 uint64_t ret = 0;
440 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
441 uint32_t last_addr = addr;
442 #endif
443
444 do_check_align(env, addr, size - 1, GETPC());
445 switch (asi) {
446 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
447 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
448 switch (addr) {
449 case 0x00: /* Leon3 Cache Control */
450 case 0x08: /* Leon3 Instruction Cache config */
451 case 0x0C: /* Leon3 Date Cache config */
452 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
453 ret = leon3_cache_control_ld(env, addr, size);
454 }
455 break;
456 case 0x01c00a00: /* MXCC control register */
457 if (size == 8) {
458 ret = env->mxccregs[3];
459 } else {
460 qemu_log_mask(LOG_UNIMP,
461 "%08x: unimplemented access size: %d\n", addr,
462 size);
463 }
464 break;
465 case 0x01c00a04: /* MXCC control register */
466 if (size == 4) {
467 ret = env->mxccregs[3];
468 } else {
469 qemu_log_mask(LOG_UNIMP,
470 "%08x: unimplemented access size: %d\n", addr,
471 size);
472 }
473 break;
474 case 0x01c00c00: /* Module reset register */
475 if (size == 8) {
476 ret = env->mxccregs[5];
477 /* should we do something here? */
478 } else {
479 qemu_log_mask(LOG_UNIMP,
480 "%08x: unimplemented access size: %d\n", addr,
481 size);
482 }
483 break;
484 case 0x01c00f00: /* MBus port address register */
485 if (size == 8) {
486 ret = env->mxccregs[7];
487 } else {
488 qemu_log_mask(LOG_UNIMP,
489 "%08x: unimplemented access size: %d\n", addr,
490 size);
491 }
492 break;
493 default:
494 qemu_log_mask(LOG_UNIMP,
495 "%08x: unimplemented address, size: %d\n", addr,
496 size);
497 break;
498 }
499 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
500 "addr = %08x -> ret = %" PRIx64 ","
501 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
502 #ifdef DEBUG_MXCC
503 dump_mxcc(env);
504 #endif
505 break;
506 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
507 case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
508 {
509 int mmulev;
510
511 mmulev = (addr >> 8) & 15;
512 if (mmulev > 4) {
513 ret = 0;
514 } else {
515 ret = mmu_probe(env, addr, mmulev);
516 }
517 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
518 addr, mmulev, ret);
519 }
520 break;
521 case ASI_M_MMUREGS: /* SuperSparc MMU regs */
522 case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
523 {
524 int reg = (addr >> 8) & 0x1f;
525
526 ret = env->mmuregs[reg];
527 if (reg == 3) { /* Fault status cleared on read */
528 env->mmuregs[3] = 0;
529 } else if (reg == 0x13) { /* Fault status read */
530 ret = env->mmuregs[3];
531 } else if (reg == 0x14) { /* Fault address read */
532 ret = env->mmuregs[4];
533 }
534 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
535 }
536 break;
537 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
538 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
539 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
540 break;
541 case ASI_KERNELTXT: /* Supervisor code access */
542 switch (size) {
543 case 1:
544 ret = cpu_ldub_code(env, addr);
545 break;
546 case 2:
547 ret = cpu_lduw_code(env, addr);
548 break;
549 default:
550 case 4:
551 ret = cpu_ldl_code(env, addr);
552 break;
553 case 8:
554 ret = cpu_ldq_code(env, addr);
555 break;
556 }
557 break;
558 case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */
559 case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */
560 case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */
561 case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
562 break;
563 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
564 switch (size) {
565 case 1:
566 ret = ldub_phys(cs->as, (hwaddr)addr
567 | ((hwaddr)(asi & 0xf) << 32));
568 break;
569 case 2:
570 ret = lduw_phys(cs->as, (hwaddr)addr
571 | ((hwaddr)(asi & 0xf) << 32));
572 break;
573 default:
574 case 4:
575 ret = ldl_phys(cs->as, (hwaddr)addr
576 | ((hwaddr)(asi & 0xf) << 32));
577 break;
578 case 8:
579 ret = ldq_phys(cs->as, (hwaddr)addr
580 | ((hwaddr)(asi & 0xf) << 32));
581 break;
582 }
583 break;
584 case 0x30: /* Turbosparc secondary cache diagnostic */
585 case 0x31: /* Turbosparc RAM snoop */
586 case 0x32: /* Turbosparc page table descriptor diagnostic */
587 case 0x39: /* data cache diagnostic register */
588 ret = 0;
589 break;
590 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
591 {
592 int reg = (addr >> 8) & 3;
593
594 switch (reg) {
595 case 0: /* Breakpoint Value (Addr) */
596 ret = env->mmubpregs[reg];
597 break;
598 case 1: /* Breakpoint Mask */
599 ret = env->mmubpregs[reg];
600 break;
601 case 2: /* Breakpoint Control */
602 ret = env->mmubpregs[reg];
603 break;
604 case 3: /* Breakpoint Status */
605 ret = env->mmubpregs[reg];
606 env->mmubpregs[reg] = 0ULL;
607 break;
608 }
609 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
610 ret);
611 }
612 break;
613 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
614 ret = env->mmubpctrv;
615 break;
616 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
617 ret = env->mmubpctrc;
618 break;
619 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
620 ret = env->mmubpctrs;
621 break;
622 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
623 ret = env->mmubpaction;
624 break;
625 case ASI_USERTXT: /* User code access, XXX */
626 default:
627 cpu_unassigned_access(cs, addr, false, false, asi, size);
628 ret = 0;
629 break;
630
631 case ASI_USERDATA: /* User data access */
632 case ASI_KERNELDATA: /* Supervisor data access */
633 case ASI_P: /* Implicit primary context data access (v9 only?) */
634 case ASI_M_BYPASS: /* MMU passthrough */
635 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
636 /* These are always handled inline. */
637 g_assert_not_reached();
638 }
639 if (sign) {
640 switch (size) {
641 case 1:
642 ret = (int8_t) ret;
643 break;
644 case 2:
645 ret = (int16_t) ret;
646 break;
647 case 4:
648 ret = (int32_t) ret;
649 break;
650 default:
651 break;
652 }
653 }
654 #ifdef DEBUG_ASI
655 dump_asi("read ", last_addr, asi, size, ret);
656 #endif
657 return ret;
658 }
659
660 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
661 int asi, uint32_t memop)
662 {
663 int size = 1 << (memop & MO_SIZE);
664 SPARCCPU *cpu = sparc_env_get_cpu(env);
665 CPUState *cs = CPU(cpu);
666
667 do_check_align(env, addr, size - 1, GETPC());
668 switch (asi) {
669 case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
670 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
671 switch (addr) {
672 case 0x00: /* Leon3 Cache Control */
673 case 0x08: /* Leon3 Instruction Cache config */
674 case 0x0C: /* Leon3 Date Cache config */
675 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
676 leon3_cache_control_st(env, addr, val, size);
677 }
678 break;
679
680 case 0x01c00000: /* MXCC stream data register 0 */
681 if (size == 8) {
682 env->mxccdata[0] = val;
683 } else {
684 qemu_log_mask(LOG_UNIMP,
685 "%08x: unimplemented access size: %d\n", addr,
686 size);
687 }
688 break;
689 case 0x01c00008: /* MXCC stream data register 1 */
690 if (size == 8) {
691 env->mxccdata[1] = val;
692 } else {
693 qemu_log_mask(LOG_UNIMP,
694 "%08x: unimplemented access size: %d\n", addr,
695 size);
696 }
697 break;
698 case 0x01c00010: /* MXCC stream data register 2 */
699 if (size == 8) {
700 env->mxccdata[2] = val;
701 } else {
702 qemu_log_mask(LOG_UNIMP,
703 "%08x: unimplemented access size: %d\n", addr,
704 size);
705 }
706 break;
707 case 0x01c00018: /* MXCC stream data register 3 */
708 if (size == 8) {
709 env->mxccdata[3] = val;
710 } else {
711 qemu_log_mask(LOG_UNIMP,
712 "%08x: unimplemented access size: %d\n", addr,
713 size);
714 }
715 break;
716 case 0x01c00100: /* MXCC stream source */
717 if (size == 8) {
718 env->mxccregs[0] = val;
719 } else {
720 qemu_log_mask(LOG_UNIMP,
721 "%08x: unimplemented access size: %d\n", addr,
722 size);
723 }
724 env->mxccdata[0] = ldq_phys(cs->as,
725 (env->mxccregs[0] & 0xffffffffULL) +
726 0);
727 env->mxccdata[1] = ldq_phys(cs->as,
728 (env->mxccregs[0] & 0xffffffffULL) +
729 8);
730 env->mxccdata[2] = ldq_phys(cs->as,
731 (env->mxccregs[0] & 0xffffffffULL) +
732 16);
733 env->mxccdata[3] = ldq_phys(cs->as,
734 (env->mxccregs[0] & 0xffffffffULL) +
735 24);
736 break;
737 case 0x01c00200: /* MXCC stream destination */
738 if (size == 8) {
739 env->mxccregs[1] = val;
740 } else {
741 qemu_log_mask(LOG_UNIMP,
742 "%08x: unimplemented access size: %d\n", addr,
743 size);
744 }
745 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
746 env->mxccdata[0]);
747 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
748 env->mxccdata[1]);
749 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
750 env->mxccdata[2]);
751 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
752 env->mxccdata[3]);
753 break;
754 case 0x01c00a00: /* MXCC control register */
755 if (size == 8) {
756 env->mxccregs[3] = val;
757 } else {
758 qemu_log_mask(LOG_UNIMP,
759 "%08x: unimplemented access size: %d\n", addr,
760 size);
761 }
762 break;
763 case 0x01c00a04: /* MXCC control register */
764 if (size == 4) {
765 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
766 | val;
767 } else {
768 qemu_log_mask(LOG_UNIMP,
769 "%08x: unimplemented access size: %d\n", addr,
770 size);
771 }
772 break;
773 case 0x01c00e00: /* MXCC error register */
774 /* writing a 1 bit clears the error */
775 if (size == 8) {
776 env->mxccregs[6] &= ~val;
777 } else {
778 qemu_log_mask(LOG_UNIMP,
779 "%08x: unimplemented access size: %d\n", addr,
780 size);
781 }
782 break;
783 case 0x01c00f00: /* MBus port address register */
784 if (size == 8) {
785 env->mxccregs[7] = val;
786 } else {
787 qemu_log_mask(LOG_UNIMP,
788 "%08x: unimplemented access size: %d\n", addr,
789 size);
790 }
791 break;
792 default:
793 qemu_log_mask(LOG_UNIMP,
794 "%08x: unimplemented address, size: %d\n", addr,
795 size);
796 break;
797 }
798 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
799 asi, size, addr, val);
800 #ifdef DEBUG_MXCC
801 dump_mxcc(env);
802 #endif
803 break;
804 case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
805 case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
806 {
807 int mmulev;
808
809 mmulev = (addr >> 8) & 15;
810 DPRINTF_MMU("mmu flush level %d\n", mmulev);
811 switch (mmulev) {
812 case 0: /* flush page */
813 tlb_flush_page(CPU(cpu), addr & 0xfffff000);
814 break;
815 case 1: /* flush segment (256k) */
816 case 2: /* flush region (16M) */
817 case 3: /* flush context (4G) */
818 case 4: /* flush entire */
819 tlb_flush(CPU(cpu), 1);
820 break;
821 default:
822 break;
823 }
824 #ifdef DEBUG_MMU
825 dump_mmu(stdout, fprintf, env);
826 #endif
827 }
828 break;
829 case ASI_M_MMUREGS: /* write MMU regs */
830 case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
831 {
832 int reg = (addr >> 8) & 0x1f;
833 uint32_t oldreg;
834
835 oldreg = env->mmuregs[reg];
836 switch (reg) {
837 case 0: /* Control Register */
838 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
839 (val & 0x00ffffff);
840 /* Mappings generated during no-fault mode
841 are invalid in normal mode. */
842 if ((oldreg ^ env->mmuregs[reg])
843 & (MMU_NF | env->def->mmu_bm)) {
844 tlb_flush(CPU(cpu), 1);
845 }
846 break;
847 case 1: /* Context Table Pointer Register */
848 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
849 break;
850 case 2: /* Context Register */
851 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
852 if (oldreg != env->mmuregs[reg]) {
853 /* we flush when the MMU context changes because
854 QEMU has no MMU context support */
855 tlb_flush(CPU(cpu), 1);
856 }
857 break;
858 case 3: /* Synchronous Fault Status Register with Clear */
859 case 4: /* Synchronous Fault Address Register */
860 break;
861 case 0x10: /* TLB Replacement Control Register */
862 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
863 break;
864 case 0x13: /* Synchronous Fault Status Register with Read
865 and Clear */
866 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
867 break;
868 case 0x14: /* Synchronous Fault Address Register */
869 env->mmuregs[4] = val;
870 break;
871 default:
872 env->mmuregs[reg] = val;
873 break;
874 }
875 if (oldreg != env->mmuregs[reg]) {
876 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
877 reg, oldreg, env->mmuregs[reg]);
878 }
879 #ifdef DEBUG_MMU
880 dump_mmu(stdout, fprintf, env);
881 #endif
882 }
883 break;
884 case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
885 case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */
886 case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */
887 break;
888 case ASI_M_TXTC_TAG: /* I-cache tag */
889 case ASI_M_TXTC_DATA: /* I-cache data */
890 case ASI_M_DATAC_TAG: /* D-cache tag */
891 case ASI_M_DATAC_DATA: /* D-cache data */
892 case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */
893 case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */
894 case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
895 case ASI_M_FLUSH_CTX: /* I/D-cache flush context */
896 case ASI_M_FLUSH_USER: /* I/D-cache flush user */
897 break;
898 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
899 {
900 switch (size) {
901 case 1:
902 stb_phys(cs->as, (hwaddr)addr
903 | ((hwaddr)(asi & 0xf) << 32), val);
904 break;
905 case 2:
906 stw_phys(cs->as, (hwaddr)addr
907 | ((hwaddr)(asi & 0xf) << 32), val);
908 break;
909 case 4:
910 default:
911 stl_phys(cs->as, (hwaddr)addr
912 | ((hwaddr)(asi & 0xf) << 32), val);
913 break;
914 case 8:
915 stq_phys(cs->as, (hwaddr)addr
916 | ((hwaddr)(asi & 0xf) << 32), val);
917 break;
918 }
919 }
920 break;
921 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
922 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
923 Turbosparc snoop RAM */
924 case 0x32: /* store buffer control or Turbosparc page table
925 descriptor diagnostic */
926 case 0x36: /* I-cache flash clear */
927 case 0x37: /* D-cache flash clear */
928 break;
929 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
930 {
931 int reg = (addr >> 8) & 3;
932
933 switch (reg) {
934 case 0: /* Breakpoint Value (Addr) */
935 env->mmubpregs[reg] = (val & 0xfffffffffULL);
936 break;
937 case 1: /* Breakpoint Mask */
938 env->mmubpregs[reg] = (val & 0xfffffffffULL);
939 break;
940 case 2: /* Breakpoint Control */
941 env->mmubpregs[reg] = (val & 0x7fULL);
942 break;
943 case 3: /* Breakpoint Status */
944 env->mmubpregs[reg] = (val & 0xfULL);
945 break;
946 }
947 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
948 env->mmuregs[reg]);
949 }
950 break;
951 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
952 env->mmubpctrv = val & 0xffffffff;
953 break;
954 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
955 env->mmubpctrc = val & 0x3;
956 break;
957 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
958 env->mmubpctrs = val & 0x3;
959 break;
960 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
961 env->mmubpaction = val & 0x1fff;
962 break;
963 case ASI_USERTXT: /* User code access, XXX */
964 case ASI_KERNELTXT: /* Supervisor code access, XXX */
965 default:
966 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
967 addr, true, false, asi, size);
968 break;
969
970 case ASI_USERDATA: /* User data access */
971 case ASI_KERNELDATA: /* Supervisor data access */
972 case ASI_P:
973 case ASI_M_BYPASS: /* MMU passthrough */
974 case ASI_LEON_BYPASS: /* LEON MMU passthrough */
975 case ASI_M_BCOPY: /* Block copy, sta access */
976 case ASI_M_BFILL: /* Block fill, stda access */
977 /* These are always handled inline. */
978 g_assert_not_reached();
979 }
980 #ifdef DEBUG_ASI
981 dump_asi("write", addr, asi, size, val);
982 #endif
983 }
984
985 #endif /* CONFIG_USER_ONLY */
986 #else /* TARGET_SPARC64 */
987
988 #ifdef CONFIG_USER_ONLY
989 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
990 int asi, uint32_t memop)
991 {
992 int size = 1 << (memop & MO_SIZE);
993 int sign = memop & MO_SIGN;
994 uint64_t ret = 0;
995
996 if (asi < 0x80) {
997 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
998 }
999 do_check_align(env, addr, size - 1, GETPC());
1000 addr = asi_address_mask(env, asi, addr);
1001
1002 switch (asi) {
1003 case ASI_PNF: /* Primary no-fault */
1004 case ASI_PNFL: /* Primary no-fault LE */
1005 case ASI_SNF: /* Secondary no-fault */
1006 case ASI_SNFL: /* Secondary no-fault LE */
1007 if (page_check_range(addr, size, PAGE_READ) == -1) {
1008 ret = 0;
1009 break;
1010 }
1011 switch (size) {
1012 case 1:
1013 ret = cpu_ldub_data(env, addr);
1014 break;
1015 case 2:
1016 ret = cpu_lduw_data(env, addr);
1017 break;
1018 case 4:
1019 ret = cpu_ldl_data(env, addr);
1020 break;
1021 case 8:
1022 ret = cpu_ldq_data(env, addr);
1023 break;
1024 default:
1025 g_assert_not_reached();
1026 }
1027 break;
1028 break;
1029
1030 case ASI_P: /* Primary */
1031 case ASI_PL: /* Primary LE */
1032 case ASI_S: /* Secondary */
1033 case ASI_SL: /* Secondary LE */
1034 /* These are always handled inline. */
1035 g_assert_not_reached();
1036
1037 default:
1038 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1039 }
1040
1041 /* Convert from little endian */
1042 switch (asi) {
1043 case ASI_PNFL: /* Primary no-fault LE */
1044 case ASI_SNFL: /* Secondary no-fault LE */
1045 switch (size) {
1046 case 2:
1047 ret = bswap16(ret);
1048 break;
1049 case 4:
1050 ret = bswap32(ret);
1051 break;
1052 case 8:
1053 ret = bswap64(ret);
1054 break;
1055 }
1056 }
1057
1058 /* Convert to signed number */
1059 if (sign) {
1060 switch (size) {
1061 case 1:
1062 ret = (int8_t) ret;
1063 break;
1064 case 2:
1065 ret = (int16_t) ret;
1066 break;
1067 case 4:
1068 ret = (int32_t) ret;
1069 break;
1070 }
1071 }
1072 #ifdef DEBUG_ASI
1073 dump_asi("read", addr, asi, size, ret);
1074 #endif
1075 return ret;
1076 }
1077
1078 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1079 int asi, uint32_t memop)
1080 {
1081 int size = 1 << (memop & MO_SIZE);
1082 #ifdef DEBUG_ASI
1083 dump_asi("write", addr, asi, size, val);
1084 #endif
1085 if (asi < 0x80) {
1086 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1087 }
1088 do_check_align(env, addr, size - 1, GETPC());
1089
1090 switch (asi) {
1091 case ASI_P: /* Primary */
1092 case ASI_PL: /* Primary LE */
1093 case ASI_S: /* Secondary */
1094 case ASI_SL: /* Secondary LE */
1095 /* These are always handled inline. */
1096 g_assert_not_reached();
1097
1098 case ASI_PNF: /* Primary no-fault, RO */
1099 case ASI_SNF: /* Secondary no-fault, RO */
1100 case ASI_PNFL: /* Primary no-fault LE, RO */
1101 case ASI_SNFL: /* Secondary no-fault LE, RO */
1102 default:
1103 cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1104 }
1105 }
1106
1107 #else /* CONFIG_USER_ONLY */
1108
1109 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1110 int asi, uint32_t memop)
1111 {
1112 int size = 1 << (memop & MO_SIZE);
1113 int sign = memop & MO_SIGN;
1114 CPUState *cs = CPU(sparc_env_get_cpu(env));
1115 uint64_t ret = 0;
1116 #if defined(DEBUG_ASI)
1117 target_ulong last_addr = addr;
1118 #endif
1119
1120 asi &= 0xff;
1121
1122 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1123 || (cpu_has_hypervisor(env)
1124 && asi >= 0x30 && asi < 0x80
1125 && !(env->hpstate & HS_PRIV))) {
1126 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1127 }
1128
1129 do_check_align(env, addr, size - 1, GETPC());
1130 addr = asi_address_mask(env, asi, addr);
1131
1132 switch (asi) {
1133 case ASI_PNF:
1134 case ASI_PNFL:
1135 case ASI_SNF:
1136 case ASI_SNFL:
1137 {
1138 TCGMemOpIdx oi;
1139 int idx = (env->pstate & PS_PRIV
1140 ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1141 : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1142
1143 if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1144 #ifdef DEBUG_ASI
1145 dump_asi("read ", last_addr, asi, size, ret);
1146 #endif
1147 /* exception_index is set in get_physical_address_data. */
1148 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1149 }
1150 oi = make_memop_idx(memop, idx);
1151 switch (size) {
1152 case 1:
1153 ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
1154 break;
1155 case 2:
1156 if (asi & 8) {
1157 ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
1158 } else {
1159 ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
1160 }
1161 break;
1162 case 4:
1163 if (asi & 8) {
1164 ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
1165 } else {
1166 ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
1167 }
1168 break;
1169 case 8:
1170 if (asi & 8) {
1171 ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
1172 } else {
1173 ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
1174 }
1175 break;
1176 default:
1177 g_assert_not_reached();
1178 }
1179 }
1180 break;
1181
1182 case ASI_AIUP: /* As if user primary */
1183 case ASI_AIUS: /* As if user secondary */
1184 case ASI_AIUPL: /* As if user primary LE */
1185 case ASI_AIUSL: /* As if user secondary LE */
1186 case ASI_P: /* Primary */
1187 case ASI_S: /* Secondary */
1188 case ASI_PL: /* Primary LE */
1189 case ASI_SL: /* Secondary LE */
1190 case ASI_REAL: /* Bypass */
1191 case ASI_REAL_IO: /* Bypass, non-cacheable */
1192 case ASI_REAL_L: /* Bypass LE */
1193 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1194 case ASI_N: /* Nucleus */
1195 case ASI_NL: /* Nucleus Little Endian (LE) */
1196 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1197 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1198 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1199 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1200 case ASI_TWINX_REAL: /* Real address, twinx */
1201 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1202 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1203 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1204 case ASI_TWINX_N: /* Nucleus, twinx */
1205 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1206 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1207 case ASI_TWINX_P: /* Primary, twinx */
1208 case ASI_TWINX_PL: /* Primary, twinx, LE */
1209 case ASI_TWINX_S: /* Secondary, twinx */
1210 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1211 /* These are always handled inline. */
1212 g_assert_not_reached();
1213
1214 case ASI_UPA_CONFIG: /* UPA config */
1215 /* XXX */
1216 break;
1217 case ASI_LSU_CONTROL: /* LSU */
1218 ret = env->lsu;
1219 break;
1220 case ASI_IMMU: /* I-MMU regs */
1221 {
1222 int reg = (addr >> 3) & 0xf;
1223
1224 if (reg == 0) {
1225 /* I-TSB Tag Target register */
1226 ret = ultrasparc_tag_target(env->immu.tag_access);
1227 } else {
1228 ret = env->immuregs[reg];
1229 }
1230
1231 break;
1232 }
1233 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1234 {
1235 /* env->immuregs[5] holds I-MMU TSB register value
1236 env->immuregs[6] holds I-MMU Tag Access register value */
1237 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1238 8*1024);
1239 break;
1240 }
1241 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1242 {
1243 /* env->immuregs[5] holds I-MMU TSB register value
1244 env->immuregs[6] holds I-MMU Tag Access register value */
1245 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1246 64*1024);
1247 break;
1248 }
1249 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1250 {
1251 int reg = (addr >> 3) & 0x3f;
1252
1253 ret = env->itlb[reg].tte;
1254 break;
1255 }
1256 case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1257 {
1258 int reg = (addr >> 3) & 0x3f;
1259
1260 ret = env->itlb[reg].tag;
1261 break;
1262 }
1263 case ASI_DMMU: /* D-MMU regs */
1264 {
1265 int reg = (addr >> 3) & 0xf;
1266
1267 if (reg == 0) {
1268 /* D-TSB Tag Target register */
1269 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1270 } else {
1271 ret = env->dmmuregs[reg];
1272 }
1273 break;
1274 }
1275 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1276 {
1277 /* env->dmmuregs[5] holds D-MMU TSB register value
1278 env->dmmuregs[6] holds D-MMU Tag Access register value */
1279 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1280 8*1024);
1281 break;
1282 }
1283 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1284 {
1285 /* env->dmmuregs[5] holds D-MMU TSB register value
1286 env->dmmuregs[6] holds D-MMU Tag Access register value */
1287 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1288 64*1024);
1289 break;
1290 }
1291 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1292 {
1293 int reg = (addr >> 3) & 0x3f;
1294
1295 ret = env->dtlb[reg].tte;
1296 break;
1297 }
1298 case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1299 {
1300 int reg = (addr >> 3) & 0x3f;
1301
1302 ret = env->dtlb[reg].tag;
1303 break;
1304 }
1305 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1306 break;
1307 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1308 ret = env->ivec_status;
1309 break;
1310 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1311 {
1312 int reg = (addr >> 4) & 0x3;
1313 if (reg < 3) {
1314 ret = env->ivec_data[reg];
1315 }
1316 break;
1317 }
1318 case ASI_DCACHE_DATA: /* D-cache data */
1319 case ASI_DCACHE_TAG: /* D-cache tag access */
1320 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1321 case ASI_AFSR: /* E-cache asynchronous fault status */
1322 case ASI_AFAR: /* E-cache asynchronous fault address */
1323 case ASI_EC_TAG_DATA: /* E-cache tag data */
1324 case ASI_IC_INSTR: /* I-cache instruction access */
1325 case ASI_IC_TAG: /* I-cache tag access */
1326 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1327 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1328 case ASI_EC_W: /* E-cache tag */
1329 case ASI_EC_R: /* E-cache tag */
1330 break;
1331 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1332 case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */
1333 case ASI_IMMU_DEMAP: /* I-MMU demap, WO */
1334 case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */
1335 case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
1336 case ASI_INTR_W: /* Interrupt vector, WO */
1337 default:
1338 cpu_unassigned_access(cs, addr, false, false, 1, size);
1339 ret = 0;
1340 break;
1341 }
1342
1343 /* Convert to signed number */
1344 if (sign) {
1345 switch (size) {
1346 case 1:
1347 ret = (int8_t) ret;
1348 break;
1349 case 2:
1350 ret = (int16_t) ret;
1351 break;
1352 case 4:
1353 ret = (int32_t) ret;
1354 break;
1355 default:
1356 break;
1357 }
1358 }
1359 #ifdef DEBUG_ASI
1360 dump_asi("read ", last_addr, asi, size, ret);
1361 #endif
1362 return ret;
1363 }
1364
1365 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1366 int asi, uint32_t memop)
1367 {
1368 int size = 1 << (memop & MO_SIZE);
1369 SPARCCPU *cpu = sparc_env_get_cpu(env);
1370 CPUState *cs = CPU(cpu);
1371
1372 #ifdef DEBUG_ASI
1373 dump_asi("write", addr, asi, size, val);
1374 #endif
1375
1376 asi &= 0xff;
1377
1378 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1379 || (cpu_has_hypervisor(env)
1380 && asi >= 0x30 && asi < 0x80
1381 && !(env->hpstate & HS_PRIV))) {
1382 cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1383 }
1384
1385 do_check_align(env, addr, size - 1, GETPC());
1386 addr = asi_address_mask(env, asi, addr);
1387
1388 switch (asi) {
1389 case ASI_AIUP: /* As if user primary */
1390 case ASI_AIUS: /* As if user secondary */
1391 case ASI_AIUPL: /* As if user primary LE */
1392 case ASI_AIUSL: /* As if user secondary LE */
1393 case ASI_P: /* Primary */
1394 case ASI_S: /* Secondary */
1395 case ASI_PL: /* Primary LE */
1396 case ASI_SL: /* Secondary LE */
1397 case ASI_REAL: /* Bypass */
1398 case ASI_REAL_IO: /* Bypass, non-cacheable */
1399 case ASI_REAL_L: /* Bypass LE */
1400 case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1401 case ASI_N: /* Nucleus */
1402 case ASI_NL: /* Nucleus Little Endian (LE) */
1403 case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */
1404 case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1405 case ASI_TWINX_AIUP: /* As if user primary, twinx */
1406 case ASI_TWINX_AIUS: /* As if user secondary, twinx */
1407 case ASI_TWINX_REAL: /* Real address, twinx */
1408 case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1409 case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1410 case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1411 case ASI_TWINX_N: /* Nucleus, twinx */
1412 case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1413 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1414 case ASI_TWINX_P: /* Primary, twinx */
1415 case ASI_TWINX_PL: /* Primary, twinx, LE */
1416 case ASI_TWINX_S: /* Secondary, twinx */
1417 case ASI_TWINX_SL: /* Secondary, twinx, LE */
1418 /* These are always handled inline. */
1419 g_assert_not_reached();
1420
1421 case ASI_UPA_CONFIG: /* UPA config */
1422 /* XXX */
1423 return;
1424 case ASI_LSU_CONTROL: /* LSU */
1425 env->lsu = val & (DMMU_E | IMMU_E);
1426 return;
1427 case ASI_IMMU: /* I-MMU regs */
1428 {
1429 int reg = (addr >> 3) & 0xf;
1430 uint64_t oldreg;
1431
1432 oldreg = env->immuregs[reg];
1433 switch (reg) {
1434 case 0: /* RO */
1435 return;
1436 case 1: /* Not in I-MMU */
1437 case 2:
1438 return;
1439 case 3: /* SFSR */
1440 if ((val & 1) == 0) {
1441 val = 0; /* Clear SFSR */
1442 }
1443 env->immu.sfsr = val;
1444 break;
1445 case 4: /* RO */
1446 return;
1447 case 5: /* TSB access */
1448 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1449 PRIx64 "\n", env->immu.tsb, val);
1450 env->immu.tsb = val;
1451 break;
1452 case 6: /* Tag access */
1453 env->immu.tag_access = val;
1454 break;
1455 case 7:
1456 case 8:
1457 return;
1458 default:
1459 break;
1460 }
1461
1462 if (oldreg != env->immuregs[reg]) {
1463 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1464 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1465 }
1466 #ifdef DEBUG_MMU
1467 dump_mmu(stdout, fprintf, env);
1468 #endif
1469 return;
1470 }
1471 case ASI_ITLB_DATA_IN: /* I-MMU data in */
1472 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1473 return;
1474 case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1475 {
1476 /* TODO: auto demap */
1477
1478 unsigned int i = (addr >> 3) & 0x3f;
1479
1480 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1481
1482 #ifdef DEBUG_MMU
1483 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1484 dump_mmu(stdout, fprintf, env);
1485 #endif
1486 return;
1487 }
1488 case ASI_IMMU_DEMAP: /* I-MMU demap */
1489 demap_tlb(env->itlb, addr, "immu", env);
1490 return;
1491 case ASI_DMMU: /* D-MMU regs */
1492 {
1493 int reg = (addr >> 3) & 0xf;
1494 uint64_t oldreg;
1495
1496 oldreg = env->dmmuregs[reg];
1497 switch (reg) {
1498 case 0: /* RO */
1499 case 4:
1500 return;
1501 case 3: /* SFSR */
1502 if ((val & 1) == 0) {
1503 val = 0; /* Clear SFSR, Fault address */
1504 env->dmmu.sfar = 0;
1505 }
1506 env->dmmu.sfsr = val;
1507 break;
1508 case 1: /* Primary context */
1509 env->dmmu.mmu_primary_context = val;
1510 /* can be optimized to only flush MMU_USER_IDX
1511 and MMU_KERNEL_IDX entries */
1512 tlb_flush(CPU(cpu), 1);
1513 break;
1514 case 2: /* Secondary context */
1515 env->dmmu.mmu_secondary_context = val;
1516 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1517 and MMU_KERNEL_SECONDARY_IDX entries */
1518 tlb_flush(CPU(cpu), 1);
1519 break;
1520 case 5: /* TSB access */
1521 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1522 PRIx64 "\n", env->dmmu.tsb, val);
1523 env->dmmu.tsb = val;
1524 break;
1525 case 6: /* Tag access */
1526 env->dmmu.tag_access = val;
1527 break;
1528 case 7: /* Virtual Watchpoint */
1529 case 8: /* Physical Watchpoint */
1530 default:
1531 env->dmmuregs[reg] = val;
1532 break;
1533 }
1534
1535 if (oldreg != env->dmmuregs[reg]) {
1536 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1537 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1538 }
1539 #ifdef DEBUG_MMU
1540 dump_mmu(stdout, fprintf, env);
1541 #endif
1542 return;
1543 }
1544 case ASI_DTLB_DATA_IN: /* D-MMU data in */
1545 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1546 return;
1547 case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1548 {
1549 unsigned int i = (addr >> 3) & 0x3f;
1550
1551 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1552
1553 #ifdef DEBUG_MMU
1554 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1555 dump_mmu(stdout, fprintf, env);
1556 #endif
1557 return;
1558 }
1559 case ASI_DMMU_DEMAP: /* D-MMU demap */
1560 demap_tlb(env->dtlb, addr, "dmmu", env);
1561 return;
1562 case ASI_INTR_RECEIVE: /* Interrupt data receive */
1563 env->ivec_status = val & 0x20;
1564 return;
1565 case ASI_DCACHE_DATA: /* D-cache data */
1566 case ASI_DCACHE_TAG: /* D-cache tag access */
1567 case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1568 case ASI_AFSR: /* E-cache asynchronous fault status */
1569 case ASI_AFAR: /* E-cache asynchronous fault address */
1570 case ASI_EC_TAG_DATA: /* E-cache tag data */
1571 case ASI_IC_INSTR: /* I-cache instruction access */
1572 case ASI_IC_TAG: /* I-cache tag access */
1573 case ASI_IC_PRE_DECODE: /* I-cache predecode */
1574 case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1575 case ASI_EC_W: /* E-cache tag */
1576 case ASI_EC_R: /* E-cache tag */
1577 return;
1578 case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1579 case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1580 case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1581 case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1582 case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1583 case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1584 case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1585 case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1586 case ASI_INTR_R: /* Incoming interrupt vector, RO */
1587 case ASI_PNF: /* Primary no-fault, RO */
1588 case ASI_SNF: /* Secondary no-fault, RO */
1589 case ASI_PNFL: /* Primary no-fault LE, RO */
1590 case ASI_SNFL: /* Secondary no-fault LE, RO */
1591 default:
1592 cpu_unassigned_access(cs, addr, true, false, 1, size);
1593 return;
1594 }
1595 }
1596 #endif /* CONFIG_USER_ONLY */
1597 #endif /* TARGET_SPARC64 */
1598
1599 #if !defined(CONFIG_USER_ONLY)
1600 #ifndef TARGET_SPARC64
1601 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1602 bool is_write, bool is_exec, int is_asi,
1603 unsigned size)
1604 {
1605 SPARCCPU *cpu = SPARC_CPU(cs);
1606 CPUSPARCState *env = &cpu->env;
1607 int fault_type;
1608
1609 #ifdef DEBUG_UNASSIGNED
1610 if (is_asi) {
1611 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1612 " asi 0x%02x from " TARGET_FMT_lx "\n",
1613 is_exec ? "exec" : is_write ? "write" : "read", size,
1614 size == 1 ? "" : "s", addr, is_asi, env->pc);
1615 } else {
1616 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1617 " from " TARGET_FMT_lx "\n",
1618 is_exec ? "exec" : is_write ? "write" : "read", size,
1619 size == 1 ? "" : "s", addr, env->pc);
1620 }
1621 #endif
1622 /* Don't overwrite translation and access faults */
1623 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
1624 if ((fault_type > 4) || (fault_type == 0)) {
1625 env->mmuregs[3] = 0; /* Fault status register */
1626 if (is_asi) {
1627 env->mmuregs[3] |= 1 << 16;
1628 }
1629 if (env->psrs) {
1630 env->mmuregs[3] |= 1 << 5;
1631 }
1632 if (is_exec) {
1633 env->mmuregs[3] |= 1 << 6;
1634 }
1635 if (is_write) {
1636 env->mmuregs[3] |= 1 << 7;
1637 }
1638 env->mmuregs[3] |= (5 << 2) | 2;
1639 /* SuperSPARC will never place instruction fault addresses in the FAR */
1640 if (!is_exec) {
1641 env->mmuregs[4] = addr; /* Fault address register */
1642 }
1643 }
1644 /* overflow (same type fault was not read before another fault) */
1645 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
1646 env->mmuregs[3] |= 1;
1647 }
1648
1649 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1650 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
1651 cpu_raise_exception_ra(env, tt, GETPC());
1652 }
1653
1654 /* flush neverland mappings created during no-fault mode,
1655 so the sequential MMU faults report proper fault types */
1656 if (env->mmuregs[0] & MMU_NF) {
1657 tlb_flush(cs, 1);
1658 }
1659 }
1660 #else
1661 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
1662 bool is_write, bool is_exec, int is_asi,
1663 unsigned size)
1664 {
1665 SPARCCPU *cpu = SPARC_CPU(cs);
1666 CPUSPARCState *env = &cpu->env;
1667 int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
1668
1669 #ifdef DEBUG_UNASSIGNED
1670 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1671 "\n", addr, env->pc);
1672 #endif
1673
1674 cpu_raise_exception_ra(env, tt, GETPC());
1675 }
1676 #endif
1677 #endif
1678
1679 #if !defined(CONFIG_USER_ONLY)
1680 void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1681 MMUAccessType access_type,
1682 int mmu_idx,
1683 uintptr_t retaddr)
1684 {
1685 SPARCCPU *cpu = SPARC_CPU(cs);
1686 CPUSPARCState *env = &cpu->env;
1687
1688 #ifdef DEBUG_UNALIGNED
1689 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
1690 "\n", addr, env->pc);
1691 #endif
1692 cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
1693 }
1694
1695 /* try to fill the TLB and return an exception if error. If retaddr is
1696 NULL, it means that the function was called in C code (i.e. not
1697 from generated code or from helper.c) */
1698 /* XXX: fix it to restore all registers */
1699 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
1700 int mmu_idx, uintptr_t retaddr)
1701 {
1702 int ret;
1703
1704 ret = sparc_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
1705 if (ret) {
1706 cpu_loop_exit_restore(cs, retaddr);
1707 }
1708 }
1709 #endif