]> git.proxmox.com Git - mirror_qemu.git/blob - target-unicore32/ucf64_helper.c
ivshmem: Fix 64 bit memory bar configuration
[mirror_qemu.git] / target-unicore32 / ucf64_helper.c
1 /*
2 * UniCore-F64 simulation helpers for QEMU.
3 *
4 * Copyright (C) 2010-2012 Guan Xuetao
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation, or any later version.
9 * See the COPYING file in the top-level directory.
10 */
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "exec/helper-proto.h"
14
15 /*
16 * The convention used for UniCore-F64 instructions:
17 * Single precition routines have a "s" suffix
18 * Double precision routines have a "d" suffix.
19 */
20
21 /* Convert host exception flags to f64 form. */
22 static inline int ucf64_exceptbits_from_host(int host_bits)
23 {
24 int target_bits = 0;
25
26 if (host_bits & float_flag_invalid) {
27 target_bits |= UCF64_FPSCR_FLAG_INVALID;
28 }
29 if (host_bits & float_flag_divbyzero) {
30 target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
31 }
32 if (host_bits & float_flag_overflow) {
33 target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
34 }
35 if (host_bits & float_flag_underflow) {
36 target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
37 }
38 if (host_bits & float_flag_inexact) {
39 target_bits |= UCF64_FPSCR_FLAG_INEXACT;
40 }
41 return target_bits;
42 }
43
44 uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
45 {
46 int i;
47 uint32_t fpscr;
48
49 fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
50 i = get_float_exception_flags(&env->ucf64.fp_status);
51 fpscr |= ucf64_exceptbits_from_host(i);
52 return fpscr;
53 }
54
55 /* Convert ucf64 exception flags to target form. */
56 static inline int ucf64_exceptbits_to_host(int target_bits)
57 {
58 int host_bits = 0;
59
60 if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
61 host_bits |= float_flag_invalid;
62 }
63 if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
64 host_bits |= float_flag_divbyzero;
65 }
66 if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
67 host_bits |= float_flag_overflow;
68 }
69 if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
70 host_bits |= float_flag_underflow;
71 }
72 if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
73 host_bits |= float_flag_inexact;
74 }
75 return host_bits;
76 }
77
78 void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
79 {
80 UniCore32CPU *cpu = uc32_env_get_cpu(env);
81 int i;
82 uint32_t changed;
83
84 changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
85 env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
86
87 changed ^= val;
88 if (changed & (UCF64_FPSCR_RND_MASK)) {
89 i = UCF64_FPSCR_RND(val);
90 switch (i) {
91 case 0:
92 i = float_round_nearest_even;
93 break;
94 case 1:
95 i = float_round_to_zero;
96 break;
97 case 2:
98 i = float_round_up;
99 break;
100 case 3:
101 i = float_round_down;
102 break;
103 default: /* 100 and 101 not implement */
104 cpu_abort(CPU(cpu), "Unsupported UniCore-F64 round mode");
105 }
106 set_float_rounding_mode(i, &env->ucf64.fp_status);
107 }
108
109 i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
110 set_float_exception_flags(i, &env->ucf64.fp_status);
111 }
112
113 float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
114 {
115 return float32_add(a, b, &env->ucf64.fp_status);
116 }
117
118 float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
119 {
120 return float64_add(a, b, &env->ucf64.fp_status);
121 }
122
123 float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
124 {
125 return float32_sub(a, b, &env->ucf64.fp_status);
126 }
127
128 float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
129 {
130 return float64_sub(a, b, &env->ucf64.fp_status);
131 }
132
133 float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
134 {
135 return float32_mul(a, b, &env->ucf64.fp_status);
136 }
137
138 float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
139 {
140 return float64_mul(a, b, &env->ucf64.fp_status);
141 }
142
143 float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
144 {
145 return float32_div(a, b, &env->ucf64.fp_status);
146 }
147
148 float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
149 {
150 return float64_div(a, b, &env->ucf64.fp_status);
151 }
152
153 float32 HELPER(ucf64_negs)(float32 a)
154 {
155 return float32_chs(a);
156 }
157
158 float64 HELPER(ucf64_negd)(float64 a)
159 {
160 return float64_chs(a);
161 }
162
163 float32 HELPER(ucf64_abss)(float32 a)
164 {
165 return float32_abs(a);
166 }
167
168 float64 HELPER(ucf64_absd)(float64 a)
169 {
170 return float64_abs(a);
171 }
172
173 void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c,
174 CPUUniCore32State *env)
175 {
176 int flag;
177 flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
178 env->CF = 0;
179 switch (c & 0x7) {
180 case 0: /* F */
181 break;
182 case 1: /* UN */
183 if (flag == 2) {
184 env->CF = 1;
185 }
186 break;
187 case 2: /* EQ */
188 if (flag == 0) {
189 env->CF = 1;
190 }
191 break;
192 case 3: /* UEQ */
193 if ((flag == 0) || (flag == 2)) {
194 env->CF = 1;
195 }
196 break;
197 case 4: /* OLT */
198 if (flag == -1) {
199 env->CF = 1;
200 }
201 break;
202 case 5: /* ULT */
203 if ((flag == -1) || (flag == 2)) {
204 env->CF = 1;
205 }
206 break;
207 case 6: /* OLE */
208 if ((flag == -1) || (flag == 0)) {
209 env->CF = 1;
210 }
211 break;
212 case 7: /* ULE */
213 if (flag != 1) {
214 env->CF = 1;
215 }
216 break;
217 }
218 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
219 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
220 }
221
222 void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c,
223 CPUUniCore32State *env)
224 {
225 int flag;
226 flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
227 env->CF = 0;
228 switch (c & 0x7) {
229 case 0: /* F */
230 break;
231 case 1: /* UN */
232 if (flag == 2) {
233 env->CF = 1;
234 }
235 break;
236 case 2: /* EQ */
237 if (flag == 0) {
238 env->CF = 1;
239 }
240 break;
241 case 3: /* UEQ */
242 if ((flag == 0) || (flag == 2)) {
243 env->CF = 1;
244 }
245 break;
246 case 4: /* OLT */
247 if (flag == -1) {
248 env->CF = 1;
249 }
250 break;
251 case 5: /* ULT */
252 if ((flag == -1) || (flag == 2)) {
253 env->CF = 1;
254 }
255 break;
256 case 6: /* OLE */
257 if ((flag == -1) || (flag == 0)) {
258 env->CF = 1;
259 }
260 break;
261 case 7: /* ULE */
262 if (flag != 1) {
263 env->CF = 1;
264 }
265 break;
266 }
267 env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
268 | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
269 }
270
271 /* Helper routines to perform bitwise copies between float and int. */
272 static inline float32 ucf64_itos(uint32_t i)
273 {
274 union {
275 uint32_t i;
276 float32 s;
277 } v;
278
279 v.i = i;
280 return v.s;
281 }
282
283 static inline uint32_t ucf64_stoi(float32 s)
284 {
285 union {
286 uint32_t i;
287 float32 s;
288 } v;
289
290 v.s = s;
291 return v.i;
292 }
293
294 /* Integer to float conversion. */
295 float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
296 {
297 return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
298 }
299
300 float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
301 {
302 return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
303 }
304
305 /* Float to integer conversion. */
306 float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
307 {
308 return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
309 }
310
311 float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
312 {
313 return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
314 }
315
316 /* floating point conversion */
317 float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
318 {
319 return float32_to_float64(x, &env->ucf64.fp_status);
320 }
321
322 float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
323 {
324 return float64_to_float32(x, &env->ucf64.fp_status);
325 }