]> git.proxmox.com Git - mirror_qemu.git/blob - target-xtensa/helper.c
cpu-exec: Make debug_excp_handler a QOM CPU method
[mirror_qemu.git] / target-xtensa / helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "exec/exec-all.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #endif
35
36 static struct XtensaConfigList *xtensa_cores;
37
38 static void xtensa_core_class_init(ObjectClass *oc, void *data)
39 {
40 CPUClass *cc = CPU_CLASS(oc);
41 XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
42 const XtensaConfig *config = data;
43
44 xcc->config = config;
45
46 /* Use num_core_regs to see only non-privileged registers in an unmodified
47 * gdb. Use num_regs to see all registers. gdb modification is required
48 * for that: reset bit 0 in the 'flags' field of the registers definitions
49 * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
50 */
51 cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
52 }
53
54 void xtensa_register_core(XtensaConfigList *node)
55 {
56 TypeInfo type = {
57 .parent = TYPE_XTENSA_CPU,
58 .class_init = xtensa_core_class_init,
59 .class_data = (void *)node->config,
60 };
61
62 node->next = xtensa_cores;
63 xtensa_cores = node;
64 type.name = g_strdup_printf("%s-" TYPE_XTENSA_CPU, node->config->name);
65 type_register(&type);
66 g_free((gpointer)type.name);
67 }
68
69 static uint32_t check_hw_breakpoints(CPUXtensaState *env)
70 {
71 unsigned i;
72
73 for (i = 0; i < env->config->ndbreak; ++i) {
74 if (env->cpu_watchpoint[i] &&
75 env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
76 return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
77 }
78 }
79 return 0;
80 }
81
82 void xtensa_breakpoint_handler(CPUState *cs)
83 {
84 XtensaCPU *cpu = XTENSA_CPU(cs);
85 CPUXtensaState *env = &cpu->env;
86
87 if (cs->watchpoint_hit) {
88 if (cs->watchpoint_hit->flags & BP_CPU) {
89 uint32_t cause;
90
91 cs->watchpoint_hit = NULL;
92 cause = check_hw_breakpoints(env);
93 if (cause) {
94 debug_exception_env(env, cause);
95 }
96 cpu_resume_from_signal(cs, NULL);
97 }
98 }
99 }
100
101 XtensaCPU *cpu_xtensa_init(const char *cpu_model)
102 {
103 ObjectClass *oc;
104 XtensaCPU *cpu;
105 CPUXtensaState *env;
106
107 oc = cpu_class_by_name(TYPE_XTENSA_CPU, cpu_model);
108 if (oc == NULL) {
109 return NULL;
110 }
111
112 cpu = XTENSA_CPU(object_new(object_class_get_name(oc)));
113 env = &cpu->env;
114
115 xtensa_irq_init(env);
116
117 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
118
119 return cpu;
120 }
121
122
123 void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
124 {
125 XtensaConfigList *core = xtensa_cores;
126 cpu_fprintf(f, "Available CPUs:\n");
127 for (; core; core = core->next) {
128 cpu_fprintf(f, " %s\n", core->config->name);
129 }
130 }
131
132 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
133 {
134 XtensaCPU *cpu = XTENSA_CPU(cs);
135 uint32_t paddr;
136 uint32_t page_size;
137 unsigned access;
138
139 if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
140 &paddr, &page_size, &access) == 0) {
141 return paddr;
142 }
143 if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
144 &paddr, &page_size, &access) == 0) {
145 return paddr;
146 }
147 return ~0;
148 }
149
150 static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
151 {
152 if (xtensa_option_enabled(env->config,
153 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
154 return vector - env->config->vecbase + env->sregs[VECBASE];
155 } else {
156 return vector;
157 }
158 }
159
160 /*!
161 * Handle penging IRQ.
162 * For the high priority interrupt jump to the corresponding interrupt vector.
163 * For the level-1 interrupt convert it to either user, kernel or double
164 * exception with the 'level-1 interrupt' exception cause.
165 */
166 static void handle_interrupt(CPUXtensaState *env)
167 {
168 int level = env->pending_irq_level;
169
170 if (level > xtensa_get_cintlevel(env) &&
171 level <= env->config->nlevel &&
172 (env->config->level_mask[level] &
173 env->sregs[INTSET] &
174 env->sregs[INTENABLE])) {
175 CPUState *cs = CPU(xtensa_env_get_cpu(env));
176
177 if (level > 1) {
178 env->sregs[EPC1 + level - 1] = env->pc;
179 env->sregs[EPS2 + level - 2] = env->sregs[PS];
180 env->sregs[PS] =
181 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
182 env->pc = relocated_vector(env,
183 env->config->interrupt_vector[level]);
184 } else {
185 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
186
187 if (env->sregs[PS] & PS_EXCM) {
188 if (env->config->ndepc) {
189 env->sregs[DEPC] = env->pc;
190 } else {
191 env->sregs[EPC1] = env->pc;
192 }
193 cs->exception_index = EXC_DOUBLE;
194 } else {
195 env->sregs[EPC1] = env->pc;
196 cs->exception_index =
197 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
198 }
199 env->sregs[PS] |= PS_EXCM;
200 }
201 env->exception_taken = 1;
202 }
203 }
204
205 void xtensa_cpu_do_interrupt(CPUState *cs)
206 {
207 XtensaCPU *cpu = XTENSA_CPU(cs);
208 CPUXtensaState *env = &cpu->env;
209
210 if (cs->exception_index == EXC_IRQ) {
211 qemu_log_mask(CPU_LOG_INT,
212 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
213 "pc = %08x, a0 = %08x, ps = %08x, "
214 "intset = %08x, intenable = %08x, "
215 "ccount = %08x\n",
216 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
217 env->pc, env->regs[0], env->sregs[PS],
218 env->sregs[INTSET], env->sregs[INTENABLE],
219 env->sregs[CCOUNT]);
220 handle_interrupt(env);
221 }
222
223 switch (cs->exception_index) {
224 case EXC_WINDOW_OVERFLOW4:
225 case EXC_WINDOW_UNDERFLOW4:
226 case EXC_WINDOW_OVERFLOW8:
227 case EXC_WINDOW_UNDERFLOW8:
228 case EXC_WINDOW_OVERFLOW12:
229 case EXC_WINDOW_UNDERFLOW12:
230 case EXC_KERNEL:
231 case EXC_USER:
232 case EXC_DOUBLE:
233 case EXC_DEBUG:
234 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
235 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
236 __func__, cs->exception_index,
237 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
238 if (env->config->exception_vector[cs->exception_index]) {
239 env->pc = relocated_vector(env,
240 env->config->exception_vector[cs->exception_index]);
241 env->exception_taken = 1;
242 } else {
243 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
244 __func__, env->pc, cs->exception_index);
245 }
246 break;
247
248 case EXC_IRQ:
249 break;
250
251 default:
252 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
253 __func__, env->pc, cs->exception_index);
254 break;
255 }
256 check_interrupts(env);
257 }
258
259 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
260 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
261 {
262 unsigned wi, ei;
263
264 for (wi = 0; wi < tlb->nways; ++wi) {
265 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
266 entry[wi][ei].asid = 0;
267 entry[wi][ei].variable = true;
268 }
269 }
270 }
271
272 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
273 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
274 {
275 if (!tlb->varway56) {
276 static const xtensa_tlb_entry way5[] = {
277 {
278 .vaddr = 0xd0000000,
279 .paddr = 0,
280 .asid = 1,
281 .attr = 7,
282 .variable = false,
283 }, {
284 .vaddr = 0xd8000000,
285 .paddr = 0,
286 .asid = 1,
287 .attr = 3,
288 .variable = false,
289 }
290 };
291 static const xtensa_tlb_entry way6[] = {
292 {
293 .vaddr = 0xe0000000,
294 .paddr = 0xf0000000,
295 .asid = 1,
296 .attr = 7,
297 .variable = false,
298 }, {
299 .vaddr = 0xf0000000,
300 .paddr = 0xf0000000,
301 .asid = 1,
302 .attr = 3,
303 .variable = false,
304 }
305 };
306 memcpy(entry[5], way5, sizeof(way5));
307 memcpy(entry[6], way6, sizeof(way6));
308 } else {
309 uint32_t ei;
310 for (ei = 0; ei < 8; ++ei) {
311 entry[6][ei].vaddr = ei << 29;
312 entry[6][ei].paddr = ei << 29;
313 entry[6][ei].asid = 1;
314 entry[6][ei].attr = 3;
315 }
316 }
317 }
318
319 static void reset_tlb_region_way0(CPUXtensaState *env,
320 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
321 {
322 unsigned ei;
323
324 for (ei = 0; ei < 8; ++ei) {
325 entry[0][ei].vaddr = ei << 29;
326 entry[0][ei].paddr = ei << 29;
327 entry[0][ei].asid = 1;
328 entry[0][ei].attr = 2;
329 entry[0][ei].variable = true;
330 }
331 }
332
333 void reset_mmu(CPUXtensaState *env)
334 {
335 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
336 env->sregs[RASID] = 0x04030201;
337 env->sregs[ITLBCFG] = 0;
338 env->sregs[DTLBCFG] = 0;
339 env->autorefill_idx = 0;
340 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
341 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
342 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
343 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
344 } else {
345 reset_tlb_region_way0(env, env->itlb);
346 reset_tlb_region_way0(env, env->dtlb);
347 }
348 }
349
350 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
351 {
352 unsigned i;
353 for (i = 0; i < 4; ++i) {
354 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
355 return i;
356 }
357 }
358 return 0xff;
359 }
360
361 /*!
362 * Lookup xtensa TLB for the given virtual address.
363 * See ISA, 4.6.2.2
364 *
365 * \param pwi: [out] way index
366 * \param pei: [out] entry index
367 * \param pring: [out] access ring
368 * \return 0 if ok, exception cause code otherwise
369 */
370 int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
371 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
372 {
373 const xtensa_tlb *tlb = dtlb ?
374 &env->config->dtlb : &env->config->itlb;
375 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
376 env->dtlb : env->itlb;
377
378 int nhits = 0;
379 unsigned wi;
380
381 for (wi = 0; wi < tlb->nways; ++wi) {
382 uint32_t vpn;
383 uint32_t ei;
384 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
385 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
386 unsigned ring = get_ring(env, entry[wi][ei].asid);
387 if (ring < 4) {
388 if (++nhits > 1) {
389 return dtlb ?
390 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
391 INST_TLB_MULTI_HIT_CAUSE;
392 }
393 *pwi = wi;
394 *pei = ei;
395 *pring = ring;
396 }
397 }
398 }
399 return nhits ? 0 :
400 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
401 }
402
403 /*!
404 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
405 * See ISA, 4.6.5.10
406 */
407 static unsigned mmu_attr_to_access(uint32_t attr)
408 {
409 unsigned access = 0;
410
411 if (attr < 12) {
412 access |= PAGE_READ;
413 if (attr & 0x1) {
414 access |= PAGE_EXEC;
415 }
416 if (attr & 0x2) {
417 access |= PAGE_WRITE;
418 }
419
420 switch (attr & 0xc) {
421 case 0:
422 access |= PAGE_CACHE_BYPASS;
423 break;
424
425 case 4:
426 access |= PAGE_CACHE_WB;
427 break;
428
429 case 8:
430 access |= PAGE_CACHE_WT;
431 break;
432 }
433 } else if (attr == 13) {
434 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
435 }
436 return access;
437 }
438
439 /*!
440 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
441 * See ISA, 4.6.3.3
442 */
443 static unsigned region_attr_to_access(uint32_t attr)
444 {
445 static const unsigned access[16] = {
446 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
447 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
448 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
449 [3] = PAGE_EXEC | PAGE_CACHE_WB,
450 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
451 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
452 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
453 };
454
455 return access[attr & 0xf];
456 }
457
458 /*!
459 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
460 * See ISA, A.2.14 The Cache Attribute Register
461 */
462 static unsigned cacheattr_attr_to_access(uint32_t attr)
463 {
464 static const unsigned access[16] = {
465 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
466 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
467 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
468 [3] = PAGE_EXEC | PAGE_CACHE_WB,
469 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
470 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
471 };
472
473 return access[attr & 0xf];
474 }
475
476 static bool is_access_granted(unsigned access, int is_write)
477 {
478 switch (is_write) {
479 case 0:
480 return access & PAGE_READ;
481
482 case 1:
483 return access & PAGE_WRITE;
484
485 case 2:
486 return access & PAGE_EXEC;
487
488 default:
489 return 0;
490 }
491 }
492
493 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
494
495 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
496 uint32_t vaddr, int is_write, int mmu_idx,
497 uint32_t *paddr, uint32_t *page_size, unsigned *access,
498 bool may_lookup_pt)
499 {
500 bool dtlb = is_write != 2;
501 uint32_t wi;
502 uint32_t ei;
503 uint8_t ring;
504 uint32_t vpn;
505 uint32_t pte;
506 const xtensa_tlb_entry *entry = NULL;
507 xtensa_tlb_entry tmp_entry;
508 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
509
510 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
511 may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
512 ring = (pte >> 4) & 0x3;
513 wi = 0;
514 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
515
516 if (update_tlb) {
517 wi = ++env->autorefill_idx & 0x3;
518 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
519 env->sregs[EXCVADDR] = vaddr;
520 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
521 __func__, vaddr, vpn, pte);
522 } else {
523 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
524 entry = &tmp_entry;
525 }
526 ret = 0;
527 }
528 if (ret != 0) {
529 return ret;
530 }
531
532 if (entry == NULL) {
533 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
534 }
535
536 if (ring < mmu_idx) {
537 return dtlb ?
538 LOAD_STORE_PRIVILEGE_CAUSE :
539 INST_FETCH_PRIVILEGE_CAUSE;
540 }
541
542 *access = mmu_attr_to_access(entry->attr) &
543 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
544 if (!is_access_granted(*access, is_write)) {
545 return dtlb ?
546 (is_write ?
547 STORE_PROHIBITED_CAUSE :
548 LOAD_PROHIBITED_CAUSE) :
549 INST_FETCH_PROHIBITED_CAUSE;
550 }
551
552 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
553 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
554
555 return 0;
556 }
557
558 static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
559 {
560 CPUState *cs = CPU(xtensa_env_get_cpu(env));
561 uint32_t paddr;
562 uint32_t page_size;
563 unsigned access;
564 uint32_t pt_vaddr =
565 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
566 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
567 &paddr, &page_size, &access, false);
568
569 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
570 vaddr, ret ? ~0 : paddr);
571
572 if (ret == 0) {
573 *pte = ldl_phys(cs->as, paddr);
574 }
575 return ret;
576 }
577
578 static int get_physical_addr_region(CPUXtensaState *env,
579 uint32_t vaddr, int is_write, int mmu_idx,
580 uint32_t *paddr, uint32_t *page_size, unsigned *access)
581 {
582 bool dtlb = is_write != 2;
583 uint32_t wi = 0;
584 uint32_t ei = (vaddr >> 29) & 0x7;
585 const xtensa_tlb_entry *entry =
586 xtensa_tlb_get_entry(env, dtlb, wi, ei);
587
588 *access = region_attr_to_access(entry->attr);
589 if (!is_access_granted(*access, is_write)) {
590 return dtlb ?
591 (is_write ?
592 STORE_PROHIBITED_CAUSE :
593 LOAD_PROHIBITED_CAUSE) :
594 INST_FETCH_PROHIBITED_CAUSE;
595 }
596
597 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
598 *page_size = ~REGION_PAGE_MASK + 1;
599
600 return 0;
601 }
602
603 /*!
604 * Convert virtual address to physical addr.
605 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
606 *
607 * \return 0 if ok, exception cause code otherwise
608 */
609 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
610 uint32_t vaddr, int is_write, int mmu_idx,
611 uint32_t *paddr, uint32_t *page_size, unsigned *access)
612 {
613 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
614 return get_physical_addr_mmu(env, update_tlb,
615 vaddr, is_write, mmu_idx, paddr, page_size, access, true);
616 } else if (xtensa_option_bits_enabled(env->config,
617 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
618 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
619 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
620 paddr, page_size, access);
621 } else {
622 *paddr = vaddr;
623 *page_size = TARGET_PAGE_SIZE;
624 *access = cacheattr_attr_to_access(
625 env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
626 return 0;
627 }
628 }
629
630 static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
631 CPUXtensaState *env, bool dtlb)
632 {
633 unsigned wi, ei;
634 const xtensa_tlb *conf =
635 dtlb ? &env->config->dtlb : &env->config->itlb;
636 unsigned (*attr_to_access)(uint32_t) =
637 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
638 mmu_attr_to_access : region_attr_to_access;
639
640 for (wi = 0; wi < conf->nways; ++wi) {
641 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
642 const char *sz_text;
643 bool print_header = true;
644
645 if (sz >= 0x100000) {
646 sz >>= 20;
647 sz_text = "MB";
648 } else {
649 sz >>= 10;
650 sz_text = "KB";
651 }
652
653 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
654 const xtensa_tlb_entry *entry =
655 xtensa_tlb_get_entry(env, dtlb, wi, ei);
656
657 if (entry->asid) {
658 static const char * const cache_text[8] = {
659 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
660 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
661 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
662 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
663 };
664 unsigned access = attr_to_access(entry->attr);
665 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
666 PAGE_CACHE_SHIFT;
667
668 if (print_header) {
669 print_header = false;
670 cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
671 cpu_fprintf(f,
672 "\tVaddr Paddr ASID Attr RWX Cache\n"
673 "\t---------- ---------- ---- ---- --- -------\n");
674 }
675 cpu_fprintf(f,
676 "\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
677 entry->vaddr,
678 entry->paddr,
679 entry->asid,
680 entry->attr,
681 (access & PAGE_READ) ? 'R' : '-',
682 (access & PAGE_WRITE) ? 'W' : '-',
683 (access & PAGE_EXEC) ? 'X' : '-',
684 cache_text[cache_idx] ? cache_text[cache_idx] :
685 "Invalid");
686 }
687 }
688 }
689 }
690
691 void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
692 {
693 if (xtensa_option_bits_enabled(env->config,
694 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
695 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
696 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
697
698 cpu_fprintf(f, "ITLB:\n");
699 dump_tlb(f, cpu_fprintf, env, false);
700 cpu_fprintf(f, "\nDTLB:\n");
701 dump_tlb(f, cpu_fprintf, env, true);
702 } else {
703 cpu_fprintf(f, "No TLB for this CPU core\n");
704 }
705 }