]> git.proxmox.com Git - mirror_qemu.git/blob - target-xtensa/op_helper.c
Merge remote-tracking branch 'quintela/migration.next' into staging
[mirror_qemu.git] / target-xtensa / op_helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "helper.h"
30 #include "qemu/host-utils.h"
31
32 static void do_unaligned_access(CPUXtensaState *env,
33 target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
34
35 #define ALIGNED_ONLY
36 #define MMUSUFFIX _mmu
37
38 #define SHIFT 0
39 #include "exec/softmmu_template.h"
40
41 #define SHIFT 1
42 #include "exec/softmmu_template.h"
43
44 #define SHIFT 2
45 #include "exec/softmmu_template.h"
46
47 #define SHIFT 3
48 #include "exec/softmmu_template.h"
49
50 static void do_unaligned_access(CPUXtensaState *env,
51 target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
52 {
53 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
54 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
55 cpu_restore_state(env, retaddr);
56 HELPER(exception_cause_vaddr)(env,
57 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
58 }
59 }
60
61 void tlb_fill(CPUXtensaState *env,
62 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
63 {
64 uint32_t paddr;
65 uint32_t page_size;
66 unsigned access;
67 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
68 &paddr, &page_size, &access);
69
70 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
71 vaddr, is_write, mmu_idx, paddr, ret);
72
73 if (ret == 0) {
74 tlb_set_page(env,
75 vaddr & TARGET_PAGE_MASK,
76 paddr & TARGET_PAGE_MASK,
77 access, mmu_idx, page_size);
78 } else {
79 cpu_restore_state(env, retaddr);
80 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
81 }
82 }
83
84 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
85 {
86 uint32_t paddr;
87 uint32_t page_size;
88 unsigned access;
89 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
90 &paddr, &page_size, &access);
91 if (ret == 0) {
92 tb_invalidate_phys_addr(paddr);
93 }
94 }
95
96 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
97 {
98 env->exception_index = excp;
99 cpu_loop_exit(env);
100 }
101
102 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
103 {
104 uint32_t vector;
105
106 env->pc = pc;
107 if (env->sregs[PS] & PS_EXCM) {
108 if (env->config->ndepc) {
109 env->sregs[DEPC] = pc;
110 } else {
111 env->sregs[EPC1] = pc;
112 }
113 vector = EXC_DOUBLE;
114 } else {
115 env->sregs[EPC1] = pc;
116 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
117 }
118
119 env->sregs[EXCCAUSE] = cause;
120 env->sregs[PS] |= PS_EXCM;
121
122 HELPER(exception)(env, vector);
123 }
124
125 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
126 uint32_t pc, uint32_t cause, uint32_t vaddr)
127 {
128 env->sregs[EXCVADDR] = vaddr;
129 HELPER(exception_cause)(env, pc, cause);
130 }
131
132 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
133 {
134 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
135 HELPER(debug_exception)(env, env->pc, cause);
136 }
137 }
138
139 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
140 {
141 unsigned level = env->config->debug_level;
142
143 env->pc = pc;
144 env->sregs[DEBUGCAUSE] = cause;
145 env->sregs[EPC1 + level - 1] = pc;
146 env->sregs[EPS2 + level - 2] = env->sregs[PS];
147 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
148 (level << PS_INTLEVEL_SHIFT);
149 HELPER(exception)(env, EXC_DEBUG);
150 }
151
152 uint32_t HELPER(nsa)(uint32_t v)
153 {
154 if (v & 0x80000000) {
155 v = ~v;
156 }
157 return v ? clz32(v) - 1 : 31;
158 }
159
160 uint32_t HELPER(nsau)(uint32_t v)
161 {
162 return v ? clz32(v) : 32;
163 }
164
165 static void copy_window_from_phys(CPUXtensaState *env,
166 uint32_t window, uint32_t phys, uint32_t n)
167 {
168 assert(phys < env->config->nareg);
169 if (phys + n <= env->config->nareg) {
170 memcpy(env->regs + window, env->phys_regs + phys,
171 n * sizeof(uint32_t));
172 } else {
173 uint32_t n1 = env->config->nareg - phys;
174 memcpy(env->regs + window, env->phys_regs + phys,
175 n1 * sizeof(uint32_t));
176 memcpy(env->regs + window + n1, env->phys_regs,
177 (n - n1) * sizeof(uint32_t));
178 }
179 }
180
181 static void copy_phys_from_window(CPUXtensaState *env,
182 uint32_t phys, uint32_t window, uint32_t n)
183 {
184 assert(phys < env->config->nareg);
185 if (phys + n <= env->config->nareg) {
186 memcpy(env->phys_regs + phys, env->regs + window,
187 n * sizeof(uint32_t));
188 } else {
189 uint32_t n1 = env->config->nareg - phys;
190 memcpy(env->phys_regs + phys, env->regs + window,
191 n1 * sizeof(uint32_t));
192 memcpy(env->phys_regs, env->regs + window + n1,
193 (n - n1) * sizeof(uint32_t));
194 }
195 }
196
197
198 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
199 {
200 return a & (env->config->nareg / 4 - 1);
201 }
202
203 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
204 {
205 return 1 << windowbase_bound(a, env);
206 }
207
208 void xtensa_sync_window_from_phys(CPUXtensaState *env)
209 {
210 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
211 }
212
213 void xtensa_sync_phys_from_window(CPUXtensaState *env)
214 {
215 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
216 }
217
218 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
219 {
220 xtensa_sync_phys_from_window(env);
221 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
222 xtensa_sync_window_from_phys(env);
223 }
224
225 static void rotate_window(CPUXtensaState *env, uint32_t delta)
226 {
227 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
228 }
229
230 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
231 {
232 rotate_window_abs(env, v);
233 }
234
235 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
236 {
237 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
238 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
239 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
240 pc, env->sregs[PS]);
241 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
242 } else {
243 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
244 rotate_window(env, callinc);
245 env->sregs[WINDOW_START] |=
246 windowstart_bit(env->sregs[WINDOW_BASE], env);
247 }
248 }
249
250 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
251 {
252 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
253 uint32_t windowstart = env->sregs[WINDOW_START];
254 uint32_t m, n;
255
256 if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
257 return;
258 }
259
260 for (n = 1; ; ++n) {
261 if (n > w) {
262 return;
263 }
264 if (windowstart & windowstart_bit(windowbase + n, env)) {
265 break;
266 }
267 }
268
269 m = windowbase_bound(windowbase + n, env);
270 rotate_window(env, n);
271 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
272 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
273 env->sregs[EPC1] = env->pc = pc;
274
275 if (windowstart & windowstart_bit(m + 1, env)) {
276 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
277 } else if (windowstart & windowstart_bit(m + 2, env)) {
278 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
279 } else {
280 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
281 }
282 }
283
284 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
285 {
286 int n = (env->regs[0] >> 30) & 0x3;
287 int m = 0;
288 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
289 uint32_t windowstart = env->sregs[WINDOW_START];
290 uint32_t ret_pc = 0;
291
292 if (windowstart & windowstart_bit(windowbase - 1, env)) {
293 m = 1;
294 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
295 m = 2;
296 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
297 m = 3;
298 }
299
300 if (n == 0 || (m != 0 && m != n) ||
301 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
302 qemu_log("Illegal retw instruction(pc = %08x), "
303 "PS = %08x, m = %d, n = %d\n",
304 pc, env->sregs[PS], m, n);
305 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
306 } else {
307 int owb = windowbase;
308
309 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
310
311 rotate_window(env, -n);
312 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
313 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
314 } else {
315 /* window underflow */
316 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
317 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
318 env->sregs[EPC1] = env->pc = pc;
319
320 if (n == 1) {
321 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
322 } else if (n == 2) {
323 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
324 } else if (n == 3) {
325 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
326 }
327 }
328 }
329 return ret_pc;
330 }
331
332 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
333 {
334 rotate_window(env, imm4);
335 }
336
337 void HELPER(restore_owb)(CPUXtensaState *env)
338 {
339 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
340 }
341
342 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
343 {
344 if ((env->sregs[WINDOW_START] &
345 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
346 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
347 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
348 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
349 }
350 }
351
352 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
353 {
354 if (env->sregs[LBEG] != v) {
355 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
356 env->sregs[LBEG] = v;
357 }
358 }
359
360 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
361 {
362 if (env->sregs[LEND] != v) {
363 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
364 env->sregs[LEND] = v;
365 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
366 }
367 }
368
369 void HELPER(dump_state)(CPUXtensaState *env)
370 {
371 XtensaCPU *cpu = xtensa_env_get_cpu(env);
372
373 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
374 }
375
376 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
377 {
378 CPUState *cpu;
379
380 env->pc = pc;
381 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
382 (intlevel << PS_INTLEVEL_SHIFT);
383 check_interrupts(env);
384 if (env->pending_irq_level) {
385 cpu_loop_exit(env);
386 return;
387 }
388
389 cpu = CPU(xtensa_env_get_cpu(env));
390 env->halt_clock = qemu_get_clock_ns(vm_clock);
391 cpu->halted = 1;
392 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
393 xtensa_rearm_ccompare_timer(env);
394 }
395 HELPER(exception)(env, EXCP_HLT);
396 }
397
398 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
399 {
400 xtensa_timer_irq(env, id, active);
401 }
402
403 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
404 {
405 xtensa_advance_ccount(env, d);
406 }
407
408 void HELPER(check_interrupts)(CPUXtensaState *env)
409 {
410 check_interrupts(env);
411 }
412
413 /*!
414 * Check vaddr accessibility/cache attributes and raise an exception if
415 * specified by the ATOMCTL SR.
416 *
417 * Note: local memory exclusion is not implemented
418 */
419 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
420 {
421 uint32_t paddr, page_size, access;
422 uint32_t atomctl = env->sregs[ATOMCTL];
423 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
424 xtensa_get_cring(env), &paddr, &page_size, &access);
425
426 /*
427 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
428 * see opcode description in the ISA
429 */
430 if (rc == 0 &&
431 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
432 rc = STORE_PROHIBITED_CAUSE;
433 }
434
435 if (rc) {
436 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
437 }
438
439 /*
440 * When data cache is not configured use ATOMCTL bypass field.
441 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
442 * under the Conditional Store Option.
443 */
444 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
445 access = PAGE_CACHE_BYPASS;
446 }
447
448 switch (access & PAGE_CACHE_MASK) {
449 case PAGE_CACHE_WB:
450 atomctl >>= 2;
451 case PAGE_CACHE_WT:
452 atomctl >>= 2;
453 case PAGE_CACHE_BYPASS:
454 if ((atomctl & 0x3) == 0) {
455 HELPER(exception_cause_vaddr)(env, pc,
456 LOAD_STORE_ERROR_CAUSE, vaddr);
457 }
458 break;
459
460 case PAGE_CACHE_ISOLATE:
461 HELPER(exception_cause_vaddr)(env, pc,
462 LOAD_STORE_ERROR_CAUSE, vaddr);
463 break;
464
465 default:
466 break;
467 }
468 }
469
470 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
471 {
472 v = (v & 0xffffff00) | 0x1;
473 if (v != env->sregs[RASID]) {
474 env->sregs[RASID] = v;
475 tlb_flush(env, 1);
476 }
477 }
478
479 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
480 {
481 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
482
483 switch (way) {
484 case 4:
485 return (tlbcfg >> 16) & 0x3;
486
487 case 5:
488 return (tlbcfg >> 20) & 0x1;
489
490 case 6:
491 return (tlbcfg >> 24) & 0x1;
492
493 default:
494 return 0;
495 }
496 }
497
498 /*!
499 * Get bit mask for the virtual address bits translated by the TLB way
500 */
501 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
502 {
503 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
504 bool varway56 = dtlb ?
505 env->config->dtlb.varway56 :
506 env->config->itlb.varway56;
507
508 switch (way) {
509 case 4:
510 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
511
512 case 5:
513 if (varway56) {
514 return 0xf8000000 << get_page_size(env, dtlb, way);
515 } else {
516 return 0xf8000000;
517 }
518
519 case 6:
520 if (varway56) {
521 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
522 } else {
523 return 0xf0000000;
524 }
525
526 default:
527 return 0xfffff000;
528 }
529 } else {
530 return REGION_PAGE_MASK;
531 }
532 }
533
534 /*!
535 * Get bit mask for the 'VPN without index' field.
536 * See ISA, 4.6.5.6, data format for RxTLB0
537 */
538 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
539 {
540 if (way < 4) {
541 bool is32 = (dtlb ?
542 env->config->dtlb.nrefillentries :
543 env->config->itlb.nrefillentries) == 32;
544 return is32 ? 0xffff8000 : 0xffffc000;
545 } else if (way == 4) {
546 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
547 } else if (way <= 6) {
548 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
549 bool varway56 = dtlb ?
550 env->config->dtlb.varway56 :
551 env->config->itlb.varway56;
552
553 if (varway56) {
554 return mask << (way == 5 ? 2 : 3);
555 } else {
556 return mask << 1;
557 }
558 } else {
559 return 0xfffff000;
560 }
561 }
562
563 /*!
564 * Split virtual address into VPN (with index) and entry index
565 * for the given TLB way
566 */
567 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
568 uint32_t *vpn, uint32_t wi, uint32_t *ei)
569 {
570 bool varway56 = dtlb ?
571 env->config->dtlb.varway56 :
572 env->config->itlb.varway56;
573
574 if (!dtlb) {
575 wi &= 7;
576 }
577
578 if (wi < 4) {
579 bool is32 = (dtlb ?
580 env->config->dtlb.nrefillentries :
581 env->config->itlb.nrefillentries) == 32;
582 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
583 } else {
584 switch (wi) {
585 case 4:
586 {
587 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
588 *ei = (v >> eibase) & 0x3;
589 }
590 break;
591
592 case 5:
593 if (varway56) {
594 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
595 *ei = (v >> eibase) & 0x3;
596 } else {
597 *ei = (v >> 27) & 0x1;
598 }
599 break;
600
601 case 6:
602 if (varway56) {
603 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
604 *ei = (v >> eibase) & 0x7;
605 } else {
606 *ei = (v >> 28) & 0x1;
607 }
608 break;
609
610 default:
611 *ei = 0;
612 break;
613 }
614 }
615 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
616 }
617
618 /*!
619 * Split TLB address into TLB way, entry index and VPN (with index).
620 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
621 */
622 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
623 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
624 {
625 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
626 *wi = v & (dtlb ? 0xf : 0x7);
627 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
628 } else {
629 *vpn = v & REGION_PAGE_MASK;
630 *wi = 0;
631 *ei = (v >> 29) & 0x7;
632 }
633 }
634
635 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
636 uint32_t v, bool dtlb, uint32_t *pwi)
637 {
638 uint32_t vpn;
639 uint32_t wi;
640 uint32_t ei;
641
642 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
643 if (pwi) {
644 *pwi = wi;
645 }
646 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
647 }
648
649 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
650 {
651 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
652 uint32_t wi;
653 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
654 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
655 } else {
656 return v & REGION_PAGE_MASK;
657 }
658 }
659
660 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
661 {
662 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
663 return entry->paddr | entry->attr;
664 }
665
666 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
667 {
668 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
669 uint32_t wi;
670 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
671 if (entry->variable && entry->asid) {
672 tlb_flush_page(env, entry->vaddr);
673 entry->asid = 0;
674 }
675 }
676 }
677
678 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
679 {
680 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
681 uint32_t wi;
682 uint32_t ei;
683 uint8_t ring;
684 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
685
686 switch (res) {
687 case 0:
688 if (ring >= xtensa_get_ring(env)) {
689 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
690 }
691 break;
692
693 case INST_TLB_MULTI_HIT_CAUSE:
694 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
695 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
696 break;
697 }
698 return 0;
699 } else {
700 return (v & REGION_PAGE_MASK) | 0x1;
701 }
702 }
703
704 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
705 xtensa_tlb_entry *entry, bool dtlb,
706 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
707 {
708 entry->vaddr = vpn;
709 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
710 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
711 entry->attr = pte & 0xf;
712 }
713
714 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
715 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
716 {
717 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
718
719 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
720 if (entry->variable) {
721 if (entry->asid) {
722 tlb_flush_page(env, entry->vaddr);
723 }
724 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
725 tlb_flush_page(env, entry->vaddr);
726 } else {
727 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
728 __func__, dtlb, wi, ei);
729 }
730 } else {
731 tlb_flush_page(env, entry->vaddr);
732 if (xtensa_option_enabled(env->config,
733 XTENSA_OPTION_REGION_TRANSLATION)) {
734 entry->paddr = pte & REGION_PAGE_MASK;
735 }
736 entry->attr = pte & 0xf;
737 }
738 }
739
740 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
741 {
742 uint32_t vpn;
743 uint32_t wi;
744 uint32_t ei;
745 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
746 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
747 }
748
749
750 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
751 {
752 uint32_t change = v ^ env->sregs[IBREAKENABLE];
753 unsigned i;
754
755 for (i = 0; i < env->config->nibreak; ++i) {
756 if (change & (1 << i)) {
757 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
758 }
759 }
760 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
761 }
762
763 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
764 {
765 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
766 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
767 tb_invalidate_virtual_addr(env, v);
768 }
769 env->sregs[IBREAKA + i] = v;
770 }
771
772 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
773 uint32_t dbreakc)
774 {
775 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
776 uint32_t mask = dbreakc | ~DBREAKC_MASK;
777
778 if (env->cpu_watchpoint[i]) {
779 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
780 }
781 if (dbreakc & DBREAKC_SB) {
782 flags |= BP_MEM_WRITE;
783 }
784 if (dbreakc & DBREAKC_LB) {
785 flags |= BP_MEM_READ;
786 }
787 /* contiguous mask after inversion is one less than some power of 2 */
788 if ((~mask + 1) & ~mask) {
789 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
790 /* cut mask after the first zero bit */
791 mask = 0xffffffff << (32 - clo32(mask));
792 }
793 if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
794 flags, &env->cpu_watchpoint[i])) {
795 env->cpu_watchpoint[i] = NULL;
796 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
797 dbreaka & mask, ~mask + 1);
798 }
799 }
800
801 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
802 {
803 uint32_t dbreakc = env->sregs[DBREAKC + i];
804
805 if ((dbreakc & DBREAKC_SB_LB) &&
806 env->sregs[DBREAKA + i] != v) {
807 set_dbreak(env, i, v, dbreakc);
808 }
809 env->sregs[DBREAKA + i] = v;
810 }
811
812 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
813 {
814 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
815 if (v & DBREAKC_SB_LB) {
816 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
817 } else {
818 if (env->cpu_watchpoint[i]) {
819 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
820 env->cpu_watchpoint[i] = NULL;
821 }
822 }
823 }
824 env->sregs[DBREAKC + i] = v;
825 }
826
827 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
828 {
829 static const int rounding_mode[] = {
830 float_round_nearest_even,
831 float_round_to_zero,
832 float_round_up,
833 float_round_down,
834 };
835
836 env->uregs[FCR] = v & 0xfffff07f;
837 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
838 }
839
840 float32 HELPER(abs_s)(float32 v)
841 {
842 return float32_abs(v);
843 }
844
845 float32 HELPER(neg_s)(float32 v)
846 {
847 return float32_chs(v);
848 }
849
850 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
851 {
852 return float32_add(a, b, &env->fp_status);
853 }
854
855 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
856 {
857 return float32_sub(a, b, &env->fp_status);
858 }
859
860 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
861 {
862 return float32_mul(a, b, &env->fp_status);
863 }
864
865 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
866 {
867 return float32_muladd(b, c, a, 0,
868 &env->fp_status);
869 }
870
871 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
872 {
873 return float32_muladd(b, c, a, float_muladd_negate_product,
874 &env->fp_status);
875 }
876
877 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
878 {
879 float_status fp_status = {0};
880
881 set_float_rounding_mode(rounding_mode, &fp_status);
882 return float32_to_int32(
883 float32_scalbn(v, scale, &fp_status), &fp_status);
884 }
885
886 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
887 {
888 float_status fp_status = {0};
889 float32 res;
890
891 set_float_rounding_mode(rounding_mode, &fp_status);
892
893 res = float32_scalbn(v, scale, &fp_status);
894
895 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
896 return float32_to_int32(res, &fp_status);
897 } else {
898 return float32_to_uint32(res, &fp_status);
899 }
900 }
901
902 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
903 {
904 return float32_scalbn(int32_to_float32(v, &env->fp_status),
905 (int32_t)scale, &env->fp_status);
906 }
907
908 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
909 {
910 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
911 (int32_t)scale, &env->fp_status);
912 }
913
914 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
915 {
916 if (v) {
917 env->sregs[BR] |= br;
918 } else {
919 env->sregs[BR] &= ~br;
920 }
921 }
922
923 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
924 {
925 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
926 }
927
928 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
929 {
930 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
931 }
932
933 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
934 {
935 int v = float32_compare_quiet(a, b, &env->fp_status);
936 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
937 }
938
939 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
940 {
941 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
942 }
943
944 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
945 {
946 int v = float32_compare_quiet(a, b, &env->fp_status);
947 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
948 }
949
950 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
951 {
952 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
953 }
954
955 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
956 {
957 int v = float32_compare_quiet(a, b, &env->fp_status);
958 set_br(env, v != float_relation_greater, br);
959 }