]> git.proxmox.com Git - mirror_qemu.git/blob - target-xtensa/op_helper.c
virtfs-proxy-helper: use setresuid and setresgid
[mirror_qemu.git] / target-xtensa / op_helper.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "cpu.h"
29 #include "helper.h"
30 #include "host-utils.h"
31
32 static void do_unaligned_access(CPUXtensaState *env,
33 target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
34
35 #define ALIGNED_ONLY
36 #define MMUSUFFIX _mmu
37
38 #define SHIFT 0
39 #include "softmmu_template.h"
40
41 #define SHIFT 1
42 #include "softmmu_template.h"
43
44 #define SHIFT 2
45 #include "softmmu_template.h"
46
47 #define SHIFT 3
48 #include "softmmu_template.h"
49
50 static void do_restore_state(CPUXtensaState *env, uintptr_t pc)
51 {
52 TranslationBlock *tb;
53
54 tb = tb_find_pc(pc);
55 if (tb) {
56 cpu_restore_state(tb, env, pc);
57 }
58 }
59
60 static void do_unaligned_access(CPUXtensaState *env,
61 target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
62 {
63 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
64 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
65 do_restore_state(env, retaddr);
66 HELPER(exception_cause_vaddr)(env,
67 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
68 }
69 }
70
71 void tlb_fill(CPUXtensaState *env,
72 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
73 {
74 uint32_t paddr;
75 uint32_t page_size;
76 unsigned access;
77 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
78 &paddr, &page_size, &access);
79
80 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
81 vaddr, is_write, mmu_idx, paddr, ret);
82
83 if (ret == 0) {
84 tlb_set_page(env,
85 vaddr & TARGET_PAGE_MASK,
86 paddr & TARGET_PAGE_MASK,
87 access, mmu_idx, page_size);
88 } else {
89 do_restore_state(env, retaddr);
90 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
91 }
92 }
93
94 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
95 {
96 uint32_t paddr;
97 uint32_t page_size;
98 unsigned access;
99 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
100 &paddr, &page_size, &access);
101 if (ret == 0) {
102 tb_invalidate_phys_addr(paddr);
103 }
104 }
105
106 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
107 {
108 env->exception_index = excp;
109 cpu_loop_exit(env);
110 }
111
112 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
113 {
114 uint32_t vector;
115
116 env->pc = pc;
117 if (env->sregs[PS] & PS_EXCM) {
118 if (env->config->ndepc) {
119 env->sregs[DEPC] = pc;
120 } else {
121 env->sregs[EPC1] = pc;
122 }
123 vector = EXC_DOUBLE;
124 } else {
125 env->sregs[EPC1] = pc;
126 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
127 }
128
129 env->sregs[EXCCAUSE] = cause;
130 env->sregs[PS] |= PS_EXCM;
131
132 HELPER(exception)(env, vector);
133 }
134
135 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
136 uint32_t pc, uint32_t cause, uint32_t vaddr)
137 {
138 env->sregs[EXCVADDR] = vaddr;
139 HELPER(exception_cause)(env, pc, cause);
140 }
141
142 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
143 {
144 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
145 HELPER(debug_exception)(env, env->pc, cause);
146 }
147 }
148
149 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
150 {
151 unsigned level = env->config->debug_level;
152
153 env->pc = pc;
154 env->sregs[DEBUGCAUSE] = cause;
155 env->sregs[EPC1 + level - 1] = pc;
156 env->sregs[EPS2 + level - 2] = env->sregs[PS];
157 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
158 (level << PS_INTLEVEL_SHIFT);
159 HELPER(exception)(env, EXC_DEBUG);
160 }
161
162 uint32_t HELPER(nsa)(uint32_t v)
163 {
164 if (v & 0x80000000) {
165 v = ~v;
166 }
167 return v ? clz32(v) - 1 : 31;
168 }
169
170 uint32_t HELPER(nsau)(uint32_t v)
171 {
172 return v ? clz32(v) : 32;
173 }
174
175 static void copy_window_from_phys(CPUXtensaState *env,
176 uint32_t window, uint32_t phys, uint32_t n)
177 {
178 assert(phys < env->config->nareg);
179 if (phys + n <= env->config->nareg) {
180 memcpy(env->regs + window, env->phys_regs + phys,
181 n * sizeof(uint32_t));
182 } else {
183 uint32_t n1 = env->config->nareg - phys;
184 memcpy(env->regs + window, env->phys_regs + phys,
185 n1 * sizeof(uint32_t));
186 memcpy(env->regs + window + n1, env->phys_regs,
187 (n - n1) * sizeof(uint32_t));
188 }
189 }
190
191 static void copy_phys_from_window(CPUXtensaState *env,
192 uint32_t phys, uint32_t window, uint32_t n)
193 {
194 assert(phys < env->config->nareg);
195 if (phys + n <= env->config->nareg) {
196 memcpy(env->phys_regs + phys, env->regs + window,
197 n * sizeof(uint32_t));
198 } else {
199 uint32_t n1 = env->config->nareg - phys;
200 memcpy(env->phys_regs + phys, env->regs + window,
201 n1 * sizeof(uint32_t));
202 memcpy(env->phys_regs, env->regs + window + n1,
203 (n - n1) * sizeof(uint32_t));
204 }
205 }
206
207
208 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
209 {
210 return a & (env->config->nareg / 4 - 1);
211 }
212
213 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
214 {
215 return 1 << windowbase_bound(a, env);
216 }
217
218 void xtensa_sync_window_from_phys(CPUXtensaState *env)
219 {
220 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
221 }
222
223 void xtensa_sync_phys_from_window(CPUXtensaState *env)
224 {
225 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
226 }
227
228 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
229 {
230 xtensa_sync_phys_from_window(env);
231 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
232 xtensa_sync_window_from_phys(env);
233 }
234
235 static void rotate_window(CPUXtensaState *env, uint32_t delta)
236 {
237 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
238 }
239
240 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
241 {
242 rotate_window_abs(env, v);
243 }
244
245 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
246 {
247 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
248 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
249 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
250 pc, env->sregs[PS]);
251 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
252 } else {
253 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
254 rotate_window(env, callinc);
255 env->sregs[WINDOW_START] |=
256 windowstart_bit(env->sregs[WINDOW_BASE], env);
257 }
258 }
259
260 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
261 {
262 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
263 uint32_t windowstart = env->sregs[WINDOW_START];
264 uint32_t m, n;
265
266 if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
267 return;
268 }
269
270 for (n = 1; ; ++n) {
271 if (n > w) {
272 return;
273 }
274 if (windowstart & windowstart_bit(windowbase + n, env)) {
275 break;
276 }
277 }
278
279 m = windowbase_bound(windowbase + n, env);
280 rotate_window(env, n);
281 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
282 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
283 env->sregs[EPC1] = env->pc = pc;
284
285 if (windowstart & windowstart_bit(m + 1, env)) {
286 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
287 } else if (windowstart & windowstart_bit(m + 2, env)) {
288 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
289 } else {
290 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
291 }
292 }
293
294 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
295 {
296 int n = (env->regs[0] >> 30) & 0x3;
297 int m = 0;
298 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
299 uint32_t windowstart = env->sregs[WINDOW_START];
300 uint32_t ret_pc = 0;
301
302 if (windowstart & windowstart_bit(windowbase - 1, env)) {
303 m = 1;
304 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
305 m = 2;
306 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
307 m = 3;
308 }
309
310 if (n == 0 || (m != 0 && m != n) ||
311 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
312 qemu_log("Illegal retw instruction(pc = %08x), "
313 "PS = %08x, m = %d, n = %d\n",
314 pc, env->sregs[PS], m, n);
315 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
316 } else {
317 int owb = windowbase;
318
319 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
320
321 rotate_window(env, -n);
322 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
323 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
324 } else {
325 /* window underflow */
326 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
327 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
328 env->sregs[EPC1] = env->pc = pc;
329
330 if (n == 1) {
331 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
332 } else if (n == 2) {
333 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
334 } else if (n == 3) {
335 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
336 }
337 }
338 }
339 return ret_pc;
340 }
341
342 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
343 {
344 rotate_window(env, imm4);
345 }
346
347 void HELPER(restore_owb)(CPUXtensaState *env)
348 {
349 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
350 }
351
352 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
353 {
354 if ((env->sregs[WINDOW_START] &
355 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
356 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
357 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
358 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
359 }
360 }
361
362 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
363 {
364 if (env->sregs[LBEG] != v) {
365 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
366 env->sregs[LBEG] = v;
367 }
368 }
369
370 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
371 {
372 if (env->sregs[LEND] != v) {
373 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
374 env->sregs[LEND] = v;
375 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
376 }
377 }
378
379 void HELPER(dump_state)(CPUXtensaState *env)
380 {
381 cpu_dump_state(env, stderr, fprintf, 0);
382 }
383
384 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
385 {
386 env->pc = pc;
387 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
388 (intlevel << PS_INTLEVEL_SHIFT);
389 check_interrupts(env);
390 if (env->pending_irq_level) {
391 cpu_loop_exit(env);
392 return;
393 }
394
395 env->halt_clock = qemu_get_clock_ns(vm_clock);
396 env->halted = 1;
397 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
398 xtensa_rearm_ccompare_timer(env);
399 }
400 HELPER(exception)(env, EXCP_HLT);
401 }
402
403 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
404 {
405 xtensa_timer_irq(env, id, active);
406 }
407
408 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
409 {
410 xtensa_advance_ccount(env, d);
411 }
412
413 void HELPER(check_interrupts)(CPUXtensaState *env)
414 {
415 check_interrupts(env);
416 }
417
418 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
419 {
420 v = (v & 0xffffff00) | 0x1;
421 if (v != env->sregs[RASID]) {
422 env->sregs[RASID] = v;
423 tlb_flush(env, 1);
424 }
425 }
426
427 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
428 {
429 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
430
431 switch (way) {
432 case 4:
433 return (tlbcfg >> 16) & 0x3;
434
435 case 5:
436 return (tlbcfg >> 20) & 0x1;
437
438 case 6:
439 return (tlbcfg >> 24) & 0x1;
440
441 default:
442 return 0;
443 }
444 }
445
446 /*!
447 * Get bit mask for the virtual address bits translated by the TLB way
448 */
449 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
450 {
451 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
452 bool varway56 = dtlb ?
453 env->config->dtlb.varway56 :
454 env->config->itlb.varway56;
455
456 switch (way) {
457 case 4:
458 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
459
460 case 5:
461 if (varway56) {
462 return 0xf8000000 << get_page_size(env, dtlb, way);
463 } else {
464 return 0xf8000000;
465 }
466
467 case 6:
468 if (varway56) {
469 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
470 } else {
471 return 0xf0000000;
472 }
473
474 default:
475 return 0xfffff000;
476 }
477 } else {
478 return REGION_PAGE_MASK;
479 }
480 }
481
482 /*!
483 * Get bit mask for the 'VPN without index' field.
484 * See ISA, 4.6.5.6, data format for RxTLB0
485 */
486 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
487 {
488 if (way < 4) {
489 bool is32 = (dtlb ?
490 env->config->dtlb.nrefillentries :
491 env->config->itlb.nrefillentries) == 32;
492 return is32 ? 0xffff8000 : 0xffffc000;
493 } else if (way == 4) {
494 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
495 } else if (way <= 6) {
496 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
497 bool varway56 = dtlb ?
498 env->config->dtlb.varway56 :
499 env->config->itlb.varway56;
500
501 if (varway56) {
502 return mask << (way == 5 ? 2 : 3);
503 } else {
504 return mask << 1;
505 }
506 } else {
507 return 0xfffff000;
508 }
509 }
510
511 /*!
512 * Split virtual address into VPN (with index) and entry index
513 * for the given TLB way
514 */
515 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
516 uint32_t *vpn, uint32_t wi, uint32_t *ei)
517 {
518 bool varway56 = dtlb ?
519 env->config->dtlb.varway56 :
520 env->config->itlb.varway56;
521
522 if (!dtlb) {
523 wi &= 7;
524 }
525
526 if (wi < 4) {
527 bool is32 = (dtlb ?
528 env->config->dtlb.nrefillentries :
529 env->config->itlb.nrefillentries) == 32;
530 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
531 } else {
532 switch (wi) {
533 case 4:
534 {
535 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
536 *ei = (v >> eibase) & 0x3;
537 }
538 break;
539
540 case 5:
541 if (varway56) {
542 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
543 *ei = (v >> eibase) & 0x3;
544 } else {
545 *ei = (v >> 27) & 0x1;
546 }
547 break;
548
549 case 6:
550 if (varway56) {
551 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
552 *ei = (v >> eibase) & 0x7;
553 } else {
554 *ei = (v >> 28) & 0x1;
555 }
556 break;
557
558 default:
559 *ei = 0;
560 break;
561 }
562 }
563 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
564 }
565
566 /*!
567 * Split TLB address into TLB way, entry index and VPN (with index).
568 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
569 */
570 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
571 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
572 {
573 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
574 *wi = v & (dtlb ? 0xf : 0x7);
575 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
576 } else {
577 *vpn = v & REGION_PAGE_MASK;
578 *wi = 0;
579 *ei = (v >> 29) & 0x7;
580 }
581 }
582
583 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
584 uint32_t v, bool dtlb, uint32_t *pwi)
585 {
586 uint32_t vpn;
587 uint32_t wi;
588 uint32_t ei;
589
590 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
591 if (pwi) {
592 *pwi = wi;
593 }
594 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
595 }
596
597 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
598 {
599 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
600 uint32_t wi;
601 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
602 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
603 } else {
604 return v & REGION_PAGE_MASK;
605 }
606 }
607
608 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
609 {
610 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
611 return entry->paddr | entry->attr;
612 }
613
614 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
615 {
616 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
617 uint32_t wi;
618 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
619 if (entry->variable && entry->asid) {
620 tlb_flush_page(env, entry->vaddr);
621 entry->asid = 0;
622 }
623 }
624 }
625
626 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
627 {
628 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
629 uint32_t wi;
630 uint32_t ei;
631 uint8_t ring;
632 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
633
634 switch (res) {
635 case 0:
636 if (ring >= xtensa_get_ring(env)) {
637 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
638 }
639 break;
640
641 case INST_TLB_MULTI_HIT_CAUSE:
642 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
643 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
644 break;
645 }
646 return 0;
647 } else {
648 return (v & REGION_PAGE_MASK) | 0x1;
649 }
650 }
651
652 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
653 xtensa_tlb_entry *entry, bool dtlb,
654 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
655 {
656 entry->vaddr = vpn;
657 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
658 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
659 entry->attr = pte & 0xf;
660 }
661
662 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
663 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
664 {
665 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
666
667 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
668 if (entry->variable) {
669 if (entry->asid) {
670 tlb_flush_page(env, entry->vaddr);
671 }
672 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
673 tlb_flush_page(env, entry->vaddr);
674 } else {
675 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
676 __func__, dtlb, wi, ei);
677 }
678 } else {
679 tlb_flush_page(env, entry->vaddr);
680 if (xtensa_option_enabled(env->config,
681 XTENSA_OPTION_REGION_TRANSLATION)) {
682 entry->paddr = pte & REGION_PAGE_MASK;
683 }
684 entry->attr = pte & 0xf;
685 }
686 }
687
688 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
689 {
690 uint32_t vpn;
691 uint32_t wi;
692 uint32_t ei;
693 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
694 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
695 }
696
697
698 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
699 {
700 uint32_t change = v ^ env->sregs[IBREAKENABLE];
701 unsigned i;
702
703 for (i = 0; i < env->config->nibreak; ++i) {
704 if (change & (1 << i)) {
705 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
706 }
707 }
708 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
709 }
710
711 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
712 {
713 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
714 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
715 tb_invalidate_virtual_addr(env, v);
716 }
717 env->sregs[IBREAKA + i] = v;
718 }
719
720 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
721 uint32_t dbreakc)
722 {
723 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
724 uint32_t mask = dbreakc | ~DBREAKC_MASK;
725
726 if (env->cpu_watchpoint[i]) {
727 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
728 }
729 if (dbreakc & DBREAKC_SB) {
730 flags |= BP_MEM_WRITE;
731 }
732 if (dbreakc & DBREAKC_LB) {
733 flags |= BP_MEM_READ;
734 }
735 /* contiguous mask after inversion is one less than some power of 2 */
736 if ((~mask + 1) & ~mask) {
737 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
738 /* cut mask after the first zero bit */
739 mask = 0xffffffff << (32 - clo32(mask));
740 }
741 if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
742 flags, &env->cpu_watchpoint[i])) {
743 env->cpu_watchpoint[i] = NULL;
744 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
745 dbreaka & mask, ~mask + 1);
746 }
747 }
748
749 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
750 {
751 uint32_t dbreakc = env->sregs[DBREAKC + i];
752
753 if ((dbreakc & DBREAKC_SB_LB) &&
754 env->sregs[DBREAKA + i] != v) {
755 set_dbreak(env, i, v, dbreakc);
756 }
757 env->sregs[DBREAKA + i] = v;
758 }
759
760 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
761 {
762 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
763 if (v & DBREAKC_SB_LB) {
764 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
765 } else {
766 if (env->cpu_watchpoint[i]) {
767 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
768 env->cpu_watchpoint[i] = NULL;
769 }
770 }
771 }
772 env->sregs[DBREAKC + i] = v;
773 }
774
775 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
776 {
777 static const int rounding_mode[] = {
778 float_round_nearest_even,
779 float_round_to_zero,
780 float_round_up,
781 float_round_down,
782 };
783
784 env->uregs[FCR] = v & 0xfffff07f;
785 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
786 }
787
788 float32 HELPER(abs_s)(float32 v)
789 {
790 return float32_abs(v);
791 }
792
793 float32 HELPER(neg_s)(float32 v)
794 {
795 return float32_chs(v);
796 }
797
798 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
799 {
800 return float32_add(a, b, &env->fp_status);
801 }
802
803 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
804 {
805 return float32_sub(a, b, &env->fp_status);
806 }
807
808 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
809 {
810 return float32_mul(a, b, &env->fp_status);
811 }
812
813 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
814 {
815 return float32_muladd(b, c, a, 0,
816 &env->fp_status);
817 }
818
819 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
820 {
821 return float32_muladd(b, c, a, float_muladd_negate_product,
822 &env->fp_status);
823 }
824
825 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
826 {
827 float_status fp_status = {0};
828
829 set_float_rounding_mode(rounding_mode, &fp_status);
830 return float32_to_int32(
831 float32_scalbn(v, scale, &fp_status), &fp_status);
832 }
833
834 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
835 {
836 float_status fp_status = {0};
837 float32 res;
838
839 set_float_rounding_mode(rounding_mode, &fp_status);
840
841 res = float32_scalbn(v, scale, &fp_status);
842
843 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
844 return float32_to_int32(res, &fp_status);
845 } else {
846 return float32_to_uint32(res, &fp_status);
847 }
848 }
849
850 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
851 {
852 return float32_scalbn(int32_to_float32(v, &env->fp_status),
853 (int32_t)scale, &env->fp_status);
854 }
855
856 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
857 {
858 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
859 (int32_t)scale, &env->fp_status);
860 }
861
862 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
863 {
864 if (v) {
865 env->sregs[BR] |= br;
866 } else {
867 env->sregs[BR] &= ~br;
868 }
869 }
870
871 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
872 {
873 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
874 }
875
876 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
877 {
878 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
879 }
880
881 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
882 {
883 int v = float32_compare_quiet(a, b, &env->fp_status);
884 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
885 }
886
887 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
888 {
889 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
890 }
891
892 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
893 {
894 int v = float32_compare_quiet(a, b, &env->fp_status);
895 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
896 }
897
898 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
899 {
900 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
901 }
902
903 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
904 {
905 int v = float32_compare_quiet(a, b, &env->fp_status);
906 set_br(env, v != float_relation_greater, br);
907 }