]> git.proxmox.com Git - mirror_qemu.git/blob - target-sparc/op_helper.c
da4c18d2d010dc2b67a4126b71791f12ab9b28aa
[mirror_qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2
3 //#define DEBUG_PCALL
4 //#define DEBUG_MMU
5 //#define DEBUG_MXCC
6 //#define DEBUG_UNALIGNED
7 //#define DEBUG_UNASSIGNED
8
9 #ifdef DEBUG_MMU
10 #define DPRINTF_MMU(fmt, args...) \
11 do { printf("MMU: " fmt , ##args); } while (0)
12 #else
13 #define DPRINTF_MMU(fmt, args...)
14 #endif
15
16 #ifdef DEBUG_MXCC
17 #define DPRINTF_MXCC(fmt, args...) \
18 do { printf("MXCC: " fmt , ##args); } while (0)
19 #else
20 #define DPRINTF_MXCC(fmt, args...)
21 #endif
22
23 void raise_exception(int tt)
24 {
25 env->exception_index = tt;
26 cpu_loop_exit();
27 }
28
29 void check_ieee_exceptions()
30 {
31 T0 = get_float_exception_flags(&env->fp_status);
32 if (T0)
33 {
34 /* Copy IEEE 754 flags into FSR */
35 if (T0 & float_flag_invalid)
36 env->fsr |= FSR_NVC;
37 if (T0 & float_flag_overflow)
38 env->fsr |= FSR_OFC;
39 if (T0 & float_flag_underflow)
40 env->fsr |= FSR_UFC;
41 if (T0 & float_flag_divbyzero)
42 env->fsr |= FSR_DZC;
43 if (T0 & float_flag_inexact)
44 env->fsr |= FSR_NXC;
45
46 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
47 {
48 /* Unmasked exception, generate a trap */
49 env->fsr |= FSR_FTT_IEEE_EXCP;
50 raise_exception(TT_FP_EXCP);
51 }
52 else
53 {
54 /* Accumulate exceptions */
55 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
56 }
57 }
58 }
59
60 #ifdef USE_INT_TO_FLOAT_HELPERS
61 void do_fitos(void)
62 {
63 set_float_exception_flags(0, &env->fp_status);
64 FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
65 check_ieee_exceptions();
66 }
67
68 void do_fitod(void)
69 {
70 DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
71 }
72 #endif
73
74 void do_fabss(void)
75 {
76 FT0 = float32_abs(FT1);
77 }
78
79 #ifdef TARGET_SPARC64
80 void do_fabsd(void)
81 {
82 DT0 = float64_abs(DT1);
83 }
84 #endif
85
86 void do_fsqrts(void)
87 {
88 set_float_exception_flags(0, &env->fp_status);
89 FT0 = float32_sqrt(FT1, &env->fp_status);
90 check_ieee_exceptions();
91 }
92
93 void do_fsqrtd(void)
94 {
95 set_float_exception_flags(0, &env->fp_status);
96 DT0 = float64_sqrt(DT1, &env->fp_status);
97 check_ieee_exceptions();
98 }
99
100 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
101 void glue(do_, name) (void) \
102 { \
103 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
104 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
105 case float_relation_unordered: \
106 T0 = (FSR_FCC1 | FSR_FCC0) << FS; \
107 if ((env->fsr & FSR_NVM) || TRAP) { \
108 env->fsr |= T0; \
109 env->fsr |= FSR_NVC; \
110 env->fsr |= FSR_FTT_IEEE_EXCP; \
111 raise_exception(TT_FP_EXCP); \
112 } else { \
113 env->fsr |= FSR_NVA; \
114 } \
115 break; \
116 case float_relation_less: \
117 T0 = FSR_FCC0 << FS; \
118 break; \
119 case float_relation_greater: \
120 T0 = FSR_FCC1 << FS; \
121 break; \
122 default: \
123 T0 = 0; \
124 break; \
125 } \
126 env->fsr |= T0; \
127 }
128
129 GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
130 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
131
132 GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
133 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
134
135 #ifdef TARGET_SPARC64
136 GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
137 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
138
139 GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
140 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
141
142 GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
143 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
144
145 GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
146 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
147
148 GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
149 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
150
151 GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
152 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
153 #endif
154
155 #ifndef TARGET_SPARC64
156 #ifndef CONFIG_USER_ONLY
157
158 #ifdef DEBUG_MXCC
159 static void dump_mxcc(CPUState *env)
160 {
161 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
162 env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
163 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
164 " %016llx %016llx %016llx %016llx\n",
165 env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
166 env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
167 }
168 #endif
169
170 void helper_ld_asi(int asi, int size, int sign)
171 {
172 uint32_t ret = 0;
173 #ifdef DEBUG_MXCC
174 uint32_t last_T0 = T0;
175 #endif
176
177 switch (asi) {
178 case 2: /* SuperSparc MXCC registers */
179 switch (T0) {
180 case 0x01c00a00: /* MXCC control register */
181 if (size == 8) {
182 ret = env->mxccregs[3];
183 T0 = env->mxccregs[3] >> 32;
184 } else
185 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
186 break;
187 case 0x01c00a04: /* MXCC control register */
188 if (size == 4)
189 ret = env->mxccregs[3];
190 else
191 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
192 break;
193 case 0x01c00f00: /* MBus port address register */
194 if (size == 8) {
195 ret = env->mxccregs[7];
196 T0 = env->mxccregs[7] >> 32;
197 } else
198 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
199 break;
200 default:
201 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
202 break;
203 }
204 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
205 "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
206 #ifdef DEBUG_MXCC
207 dump_mxcc(env);
208 #endif
209 break;
210 case 3: /* MMU probe */
211 {
212 int mmulev;
213
214 mmulev = (T0 >> 8) & 15;
215 if (mmulev > 4)
216 ret = 0;
217 else {
218 ret = mmu_probe(env, T0, mmulev);
219 //bswap32s(&ret);
220 }
221 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
222 }
223 break;
224 case 4: /* read MMU regs */
225 {
226 int reg = (T0 >> 8) & 0xf;
227
228 ret = env->mmuregs[reg];
229 if (reg == 3) /* Fault status cleared on read */
230 env->mmuregs[reg] = 0;
231 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
232 }
233 break;
234 case 9: /* Supervisor code access */
235 switch(size) {
236 case 1:
237 ret = ldub_code(T0);
238 break;
239 case 2:
240 ret = lduw_code(T0 & ~1);
241 break;
242 default:
243 case 4:
244 ret = ldl_code(T0 & ~3);
245 break;
246 case 8:
247 ret = ldl_code(T0 & ~3);
248 T0 = ldl_code((T0 + 4) & ~3);
249 break;
250 }
251 break;
252 case 0xa: /* User data access */
253 switch(size) {
254 case 1:
255 ret = ldub_user(T0);
256 break;
257 case 2:
258 ret = lduw_user(T0 & ~1);
259 break;
260 default:
261 case 4:
262 ret = ldl_user(T0 & ~3);
263 break;
264 case 8:
265 ret = ldl_user(T0 & ~3);
266 T0 = ldl_user((T0 + 4) & ~3);
267 break;
268 }
269 break;
270 case 0xb: /* Supervisor data access */
271 switch(size) {
272 case 1:
273 ret = ldub_kernel(T0);
274 break;
275 case 2:
276 ret = lduw_kernel(T0 & ~1);
277 break;
278 default:
279 case 4:
280 ret = ldl_kernel(T0 & ~3);
281 break;
282 case 8:
283 ret = ldl_kernel(T0 & ~3);
284 T0 = ldl_kernel((T0 + 4) & ~3);
285 break;
286 }
287 break;
288 case 0xc: /* I-cache tag */
289 case 0xd: /* I-cache data */
290 case 0xe: /* D-cache tag */
291 case 0xf: /* D-cache data */
292 break;
293 case 0x20: /* MMU passthrough */
294 switch(size) {
295 case 1:
296 ret = ldub_phys(T0);
297 break;
298 case 2:
299 ret = lduw_phys(T0 & ~1);
300 break;
301 default:
302 case 4:
303 ret = ldl_phys(T0 & ~3);
304 break;
305 case 8:
306 ret = ldl_phys(T0 & ~3);
307 T0 = ldl_phys((T0 + 4) & ~3);
308 break;
309 }
310 break;
311 case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
312 case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
313 switch(size) {
314 case 1:
315 ret = ldub_phys((target_phys_addr_t)T0
316 | ((target_phys_addr_t)(asi & 0xf) << 32));
317 break;
318 case 2:
319 ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
320 | ((target_phys_addr_t)(asi & 0xf) << 32));
321 break;
322 default:
323 case 4:
324 ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
325 | ((target_phys_addr_t)(asi & 0xf) << 32));
326 break;
327 case 8:
328 ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
329 | ((target_phys_addr_t)(asi & 0xf) << 32));
330 T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
331 | ((target_phys_addr_t)(asi & 0xf) << 32));
332 break;
333 }
334 break;
335 case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
336 default:
337 do_unassigned_access(T0, 0, 0, 1);
338 ret = 0;
339 break;
340 }
341 if (sign) {
342 switch(size) {
343 case 1:
344 T1 = (int8_t) ret;
345 break;
346 case 2:
347 T1 = (int16_t) ret;
348 break;
349 default:
350 T1 = ret;
351 break;
352 }
353 }
354 else
355 T1 = ret;
356 }
357
358 void helper_st_asi(int asi, int size)
359 {
360 switch(asi) {
361 case 2: /* SuperSparc MXCC registers */
362 switch (T0) {
363 case 0x01c00000: /* MXCC stream data register 0 */
364 if (size == 8)
365 env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
366 else
367 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
368 break;
369 case 0x01c00008: /* MXCC stream data register 1 */
370 if (size == 8)
371 env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
372 else
373 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
374 break;
375 case 0x01c00010: /* MXCC stream data register 2 */
376 if (size == 8)
377 env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
378 else
379 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
380 break;
381 case 0x01c00018: /* MXCC stream data register 3 */
382 if (size == 8)
383 env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
384 else
385 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
386 break;
387 case 0x01c00100: /* MXCC stream source */
388 if (size == 8)
389 env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
390 else
391 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
392 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0);
393 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8);
394 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
395 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
396 break;
397 case 0x01c00200: /* MXCC stream destination */
398 if (size == 8)
399 env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
400 else
401 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
402 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]);
403 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]);
404 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
405 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
406 break;
407 case 0x01c00a00: /* MXCC control register */
408 if (size == 8)
409 env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
410 else
411 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
412 break;
413 case 0x01c00a04: /* MXCC control register */
414 if (size == 4)
415 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000) | T1;
416 else
417 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
418 break;
419 case 0x01c00e00: /* MXCC error register */
420 if (size == 8)
421 env->mxccregs[6] = ((uint64_t)T1 << 32) | T2;
422 else
423 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
424 if (env->mxccregs[6] == 0xffffffffffffffffULL) {
425 // this is probably a reset
426 }
427 break;
428 case 0x01c00f00: /* MBus port address register */
429 if (size == 8)
430 env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
431 else
432 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
433 break;
434 default:
435 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
436 break;
437 }
438 DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
439 #ifdef DEBUG_MXCC
440 dump_mxcc(env);
441 #endif
442 break;
443 case 3: /* MMU flush */
444 {
445 int mmulev;
446
447 mmulev = (T0 >> 8) & 15;
448 DPRINTF_MMU("mmu flush level %d\n", mmulev);
449 switch (mmulev) {
450 case 0: // flush page
451 tlb_flush_page(env, T0 & 0xfffff000);
452 break;
453 case 1: // flush segment (256k)
454 case 2: // flush region (16M)
455 case 3: // flush context (4G)
456 case 4: // flush entire
457 tlb_flush(env, 1);
458 break;
459 default:
460 break;
461 }
462 #ifdef DEBUG_MMU
463 dump_mmu(env);
464 #endif
465 return;
466 }
467 case 4: /* write MMU regs */
468 {
469 int reg = (T0 >> 8) & 0xf;
470 uint32_t oldreg;
471
472 oldreg = env->mmuregs[reg];
473 switch(reg) {
474 case 0:
475 env->mmuregs[reg] &= ~(MMU_E | MMU_NF | MMU_BM);
476 env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | MMU_BM);
477 // Mappings generated during no-fault mode or MMU
478 // disabled mode are invalid in normal mode
479 if (oldreg != env->mmuregs[reg])
480 tlb_flush(env, 1);
481 break;
482 case 2:
483 env->mmuregs[reg] = T1;
484 if (oldreg != env->mmuregs[reg]) {
485 /* we flush when the MMU context changes because
486 QEMU has no MMU context support */
487 tlb_flush(env, 1);
488 }
489 break;
490 case 3:
491 case 4:
492 break;
493 default:
494 env->mmuregs[reg] = T1;
495 break;
496 }
497 if (oldreg != env->mmuregs[reg]) {
498 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
499 }
500 #ifdef DEBUG_MMU
501 dump_mmu(env);
502 #endif
503 return;
504 }
505 case 0xa: /* User data access */
506 switch(size) {
507 case 1:
508 stb_user(T0, T1);
509 break;
510 case 2:
511 stw_user(T0 & ~1, T1);
512 break;
513 default:
514 case 4:
515 stl_user(T0 & ~3, T1);
516 break;
517 case 8:
518 stl_user(T0 & ~3, T1);
519 stl_user((T0 + 4) & ~3, T2);
520 break;
521 }
522 break;
523 case 0xb: /* Supervisor data access */
524 switch(size) {
525 case 1:
526 stb_kernel(T0, T1);
527 break;
528 case 2:
529 stw_kernel(T0 & ~1, T1);
530 break;
531 default:
532 case 4:
533 stl_kernel(T0 & ~3, T1);
534 break;
535 case 8:
536 stl_kernel(T0 & ~3, T1);
537 stl_kernel((T0 + 4) & ~3, T2);
538 break;
539 }
540 break;
541 case 0xc: /* I-cache tag */
542 case 0xd: /* I-cache data */
543 case 0xe: /* D-cache tag */
544 case 0xf: /* D-cache data */
545 case 0x10: /* I/D-cache flush page */
546 case 0x11: /* I/D-cache flush segment */
547 case 0x12: /* I/D-cache flush region */
548 case 0x13: /* I/D-cache flush context */
549 case 0x14: /* I/D-cache flush user */
550 break;
551 case 0x17: /* Block copy, sta access */
552 {
553 // value (T1) = src
554 // address (T0) = dst
555 // copy 32 bytes
556 unsigned int i;
557 uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
558
559 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
560 temp = ldl_kernel(src);
561 stl_kernel(dst, temp);
562 }
563 }
564 return;
565 case 0x1f: /* Block fill, stda access */
566 {
567 // value (T1, T2)
568 // address (T0) = dst
569 // fill 32 bytes
570 unsigned int i;
571 uint32_t dst = T0 & 7;
572 uint64_t val;
573
574 val = (((uint64_t)T1) << 32) | T2;
575
576 for (i = 0; i < 32; i += 8, dst += 8)
577 stq_kernel(dst, val);
578 }
579 return;
580 case 0x20: /* MMU passthrough */
581 {
582 switch(size) {
583 case 1:
584 stb_phys(T0, T1);
585 break;
586 case 2:
587 stw_phys(T0 & ~1, T1);
588 break;
589 case 4:
590 default:
591 stl_phys(T0 & ~3, T1);
592 break;
593 case 8:
594 stl_phys(T0 & ~3, T1);
595 stl_phys((T0 + 4) & ~3, T2);
596 break;
597 }
598 }
599 return;
600 case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
601 case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
602 {
603 switch(size) {
604 case 1:
605 stb_phys((target_phys_addr_t)T0
606 | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
607 break;
608 case 2:
609 stw_phys((target_phys_addr_t)(T0 & ~1)
610 | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
611 break;
612 case 4:
613 default:
614 stl_phys((target_phys_addr_t)(T0 & ~3)
615 | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
616 break;
617 case 8:
618 stl_phys((target_phys_addr_t)(T0 & ~3)
619 | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
620 stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
621 | ((target_phys_addr_t)(asi & 0xf) << 32), T2);
622 break;
623 }
624 }
625 return;
626 case 0x31: /* Ross RT620 I-cache flush */
627 case 0x36: /* I-cache flash clear */
628 case 0x37: /* D-cache flash clear */
629 break;
630 case 9: /* Supervisor code access, XXX */
631 case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
632 default:
633 do_unassigned_access(T0, 1, 0, 1);
634 return;
635 }
636 }
637
638 #endif /* CONFIG_USER_ONLY */
639 #else /* TARGET_SPARC64 */
640
641 #ifdef CONFIG_USER_ONLY
642 void helper_ld_asi(int asi, int size, int sign)
643 {
644 uint64_t ret = 0;
645
646 if (asi < 0x80)
647 raise_exception(TT_PRIV_ACT);
648
649 switch (asi) {
650 case 0x80: // Primary
651 case 0x82: // Primary no-fault
652 case 0x88: // Primary LE
653 case 0x8a: // Primary no-fault LE
654 {
655 switch(size) {
656 case 1:
657 ret = ldub_raw(T0);
658 break;
659 case 2:
660 ret = lduw_raw(T0 & ~1);
661 break;
662 case 4:
663 ret = ldl_raw(T0 & ~3);
664 break;
665 default:
666 case 8:
667 ret = ldq_raw(T0 & ~7);
668 break;
669 }
670 }
671 break;
672 case 0x81: // Secondary
673 case 0x83: // Secondary no-fault
674 case 0x89: // Secondary LE
675 case 0x8b: // Secondary no-fault LE
676 // XXX
677 break;
678 default:
679 break;
680 }
681
682 /* Convert from little endian */
683 switch (asi) {
684 case 0x88: // Primary LE
685 case 0x89: // Secondary LE
686 case 0x8a: // Primary no-fault LE
687 case 0x8b: // Secondary no-fault LE
688 switch(size) {
689 case 2:
690 ret = bswap16(ret);
691 break;
692 case 4:
693 ret = bswap32(ret);
694 break;
695 case 8:
696 ret = bswap64(ret);
697 break;
698 default:
699 break;
700 }
701 default:
702 break;
703 }
704
705 /* Convert to signed number */
706 if (sign) {
707 switch(size) {
708 case 1:
709 ret = (int8_t) ret;
710 break;
711 case 2:
712 ret = (int16_t) ret;
713 break;
714 case 4:
715 ret = (int32_t) ret;
716 break;
717 default:
718 break;
719 }
720 }
721 T1 = ret;
722 }
723
724 void helper_st_asi(int asi, int size)
725 {
726 if (asi < 0x80)
727 raise_exception(TT_PRIV_ACT);
728
729 /* Convert to little endian */
730 switch (asi) {
731 case 0x88: // Primary LE
732 case 0x89: // Secondary LE
733 switch(size) {
734 case 2:
735 T0 = bswap16(T0);
736 break;
737 case 4:
738 T0 = bswap32(T0);
739 break;
740 case 8:
741 T0 = bswap64(T0);
742 break;
743 default:
744 break;
745 }
746 default:
747 break;
748 }
749
750 switch(asi) {
751 case 0x80: // Primary
752 case 0x88: // Primary LE
753 {
754 switch(size) {
755 case 1:
756 stb_raw(T0, T1);
757 break;
758 case 2:
759 stw_raw(T0 & ~1, T1);
760 break;
761 case 4:
762 stl_raw(T0 & ~3, T1);
763 break;
764 case 8:
765 default:
766 stq_raw(T0 & ~7, T1);
767 break;
768 }
769 }
770 break;
771 case 0x81: // Secondary
772 case 0x89: // Secondary LE
773 // XXX
774 return;
775
776 case 0x82: // Primary no-fault, RO
777 case 0x83: // Secondary no-fault, RO
778 case 0x8a: // Primary no-fault LE, RO
779 case 0x8b: // Secondary no-fault LE, RO
780 default:
781 do_unassigned_access(T0, 1, 0, 1);
782 return;
783 }
784 }
785
786 #else /* CONFIG_USER_ONLY */
787
788 void helper_ld_asi(int asi, int size, int sign)
789 {
790 uint64_t ret = 0;
791
792 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
793 || (asi >= 0x30 && asi < 0x80) && !(env->hpstate & HS_PRIV))
794 raise_exception(TT_PRIV_ACT);
795
796 switch (asi) {
797 case 0x10: // As if user primary
798 case 0x18: // As if user primary LE
799 case 0x80: // Primary
800 case 0x82: // Primary no-fault
801 case 0x88: // Primary LE
802 case 0x8a: // Primary no-fault LE
803 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
804 if (env->hpstate & HS_PRIV) {
805 switch(size) {
806 case 1:
807 ret = ldub_hypv(T0);
808 break;
809 case 2:
810 ret = lduw_hypv(T0 & ~1);
811 break;
812 case 4:
813 ret = ldl_hypv(T0 & ~3);
814 break;
815 default:
816 case 8:
817 ret = ldq_hypv(T0 & ~7);
818 break;
819 }
820 } else {
821 switch(size) {
822 case 1:
823 ret = ldub_kernel(T0);
824 break;
825 case 2:
826 ret = lduw_kernel(T0 & ~1);
827 break;
828 case 4:
829 ret = ldl_kernel(T0 & ~3);
830 break;
831 default:
832 case 8:
833 ret = ldq_kernel(T0 & ~7);
834 break;
835 }
836 }
837 } else {
838 switch(size) {
839 case 1:
840 ret = ldub_user(T0);
841 break;
842 case 2:
843 ret = lduw_user(T0 & ~1);
844 break;
845 case 4:
846 ret = ldl_user(T0 & ~3);
847 break;
848 default:
849 case 8:
850 ret = ldq_user(T0 & ~7);
851 break;
852 }
853 }
854 break;
855 case 0x14: // Bypass
856 case 0x15: // Bypass, non-cacheable
857 case 0x1c: // Bypass LE
858 case 0x1d: // Bypass, non-cacheable LE
859 {
860 switch(size) {
861 case 1:
862 ret = ldub_phys(T0);
863 break;
864 case 2:
865 ret = lduw_phys(T0 & ~1);
866 break;
867 case 4:
868 ret = ldl_phys(T0 & ~3);
869 break;
870 default:
871 case 8:
872 ret = ldq_phys(T0 & ~7);
873 break;
874 }
875 break;
876 }
877 case 0x04: // Nucleus
878 case 0x0c: // Nucleus Little Endian (LE)
879 case 0x11: // As if user secondary
880 case 0x19: // As if user secondary LE
881 case 0x24: // Nucleus quad LDD 128 bit atomic
882 case 0x2c: // Nucleus quad LDD 128 bit atomic
883 case 0x4a: // UPA config
884 case 0x81: // Secondary
885 case 0x83: // Secondary no-fault
886 case 0x89: // Secondary LE
887 case 0x8b: // Secondary no-fault LE
888 // XXX
889 break;
890 case 0x45: // LSU
891 ret = env->lsu;
892 break;
893 case 0x50: // I-MMU regs
894 {
895 int reg = (T0 >> 3) & 0xf;
896
897 ret = env->immuregs[reg];
898 break;
899 }
900 case 0x51: // I-MMU 8k TSB pointer
901 case 0x52: // I-MMU 64k TSB pointer
902 case 0x55: // I-MMU data access
903 // XXX
904 break;
905 case 0x56: // I-MMU tag read
906 {
907 unsigned int i;
908
909 for (i = 0; i < 64; i++) {
910 // Valid, ctx match, vaddr match
911 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
912 env->itlb_tag[i] == T0) {
913 ret = env->itlb_tag[i];
914 break;
915 }
916 }
917 break;
918 }
919 case 0x58: // D-MMU regs
920 {
921 int reg = (T0 >> 3) & 0xf;
922
923 ret = env->dmmuregs[reg];
924 break;
925 }
926 case 0x5e: // D-MMU tag read
927 {
928 unsigned int i;
929
930 for (i = 0; i < 64; i++) {
931 // Valid, ctx match, vaddr match
932 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
933 env->dtlb_tag[i] == T0) {
934 ret = env->dtlb_tag[i];
935 break;
936 }
937 }
938 break;
939 }
940 case 0x59: // D-MMU 8k TSB pointer
941 case 0x5a: // D-MMU 64k TSB pointer
942 case 0x5b: // D-MMU data pointer
943 case 0x5d: // D-MMU data access
944 case 0x48: // Interrupt dispatch, RO
945 case 0x49: // Interrupt data receive
946 case 0x7f: // Incoming interrupt vector, RO
947 // XXX
948 break;
949 case 0x54: // I-MMU data in, WO
950 case 0x57: // I-MMU demap, WO
951 case 0x5c: // D-MMU data in, WO
952 case 0x5f: // D-MMU demap, WO
953 case 0x77: // Interrupt vector, WO
954 default:
955 do_unassigned_access(T0, 0, 0, 1);
956 ret = 0;
957 break;
958 }
959
960 /* Convert from little endian */
961 switch (asi) {
962 case 0x0c: // Nucleus Little Endian (LE)
963 case 0x18: // As if user primary LE
964 case 0x19: // As if user secondary LE
965 case 0x1c: // Bypass LE
966 case 0x1d: // Bypass, non-cacheable LE
967 case 0x88: // Primary LE
968 case 0x89: // Secondary LE
969 case 0x8a: // Primary no-fault LE
970 case 0x8b: // Secondary no-fault LE
971 switch(size) {
972 case 2:
973 ret = bswap16(ret);
974 break;
975 case 4:
976 ret = bswap32(ret);
977 break;
978 case 8:
979 ret = bswap64(ret);
980 break;
981 default:
982 break;
983 }
984 default:
985 break;
986 }
987
988 /* Convert to signed number */
989 if (sign) {
990 switch(size) {
991 case 1:
992 ret = (int8_t) ret;
993 break;
994 case 2:
995 ret = (int16_t) ret;
996 break;
997 case 4:
998 ret = (int32_t) ret;
999 break;
1000 default:
1001 break;
1002 }
1003 }
1004 T1 = ret;
1005 }
1006
1007 void helper_st_asi(int asi, int size)
1008 {
1009 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1010 || (asi >= 0x30 && asi < 0x80) && !(env->hpstate & HS_PRIV))
1011 raise_exception(TT_PRIV_ACT);
1012
1013 /* Convert to little endian */
1014 switch (asi) {
1015 case 0x0c: // Nucleus Little Endian (LE)
1016 case 0x18: // As if user primary LE
1017 case 0x19: // As if user secondary LE
1018 case 0x1c: // Bypass LE
1019 case 0x1d: // Bypass, non-cacheable LE
1020 case 0x88: // Primary LE
1021 case 0x89: // Secondary LE
1022 switch(size) {
1023 case 2:
1024 T0 = bswap16(T0);
1025 break;
1026 case 4:
1027 T0 = bswap32(T0);
1028 break;
1029 case 8:
1030 T0 = bswap64(T0);
1031 break;
1032 default:
1033 break;
1034 }
1035 default:
1036 break;
1037 }
1038
1039 switch(asi) {
1040 case 0x10: // As if user primary
1041 case 0x18: // As if user primary LE
1042 case 0x80: // Primary
1043 case 0x88: // Primary LE
1044 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1045 if (env->hpstate & HS_PRIV) {
1046 switch(size) {
1047 case 1:
1048 stb_hypv(T0, T1);
1049 break;
1050 case 2:
1051 stw_hypv(T0 & ~1, T1);
1052 break;
1053 case 4:
1054 stl_hypv(T0 & ~3, T1);
1055 break;
1056 case 8:
1057 default:
1058 stq_hypv(T0 & ~7, T1);
1059 break;
1060 }
1061 } else {
1062 switch(size) {
1063 case 1:
1064 stb_kernel(T0, T1);
1065 break;
1066 case 2:
1067 stw_kernel(T0 & ~1, T1);
1068 break;
1069 case 4:
1070 stl_kernel(T0 & ~3, T1);
1071 break;
1072 case 8:
1073 default:
1074 stq_kernel(T0 & ~7, T1);
1075 break;
1076 }
1077 }
1078 } else {
1079 switch(size) {
1080 case 1:
1081 stb_user(T0, T1);
1082 break;
1083 case 2:
1084 stw_user(T0 & ~1, T1);
1085 break;
1086 case 4:
1087 stl_user(T0 & ~3, T1);
1088 break;
1089 case 8:
1090 default:
1091 stq_user(T0 & ~7, T1);
1092 break;
1093 }
1094 }
1095 break;
1096 case 0x14: // Bypass
1097 case 0x15: // Bypass, non-cacheable
1098 case 0x1c: // Bypass LE
1099 case 0x1d: // Bypass, non-cacheable LE
1100 {
1101 switch(size) {
1102 case 1:
1103 stb_phys(T0, T1);
1104 break;
1105 case 2:
1106 stw_phys(T0 & ~1, T1);
1107 break;
1108 case 4:
1109 stl_phys(T0 & ~3, T1);
1110 break;
1111 case 8:
1112 default:
1113 stq_phys(T0 & ~7, T1);
1114 break;
1115 }
1116 }
1117 return;
1118 case 0x04: // Nucleus
1119 case 0x0c: // Nucleus Little Endian (LE)
1120 case 0x11: // As if user secondary
1121 case 0x19: // As if user secondary LE
1122 case 0x24: // Nucleus quad LDD 128 bit atomic
1123 case 0x2c: // Nucleus quad LDD 128 bit atomic
1124 case 0x4a: // UPA config
1125 case 0x81: // Secondary
1126 case 0x89: // Secondary LE
1127 // XXX
1128 return;
1129 case 0x45: // LSU
1130 {
1131 uint64_t oldreg;
1132
1133 oldreg = env->lsu;
1134 env->lsu = T1 & (DMMU_E | IMMU_E);
1135 // Mappings generated during D/I MMU disabled mode are
1136 // invalid in normal mode
1137 if (oldreg != env->lsu) {
1138 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1139 #ifdef DEBUG_MMU
1140 dump_mmu(env);
1141 #endif
1142 tlb_flush(env, 1);
1143 }
1144 return;
1145 }
1146 case 0x50: // I-MMU regs
1147 {
1148 int reg = (T0 >> 3) & 0xf;
1149 uint64_t oldreg;
1150
1151 oldreg = env->immuregs[reg];
1152 switch(reg) {
1153 case 0: // RO
1154 case 4:
1155 return;
1156 case 1: // Not in I-MMU
1157 case 2:
1158 case 7:
1159 case 8:
1160 return;
1161 case 3: // SFSR
1162 if ((T1 & 1) == 0)
1163 T1 = 0; // Clear SFSR
1164 break;
1165 case 5: // TSB access
1166 case 6: // Tag access
1167 default:
1168 break;
1169 }
1170 env->immuregs[reg] = T1;
1171 if (oldreg != env->immuregs[reg]) {
1172 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1173 }
1174 #ifdef DEBUG_MMU
1175 dump_mmu(env);
1176 #endif
1177 return;
1178 }
1179 case 0x54: // I-MMU data in
1180 {
1181 unsigned int i;
1182
1183 // Try finding an invalid entry
1184 for (i = 0; i < 64; i++) {
1185 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1186 env->itlb_tag[i] = env->immuregs[6];
1187 env->itlb_tte[i] = T1;
1188 return;
1189 }
1190 }
1191 // Try finding an unlocked entry
1192 for (i = 0; i < 64; i++) {
1193 if ((env->itlb_tte[i] & 0x40) == 0) {
1194 env->itlb_tag[i] = env->immuregs[6];
1195 env->itlb_tte[i] = T1;
1196 return;
1197 }
1198 }
1199 // error state?
1200 return;
1201 }
1202 case 0x55: // I-MMU data access
1203 {
1204 unsigned int i = (T0 >> 3) & 0x3f;
1205
1206 env->itlb_tag[i] = env->immuregs[6];
1207 env->itlb_tte[i] = T1;
1208 return;
1209 }
1210 case 0x57: // I-MMU demap
1211 // XXX
1212 return;
1213 case 0x58: // D-MMU regs
1214 {
1215 int reg = (T0 >> 3) & 0xf;
1216 uint64_t oldreg;
1217
1218 oldreg = env->dmmuregs[reg];
1219 switch(reg) {
1220 case 0: // RO
1221 case 4:
1222 return;
1223 case 3: // SFSR
1224 if ((T1 & 1) == 0) {
1225 T1 = 0; // Clear SFSR, Fault address
1226 env->dmmuregs[4] = 0;
1227 }
1228 env->dmmuregs[reg] = T1;
1229 break;
1230 case 1: // Primary context
1231 case 2: // Secondary context
1232 case 5: // TSB access
1233 case 6: // Tag access
1234 case 7: // Virtual Watchpoint
1235 case 8: // Physical Watchpoint
1236 default:
1237 break;
1238 }
1239 env->dmmuregs[reg] = T1;
1240 if (oldreg != env->dmmuregs[reg]) {
1241 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1242 }
1243 #ifdef DEBUG_MMU
1244 dump_mmu(env);
1245 #endif
1246 return;
1247 }
1248 case 0x5c: // D-MMU data in
1249 {
1250 unsigned int i;
1251
1252 // Try finding an invalid entry
1253 for (i = 0; i < 64; i++) {
1254 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1255 env->dtlb_tag[i] = env->dmmuregs[6];
1256 env->dtlb_tte[i] = T1;
1257 return;
1258 }
1259 }
1260 // Try finding an unlocked entry
1261 for (i = 0; i < 64; i++) {
1262 if ((env->dtlb_tte[i] & 0x40) == 0) {
1263 env->dtlb_tag[i] = env->dmmuregs[6];
1264 env->dtlb_tte[i] = T1;
1265 return;
1266 }
1267 }
1268 // error state?
1269 return;
1270 }
1271 case 0x5d: // D-MMU data access
1272 {
1273 unsigned int i = (T0 >> 3) & 0x3f;
1274
1275 env->dtlb_tag[i] = env->dmmuregs[6];
1276 env->dtlb_tte[i] = T1;
1277 return;
1278 }
1279 case 0x5f: // D-MMU demap
1280 case 0x49: // Interrupt data receive
1281 // XXX
1282 return;
1283 case 0x51: // I-MMU 8k TSB pointer, RO
1284 case 0x52: // I-MMU 64k TSB pointer, RO
1285 case 0x56: // I-MMU tag read, RO
1286 case 0x59: // D-MMU 8k TSB pointer, RO
1287 case 0x5a: // D-MMU 64k TSB pointer, RO
1288 case 0x5b: // D-MMU data pointer, RO
1289 case 0x5e: // D-MMU tag read, RO
1290 case 0x48: // Interrupt dispatch, RO
1291 case 0x7f: // Incoming interrupt vector, RO
1292 case 0x82: // Primary no-fault, RO
1293 case 0x83: // Secondary no-fault, RO
1294 case 0x8a: // Primary no-fault LE, RO
1295 case 0x8b: // Secondary no-fault LE, RO
1296 default:
1297 do_unassigned_access(T0, 1, 0, 1);
1298 return;
1299 }
1300 }
1301 #endif /* CONFIG_USER_ONLY */
1302
1303 void helper_ldf_asi(int asi, int size, int rd)
1304 {
1305 target_ulong tmp_T0 = T0, tmp_T1 = T1;
1306 unsigned int i;
1307
1308 switch (asi) {
1309 case 0xf0: // Block load primary
1310 case 0xf1: // Block load secondary
1311 case 0xf8: // Block load primary LE
1312 case 0xf9: // Block load secondary LE
1313 if (rd & 7) {
1314 raise_exception(TT_ILL_INSN);
1315 return;
1316 }
1317 if (T0 & 0x3f) {
1318 raise_exception(TT_UNALIGNED);
1319 return;
1320 }
1321 for (i = 0; i < 16; i++) {
1322 helper_ld_asi(asi & 0x8f, 4, 0);
1323 *(uint32_t *)&env->fpr[rd++] = T1;
1324 T0 += 4;
1325 }
1326 T0 = tmp_T0;
1327 T1 = tmp_T1;
1328
1329 return;
1330 default:
1331 break;
1332 }
1333
1334 helper_ld_asi(asi, size, 0);
1335 switch(size) {
1336 default:
1337 case 4:
1338 *((uint32_t *)&FT0) = T1;
1339 break;
1340 case 8:
1341 *((int64_t *)&DT0) = T1;
1342 break;
1343 }
1344 T1 = tmp_T1;
1345 }
1346
1347 void helper_stf_asi(int asi, int size, int rd)
1348 {
1349 target_ulong tmp_T0 = T0, tmp_T1 = T1;
1350 unsigned int i;
1351
1352 switch (asi) {
1353 case 0xf0: // Block store primary
1354 case 0xf1: // Block store secondary
1355 case 0xf8: // Block store primary LE
1356 case 0xf9: // Block store secondary LE
1357 if (rd & 7) {
1358 raise_exception(TT_ILL_INSN);
1359 return;
1360 }
1361 if (T0 & 0x3f) {
1362 raise_exception(TT_UNALIGNED);
1363 return;
1364 }
1365 for (i = 0; i < 16; i++) {
1366 T1 = *(uint32_t *)&env->fpr[rd++];
1367 helper_st_asi(asi & 0x8f, 4);
1368 T0 += 4;
1369 }
1370 T0 = tmp_T0;
1371 T1 = tmp_T1;
1372
1373 return;
1374 default:
1375 break;
1376 }
1377
1378 switch(size) {
1379 default:
1380 case 4:
1381 T1 = *((uint32_t *)&FT0);
1382 break;
1383 case 8:
1384 T1 = *((int64_t *)&DT0);
1385 break;
1386 }
1387 helper_st_asi(asi, size);
1388 T1 = tmp_T1;
1389 }
1390
1391 #endif /* TARGET_SPARC64 */
1392
1393 #ifndef TARGET_SPARC64
1394 void helper_rett()
1395 {
1396 unsigned int cwp;
1397
1398 if (env->psret == 1)
1399 raise_exception(TT_ILL_INSN);
1400
1401 env->psret = 1;
1402 cwp = (env->cwp + 1) & (NWINDOWS - 1);
1403 if (env->wim & (1 << cwp)) {
1404 raise_exception(TT_WIN_UNF);
1405 }
1406 set_cwp(cwp);
1407 env->psrs = env->psrps;
1408 }
1409 #endif
1410
1411 void helper_ldfsr(void)
1412 {
1413 int rnd_mode;
1414 switch (env->fsr & FSR_RD_MASK) {
1415 case FSR_RD_NEAREST:
1416 rnd_mode = float_round_nearest_even;
1417 break;
1418 default:
1419 case FSR_RD_ZERO:
1420 rnd_mode = float_round_to_zero;
1421 break;
1422 case FSR_RD_POS:
1423 rnd_mode = float_round_up;
1424 break;
1425 case FSR_RD_NEG:
1426 rnd_mode = float_round_down;
1427 break;
1428 }
1429 set_float_rounding_mode(rnd_mode, &env->fp_status);
1430 }
1431
1432 void helper_debug()
1433 {
1434 env->exception_index = EXCP_DEBUG;
1435 cpu_loop_exit();
1436 }
1437
1438 #ifndef TARGET_SPARC64
1439 void do_wrpsr()
1440 {
1441 if ((T0 & PSR_CWP) >= NWINDOWS)
1442 raise_exception(TT_ILL_INSN);
1443 else
1444 PUT_PSR(env, T0);
1445 }
1446
1447 void do_rdpsr()
1448 {
1449 T0 = GET_PSR(env);
1450 }
1451
1452 #else
1453
1454 void do_popc()
1455 {
1456 T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
1457 T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
1458 T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
1459 T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
1460 T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
1461 T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
1462 }
1463
1464 static inline uint64_t *get_gregset(uint64_t pstate)
1465 {
1466 switch (pstate) {
1467 default:
1468 case 0:
1469 return env->bgregs;
1470 case PS_AG:
1471 return env->agregs;
1472 case PS_MG:
1473 return env->mgregs;
1474 case PS_IG:
1475 return env->igregs;
1476 }
1477 }
1478
1479 static inline void change_pstate(uint64_t new_pstate)
1480 {
1481 uint64_t pstate_regs, new_pstate_regs;
1482 uint64_t *src, *dst;
1483
1484 pstate_regs = env->pstate & 0xc01;
1485 new_pstate_regs = new_pstate & 0xc01;
1486 if (new_pstate_regs != pstate_regs) {
1487 // Switch global register bank
1488 src = get_gregset(new_pstate_regs);
1489 dst = get_gregset(pstate_regs);
1490 memcpy32(dst, env->gregs);
1491 memcpy32(env->gregs, src);
1492 }
1493 env->pstate = new_pstate;
1494 }
1495
1496 void do_wrpstate(void)
1497 {
1498 change_pstate(T0 & 0xf3f);
1499 }
1500
1501 void do_done(void)
1502 {
1503 env->tl--;
1504 env->pc = env->tnpc[env->tl];
1505 env->npc = env->tnpc[env->tl] + 4;
1506 PUT_CCR(env, env->tstate[env->tl] >> 32);
1507 env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1508 change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1509 PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1510 }
1511
1512 void do_retry(void)
1513 {
1514 env->tl--;
1515 env->pc = env->tpc[env->tl];
1516 env->npc = env->tnpc[env->tl];
1517 PUT_CCR(env, env->tstate[env->tl] >> 32);
1518 env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1519 change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1520 PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1521 }
1522 #endif
1523
1524 void set_cwp(int new_cwp)
1525 {
1526 /* put the modified wrap registers at their proper location */
1527 if (env->cwp == (NWINDOWS - 1))
1528 memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1529 env->cwp = new_cwp;
1530 /* put the wrap registers at their temporary location */
1531 if (new_cwp == (NWINDOWS - 1))
1532 memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1533 env->regwptr = env->regbase + (new_cwp * 16);
1534 REGWPTR = env->regwptr;
1535 }
1536
1537 void cpu_set_cwp(CPUState *env1, int new_cwp)
1538 {
1539 CPUState *saved_env;
1540 #ifdef reg_REGWPTR
1541 target_ulong *saved_regwptr;
1542 #endif
1543
1544 saved_env = env;
1545 #ifdef reg_REGWPTR
1546 saved_regwptr = REGWPTR;
1547 #endif
1548 env = env1;
1549 set_cwp(new_cwp);
1550 env = saved_env;
1551 #ifdef reg_REGWPTR
1552 REGWPTR = saved_regwptr;
1553 #endif
1554 }
1555
1556 #ifdef TARGET_SPARC64
1557 void do_interrupt(int intno)
1558 {
1559 #ifdef DEBUG_PCALL
1560 if (loglevel & CPU_LOG_INT) {
1561 static int count;
1562 fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1563 count, intno,
1564 env->pc,
1565 env->npc, env->regwptr[6]);
1566 cpu_dump_state(env, logfile, fprintf, 0);
1567 #if 0
1568 {
1569 int i;
1570 uint8_t *ptr;
1571
1572 fprintf(logfile, " code=");
1573 ptr = (uint8_t *)env->pc;
1574 for(i = 0; i < 16; i++) {
1575 fprintf(logfile, " %02x", ldub(ptr + i));
1576 }
1577 fprintf(logfile, "\n");
1578 }
1579 #endif
1580 count++;
1581 }
1582 #endif
1583 #if !defined(CONFIG_USER_ONLY)
1584 if (env->tl == MAXTL) {
1585 cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1586 return;
1587 }
1588 #endif
1589 env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1590 ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1591 env->tpc[env->tl] = env->pc;
1592 env->tnpc[env->tl] = env->npc;
1593 env->tt[env->tl] = intno;
1594 change_pstate(PS_PEF | PS_PRIV | PS_AG);
1595
1596 if (intno == TT_CLRWIN)
1597 set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1598 else if ((intno & 0x1c0) == TT_SPILL)
1599 set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1600 else if ((intno & 0x1c0) == TT_FILL)
1601 set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1602 env->tbr &= ~0x7fffULL;
1603 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1604 if (env->tl < MAXTL - 1) {
1605 env->tl++;
1606 } else {
1607 env->pstate |= PS_RED;
1608 if (env->tl != MAXTL)
1609 env->tl++;
1610 }
1611 env->pc = env->tbr;
1612 env->npc = env->pc + 4;
1613 env->exception_index = 0;
1614 }
1615 #else
1616 void do_interrupt(int intno)
1617 {
1618 int cwp;
1619
1620 #ifdef DEBUG_PCALL
1621 if (loglevel & CPU_LOG_INT) {
1622 static int count;
1623 fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1624 count, intno,
1625 env->pc,
1626 env->npc, env->regwptr[6]);
1627 cpu_dump_state(env, logfile, fprintf, 0);
1628 #if 0
1629 {
1630 int i;
1631 uint8_t *ptr;
1632
1633 fprintf(logfile, " code=");
1634 ptr = (uint8_t *)env->pc;
1635 for(i = 0; i < 16; i++) {
1636 fprintf(logfile, " %02x", ldub(ptr + i));
1637 }
1638 fprintf(logfile, "\n");
1639 }
1640 #endif
1641 count++;
1642 }
1643 #endif
1644 #if !defined(CONFIG_USER_ONLY)
1645 if (env->psret == 0) {
1646 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1647 return;
1648 }
1649 #endif
1650 env->psret = 0;
1651 cwp = (env->cwp - 1) & (NWINDOWS - 1);
1652 set_cwp(cwp);
1653 env->regwptr[9] = env->pc;
1654 env->regwptr[10] = env->npc;
1655 env->psrps = env->psrs;
1656 env->psrs = 1;
1657 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1658 env->pc = env->tbr;
1659 env->npc = env->pc + 4;
1660 env->exception_index = 0;
1661 }
1662 #endif
1663
1664 #if !defined(CONFIG_USER_ONLY)
1665
1666 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1667 void *retaddr);
1668
1669 #define MMUSUFFIX _mmu
1670 #define ALIGNED_ONLY
1671 #define GETPC() (__builtin_return_address(0))
1672
1673 #define SHIFT 0
1674 #include "softmmu_template.h"
1675
1676 #define SHIFT 1
1677 #include "softmmu_template.h"
1678
1679 #define SHIFT 2
1680 #include "softmmu_template.h"
1681
1682 #define SHIFT 3
1683 #include "softmmu_template.h"
1684
1685 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1686 void *retaddr)
1687 {
1688 #ifdef DEBUG_UNALIGNED
1689 printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1690 #endif
1691 raise_exception(TT_UNALIGNED);
1692 }
1693
1694 /* try to fill the TLB and return an exception if error. If retaddr is
1695 NULL, it means that the function was called in C code (i.e. not
1696 from generated code or from helper.c) */
1697 /* XXX: fix it to restore all registers */
1698 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1699 {
1700 TranslationBlock *tb;
1701 int ret;
1702 unsigned long pc;
1703 CPUState *saved_env;
1704
1705 /* XXX: hack to restore env in all cases, even if not called from
1706 generated code */
1707 saved_env = env;
1708 env = cpu_single_env;
1709
1710 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1711 if (ret) {
1712 if (retaddr) {
1713 /* now we have a real cpu fault */
1714 pc = (unsigned long)retaddr;
1715 tb = tb_find_pc(pc);
1716 if (tb) {
1717 /* the PC is inside the translated code. It means that we have
1718 a virtual CPU fault */
1719 cpu_restore_state(tb, env, pc, (void *)T2);
1720 }
1721 }
1722 cpu_loop_exit();
1723 }
1724 env = saved_env;
1725 }
1726
1727 #endif
1728
1729 #ifndef TARGET_SPARC64
1730 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1731 int is_asi)
1732 {
1733 CPUState *saved_env;
1734
1735 /* XXX: hack to restore env in all cases, even if not called from
1736 generated code */
1737 saved_env = env;
1738 env = cpu_single_env;
1739 if (env->mmuregs[3]) /* Fault status register */
1740 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1741 if (is_asi)
1742 env->mmuregs[3] |= 1 << 16;
1743 if (env->psrs)
1744 env->mmuregs[3] |= 1 << 5;
1745 if (is_exec)
1746 env->mmuregs[3] |= 1 << 6;
1747 if (is_write)
1748 env->mmuregs[3] |= 1 << 7;
1749 env->mmuregs[3] |= (5 << 2) | 2;
1750 env->mmuregs[4] = addr; /* Fault address register */
1751 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1752 #ifdef DEBUG_UNASSIGNED
1753 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1754 "\n", addr, env->pc);
1755 #endif
1756 if (is_exec)
1757 raise_exception(TT_CODE_ACCESS);
1758 else
1759 raise_exception(TT_DATA_ACCESS);
1760 }
1761 env = saved_env;
1762 }
1763 #else
1764 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1765 int is_asi)
1766 {
1767 #ifdef DEBUG_UNASSIGNED
1768 CPUState *saved_env;
1769
1770 /* XXX: hack to restore env in all cases, even if not called from
1771 generated code */
1772 saved_env = env;
1773 env = cpu_single_env;
1774 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1775 addr, env->pc);
1776 env = saved_env;
1777 #endif
1778 if (is_exec)
1779 raise_exception(TT_CODE_ACCESS);
1780 else
1781 raise_exception(TT_DATA_ACCESS);
1782 }
1783 #endif
1784
1785 #ifdef TARGET_SPARC64
1786 void do_tick_set_count(void *opaque, uint64_t count)
1787 {
1788 #if !defined(CONFIG_USER_ONLY)
1789 ptimer_set_count(opaque, -count);
1790 #endif
1791 }
1792
1793 uint64_t do_tick_get_count(void *opaque)
1794 {
1795 #if !defined(CONFIG_USER_ONLY)
1796 return -ptimer_get_count(opaque);
1797 #else
1798 return 0;
1799 #endif
1800 }
1801
1802 void do_tick_set_limit(void *opaque, uint64_t limit)
1803 {
1804 #if !defined(CONFIG_USER_ONLY)
1805 ptimer_set_limit(opaque, -limit, 0);
1806 #endif
1807 }
1808 #endif