]> git.proxmox.com Git - mirror_qemu.git/blob - target-unicore32/ucf64_helper.c
virtio: introduce vector to virtqueues mapping
[mirror_qemu.git] / target-unicore32 / ucf64_helper.c
1 /*
2 * UniCore-F64 simulation helpers for QEMU.
3 *
4 * Copyright (C) 2010-2012 Guan Xuetao
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation, or any later version.
9 * See the COPYING file in the top-level directory.
10 */
11 #include "cpu.h"
12 #include "exec/helper-proto.h"
13
14 /*
15 * The convention used for UniCore-F64 instructions:
16 * Single precition routines have a "s" suffix
17 * Double precision routines have a "d" suffix.
18 */
19
20 /* Convert host exception flags to f64 form. */
21 static inline int ucf64_exceptbits_from_host(int host_bits)
22 {
23 int target_bits = 0;
24
25 if (host_bits & float_flag_invalid) {
26 target_bits |= UCF64_FPSCR_FLAG_INVALID;
27 }
28 if (host_bits & float_flag_divbyzero) {
29 target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
30 }
31 if (host_bits & float_flag_overflow) {
32 target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
33 }
34 if (host_bits & float_flag_underflow) {
35 target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
36 }
37 if (host_bits & float_flag_inexact) {
38 target_bits |= UCF64_FPSCR_FLAG_INEXACT;
39 }
40 return target_bits;
41 }
42
43 uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
44 {
45 int i;
46 uint32_t fpscr;
47
48 fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
49 i = get_float_exception_flags(&env->ucf64.fp_status);
50 fpscr |= ucf64_exceptbits_from_host(i);
51 return fpscr;
52 }
53
54 /* Convert ucf64 exception flags to target form. */
55 static inline int ucf64_exceptbits_to_host(int target_bits)
56 {
57 int host_bits = 0;
58
59 if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
60 host_bits |= float_flag_invalid;
61 }
62 if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
63 host_bits |= float_flag_divbyzero;
64 }
65 if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
66 host_bits |= float_flag_overflow;
67 }
68 if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
69 host_bits |= float_flag_underflow;
70 }
71 if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
72 host_bits |= float_flag_inexact;
73 }
74 return host_bits;
75 }
76
77 void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
78 {
79 UniCore32CPU *cpu = uc32_env_get_cpu(env);
80 int i;
81 uint32_t changed;
82
83 changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
84 env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
85
86 changed ^= val;
87 if (changed & (UCF64_FPSCR_RND_MASK)) {
88 i = UCF64_FPSCR_RND(val);
89 switch (i) {
90 case 0:
91 i = float_round_nearest_even;
92 break;
93 case 1:
94 i = float_round_to_zero;
95 break;
96 case 2:
97 i = float_round_up;
98 break;
99 case 3:
100 i = float_round_down;
101 break;
102 default: /* 100 and 101 not implement */
103 cpu_abort(CPU(cpu), "Unsupported UniCore-F64 round mode");
104 }
105 set_float_rounding_mode(i, &env->ucf64.fp_status);
106 }
107
108 i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
109 set_float_exception_flags(i, &env->ucf64.fp_status);
110 }
111
112 float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
113 {
114 return float32_add(a, b, &env->ucf64.fp_status);
115 }
116
117 float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
118 {
119 return float64_add(a, b, &env->ucf64.fp_status);
120 }
121
122 float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
123 {
124 return float32_sub(a, b, &env->ucf64.fp_status);
125 }
126
127 float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
128 {
129 return float64_sub(a, b, &env->ucf64.fp_status);
130 }
131
132 float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
133 {
134 return float32_mul(a, b, &env->ucf64.fp_status);
135 }
136
137 float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
138 {
139 return float64_mul(a, b, &env->ucf64.fp_status);
140 }
141
142 float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
143 {
144 return float32_div(a, b, &env->ucf64.fp_status);
145 }
146
147 float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
148 {
149 return float64_div(a, b, &env->ucf64.fp_status);
150 }
151
152 float32 HELPER(ucf64_negs)(float32 a)
153 {
154 return float32_chs(a);
155 }
156
157 float64 HELPER(ucf64_negd)(float64 a)
158 {
159 return float64_chs(a);
160 }
161
162 float32 HELPER(ucf64_abss)(float32 a)
163 {
164 return float32_abs(a);
165 }
166
167 float64 HELPER(ucf64_absd)(float64 a)
168 {
169 return float64_abs(a);
170 }
171
172 void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c,
173 CPUUniCore32State *env)
174 {
175 int flag;
176 flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
177 env->CF = 0;
178 switch (c & 0x7) {
179 case 0: /* F */
180 break;
181 case 1: /* UN */
182 if (flag == 2) {
183 env->CF = 1;
184 }
185 break;
186 case 2: /* EQ */
187 if (flag == 0) {
188 env->CF = 1;
189 }
190 break;
191 case 3: /* UEQ */
192 if ((flag == 0) || (flag == 2)) {
193 env->CF = 1;
194 }
195 break;
196 case 4: /* OLT */
197 if (flag == -1) {
198 env->CF = 1;
199 }
200 break;
201 case 5: /* ULT */
202 if ((flag == -1) || (flag == 2)) {
203 env->CF = 1;
204 }
205 break;
206 case 6: /* OLE */
207 if ((flag == -1) || (flag == 0)) {
208 env->CF = 1;
209 }
210 break;
211 case 7: /* ULE */
212 if (flag != 1) {
213 env->CF = 1;
214 }
215 break;
216 }
217 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
218 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
219 }
220
221 void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c,
222 CPUUniCore32State *env)
223 {
224 int flag;
225 flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
226 env->CF = 0;
227 switch (c & 0x7) {
228 case 0: /* F */
229 break;
230 case 1: /* UN */
231 if (flag == 2) {
232 env->CF = 1;
233 }
234 break;
235 case 2: /* EQ */
236 if (flag == 0) {
237 env->CF = 1;
238 }
239 break;
240 case 3: /* UEQ */
241 if ((flag == 0) || (flag == 2)) {
242 env->CF = 1;
243 }
244 break;
245 case 4: /* OLT */
246 if (flag == -1) {
247 env->CF = 1;
248 }
249 break;
250 case 5: /* ULT */
251 if ((flag == -1) || (flag == 2)) {
252 env->CF = 1;
253 }
254 break;
255 case 6: /* OLE */
256 if ((flag == -1) || (flag == 0)) {
257 env->CF = 1;
258 }
259 break;
260 case 7: /* ULE */
261 if (flag != 1) {
262 env->CF = 1;
263 }
264 break;
265 }
266 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
267 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
268 }
269
270 /* Helper routines to perform bitwise copies between float and int. */
271 static inline float32 ucf64_itos(uint32_t i)
272 {
273 union {
274 uint32_t i;
275 float32 s;
276 } v;
277
278 v.i = i;
279 return v.s;
280 }
281
282 static inline uint32_t ucf64_stoi(float32 s)
283 {
284 union {
285 uint32_t i;
286 float32 s;
287 } v;
288
289 v.s = s;
290 return v.i;
291 }
292
293 /* Integer to float conversion. */
294 float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
295 {
296 return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
297 }
298
299 float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
300 {
301 return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
302 }
303
304 /* Float to integer conversion. */
305 float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
306 {
307 return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
308 }
309
310 float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
311 {
312 return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
313 }
314
315 /* floating point conversion */
316 float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
317 {
318 return float32_to_float64(x, &env->ucf64.fp_status);
319 }
320
321 float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
322 {
323 return float64_to_float32(x, &env->ucf64.fp_status);
324 }