]> git.proxmox.com Git - mirror_qemu.git/blob - target-xtensa/op_helper.c
valgrind/i386: avoid false positives on KVM_SET_CLOCK ioctl
[mirror_qemu.git] / target-xtensa / op_helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "exec/helper-proto.h"
30 #include "qemu/host-utils.h"
31 #include "exec/cpu_ldst.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/timer.h"
34
35 void xtensa_cpu_do_unaligned_access(CPUState *cs,
36 vaddr addr, int is_write, int is_user, uintptr_t retaddr)
37 {
38 XtensaCPU *cpu = XTENSA_CPU(cs);
39 CPUXtensaState *env = &cpu->env;
40
41 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
42 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
43 cpu_restore_state(CPU(cpu), retaddr);
44 HELPER(exception_cause_vaddr)(env,
45 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
46 }
47 }
48
49 void tlb_fill(CPUState *cs,
50 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
51 {
52 XtensaCPU *cpu = XTENSA_CPU(cs);
53 CPUXtensaState *env = &cpu->env;
54 uint32_t paddr;
55 uint32_t page_size;
56 unsigned access;
57 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
58 &paddr, &page_size, &access);
59
60 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
61 vaddr, is_write, mmu_idx, paddr, ret);
62
63 if (ret == 0) {
64 tlb_set_page(cs,
65 vaddr & TARGET_PAGE_MASK,
66 paddr & TARGET_PAGE_MASK,
67 access, mmu_idx, page_size);
68 } else {
69 cpu_restore_state(cs, retaddr);
70 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
71 }
72 }
73
74 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
75 {
76 uint32_t paddr;
77 uint32_t page_size;
78 unsigned access;
79 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
80 &paddr, &page_size, &access);
81 if (ret == 0) {
82 tb_invalidate_phys_addr(&address_space_memory, paddr);
83 }
84 }
85
86 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
87 {
88 CPUState *cs = CPU(xtensa_env_get_cpu(env));
89
90 cs->exception_index = excp;
91 if (excp == EXCP_DEBUG) {
92 env->exception_taken = 0;
93 }
94 cpu_loop_exit(cs);
95 }
96
97 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
98 {
99 uint32_t vector;
100
101 env->pc = pc;
102 if (env->sregs[PS] & PS_EXCM) {
103 if (env->config->ndepc) {
104 env->sregs[DEPC] = pc;
105 } else {
106 env->sregs[EPC1] = pc;
107 }
108 vector = EXC_DOUBLE;
109 } else {
110 env->sregs[EPC1] = pc;
111 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
112 }
113
114 env->sregs[EXCCAUSE] = cause;
115 env->sregs[PS] |= PS_EXCM;
116
117 HELPER(exception)(env, vector);
118 }
119
120 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
121 uint32_t pc, uint32_t cause, uint32_t vaddr)
122 {
123 env->sregs[EXCVADDR] = vaddr;
124 HELPER(exception_cause)(env, pc, cause);
125 }
126
127 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
128 {
129 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
130 HELPER(debug_exception)(env, env->pc, cause);
131 }
132 }
133
134 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
135 {
136 unsigned level = env->config->debug_level;
137
138 env->pc = pc;
139 env->sregs[DEBUGCAUSE] = cause;
140 env->sregs[EPC1 + level - 1] = pc;
141 env->sregs[EPS2 + level - 2] = env->sregs[PS];
142 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
143 (level << PS_INTLEVEL_SHIFT);
144 HELPER(exception)(env, EXC_DEBUG);
145 }
146
147 uint32_t HELPER(nsa)(uint32_t v)
148 {
149 if (v & 0x80000000) {
150 v = ~v;
151 }
152 return v ? clz32(v) - 1 : 31;
153 }
154
155 uint32_t HELPER(nsau)(uint32_t v)
156 {
157 return v ? clz32(v) : 32;
158 }
159
160 static void copy_window_from_phys(CPUXtensaState *env,
161 uint32_t window, uint32_t phys, uint32_t n)
162 {
163 assert(phys < env->config->nareg);
164 if (phys + n <= env->config->nareg) {
165 memcpy(env->regs + window, env->phys_regs + phys,
166 n * sizeof(uint32_t));
167 } else {
168 uint32_t n1 = env->config->nareg - phys;
169 memcpy(env->regs + window, env->phys_regs + phys,
170 n1 * sizeof(uint32_t));
171 memcpy(env->regs + window + n1, env->phys_regs,
172 (n - n1) * sizeof(uint32_t));
173 }
174 }
175
176 static void copy_phys_from_window(CPUXtensaState *env,
177 uint32_t phys, uint32_t window, uint32_t n)
178 {
179 assert(phys < env->config->nareg);
180 if (phys + n <= env->config->nareg) {
181 memcpy(env->phys_regs + phys, env->regs + window,
182 n * sizeof(uint32_t));
183 } else {
184 uint32_t n1 = env->config->nareg - phys;
185 memcpy(env->phys_regs + phys, env->regs + window,
186 n1 * sizeof(uint32_t));
187 memcpy(env->phys_regs, env->regs + window + n1,
188 (n - n1) * sizeof(uint32_t));
189 }
190 }
191
192
193 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
194 {
195 return a & (env->config->nareg / 4 - 1);
196 }
197
198 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
199 {
200 return 1 << windowbase_bound(a, env);
201 }
202
203 void xtensa_sync_window_from_phys(CPUXtensaState *env)
204 {
205 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
206 }
207
208 void xtensa_sync_phys_from_window(CPUXtensaState *env)
209 {
210 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
211 }
212
213 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
214 {
215 xtensa_sync_phys_from_window(env);
216 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
217 xtensa_sync_window_from_phys(env);
218 }
219
220 static void rotate_window(CPUXtensaState *env, uint32_t delta)
221 {
222 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
223 }
224
225 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
226 {
227 rotate_window_abs(env, v);
228 }
229
230 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
231 {
232 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
233 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
234 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
235 pc, env->sregs[PS]);
236 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
237 } else {
238 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
239 (env->sregs[WINDOW_BASE] + 1);
240
241 if (windowstart & ((1 << callinc) - 1)) {
242 HELPER(window_check)(env, pc, callinc);
243 }
244 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
245 rotate_window(env, callinc);
246 env->sregs[WINDOW_START] |=
247 windowstart_bit(env->sregs[WINDOW_BASE], env);
248 }
249 }
250
251 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
252 {
253 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
254 uint32_t windowstart = env->sregs[WINDOW_START];
255 uint32_t m, n;
256
257 if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
258 return;
259 }
260
261 for (n = 1; ; ++n) {
262 if (n > w) {
263 return;
264 }
265 if (windowstart & windowstart_bit(windowbase + n, env)) {
266 break;
267 }
268 }
269
270 m = windowbase_bound(windowbase + n, env);
271 rotate_window(env, n);
272 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
273 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
274 env->sregs[EPC1] = env->pc = pc;
275
276 if (windowstart & windowstart_bit(m + 1, env)) {
277 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
278 } else if (windowstart & windowstart_bit(m + 2, env)) {
279 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
280 } else {
281 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
282 }
283 }
284
285 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
286 {
287 int n = (env->regs[0] >> 30) & 0x3;
288 int m = 0;
289 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
290 uint32_t windowstart = env->sregs[WINDOW_START];
291 uint32_t ret_pc = 0;
292
293 if (windowstart & windowstart_bit(windowbase - 1, env)) {
294 m = 1;
295 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
296 m = 2;
297 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
298 m = 3;
299 }
300
301 if (n == 0 || (m != 0 && m != n) ||
302 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
303 qemu_log("Illegal retw instruction(pc = %08x), "
304 "PS = %08x, m = %d, n = %d\n",
305 pc, env->sregs[PS], m, n);
306 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
307 } else {
308 int owb = windowbase;
309
310 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
311
312 rotate_window(env, -n);
313 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
314 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
315 } else {
316 /* window underflow */
317 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
318 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
319 env->sregs[EPC1] = env->pc = pc;
320
321 if (n == 1) {
322 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
323 } else if (n == 2) {
324 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
325 } else if (n == 3) {
326 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
327 }
328 }
329 }
330 return ret_pc;
331 }
332
333 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
334 {
335 rotate_window(env, imm4);
336 }
337
338 void HELPER(restore_owb)(CPUXtensaState *env)
339 {
340 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
341 }
342
343 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
344 {
345 if ((env->sregs[WINDOW_START] &
346 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
347 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
348 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
349 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
350 }
351 }
352
353 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
354 {
355 if (env->sregs[LBEG] != v) {
356 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
357 env->sregs[LBEG] = v;
358 }
359 }
360
361 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
362 {
363 if (env->sregs[LEND] != v) {
364 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
365 env->sregs[LEND] = v;
366 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
367 }
368 }
369
370 void HELPER(dump_state)(CPUXtensaState *env)
371 {
372 XtensaCPU *cpu = xtensa_env_get_cpu(env);
373
374 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
375 }
376
377 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
378 {
379 CPUState *cpu;
380
381 env->pc = pc;
382 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
383 (intlevel << PS_INTLEVEL_SHIFT);
384 check_interrupts(env);
385 if (env->pending_irq_level) {
386 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
387 return;
388 }
389
390 cpu = CPU(xtensa_env_get_cpu(env));
391 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
392 cpu->halted = 1;
393 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
394 xtensa_rearm_ccompare_timer(env);
395 }
396 HELPER(exception)(env, EXCP_HLT);
397 }
398
399 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
400 {
401 xtensa_timer_irq(env, id, active);
402 }
403
404 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
405 {
406 xtensa_advance_ccount(env, d);
407 }
408
409 void HELPER(check_interrupts)(CPUXtensaState *env)
410 {
411 check_interrupts(env);
412 }
413
414 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
415 {
416 get_page_addr_code(env, vaddr);
417 }
418
419 /*!
420 * Check vaddr accessibility/cache attributes and raise an exception if
421 * specified by the ATOMCTL SR.
422 *
423 * Note: local memory exclusion is not implemented
424 */
425 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
426 {
427 uint32_t paddr, page_size, access;
428 uint32_t atomctl = env->sregs[ATOMCTL];
429 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
430 xtensa_get_cring(env), &paddr, &page_size, &access);
431
432 /*
433 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
434 * see opcode description in the ISA
435 */
436 if (rc == 0 &&
437 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
438 rc = STORE_PROHIBITED_CAUSE;
439 }
440
441 if (rc) {
442 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
443 }
444
445 /*
446 * When data cache is not configured use ATOMCTL bypass field.
447 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
448 * under the Conditional Store Option.
449 */
450 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
451 access = PAGE_CACHE_BYPASS;
452 }
453
454 switch (access & PAGE_CACHE_MASK) {
455 case PAGE_CACHE_WB:
456 atomctl >>= 2;
457 /* fall through */
458 case PAGE_CACHE_WT:
459 atomctl >>= 2;
460 /* fall through */
461 case PAGE_CACHE_BYPASS:
462 if ((atomctl & 0x3) == 0) {
463 HELPER(exception_cause_vaddr)(env, pc,
464 LOAD_STORE_ERROR_CAUSE, vaddr);
465 }
466 break;
467
468 case PAGE_CACHE_ISOLATE:
469 HELPER(exception_cause_vaddr)(env, pc,
470 LOAD_STORE_ERROR_CAUSE, vaddr);
471 break;
472
473 default:
474 break;
475 }
476 }
477
478 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
479 {
480 XtensaCPU *cpu = xtensa_env_get_cpu(env);
481
482 v = (v & 0xffffff00) | 0x1;
483 if (v != env->sregs[RASID]) {
484 env->sregs[RASID] = v;
485 tlb_flush(CPU(cpu), 1);
486 }
487 }
488
489 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
490 {
491 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
492
493 switch (way) {
494 case 4:
495 return (tlbcfg >> 16) & 0x3;
496
497 case 5:
498 return (tlbcfg >> 20) & 0x1;
499
500 case 6:
501 return (tlbcfg >> 24) & 0x1;
502
503 default:
504 return 0;
505 }
506 }
507
508 /*!
509 * Get bit mask for the virtual address bits translated by the TLB way
510 */
511 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
512 {
513 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
514 bool varway56 = dtlb ?
515 env->config->dtlb.varway56 :
516 env->config->itlb.varway56;
517
518 switch (way) {
519 case 4:
520 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
521
522 case 5:
523 if (varway56) {
524 return 0xf8000000 << get_page_size(env, dtlb, way);
525 } else {
526 return 0xf8000000;
527 }
528
529 case 6:
530 if (varway56) {
531 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
532 } else {
533 return 0xf0000000;
534 }
535
536 default:
537 return 0xfffff000;
538 }
539 } else {
540 return REGION_PAGE_MASK;
541 }
542 }
543
544 /*!
545 * Get bit mask for the 'VPN without index' field.
546 * See ISA, 4.6.5.6, data format for RxTLB0
547 */
548 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
549 {
550 if (way < 4) {
551 bool is32 = (dtlb ?
552 env->config->dtlb.nrefillentries :
553 env->config->itlb.nrefillentries) == 32;
554 return is32 ? 0xffff8000 : 0xffffc000;
555 } else if (way == 4) {
556 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
557 } else if (way <= 6) {
558 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
559 bool varway56 = dtlb ?
560 env->config->dtlb.varway56 :
561 env->config->itlb.varway56;
562
563 if (varway56) {
564 return mask << (way == 5 ? 2 : 3);
565 } else {
566 return mask << 1;
567 }
568 } else {
569 return 0xfffff000;
570 }
571 }
572
573 /*!
574 * Split virtual address into VPN (with index) and entry index
575 * for the given TLB way
576 */
577 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
578 uint32_t *vpn, uint32_t wi, uint32_t *ei)
579 {
580 bool varway56 = dtlb ?
581 env->config->dtlb.varway56 :
582 env->config->itlb.varway56;
583
584 if (!dtlb) {
585 wi &= 7;
586 }
587
588 if (wi < 4) {
589 bool is32 = (dtlb ?
590 env->config->dtlb.nrefillentries :
591 env->config->itlb.nrefillentries) == 32;
592 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
593 } else {
594 switch (wi) {
595 case 4:
596 {
597 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
598 *ei = (v >> eibase) & 0x3;
599 }
600 break;
601
602 case 5:
603 if (varway56) {
604 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
605 *ei = (v >> eibase) & 0x3;
606 } else {
607 *ei = (v >> 27) & 0x1;
608 }
609 break;
610
611 case 6:
612 if (varway56) {
613 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
614 *ei = (v >> eibase) & 0x7;
615 } else {
616 *ei = (v >> 28) & 0x1;
617 }
618 break;
619
620 default:
621 *ei = 0;
622 break;
623 }
624 }
625 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
626 }
627
628 /*!
629 * Split TLB address into TLB way, entry index and VPN (with index).
630 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
631 */
632 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
633 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
634 {
635 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
636 *wi = v & (dtlb ? 0xf : 0x7);
637 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
638 } else {
639 *vpn = v & REGION_PAGE_MASK;
640 *wi = 0;
641 *ei = (v >> 29) & 0x7;
642 }
643 }
644
645 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
646 uint32_t v, bool dtlb, uint32_t *pwi)
647 {
648 uint32_t vpn;
649 uint32_t wi;
650 uint32_t ei;
651
652 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
653 if (pwi) {
654 *pwi = wi;
655 }
656 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
657 }
658
659 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
660 {
661 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
662 uint32_t wi;
663 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
664 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
665 } else {
666 return v & REGION_PAGE_MASK;
667 }
668 }
669
670 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
671 {
672 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
673 return entry->paddr | entry->attr;
674 }
675
676 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
677 {
678 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
679 uint32_t wi;
680 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
681 if (entry->variable && entry->asid) {
682 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
683 entry->asid = 0;
684 }
685 }
686 }
687
688 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
689 {
690 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
691 uint32_t wi;
692 uint32_t ei;
693 uint8_t ring;
694 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
695
696 switch (res) {
697 case 0:
698 if (ring >= xtensa_get_ring(env)) {
699 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
700 }
701 break;
702
703 case INST_TLB_MULTI_HIT_CAUSE:
704 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
705 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
706 break;
707 }
708 return 0;
709 } else {
710 return (v & REGION_PAGE_MASK) | 0x1;
711 }
712 }
713
714 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
715 xtensa_tlb_entry *entry, bool dtlb,
716 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
717 {
718 entry->vaddr = vpn;
719 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
720 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
721 entry->attr = pte & 0xf;
722 }
723
724 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
725 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
726 {
727 XtensaCPU *cpu = xtensa_env_get_cpu(env);
728 CPUState *cs = CPU(cpu);
729 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
730
731 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
732 if (entry->variable) {
733 if (entry->asid) {
734 tlb_flush_page(cs, entry->vaddr);
735 }
736 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
737 tlb_flush_page(cs, entry->vaddr);
738 } else {
739 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
740 __func__, dtlb, wi, ei);
741 }
742 } else {
743 tlb_flush_page(cs, entry->vaddr);
744 if (xtensa_option_enabled(env->config,
745 XTENSA_OPTION_REGION_TRANSLATION)) {
746 entry->paddr = pte & REGION_PAGE_MASK;
747 }
748 entry->attr = pte & 0xf;
749 }
750 }
751
752 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
753 {
754 uint32_t vpn;
755 uint32_t wi;
756 uint32_t ei;
757 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
758 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
759 }
760
761
762 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
763 {
764 uint32_t change = v ^ env->sregs[IBREAKENABLE];
765 unsigned i;
766
767 for (i = 0; i < env->config->nibreak; ++i) {
768 if (change & (1 << i)) {
769 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
770 }
771 }
772 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
773 }
774
775 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
776 {
777 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
778 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
779 tb_invalidate_virtual_addr(env, v);
780 }
781 env->sregs[IBREAKA + i] = v;
782 }
783
784 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
785 uint32_t dbreakc)
786 {
787 CPUState *cs = CPU(xtensa_env_get_cpu(env));
788 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
789 uint32_t mask = dbreakc | ~DBREAKC_MASK;
790
791 if (env->cpu_watchpoint[i]) {
792 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
793 }
794 if (dbreakc & DBREAKC_SB) {
795 flags |= BP_MEM_WRITE;
796 }
797 if (dbreakc & DBREAKC_LB) {
798 flags |= BP_MEM_READ;
799 }
800 /* contiguous mask after inversion is one less than some power of 2 */
801 if ((~mask + 1) & ~mask) {
802 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
803 /* cut mask after the first zero bit */
804 mask = 0xffffffff << (32 - clo32(mask));
805 }
806 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
807 flags, &env->cpu_watchpoint[i])) {
808 env->cpu_watchpoint[i] = NULL;
809 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
810 dbreaka & mask, ~mask + 1);
811 }
812 }
813
814 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
815 {
816 uint32_t dbreakc = env->sregs[DBREAKC + i];
817
818 if ((dbreakc & DBREAKC_SB_LB) &&
819 env->sregs[DBREAKA + i] != v) {
820 set_dbreak(env, i, v, dbreakc);
821 }
822 env->sregs[DBREAKA + i] = v;
823 }
824
825 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
826 {
827 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
828 if (v & DBREAKC_SB_LB) {
829 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
830 } else {
831 if (env->cpu_watchpoint[i]) {
832 CPUState *cs = CPU(xtensa_env_get_cpu(env));
833
834 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
835 env->cpu_watchpoint[i] = NULL;
836 }
837 }
838 }
839 env->sregs[DBREAKC + i] = v;
840 }
841
842 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
843 {
844 static const int rounding_mode[] = {
845 float_round_nearest_even,
846 float_round_to_zero,
847 float_round_up,
848 float_round_down,
849 };
850
851 env->uregs[FCR] = v & 0xfffff07f;
852 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
853 }
854
855 float32 HELPER(abs_s)(float32 v)
856 {
857 return float32_abs(v);
858 }
859
860 float32 HELPER(neg_s)(float32 v)
861 {
862 return float32_chs(v);
863 }
864
865 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
866 {
867 return float32_add(a, b, &env->fp_status);
868 }
869
870 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
871 {
872 return float32_sub(a, b, &env->fp_status);
873 }
874
875 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
876 {
877 return float32_mul(a, b, &env->fp_status);
878 }
879
880 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
881 {
882 return float32_muladd(b, c, a, 0,
883 &env->fp_status);
884 }
885
886 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
887 {
888 return float32_muladd(b, c, a, float_muladd_negate_product,
889 &env->fp_status);
890 }
891
892 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
893 {
894 float_status fp_status = {0};
895
896 set_float_rounding_mode(rounding_mode, &fp_status);
897 return float32_to_int32(
898 float32_scalbn(v, scale, &fp_status), &fp_status);
899 }
900
901 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
902 {
903 float_status fp_status = {0};
904 float32 res;
905
906 set_float_rounding_mode(rounding_mode, &fp_status);
907
908 res = float32_scalbn(v, scale, &fp_status);
909
910 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
911 return float32_to_int32(res, &fp_status);
912 } else {
913 return float32_to_uint32(res, &fp_status);
914 }
915 }
916
917 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
918 {
919 return float32_scalbn(int32_to_float32(v, &env->fp_status),
920 (int32_t)scale, &env->fp_status);
921 }
922
923 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
924 {
925 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
926 (int32_t)scale, &env->fp_status);
927 }
928
929 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
930 {
931 if (v) {
932 env->sregs[BR] |= br;
933 } else {
934 env->sregs[BR] &= ~br;
935 }
936 }
937
938 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
939 {
940 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
941 }
942
943 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
944 {
945 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
946 }
947
948 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
949 {
950 int v = float32_compare_quiet(a, b, &env->fp_status);
951 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
952 }
953
954 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
955 {
956 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
957 }
958
959 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
960 {
961 int v = float32_compare_quiet(a, b, &env->fp_status);
962 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
963 }
964
965 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
966 {
967 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
968 }
969
970 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
971 {
972 int v = float32_compare_quiet(a, b, &env->fp_status);
973 set_br(env, v != float_relation_greater, br);
974 }