]> git.proxmox.com Git - mirror_qemu.git/blob - target-xtensa/helper.c
target-xtensa: implement CACHEATTR SR
[mirror_qemu.git] / target-xtensa / helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "gdbstub.h"
31 #include "host-utils.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #endif
35
36 static struct XtensaConfigList *xtensa_cores;
37
38 void xtensa_register_core(XtensaConfigList *node)
39 {
40 node->next = xtensa_cores;
41 xtensa_cores = node;
42 }
43
44 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
45 {
46 unsigned i;
47
48 for (i = 0; i < env->config->ndbreak; ++i) {
49 if (env->cpu_watchpoint[i] &&
50 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
51 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
52 }
53 }
54 return 0;
55 }
56
57 static void breakpoint_handler(CPUXtensaState *env)
58 {
59 if (env->watchpoint_hit) {
60 if (env->watchpoint_hit->flags & BP_CPU) {
61 uint32_t cause;
62
63 env->watchpoint_hit = NULL;
64 cause = check_hw_breakpoints(env);
65 if (cause) {
66 debug_exception_env(env, cause);
67 }
68 cpu_resume_from_signal(env, NULL);
69 }
70 }
71 }
72
73 XtensaCPU *cpu_xtensa_init(const char *cpu_model)
74 {
75 static int tcg_inited;
76 static int debug_handler_inited;
77 XtensaCPU *cpu;
78 CPUXtensaState *env;
79 const XtensaConfig *config = NULL;
80 XtensaConfigList *core = xtensa_cores;
81
82 for (; core; core = core->next)
83 if (strcmp(core->config->name, cpu_model) == 0) {
84 config = core->config;
85 break;
86 }
87
88 if (config == NULL) {
89 return NULL;
90 }
91
92 cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
93 env = &cpu->env;
94 env->config = config;
95
96 if (!tcg_inited) {
97 tcg_inited = 1;
98 xtensa_translate_init();
99 }
100
101 if (!debug_handler_inited && tcg_enabled()) {
102 debug_handler_inited = 1;
103 cpu_set_debug_excp_handler(breakpoint_handler);
104 }
105
106 xtensa_irq_init(env);
107 qemu_init_vcpu(env);
108 return cpu;
109 }
110
111
112 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
113 {
114 XtensaConfigList *core = xtensa_cores;
115 cpu_fprintf(f, "Available CPUs:\n");
116 for (; core; core = core->next) {
117 cpu_fprintf(f, " %s\n", core->config->name);
118 }
119 }
120
121 hwaddr cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
122 {
123 uint32_t paddr;
124 uint32_t page_size;
125 unsigned access;
126
127 if (xtensa_get_physical_addr(env, false, addr, 0, 0,
128 &paddr, &page_size, &access) == 0) {
129 return paddr;
130 }
131 if (xtensa_get_physical_addr(env, false, addr, 2, 0,
132 &paddr, &page_size, &access) == 0) {
133 return paddr;
134 }
135 return ~0;
136 }
137
138 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
139 {
140 if (xtensa_option_enabled(env->config,
141 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
142 return vector - env->config->vecbase + env->sregs[VECBASE];
143 } else {
144 return vector;
145 }
146 }
147
148 /*!
149 * Handle penging IRQ.
150 * For the high priority interrupt jump to the corresponding interrupt vector.
151 * For the level-1 interrupt convert it to either user, kernel or double
152 * exception with the 'level-1 interrupt' exception cause.
153 */
154 static void handle_interrupt(CPUXtensaState *env)
155 {
156 int level = env->pending_irq_level;
157
158 if (level > xtensa_get_cintlevel(env) &&
159 level <= env->config->nlevel &&
160 (env->config->level_mask[level] &
161 env->sregs[INTSET] &
162 env->sregs[INTENABLE])) {
163 if (level > 1) {
164 env->sregs[EPC1 + level - 1] = env->pc;
165 env->sregs[EPS2 + level - 2] = env->sregs[PS];
166 env->sregs[PS] =
167 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
168 env->pc = relocated_vector(env,
169 env->config->interrupt_vector[level]);
170 } else {
171 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
172
173 if (env->sregs[PS] & PS_EXCM) {
174 if (env->config->ndepc) {
175 env->sregs[DEPC] = env->pc;
176 } else {
177 env->sregs[EPC1] = env->pc;
178 }
179 env->exception_index = EXC_DOUBLE;
180 } else {
181 env->sregs[EPC1] = env->pc;
182 env->exception_index =
183 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
184 }
185 env->sregs[PS] |= PS_EXCM;
186 }
187 env->exception_taken = 1;
188 }
189 }
190
191 void do_interrupt(CPUXtensaState *env)
192 {
193 if (env->exception_index == EXC_IRQ) {
194 qemu_log_mask(CPU_LOG_INT,
195 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
196 "pc = %08x, a0 = %08x, ps = %08x, "
197 "intset = %08x, intenable = %08x, "
198 "ccount = %08x\n",
199 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
200 env->pc, env->regs[0], env->sregs[PS],
201 env->sregs[INTSET], env->sregs[INTENABLE],
202 env->sregs[CCOUNT]);
203 handle_interrupt(env);
204 }
205
206 switch (env->exception_index) {
207 case EXC_WINDOW_OVERFLOW4:
208 case EXC_WINDOW_UNDERFLOW4:
209 case EXC_WINDOW_OVERFLOW8:
210 case EXC_WINDOW_UNDERFLOW8:
211 case EXC_WINDOW_OVERFLOW12:
212 case EXC_WINDOW_UNDERFLOW12:
213 case EXC_KERNEL:
214 case EXC_USER:
215 case EXC_DOUBLE:
216 case EXC_DEBUG:
217 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
218 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
219 __func__, env->exception_index,
220 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
221 if (env->config->exception_vector[env->exception_index]) {
222 env->pc = relocated_vector(env,
223 env->config->exception_vector[env->exception_index]);
224 env->exception_taken = 1;
225 } else {
226 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
227 __func__, env->pc, env->exception_index);
228 }
229 break;
230
231 case EXC_IRQ:
232 break;
233
234 default:
235 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
236 __func__, env->pc, env->exception_index);
237 break;
238 }
239 check_interrupts(env);
240 }
241
242 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
243 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
244 {
245 unsigned wi, ei;
246
247 for (wi = 0; wi < tlb->nways; ++wi) {
248 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
249 entry[wi][ei].asid = 0;
250 entry[wi][ei].variable = true;
251 }
252 }
253 }
254
255 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
256 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
257 {
258 if (!tlb->varway56) {
259 static const xtensa_tlb_entry way5[] = {
260 {
261 .vaddr = 0xd0000000,
262 .paddr = 0,
263 .asid = 1,
264 .attr = 7,
265 .variable = false,
266 }, {
267 .vaddr = 0xd8000000,
268 .paddr = 0,
269 .asid = 1,
270 .attr = 3,
271 .variable = false,
272 }
273 };
274 static const xtensa_tlb_entry way6[] = {
275 {
276 .vaddr = 0xe0000000,
277 .paddr = 0xf0000000,
278 .asid = 1,
279 .attr = 7,
280 .variable = false,
281 }, {
282 .vaddr = 0xf0000000,
283 .paddr = 0xf0000000,
284 .asid = 1,
285 .attr = 3,
286 .variable = false,
287 }
288 };
289 memcpy(entry[5], way5, sizeof(way5));
290 memcpy(entry[6], way6, sizeof(way6));
291 } else {
292 uint32_t ei;
293 for (ei = 0; ei < 8; ++ei) {
294 entry[6][ei].vaddr = ei << 29;
295 entry[6][ei].paddr = ei << 29;
296 entry[6][ei].asid = 1;
297 entry[6][ei].attr = 3;
298 }
299 }
300 }
301
302 static void reset_tlb_region_way0(CPUXtensaState *env,
303 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
304 {
305 unsigned ei;
306
307 for (ei = 0; ei < 8; ++ei) {
308 entry[0][ei].vaddr = ei << 29;
309 entry[0][ei].paddr = ei << 29;
310 entry[0][ei].asid = 1;
311 entry[0][ei].attr = 2;
312 entry[0][ei].variable = true;
313 }
314 }
315
316 void reset_mmu(CPUXtensaState *env)
317 {
318 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
319 env->sregs[RASID] = 0x04030201;
320 env->sregs[ITLBCFG] = 0;
321 env->sregs[DTLBCFG] = 0;
322 env->autorefill_idx = 0;
323 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
324 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
325 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
326 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
327 } else {
328 reset_tlb_region_way0(env, env->itlb);
329 reset_tlb_region_way0(env, env->dtlb);
330 }
331 }
332
333 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
334 {
335 unsigned i;
336 for (i = 0; i < 4; ++i) {
337 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
338 return i;
339 }
340 }
341 return 0xff;
342 }
343
344 /*!
345 * Lookup xtensa TLB for the given virtual address.
346 * See ISA, 4.6.2.2
347 *
348 * \param pwi: [out] way index
349 * \param pei: [out] entry index
350 * \param pring: [out] access ring
351 * \return 0 if ok, exception cause code otherwise
352 */
353 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
354 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
355 {
356 const xtensa_tlb *tlb = dtlb ?
357 &env->config->dtlb : &env->config->itlb;
358 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
359 env->dtlb : env->itlb;
360
361 int nhits = 0;
362 unsigned wi;
363
364 for (wi = 0; wi < tlb->nways; ++wi) {
365 uint32_t vpn;
366 uint32_t ei;
367 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
368 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
369 unsigned ring = get_ring(env, entry[wi][ei].asid);
370 if (ring < 4) {
371 if (++nhits > 1) {
372 return dtlb ?
373 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
374 INST_TLB_MULTI_HIT_CAUSE;
375 }
376 *pwi = wi;
377 *pei = ei;
378 *pring = ring;
379 }
380 }
381 }
382 return nhits ? 0 :
383 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
384 }
385
386 /*!
387 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
388 * See ISA, 4.6.5.10
389 */
390 static unsigned mmu_attr_to_access(uint32_t attr)
391 {
392 unsigned access = 0;
393
394 if (attr < 12) {
395 access |= PAGE_READ;
396 if (attr & 0x1) {
397 access |= PAGE_EXEC;
398 }
399 if (attr & 0x2) {
400 access |= PAGE_WRITE;
401 }
402
403 switch (attr & 0xc) {
404 case 0:
405 access |= PAGE_CACHE_BYPASS;
406 break;
407
408 case 4:
409 access |= PAGE_CACHE_WB;
410 break;
411
412 case 8:
413 access |= PAGE_CACHE_WT;
414 break;
415 }
416 } else if (attr == 13) {
417 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
418 }
419 return access;
420 }
421
422 /*!
423 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
424 * See ISA, 4.6.3.3
425 */
426 static unsigned region_attr_to_access(uint32_t attr)
427 {
428 static const unsigned access[16] = {
429 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
430 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
431 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
432 [3] = PAGE_EXEC | PAGE_CACHE_WB,
433 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
434 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
435 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
436 };
437
438 return access[attr & 0xf];
439 }
440
441 /*!
442 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
443 * See ISA, A.2.14 The Cache Attribute Register
444 */
445 static unsigned cacheattr_attr_to_access(uint32_t attr)
446 {
447 static const unsigned access[16] = {
448 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
449 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
450 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
451 [3] = PAGE_EXEC | PAGE_CACHE_WB,
452 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
453 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
454 };
455
456 return access[attr & 0xf];
457 }
458
459 static bool is_access_granted(unsigned access, int is_write)
460 {
461 switch (is_write) {
462 case 0:
463 return access & PAGE_READ;
464
465 case 1:
466 return access & PAGE_WRITE;
467
468 case 2:
469 return access & PAGE_EXEC;
470
471 default:
472 return 0;
473 }
474 }
475
476 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
477
478 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
479 uint32_t vaddr, int is_write, int mmu_idx,
480 uint32_t *paddr, uint32_t *page_size, unsigned *access,
481 bool may_lookup_pt)
482 {
483 bool dtlb = is_write != 2;
484 uint32_t wi;
485 uint32_t ei;
486 uint8_t ring;
487 uint32_t vpn;
488 uint32_t pte;
489 const xtensa_tlb_entry *entry = NULL;
490 xtensa_tlb_entry tmp_entry;
491 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
492
493 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
494 may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
495 ring = (pte >> 4) & 0x3;
496 wi = 0;
497 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
498
499 if (update_tlb) {
500 wi = ++env->autorefill_idx & 0x3;
501 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
502 env->sregs[EXCVADDR] = vaddr;
503 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
504 __func__, vaddr, vpn, pte);
505 } else {
506 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
507 entry = &tmp_entry;
508 }
509 ret = 0;
510 }
511 if (ret != 0) {
512 return ret;
513 }
514
515 if (entry == NULL) {
516 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
517 }
518
519 if (ring < mmu_idx) {
520 return dtlb ?
521 LOAD_STORE_PRIVILEGE_CAUSE :
522 INST_FETCH_PRIVILEGE_CAUSE;
523 }
524
525 *access = mmu_attr_to_access(entry->attr);
526 if (!is_access_granted(*access, is_write)) {
527 return dtlb ?
528 (is_write ?
529 STORE_PROHIBITED_CAUSE :
530 LOAD_PROHIBITED_CAUSE) :
531 INST_FETCH_PROHIBITED_CAUSE;
532 }
533
534 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
535 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
536
537 return 0;
538 }
539
540 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
541 {
542 uint32_t paddr;
543 uint32_t page_size;
544 unsigned access;
545 uint32_t pt_vaddr =
546 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
547 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
548 &paddr, &page_size, &access, false);
549
550 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
551 vaddr, ret ? ~0 : paddr);
552
553 if (ret == 0) {
554 *pte = ldl_phys(paddr);
555 }
556 return ret;
557 }
558
559 static int get_physical_addr_region(CPUXtensaState *env,
560 uint32_t vaddr, int is_write, int mmu_idx,
561 uint32_t *paddr, uint32_t *page_size, unsigned *access)
562 {
563 bool dtlb = is_write != 2;
564 uint32_t wi = 0;
565 uint32_t ei = (vaddr >> 29) & 0x7;
566 const xtensa_tlb_entry *entry =
567 xtensa_tlb_get_entry(env, dtlb, wi, ei);
568
569 *access = region_attr_to_access(entry->attr);
570 if (!is_access_granted(*access, is_write)) {
571 return dtlb ?
572 (is_write ?
573 STORE_PROHIBITED_CAUSE :
574 LOAD_PROHIBITED_CAUSE) :
575 INST_FETCH_PROHIBITED_CAUSE;
576 }
577
578 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
579 *page_size = ~REGION_PAGE_MASK + 1;
580
581 return 0;
582 }
583
584 /*!
585 * Convert virtual address to physical addr.
586 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
587 *
588 * \return 0 if ok, exception cause code otherwise
589 */
590 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
591 uint32_t vaddr, int is_write, int mmu_idx,
592 uint32_t *paddr, uint32_t *page_size, unsigned *access)
593 {
594 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
595 return get_physical_addr_mmu(env, update_tlb,
596 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
597 } else if (xtensa_option_bits_enabled(env->config,
598 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
599 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
600 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
601 paddr, page_size, access);
602 } else {
603 *paddr = vaddr;
604 *page_size = TARGET_PAGE_SIZE;
605 *access = cacheattr_attr_to_access(
606 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
607 return 0;
608 }
609 }
610
611 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
612 CPUXtensaState *env, bool dtlb)
613 {
614 unsigned wi, ei;
615 const xtensa_tlb *conf =
616 dtlb ? &env->config->dtlb : &env->config->itlb;
617 unsigned (*attr_to_access)(uint32_t) =
618 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
619 mmu_attr_to_access : region_attr_to_access;
620
621 for (wi = 0; wi < conf->nways; ++wi) {
622 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
623 const char *sz_text;
624 bool print_header = true;
625
626 if (sz >= 0x100000) {
627 sz >>= 20;
628 sz_text = "MB";
629 } else {
630 sz >>= 10;
631 sz_text = "KB";
632 }
633
634 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
635 const xtensa_tlb_entry *entry =
636 xtensa_tlb_get_entry(env, dtlb, wi, ei);
637
638 if (entry->asid) {
639 static const char * const cache_text[8] = {
640 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
641 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
642 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
643 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
644 };
645 unsigned access = attr_to_access(entry->attr);
646 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
647 PAGE_CACHE_SHIFT;
648
649 if (print_header) {
650 print_header = false;
651 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
652 cpu_fprintf(f,
653 "\tVaddr Paddr ASID Attr RWX Cache\n"
654 "\t---------- ---------- ---- ---- --- -------\n");
655 }
656 cpu_fprintf(f,
657 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
658 entry->vaddr,
659 entry->paddr,
660 entry->asid,
661 entry->attr,
662 (access & PAGE_READ) ? 'R' : '-',
663 (access & PAGE_WRITE) ? 'W' : '-',
664 (access & PAGE_EXEC) ? 'X' : '-',
665 cache_text[cache_idx] ? cache_text[cache_idx] :
666 "Invalid");
667 }
668 }
669 }
670 }
671
672 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
673 {
674 if (xtensa_option_bits_enabled(env->config,
675 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
676 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
677 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
678
679 cpu_fprintf(f, "ITLB:\n");
680 dump_tlb(f, cpu_fprintf, env, false);
681 cpu_fprintf(f, "\nDTLB:\n");
682 dump_tlb(f, cpu_fprintf, env, true);
683 } else {
684 cpu_fprintf(f, "No TLB for this CPU core\n");
685 }
686 }