]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/i386/tcg-target.c.inc
4d7b745a52998ccad5b85c20821c39478f3d5a1f
[mirror_qemu.git] / tcg / i386 / tcg-target.c.inc
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "../tcg-ldst.c.inc"
26 #include "../tcg-pool.c.inc"
27
28 #ifdef CONFIG_DEBUG_TCG
29 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
30 #if TCG_TARGET_REG_BITS == 64
31 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
32 #else
33 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
34 #endif
35 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
36 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
37 #if TCG_TARGET_REG_BITS == 64
38 "%xmm8", "%xmm9", "%xmm10", "%xmm11",
39 "%xmm12", "%xmm13", "%xmm14", "%xmm15",
40 #endif
41 };
42 #endif
43
44 static const int tcg_target_reg_alloc_order[] = {
45 #if TCG_TARGET_REG_BITS == 64
46 TCG_REG_RBP,
47 TCG_REG_RBX,
48 TCG_REG_R12,
49 TCG_REG_R13,
50 TCG_REG_R14,
51 TCG_REG_R15,
52 TCG_REG_R10,
53 TCG_REG_R11,
54 TCG_REG_R9,
55 TCG_REG_R8,
56 TCG_REG_RCX,
57 TCG_REG_RDX,
58 TCG_REG_RSI,
59 TCG_REG_RDI,
60 TCG_REG_RAX,
61 #else
62 TCG_REG_EBX,
63 TCG_REG_ESI,
64 TCG_REG_EDI,
65 TCG_REG_EBP,
66 TCG_REG_ECX,
67 TCG_REG_EDX,
68 TCG_REG_EAX,
69 #endif
70 TCG_REG_XMM0,
71 TCG_REG_XMM1,
72 TCG_REG_XMM2,
73 TCG_REG_XMM3,
74 TCG_REG_XMM4,
75 TCG_REG_XMM5,
76 #ifndef _WIN64
77 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
78 any of them. Therefore only allow xmm0-xmm5 to be allocated. */
79 TCG_REG_XMM6,
80 TCG_REG_XMM7,
81 #if TCG_TARGET_REG_BITS == 64
82 TCG_REG_XMM8,
83 TCG_REG_XMM9,
84 TCG_REG_XMM10,
85 TCG_REG_XMM11,
86 TCG_REG_XMM12,
87 TCG_REG_XMM13,
88 TCG_REG_XMM14,
89 TCG_REG_XMM15,
90 #endif
91 #endif
92 };
93
94 #define TCG_TMP_VEC TCG_REG_XMM5
95
96 static const int tcg_target_call_iarg_regs[] = {
97 #if TCG_TARGET_REG_BITS == 64
98 #if defined(_WIN64)
99 TCG_REG_RCX,
100 TCG_REG_RDX,
101 #else
102 TCG_REG_RDI,
103 TCG_REG_RSI,
104 TCG_REG_RDX,
105 TCG_REG_RCX,
106 #endif
107 TCG_REG_R8,
108 TCG_REG_R9,
109 #else
110 /* 32 bit mode uses stack based calling convention (GCC default). */
111 #endif
112 };
113
114 static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
115 {
116 switch (kind) {
117 case TCG_CALL_RET_NORMAL:
118 tcg_debug_assert(slot >= 0 && slot <= 1);
119 return slot ? TCG_REG_EDX : TCG_REG_EAX;
120 #ifdef _WIN64
121 case TCG_CALL_RET_BY_VEC:
122 tcg_debug_assert(slot == 0);
123 return TCG_REG_XMM0;
124 #endif
125 default:
126 g_assert_not_reached();
127 }
128 }
129
130 /* Constants we accept. */
131 #define TCG_CT_CONST_S32 0x100
132 #define TCG_CT_CONST_U32 0x200
133 #define TCG_CT_CONST_I32 0x400
134 #define TCG_CT_CONST_WSZ 0x800
135
136 /* Registers used with L constraint, which are the first argument
137 registers on x86_64, and two random call clobbered registers on
138 i386. */
139 #if TCG_TARGET_REG_BITS == 64
140 # define TCG_REG_L0 tcg_target_call_iarg_regs[0]
141 # define TCG_REG_L1 tcg_target_call_iarg_regs[1]
142 #else
143 # define TCG_REG_L0 TCG_REG_EAX
144 # define TCG_REG_L1 TCG_REG_EDX
145 #endif
146
147 #if TCG_TARGET_REG_BITS == 64
148 # define ALL_GENERAL_REGS 0x0000ffffu
149 # define ALL_VECTOR_REGS 0xffff0000u
150 # define ALL_BYTEL_REGS ALL_GENERAL_REGS
151 #else
152 # define ALL_GENERAL_REGS 0x000000ffu
153 # define ALL_VECTOR_REGS 0x00ff0000u
154 # define ALL_BYTEL_REGS 0x0000000fu
155 #endif
156 #ifdef CONFIG_SOFTMMU
157 # define SOFTMMU_RESERVE_REGS ((1 << TCG_REG_L0) | (1 << TCG_REG_L1))
158 #else
159 # define SOFTMMU_RESERVE_REGS 0
160 #endif
161
162 /* For 64-bit, we always know that CMOV is available. */
163 #if TCG_TARGET_REG_BITS == 64
164 # define have_cmov true
165 #else
166 # define have_cmov (cpuinfo & CPUINFO_CMOV)
167 #endif
168 #define have_bmi2 (cpuinfo & CPUINFO_BMI2)
169 #define have_lzcnt (cpuinfo & CPUINFO_LZCNT)
170
171 static const tcg_insn_unit *tb_ret_addr;
172
173 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
174 intptr_t value, intptr_t addend)
175 {
176 value += addend;
177 switch(type) {
178 case R_386_PC32:
179 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
180 if (value != (int32_t)value) {
181 return false;
182 }
183 /* FALLTHRU */
184 case R_386_32:
185 tcg_patch32(code_ptr, value);
186 break;
187 case R_386_PC8:
188 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
189 if (value != (int8_t)value) {
190 return false;
191 }
192 tcg_patch8(code_ptr, value);
193 break;
194 default:
195 g_assert_not_reached();
196 }
197 return true;
198 }
199
200 /* test if a constant matches the constraint */
201 static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
202 {
203 if (ct & TCG_CT_CONST) {
204 return 1;
205 }
206 if (type == TCG_TYPE_I32) {
207 if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) {
208 return 1;
209 }
210 } else {
211 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
212 return 1;
213 }
214 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
215 return 1;
216 }
217 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
218 return 1;
219 }
220 }
221 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
222 return 1;
223 }
224 return 0;
225 }
226
227 # define LOWREGMASK(x) ((x) & 7)
228
229 #define P_EXT 0x100 /* 0x0f opcode prefix */
230 #define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
231 #define P_DATA16 0x400 /* 0x66 opcode prefix */
232 #define P_VEXW 0x1000 /* Set VEX.W = 1 */
233 #if TCG_TARGET_REG_BITS == 64
234 # define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */
235 # define P_REXB_R 0x2000 /* REG field as byte register */
236 # define P_REXB_RM 0x4000 /* R/M field as byte register */
237 # define P_GS 0x8000 /* gs segment override */
238 #else
239 # define P_REXW 0
240 # define P_REXB_R 0
241 # define P_REXB_RM 0
242 # define P_GS 0
243 #endif
244 #define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */
245 #define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */
246 #define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */
247 #define P_VEXL 0x80000 /* Set VEX.L = 1 */
248 #define P_EVEX 0x100000 /* Requires EVEX encoding */
249
250 #define OPC_ARITH_EvIz (0x81)
251 #define OPC_ARITH_EvIb (0x83)
252 #define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
253 #define OPC_ANDN (0xf2 | P_EXT38)
254 #define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
255 #define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3))
256 #define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16)
257 #define OPC_BSF (0xbc | P_EXT)
258 #define OPC_BSR (0xbd | P_EXT)
259 #define OPC_BSWAP (0xc8 | P_EXT)
260 #define OPC_CALL_Jz (0xe8)
261 #define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
262 #define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
263 #define OPC_DEC_r32 (0x48)
264 #define OPC_IMUL_GvEv (0xaf | P_EXT)
265 #define OPC_IMUL_GvEvIb (0x6b)
266 #define OPC_IMUL_GvEvIz (0x69)
267 #define OPC_INC_r32 (0x40)
268 #define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
269 #define OPC_JCC_short (0x70) /* ... plus condition code */
270 #define OPC_JMP_long (0xe9)
271 #define OPC_JMP_short (0xeb)
272 #define OPC_LEA (0x8d)
273 #define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
274 #define OPC_MOVB_EvGv (0x88) /* stores, more or less */
275 #define OPC_MOVL_EvGv (0x89) /* stores, more or less */
276 #define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
277 #define OPC_MOVB_EvIz (0xc6)
278 #define OPC_MOVL_EvIz (0xc7)
279 #define OPC_MOVB_Ib (0xb0)
280 #define OPC_MOVL_Iv (0xb8)
281 #define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
282 #define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
283 #define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16)
284 #define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16)
285 #define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2)
286 #define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
287 #define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
288 #define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
289 #define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
290 #define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3)
291 #define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16)
292 #define OPC_MOVSBL (0xbe | P_EXT)
293 #define OPC_MOVSWL (0xbf | P_EXT)
294 #define OPC_MOVSLQ (0x63 | P_REXW)
295 #define OPC_MOVZBL (0xb6 | P_EXT)
296 #define OPC_MOVZWL (0xb7 | P_EXT)
297 #define OPC_PABSB (0x1c | P_EXT38 | P_DATA16)
298 #define OPC_PABSW (0x1d | P_EXT38 | P_DATA16)
299 #define OPC_PABSD (0x1e | P_EXT38 | P_DATA16)
300 #define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
301 #define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16)
302 #define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16)
303 #define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16)
304 #define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16)
305 #define OPC_PADDB (0xfc | P_EXT | P_DATA16)
306 #define OPC_PADDW (0xfd | P_EXT | P_DATA16)
307 #define OPC_PADDD (0xfe | P_EXT | P_DATA16)
308 #define OPC_PADDQ (0xd4 | P_EXT | P_DATA16)
309 #define OPC_PADDSB (0xec | P_EXT | P_DATA16)
310 #define OPC_PADDSW (0xed | P_EXT | P_DATA16)
311 #define OPC_PADDUB (0xdc | P_EXT | P_DATA16)
312 #define OPC_PADDUW (0xdd | P_EXT | P_DATA16)
313 #define OPC_PAND (0xdb | P_EXT | P_DATA16)
314 #define OPC_PANDN (0xdf | P_EXT | P_DATA16)
315 #define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16)
316 #define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16)
317 #define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16)
318 #define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16)
319 #define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16)
320 #define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16)
321 #define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16)
322 #define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16)
323 #define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16)
324 #define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16)
325 #define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16)
326 #define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16)
327 #define OPC_PMAXSW (0xee | P_EXT | P_DATA16)
328 #define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16)
329 #define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
330 #define OPC_PMAXUB (0xde | P_EXT | P_DATA16)
331 #define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16)
332 #define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16)
333 #define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
334 #define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16)
335 #define OPC_PMINSW (0xea | P_EXT | P_DATA16)
336 #define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16)
337 #define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
338 #define OPC_PMINUB (0xda | P_EXT | P_DATA16)
339 #define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16)
340 #define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16)
341 #define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
342 #define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16)
343 #define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16)
344 #define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16)
345 #define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16)
346 #define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16)
347 #define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16)
348 #define OPC_PMULLW (0xd5 | P_EXT | P_DATA16)
349 #define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16)
350 #define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
351 #define OPC_POR (0xeb | P_EXT | P_DATA16)
352 #define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16)
353 #define OPC_PSHUFD (0x70 | P_EXT | P_DATA16)
354 #define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2)
355 #define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3)
356 #define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
357 #define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
358 #define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
359 #define OPC_PSLLW (0xf1 | P_EXT | P_DATA16)
360 #define OPC_PSLLD (0xf2 | P_EXT | P_DATA16)
361 #define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16)
362 #define OPC_PSRAW (0xe1 | P_EXT | P_DATA16)
363 #define OPC_PSRAD (0xe2 | P_EXT | P_DATA16)
364 #define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
365 #define OPC_PSRLW (0xd1 | P_EXT | P_DATA16)
366 #define OPC_PSRLD (0xd2 | P_EXT | P_DATA16)
367 #define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16)
368 #define OPC_PSUBB (0xf8 | P_EXT | P_DATA16)
369 #define OPC_PSUBW (0xf9 | P_EXT | P_DATA16)
370 #define OPC_PSUBD (0xfa | P_EXT | P_DATA16)
371 #define OPC_PSUBQ (0xfb | P_EXT | P_DATA16)
372 #define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16)
373 #define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16)
374 #define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16)
375 #define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16)
376 #define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16)
377 #define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16)
378 #define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16)
379 #define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16)
380 #define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16)
381 #define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16)
382 #define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16)
383 #define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16)
384 #define OPC_PXOR (0xef | P_EXT | P_DATA16)
385 #define OPC_POP_r32 (0x58)
386 #define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
387 #define OPC_PUSH_r32 (0x50)
388 #define OPC_PUSH_Iv (0x68)
389 #define OPC_PUSH_Ib (0x6a)
390 #define OPC_RET (0xc3)
391 #define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
392 #define OPC_SHIFT_1 (0xd1)
393 #define OPC_SHIFT_Ib (0xc1)
394 #define OPC_SHIFT_cl (0xd3)
395 #define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
396 #define OPC_SHUFPS (0xc6 | P_EXT)
397 #define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
398 #define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
399 #define OPC_SHRD_Ib (0xac | P_EXT)
400 #define OPC_TESTL (0x85)
401 #define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
402 #define OPC_UD2 (0x0b | P_EXT)
403 #define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16)
404 #define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16)
405 #define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16)
406 #define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16)
407 #define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
408 #define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
409 #define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
410 #define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
411 #define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
412 #define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
413 #define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
414 #define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
415 #define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
416 #define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
417 #define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
418 #define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
419 #define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
420 #define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
421 #define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
422 #define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
423 #define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
424 #define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
425 #define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
426 #define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
427 #define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
428 #define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
429 #define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16)
430 #define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
431 #define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
432 #define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16)
433 #define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
434 #define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
435 #define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16)
436 #define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
437 #define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
438 #define OPC_VZEROUPPER (0x77 | P_EXT)
439 #define OPC_XCHG_ax_r32 (0x90)
440 #define OPC_XCHG_EvGv (0x87)
441
442 #define OPC_GRP3_Eb (0xf6)
443 #define OPC_GRP3_Ev (0xf7)
444 #define OPC_GRP5 (0xff)
445 #define OPC_GRP14 (0x73 | P_EXT | P_DATA16)
446
447 /* Group 1 opcode extensions for 0x80-0x83.
448 These are also used as modifiers for OPC_ARITH. */
449 #define ARITH_ADD 0
450 #define ARITH_OR 1
451 #define ARITH_ADC 2
452 #define ARITH_SBB 3
453 #define ARITH_AND 4
454 #define ARITH_SUB 5
455 #define ARITH_XOR 6
456 #define ARITH_CMP 7
457
458 /* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
459 #define SHIFT_ROL 0
460 #define SHIFT_ROR 1
461 #define SHIFT_SHL 4
462 #define SHIFT_SHR 5
463 #define SHIFT_SAR 7
464
465 /* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
466 #define EXT3_TESTi 0
467 #define EXT3_NOT 2
468 #define EXT3_NEG 3
469 #define EXT3_MUL 4
470 #define EXT3_IMUL 5
471 #define EXT3_DIV 6
472 #define EXT3_IDIV 7
473
474 /* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
475 #define EXT5_INC_Ev 0
476 #define EXT5_DEC_Ev 1
477 #define EXT5_CALLN_Ev 2
478 #define EXT5_JMPN_Ev 4
479
480 /* Condition codes to be added to OPC_JCC_{long,short}. */
481 #define JCC_JMP (-1)
482 #define JCC_JO 0x0
483 #define JCC_JNO 0x1
484 #define JCC_JB 0x2
485 #define JCC_JAE 0x3
486 #define JCC_JE 0x4
487 #define JCC_JNE 0x5
488 #define JCC_JBE 0x6
489 #define JCC_JA 0x7
490 #define JCC_JS 0x8
491 #define JCC_JNS 0x9
492 #define JCC_JP 0xa
493 #define JCC_JNP 0xb
494 #define JCC_JL 0xc
495 #define JCC_JGE 0xd
496 #define JCC_JLE 0xe
497 #define JCC_JG 0xf
498
499 static const uint8_t tcg_cond_to_jcc[] = {
500 [TCG_COND_EQ] = JCC_JE,
501 [TCG_COND_NE] = JCC_JNE,
502 [TCG_COND_LT] = JCC_JL,
503 [TCG_COND_GE] = JCC_JGE,
504 [TCG_COND_LE] = JCC_JLE,
505 [TCG_COND_GT] = JCC_JG,
506 [TCG_COND_LTU] = JCC_JB,
507 [TCG_COND_GEU] = JCC_JAE,
508 [TCG_COND_LEU] = JCC_JBE,
509 [TCG_COND_GTU] = JCC_JA,
510 };
511
512 #if TCG_TARGET_REG_BITS == 64
513 static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
514 {
515 int rex;
516
517 if (opc & P_GS) {
518 tcg_out8(s, 0x65);
519 }
520 if (opc & P_DATA16) {
521 /* We should never be asking for both 16 and 64-bit operation. */
522 tcg_debug_assert((opc & P_REXW) == 0);
523 tcg_out8(s, 0x66);
524 }
525 if (opc & P_SIMDF3) {
526 tcg_out8(s, 0xf3);
527 } else if (opc & P_SIMDF2) {
528 tcg_out8(s, 0xf2);
529 }
530
531 rex = 0;
532 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
533 rex |= (r & 8) >> 1; /* REX.R */
534 rex |= (x & 8) >> 2; /* REX.X */
535 rex |= (rm & 8) >> 3; /* REX.B */
536
537 /* P_REXB_{R,RM} indicates that the given register is the low byte.
538 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
539 as otherwise the encoding indicates %[abcd]h. Note that the values
540 that are ORed in merely indicate that the REX byte must be present;
541 those bits get discarded in output. */
542 rex |= opc & (r >= 4 ? P_REXB_R : 0);
543 rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
544
545 if (rex) {
546 tcg_out8(s, (uint8_t)(rex | 0x40));
547 }
548
549 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
550 tcg_out8(s, 0x0f);
551 if (opc & P_EXT38) {
552 tcg_out8(s, 0x38);
553 } else if (opc & P_EXT3A) {
554 tcg_out8(s, 0x3a);
555 }
556 }
557
558 tcg_out8(s, opc);
559 }
560 #else
561 static void tcg_out_opc(TCGContext *s, int opc)
562 {
563 if (opc & P_DATA16) {
564 tcg_out8(s, 0x66);
565 }
566 if (opc & P_SIMDF3) {
567 tcg_out8(s, 0xf3);
568 } else if (opc & P_SIMDF2) {
569 tcg_out8(s, 0xf2);
570 }
571 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
572 tcg_out8(s, 0x0f);
573 if (opc & P_EXT38) {
574 tcg_out8(s, 0x38);
575 } else if (opc & P_EXT3A) {
576 tcg_out8(s, 0x3a);
577 }
578 }
579 tcg_out8(s, opc);
580 }
581 /* Discard the register arguments to tcg_out_opc early, so as not to penalize
582 the 32-bit compilation paths. This method works with all versions of gcc,
583 whereas relying on optimization may not be able to exclude them. */
584 #define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
585 #endif
586
587 static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
588 {
589 tcg_out_opc(s, opc, r, rm, 0);
590 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
591 }
592
593 static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
594 int rm, int index)
595 {
596 int tmp;
597
598 if (opc & P_GS) {
599 tcg_out8(s, 0x65);
600 }
601 /* Use the two byte form if possible, which cannot encode
602 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */
603 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
604 && ((rm | index) & 8) == 0) {
605 /* Two byte VEX prefix. */
606 tcg_out8(s, 0xc5);
607
608 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
609 } else {
610 /* Three byte VEX prefix. */
611 tcg_out8(s, 0xc4);
612
613 /* VEX.m-mmmm */
614 if (opc & P_EXT3A) {
615 tmp = 3;
616 } else if (opc & P_EXT38) {
617 tmp = 2;
618 } else if (opc & P_EXT) {
619 tmp = 1;
620 } else {
621 g_assert_not_reached();
622 }
623 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
624 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */
625 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
626 tcg_out8(s, tmp);
627
628 tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */
629 }
630
631 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */
632 /* VEX.pp */
633 if (opc & P_DATA16) {
634 tmp |= 1; /* 0x66 */
635 } else if (opc & P_SIMDF3) {
636 tmp |= 2; /* 0xf3 */
637 } else if (opc & P_SIMDF2) {
638 tmp |= 3; /* 0xf2 */
639 }
640 tmp |= (~v & 15) << 3; /* VEX.vvvv */
641 tcg_out8(s, tmp);
642 tcg_out8(s, opc);
643 }
644
645 static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
646 int rm, int index)
647 {
648 /* The entire 4-byte evex prefix; with R' and V' set. */
649 uint32_t p = 0x08041062;
650 int mm, pp;
651
652 tcg_debug_assert(have_avx512vl);
653
654 /* EVEX.mm */
655 if (opc & P_EXT3A) {
656 mm = 3;
657 } else if (opc & P_EXT38) {
658 mm = 2;
659 } else if (opc & P_EXT) {
660 mm = 1;
661 } else {
662 g_assert_not_reached();
663 }
664
665 /* EVEX.pp */
666 if (opc & P_DATA16) {
667 pp = 1; /* 0x66 */
668 } else if (opc & P_SIMDF3) {
669 pp = 2; /* 0xf3 */
670 } else if (opc & P_SIMDF2) {
671 pp = 3; /* 0xf2 */
672 } else {
673 pp = 0;
674 }
675
676 p = deposit32(p, 8, 2, mm);
677 p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */
678 p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */
679 p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */
680 p = deposit32(p, 16, 2, pp);
681 p = deposit32(p, 19, 4, ~v);
682 p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
683 p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
684
685 tcg_out32(s, p);
686 tcg_out8(s, opc);
687 }
688
689 static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
690 {
691 if (opc & P_EVEX) {
692 tcg_out_evex_opc(s, opc, r, v, rm, 0);
693 } else {
694 tcg_out_vex_opc(s, opc, r, v, rm, 0);
695 }
696 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
697 }
698
699 /* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
700 We handle either RM and INDEX missing with a negative value. In 64-bit
701 mode for absolute addresses, ~RM is the size of the immediate operand
702 that will follow the instruction. */
703
704 static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
705 int shift, intptr_t offset)
706 {
707 int mod, len;
708
709 if (index < 0 && rm < 0) {
710 if (TCG_TARGET_REG_BITS == 64) {
711 /* Try for a rip-relative addressing mode. This has replaced
712 the 32-bit-mode absolute addressing encoding. */
713 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
714 intptr_t disp = offset - pc;
715 if (disp == (int32_t)disp) {
716 tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
717 tcg_out32(s, disp);
718 return;
719 }
720
721 /* Try for an absolute address encoding. This requires the
722 use of the MODRM+SIB encoding and is therefore larger than
723 rip-relative addressing. */
724 if (offset == (int32_t)offset) {
725 tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
726 tcg_out8(s, (4 << 3) | 5);
727 tcg_out32(s, offset);
728 return;
729 }
730
731 /* ??? The memory isn't directly addressable. */
732 g_assert_not_reached();
733 } else {
734 /* Absolute address. */
735 tcg_out8(s, (r << 3) | 5);
736 tcg_out32(s, offset);
737 return;
738 }
739 }
740
741 /* Find the length of the immediate addend. Note that the encoding
742 that would be used for (%ebp) indicates absolute addressing. */
743 if (rm < 0) {
744 mod = 0, len = 4, rm = 5;
745 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
746 mod = 0, len = 0;
747 } else if (offset == (int8_t)offset) {
748 mod = 0x40, len = 1;
749 } else {
750 mod = 0x80, len = 4;
751 }
752
753 /* Use a single byte MODRM format if possible. Note that the encoding
754 that would be used for %esp is the escape to the two byte form. */
755 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
756 /* Single byte MODRM format. */
757 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
758 } else {
759 /* Two byte MODRM+SIB format. */
760
761 /* Note that the encoding that would place %esp into the index
762 field indicates no index register. In 64-bit mode, the REX.X
763 bit counts, so %r12 can be used as the index. */
764 if (index < 0) {
765 index = 4;
766 } else {
767 tcg_debug_assert(index != TCG_REG_ESP);
768 }
769
770 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
771 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
772 }
773
774 if (len == 1) {
775 tcg_out8(s, offset);
776 } else if (len == 4) {
777 tcg_out32(s, offset);
778 }
779 }
780
781 static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
782 int index, int shift, intptr_t offset)
783 {
784 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
785 tcg_out_sib_offset(s, r, rm, index, shift, offset);
786 }
787
788 static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
789 int rm, int index, int shift,
790 intptr_t offset)
791 {
792 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
793 tcg_out_sib_offset(s, r, rm, index, shift, offset);
794 }
795
796 /* A simplification of the above with no index or shift. */
797 static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
798 int rm, intptr_t offset)
799 {
800 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
801 }
802
803 static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
804 int v, int rm, intptr_t offset)
805 {
806 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
807 }
808
809 /* Output an opcode with an expected reference to the constant pool. */
810 static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
811 {
812 tcg_out_opc(s, opc, r, 0, 0);
813 /* Absolute for 32-bit, pc-relative for 64-bit. */
814 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
815 tcg_out32(s, 0);
816 }
817
818 /* Output an opcode with an expected reference to the constant pool. */
819 static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
820 {
821 tcg_out_vex_opc(s, opc, r, 0, 0, 0);
822 /* Absolute for 32-bit, pc-relative for 64-bit. */
823 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
824 tcg_out32(s, 0);
825 }
826
827 /* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
828 static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
829 {
830 /* Propagate an opcode prefix, such as P_REXW. */
831 int ext = subop & ~0x7;
832 subop &= 0x7;
833
834 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
835 }
836
837 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
838 {
839 int rexw = 0;
840
841 if (arg == ret) {
842 return true;
843 }
844 switch (type) {
845 case TCG_TYPE_I64:
846 rexw = P_REXW;
847 /* fallthru */
848 case TCG_TYPE_I32:
849 if (ret < 16) {
850 if (arg < 16) {
851 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
852 } else {
853 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
854 }
855 } else {
856 if (arg < 16) {
857 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
858 } else {
859 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
860 }
861 }
862 break;
863
864 case TCG_TYPE_V64:
865 tcg_debug_assert(ret >= 16 && arg >= 16);
866 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
867 break;
868 case TCG_TYPE_V128:
869 tcg_debug_assert(ret >= 16 && arg >= 16);
870 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
871 break;
872 case TCG_TYPE_V256:
873 tcg_debug_assert(ret >= 16 && arg >= 16);
874 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
875 break;
876
877 default:
878 g_assert_not_reached();
879 }
880 return true;
881 }
882
883 static const int avx2_dup_insn[4] = {
884 OPC_VPBROADCASTB, OPC_VPBROADCASTW,
885 OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
886 };
887
888 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
889 TCGReg r, TCGReg a)
890 {
891 if (have_avx2) {
892 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
893 tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a);
894 } else {
895 switch (vece) {
896 case MO_8:
897 /* ??? With zero in a register, use PSHUFB. */
898 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
899 a = r;
900 /* FALLTHRU */
901 case MO_16:
902 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
903 a = r;
904 /* FALLTHRU */
905 case MO_32:
906 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
907 /* imm8 operand: all output lanes selected from input lane 0. */
908 tcg_out8(s, 0);
909 break;
910 case MO_64:
911 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
912 break;
913 default:
914 g_assert_not_reached();
915 }
916 }
917 return true;
918 }
919
920 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
921 TCGReg r, TCGReg base, intptr_t offset)
922 {
923 if (have_avx2) {
924 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
925 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
926 r, 0, base, offset);
927 } else {
928 switch (vece) {
929 case MO_64:
930 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
931 break;
932 case MO_32:
933 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
934 break;
935 case MO_16:
936 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
937 tcg_out8(s, 0); /* imm8 */
938 tcg_out_dup_vec(s, type, vece, r, r);
939 break;
940 case MO_8:
941 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
942 tcg_out8(s, 0); /* imm8 */
943 tcg_out_dup_vec(s, type, vece, r, r);
944 break;
945 default:
946 g_assert_not_reached();
947 }
948 }
949 return true;
950 }
951
952 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
953 TCGReg ret, int64_t arg)
954 {
955 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
956
957 if (arg == 0) {
958 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
959 return;
960 }
961 if (arg == -1) {
962 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
963 return;
964 }
965
966 if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
967 if (have_avx2) {
968 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
969 } else {
970 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
971 }
972 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
973 } else {
974 if (type == TCG_TYPE_V64) {
975 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
976 } else if (have_avx2) {
977 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
978 } else {
979 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
980 }
981 if (TCG_TARGET_REG_BITS == 64) {
982 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
983 } else {
984 new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
985 }
986 }
987 }
988
989 static void tcg_out_movi_vec(TCGContext *s, TCGType type,
990 TCGReg ret, tcg_target_long arg)
991 {
992 if (arg == 0) {
993 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
994 return;
995 }
996 if (arg == -1) {
997 tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
998 return;
999 }
1000
1001 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1002 tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1003 if (TCG_TARGET_REG_BITS == 64) {
1004 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1005 } else {
1006 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1007 }
1008 }
1009
1010 static void tcg_out_movi_int(TCGContext *s, TCGType type,
1011 TCGReg ret, tcg_target_long arg)
1012 {
1013 tcg_target_long diff;
1014
1015 if (arg == 0) {
1016 tgen_arithr(s, ARITH_XOR, ret, ret);
1017 return;
1018 }
1019 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1020 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1021 tcg_out32(s, arg);
1022 return;
1023 }
1024 if (arg == (int32_t)arg) {
1025 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1026 tcg_out32(s, arg);
1027 return;
1028 }
1029
1030 /* Try a 7 byte pc-relative lea before the 10 byte movq. */
1031 diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1032 if (diff == (int32_t)diff) {
1033 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1034 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1035 tcg_out32(s, diff);
1036 return;
1037 }
1038
1039 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1040 tcg_out64(s, arg);
1041 }
1042
1043 static void tcg_out_movi(TCGContext *s, TCGType type,
1044 TCGReg ret, tcg_target_long arg)
1045 {
1046 switch (type) {
1047 case TCG_TYPE_I32:
1048 #if TCG_TARGET_REG_BITS == 64
1049 case TCG_TYPE_I64:
1050 #endif
1051 if (ret < 16) {
1052 tcg_out_movi_int(s, type, ret, arg);
1053 } else {
1054 tcg_out_movi_vec(s, type, ret, arg);
1055 }
1056 break;
1057 default:
1058 g_assert_not_reached();
1059 }
1060 }
1061
1062 static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1063 {
1064 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1065 tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1066 return true;
1067 }
1068
1069 static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1070 tcg_target_long imm)
1071 {
1072 /* This function is only used for passing structs by reference. */
1073 tcg_debug_assert(imm == (int32_t)imm);
1074 tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
1075 }
1076
1077 static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1078 {
1079 if (val == (int8_t)val) {
1080 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1081 tcg_out8(s, val);
1082 } else if (val == (int32_t)val) {
1083 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1084 tcg_out32(s, val);
1085 } else {
1086 g_assert_not_reached();
1087 }
1088 }
1089
1090 static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1091 {
1092 /* Given the strength of x86 memory ordering, we only need care for
1093 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
1094 faster than "mfence", so don't bother with the sse insn. */
1095 if (a0 & TCG_MO_ST_LD) {
1096 tcg_out8(s, 0xf0);
1097 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1098 tcg_out8(s, 0);
1099 }
1100 }
1101
1102 static inline void tcg_out_push(TCGContext *s, int reg)
1103 {
1104 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1105 }
1106
1107 static inline void tcg_out_pop(TCGContext *s, int reg)
1108 {
1109 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1110 }
1111
1112 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1113 TCGReg arg1, intptr_t arg2)
1114 {
1115 switch (type) {
1116 case TCG_TYPE_I32:
1117 if (ret < 16) {
1118 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1119 } else {
1120 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1121 }
1122 break;
1123 case TCG_TYPE_I64:
1124 if (ret < 16) {
1125 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1126 break;
1127 }
1128 /* FALLTHRU */
1129 case TCG_TYPE_V64:
1130 /* There is no instruction that can validate 8-byte alignment. */
1131 tcg_debug_assert(ret >= 16);
1132 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1133 break;
1134 case TCG_TYPE_V128:
1135 /*
1136 * The gvec infrastructure is asserts that v128 vector loads
1137 * and stores use a 16-byte aligned offset. Validate that the
1138 * final pointer is aligned by using an insn that will SIGSEGV.
1139 */
1140 tcg_debug_assert(ret >= 16);
1141 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1142 break;
1143 case TCG_TYPE_V256:
1144 /*
1145 * The gvec infrastructure only requires 16-byte alignment,
1146 * so here we must use an unaligned load.
1147 */
1148 tcg_debug_assert(ret >= 16);
1149 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1150 ret, 0, arg1, arg2);
1151 break;
1152 default:
1153 g_assert_not_reached();
1154 }
1155 }
1156
1157 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1158 TCGReg arg1, intptr_t arg2)
1159 {
1160 switch (type) {
1161 case TCG_TYPE_I32:
1162 if (arg < 16) {
1163 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1164 } else {
1165 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1166 }
1167 break;
1168 case TCG_TYPE_I64:
1169 if (arg < 16) {
1170 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1171 break;
1172 }
1173 /* FALLTHRU */
1174 case TCG_TYPE_V64:
1175 /* There is no instruction that can validate 8-byte alignment. */
1176 tcg_debug_assert(arg >= 16);
1177 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1178 break;
1179 case TCG_TYPE_V128:
1180 /*
1181 * The gvec infrastructure is asserts that v128 vector loads
1182 * and stores use a 16-byte aligned offset. Validate that the
1183 * final pointer is aligned by using an insn that will SIGSEGV.
1184 *
1185 * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1186 * for _WIN64, which must have SSE2 but may not have AVX.
1187 */
1188 tcg_debug_assert(arg >= 16);
1189 if (have_avx1) {
1190 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1191 } else {
1192 tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1193 }
1194 break;
1195 case TCG_TYPE_V256:
1196 /*
1197 * The gvec infrastructure only requires 16-byte alignment,
1198 * so here we must use an unaligned store.
1199 */
1200 tcg_debug_assert(arg >= 16);
1201 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1202 arg, 0, arg1, arg2);
1203 break;
1204 default:
1205 g_assert_not_reached();
1206 }
1207 }
1208
1209 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1210 TCGReg base, intptr_t ofs)
1211 {
1212 int rexw = 0;
1213 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1214 if (val != (int32_t)val) {
1215 return false;
1216 }
1217 rexw = P_REXW;
1218 } else if (type != TCG_TYPE_I32) {
1219 return false;
1220 }
1221 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1222 tcg_out32(s, val);
1223 return true;
1224 }
1225
1226 static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1227 {
1228 /* Propagate an opcode prefix, such as P_DATA16. */
1229 int ext = subopc & ~0x7;
1230 subopc &= 0x7;
1231
1232 if (count == 1) {
1233 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1234 } else {
1235 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1236 tcg_out8(s, count);
1237 }
1238 }
1239
1240 static inline void tcg_out_bswap32(TCGContext *s, int reg)
1241 {
1242 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1243 }
1244
1245 static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1246 {
1247 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1248 }
1249
1250 static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1251 {
1252 /* movzbl */
1253 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1254 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1255 }
1256
1257 static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1258 {
1259 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1260 /* movsbl */
1261 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1262 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1263 }
1264
1265 static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1266 {
1267 /* movzwl */
1268 tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1269 }
1270
1271 static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1272 {
1273 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1274 /* movsw[lq] */
1275 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1276 }
1277
1278 static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1279 {
1280 /* 32-bit mov zero extends. */
1281 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1282 }
1283
1284 static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1285 {
1286 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1287 tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1288 }
1289
1290 static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1291 {
1292 tcg_out_ext32s(s, dest, src);
1293 }
1294
1295 static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1296 {
1297 if (dest != src) {
1298 tcg_out_ext32u(s, dest, src);
1299 }
1300 }
1301
1302 static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1303 {
1304 tcg_out_ext32u(s, dest, src);
1305 }
1306
1307 static inline void tcg_out_bswap64(TCGContext *s, int reg)
1308 {
1309 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1310 }
1311
1312 static void tgen_arithi(TCGContext *s, int c, int r0,
1313 tcg_target_long val, int cf)
1314 {
1315 int rexw = 0;
1316
1317 if (TCG_TARGET_REG_BITS == 64) {
1318 rexw = c & -8;
1319 c &= 7;
1320 }
1321
1322 /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1323 partial flags update stalls on Pentium4 and are not recommended
1324 by current Intel optimization manuals. */
1325 if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
1326 int is_inc = (c == ARITH_ADD) ^ (val < 0);
1327 if (TCG_TARGET_REG_BITS == 64) {
1328 /* The single-byte increment encodings are re-tasked as the
1329 REX prefixes. Use the MODRM encoding. */
1330 tcg_out_modrm(s, OPC_GRP5 + rexw,
1331 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1332 } else {
1333 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1334 }
1335 return;
1336 }
1337
1338 if (c == ARITH_AND) {
1339 if (TCG_TARGET_REG_BITS == 64) {
1340 if (val == 0xffffffffu) {
1341 tcg_out_ext32u(s, r0, r0);
1342 return;
1343 }
1344 if (val == (uint32_t)val) {
1345 /* AND with no high bits set can use a 32-bit operation. */
1346 rexw = 0;
1347 }
1348 }
1349 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1350 tcg_out_ext8u(s, r0, r0);
1351 return;
1352 }
1353 if (val == 0xffffu) {
1354 tcg_out_ext16u(s, r0, r0);
1355 return;
1356 }
1357 }
1358
1359 if (val == (int8_t)val) {
1360 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1361 tcg_out8(s, val);
1362 return;
1363 }
1364 if (rexw == 0 || val == (int32_t)val) {
1365 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1366 tcg_out32(s, val);
1367 return;
1368 }
1369
1370 g_assert_not_reached();
1371 }
1372
1373 static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1374 {
1375 if (val != 0) {
1376 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1377 }
1378 }
1379
1380 /* Set SMALL to force a short forward branch. */
1381 static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1382 {
1383 int32_t val, val1;
1384
1385 if (l->has_value) {
1386 val = tcg_pcrel_diff(s, l->u.value_ptr);
1387 val1 = val - 2;
1388 if ((int8_t)val1 == val1) {
1389 if (opc == -1) {
1390 tcg_out8(s, OPC_JMP_short);
1391 } else {
1392 tcg_out8(s, OPC_JCC_short + opc);
1393 }
1394 tcg_out8(s, val1);
1395 } else {
1396 tcg_debug_assert(!small);
1397 if (opc == -1) {
1398 tcg_out8(s, OPC_JMP_long);
1399 tcg_out32(s, val - 5);
1400 } else {
1401 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1402 tcg_out32(s, val - 6);
1403 }
1404 }
1405 } else if (small) {
1406 if (opc == -1) {
1407 tcg_out8(s, OPC_JMP_short);
1408 } else {
1409 tcg_out8(s, OPC_JCC_short + opc);
1410 }
1411 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1412 s->code_ptr += 1;
1413 } else {
1414 if (opc == -1) {
1415 tcg_out8(s, OPC_JMP_long);
1416 } else {
1417 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1418 }
1419 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1420 s->code_ptr += 4;
1421 }
1422 }
1423
1424 static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
1425 int const_arg2, int rexw)
1426 {
1427 if (const_arg2) {
1428 if (arg2 == 0) {
1429 /* test r, r */
1430 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1431 } else {
1432 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1433 }
1434 } else {
1435 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1436 }
1437 }
1438
1439 static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
1440 TCGArg arg1, TCGArg arg2, int const_arg2,
1441 TCGLabel *label, bool small)
1442 {
1443 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw);
1444 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1445 }
1446
1447 #if TCG_TARGET_REG_BITS == 32
1448 static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1449 const int *const_args, bool small)
1450 {
1451 TCGLabel *label_next = gen_new_label();
1452 TCGLabel *label_this = arg_label(args[5]);
1453
1454 switch(args[4]) {
1455 case TCG_COND_EQ:
1456 tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2],
1457 label_next, 1);
1458 tcg_out_brcond(s, 0, TCG_COND_EQ, args[1], args[3], const_args[3],
1459 label_this, small);
1460 break;
1461 case TCG_COND_NE:
1462 tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2],
1463 label_this, small);
1464 tcg_out_brcond(s, 0, TCG_COND_NE, args[1], args[3], const_args[3],
1465 label_this, small);
1466 break;
1467 case TCG_COND_LT:
1468 tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3],
1469 label_this, small);
1470 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1471 tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2],
1472 label_this, small);
1473 break;
1474 case TCG_COND_LE:
1475 tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3],
1476 label_this, small);
1477 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1478 tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2],
1479 label_this, small);
1480 break;
1481 case TCG_COND_GT:
1482 tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3],
1483 label_this, small);
1484 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1485 tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2],
1486 label_this, small);
1487 break;
1488 case TCG_COND_GE:
1489 tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3],
1490 label_this, small);
1491 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1492 tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2],
1493 label_this, small);
1494 break;
1495 case TCG_COND_LTU:
1496 tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3],
1497 label_this, small);
1498 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1499 tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2],
1500 label_this, small);
1501 break;
1502 case TCG_COND_LEU:
1503 tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3],
1504 label_this, small);
1505 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1506 tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2],
1507 label_this, small);
1508 break;
1509 case TCG_COND_GTU:
1510 tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3],
1511 label_this, small);
1512 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1513 tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2],
1514 label_this, small);
1515 break;
1516 case TCG_COND_GEU:
1517 tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3],
1518 label_this, small);
1519 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1520 tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2],
1521 label_this, small);
1522 break;
1523 default:
1524 g_assert_not_reached();
1525 }
1526 tcg_out_label(s, label_next);
1527 }
1528 #endif
1529
1530 static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond,
1531 TCGArg dest, TCGArg arg1, TCGArg arg2,
1532 int const_arg2)
1533 {
1534 bool inv = false;
1535
1536 switch (cond) {
1537 case TCG_COND_NE:
1538 inv = true;
1539 /* fall through */
1540 case TCG_COND_EQ:
1541 /* If arg2 is 0, convert to LTU/GEU vs 1. */
1542 if (const_arg2 && arg2 == 0) {
1543 arg2 = 1;
1544 goto do_ltu;
1545 }
1546 break;
1547
1548 case TCG_COND_LEU:
1549 inv = true;
1550 /* fall through */
1551 case TCG_COND_GTU:
1552 /* If arg2 is a register, swap for LTU/GEU. */
1553 if (!const_arg2) {
1554 TCGReg t = arg1;
1555 arg1 = arg2;
1556 arg2 = t;
1557 goto do_ltu;
1558 }
1559 break;
1560
1561 case TCG_COND_GEU:
1562 inv = true;
1563 /* fall through */
1564 case TCG_COND_LTU:
1565 do_ltu:
1566 /*
1567 * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
1568 * We can then use NEG or INC to produce the desired result.
1569 * This is always smaller than the SETCC expansion.
1570 */
1571 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw);
1572 tgen_arithr(s, ARITH_SBB, dest, dest); /* T:-1 F:0 */
1573 if (inv) {
1574 tgen_arithi(s, ARITH_ADD, dest, 1, 0); /* T:0 F:1 */
1575 } else {
1576 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest); /* T:1 F:0 */
1577 }
1578 return;
1579
1580 default:
1581 break;
1582 }
1583
1584 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw);
1585 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1586 tcg_out_ext8u(s, dest, dest);
1587 }
1588
1589 #if TCG_TARGET_REG_BITS == 32
1590 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1591 const int *const_args)
1592 {
1593 TCGArg new_args[6];
1594 TCGLabel *label_true, *label_over;
1595
1596 memcpy(new_args, args+1, 5*sizeof(TCGArg));
1597
1598 if (args[0] == args[1] || args[0] == args[2]
1599 || (!const_args[3] && args[0] == args[3])
1600 || (!const_args[4] && args[0] == args[4])) {
1601 /* When the destination overlaps with one of the argument
1602 registers, don't do anything tricky. */
1603 label_true = gen_new_label();
1604 label_over = gen_new_label();
1605
1606 new_args[5] = label_arg(label_true);
1607 tcg_out_brcond2(s, new_args, const_args+1, 1);
1608
1609 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1610 tcg_out_jxx(s, JCC_JMP, label_over, 1);
1611 tcg_out_label(s, label_true);
1612
1613 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1614 tcg_out_label(s, label_over);
1615 } else {
1616 /* When the destination does not overlap one of the arguments,
1617 clear the destination first, jump if cond false, and emit an
1618 increment in the true case. This results in smaller code. */
1619
1620 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1621
1622 label_over = gen_new_label();
1623 new_args[4] = tcg_invert_cond(new_args[4]);
1624 new_args[5] = label_arg(label_over);
1625 tcg_out_brcond2(s, new_args, const_args+1, 1);
1626
1627 tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1628 tcg_out_label(s, label_over);
1629 }
1630 }
1631 #endif
1632
1633 static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
1634 TCGReg dest, TCGReg v1)
1635 {
1636 if (have_cmov) {
1637 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
1638 } else {
1639 TCGLabel *over = gen_new_label();
1640 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
1641 tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
1642 tcg_out_label(s, over);
1643 }
1644 }
1645
1646 static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond,
1647 TCGReg dest, TCGReg c1, TCGArg c2, int const_c2,
1648 TCGReg v1)
1649 {
1650 tcg_out_cmp(s, c1, c2, const_c2, rexw);
1651 tcg_out_cmov(s, cond, rexw, dest, v1);
1652 }
1653
1654 static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1655 TCGArg arg2, bool const_a2)
1656 {
1657 if (have_bmi1) {
1658 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1659 if (const_a2) {
1660 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1661 } else {
1662 tcg_debug_assert(dest != arg2);
1663 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1664 }
1665 } else {
1666 tcg_debug_assert(dest != arg2);
1667 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1668 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1669 }
1670 }
1671
1672 static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1673 TCGArg arg2, bool const_a2)
1674 {
1675 if (have_lzcnt) {
1676 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1677 if (const_a2) {
1678 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1679 } else {
1680 tcg_debug_assert(dest != arg2);
1681 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1682 }
1683 } else {
1684 tcg_debug_assert(!const_a2);
1685 tcg_debug_assert(dest != arg1);
1686 tcg_debug_assert(dest != arg2);
1687
1688 /* Recall that the output of BSR is the index not the count. */
1689 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1690 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1691
1692 /* Since we have destroyed the flags from BSR, we have to re-test. */
1693 tcg_out_cmp(s, arg1, 0, 1, rexw);
1694 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1695 }
1696 }
1697
1698 static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1699 {
1700 intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1701
1702 if (disp == (int32_t)disp) {
1703 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1704 tcg_out32(s, disp);
1705 } else {
1706 /* rip-relative addressing into the constant pool.
1707 This is 6 + 8 = 14 bytes, as compared to using an
1708 immediate load 10 + 6 = 16 bytes, plus we may
1709 be able to re-use the pool constant for more calls. */
1710 tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1711 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1712 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1713 tcg_out32(s, 0);
1714 }
1715 }
1716
1717 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1718 const TCGHelperInfo *info)
1719 {
1720 tcg_out_branch(s, 1, dest);
1721
1722 #ifndef _WIN32
1723 if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1724 /*
1725 * The sysv i386 abi for struct return places a reference as the
1726 * first argument of the stack, and pops that argument with the
1727 * return statement. Since we want to retain the aligned stack
1728 * pointer for the callee, we do not want to actually push that
1729 * argument before the call but rely on the normal store to the
1730 * stack slot. But we do need to compensate for the pop in order
1731 * to reset our correct stack pointer value.
1732 * Pushing a garbage value back onto the stack is quickest.
1733 */
1734 tcg_out_push(s, TCG_REG_EAX);
1735 }
1736 #endif
1737 }
1738
1739 static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1740 {
1741 tcg_out_branch(s, 0, dest);
1742 }
1743
1744 static void tcg_out_nopn(TCGContext *s, int n)
1745 {
1746 int i;
1747 /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1748 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1749 * duplicate prefix, and all of the interesting recent cores can
1750 * decode and discard the duplicates in a single cycle.
1751 */
1752 tcg_debug_assert(n >= 1);
1753 for (i = 1; i < n; ++i) {
1754 tcg_out8(s, 0x66);
1755 }
1756 tcg_out8(s, 0x90);
1757 }
1758
1759 /* Test register R vs immediate bits I, setting Z flag for EQ/NE. */
1760 static void __attribute__((unused))
1761 tcg_out_testi(TCGContext *s, TCGReg r, uint32_t i)
1762 {
1763 /*
1764 * This is used for testing alignment, so we can usually use testb.
1765 * For i686, we have to use testl for %esi/%edi.
1766 */
1767 if (i <= 0xff && (TCG_TARGET_REG_BITS == 64 || r < 4)) {
1768 tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, r);
1769 tcg_out8(s, i);
1770 } else {
1771 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, r);
1772 tcg_out32(s, i);
1773 }
1774 }
1775
1776 typedef struct {
1777 TCGReg base;
1778 int index;
1779 int ofs;
1780 int seg;
1781 TCGAtomAlign aa;
1782 } HostAddress;
1783
1784 bool tcg_target_has_memory_bswap(MemOp memop)
1785 {
1786 TCGAtomAlign aa;
1787
1788 if (!have_movbe) {
1789 return false;
1790 }
1791 if ((memop & MO_SIZE) < MO_128) {
1792 return true;
1793 }
1794
1795 /*
1796 * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
1797 * but do allow a pair of 64-bit operations, i.e. MOVBEQ.
1798 */
1799 aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
1800 return aa.atom < MO_128;
1801 }
1802
1803 /*
1804 * Because i686 has no register parameters and because x86_64 has xchg
1805 * to handle addr/data register overlap, we have placed all input arguments
1806 * before we need might need a scratch reg.
1807 *
1808 * Even then, a scratch is only needed for l->raddr. Rather than expose
1809 * a general-purpose scratch when we don't actually know it's available,
1810 * use the ra_gen hook to load into RAX if needed.
1811 */
1812 #if TCG_TARGET_REG_BITS == 64
1813 static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
1814 {
1815 if (arg < 0) {
1816 arg = TCG_REG_RAX;
1817 }
1818 tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
1819 return arg;
1820 }
1821 static const TCGLdstHelperParam ldst_helper_param = {
1822 .ra_gen = ldst_ra_gen
1823 };
1824 #else
1825 static const TCGLdstHelperParam ldst_helper_param = { };
1826 #endif
1827
1828 static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
1829 TCGReg l, TCGReg h, TCGReg v)
1830 {
1831 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1832
1833 /* vpmov{d,q} %v, %l */
1834 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
1835 /* vpextr{d,q} $1, %v, %h */
1836 tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
1837 tcg_out8(s, 1);
1838 }
1839
1840 static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
1841 TCGReg v, TCGReg l, TCGReg h)
1842 {
1843 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1844
1845 /* vmov{d,q} %l, %v */
1846 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
1847 /* vpinsr{d,q} $1, %h, %v, %v */
1848 tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
1849 tcg_out8(s, 1);
1850 }
1851
1852 /*
1853 * Generate code for the slow path for a load at the end of block
1854 */
1855 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1856 {
1857 MemOp opc = get_memop(l->oi);
1858 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1859
1860 /* resolve label address */
1861 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1862 if (label_ptr[1]) {
1863 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1864 }
1865
1866 tcg_out_ld_helper_args(s, l, &ldst_helper_param);
1867 tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
1868 tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
1869
1870 tcg_out_jmp(s, l->raddr);
1871 return true;
1872 }
1873
1874 /*
1875 * Generate code for the slow path for a store at the end of block
1876 */
1877 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1878 {
1879 MemOp opc = get_memop(l->oi);
1880 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1881
1882 /* resolve label address */
1883 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1884 if (label_ptr[1]) {
1885 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1886 }
1887
1888 tcg_out_st_helper_args(s, l, &ldst_helper_param);
1889 tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
1890
1891 tcg_out_jmp(s, l->raddr);
1892 return true;
1893 }
1894
1895 #ifndef CONFIG_SOFTMMU
1896 static HostAddress x86_guest_base = {
1897 .index = -1
1898 };
1899
1900 #if defined(__x86_64__) && defined(__linux__)
1901 # include <asm/prctl.h>
1902 # include <sys/prctl.h>
1903 int arch_prctl(int code, unsigned long addr);
1904 static inline int setup_guest_base_seg(void)
1905 {
1906 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
1907 return P_GS;
1908 }
1909 return 0;
1910 }
1911 #elif defined(__x86_64__) && \
1912 (defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
1913 # include <machine/sysarch.h>
1914 static inline int setup_guest_base_seg(void)
1915 {
1916 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
1917 return P_GS;
1918 }
1919 return 0;
1920 }
1921 #else
1922 static inline int setup_guest_base_seg(void)
1923 {
1924 return 0;
1925 }
1926 #endif /* setup_guest_base_seg */
1927 #endif /* !SOFTMMU */
1928
1929 #define MIN_TLB_MASK_TABLE_OFS INT_MIN
1930
1931 /*
1932 * For softmmu, perform the TLB load and compare.
1933 * For useronly, perform any required alignment tests.
1934 * In both cases, return a TCGLabelQemuLdst structure if the slow path
1935 * is required and fill in @h with the host address for the fast path.
1936 */
1937 static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
1938 TCGReg addrlo, TCGReg addrhi,
1939 MemOpIdx oi, bool is_ld)
1940 {
1941 TCGLabelQemuLdst *ldst = NULL;
1942 MemOp opc = get_memop(oi);
1943 MemOp s_bits = opc & MO_SIZE;
1944 unsigned a_mask;
1945
1946 #ifdef CONFIG_SOFTMMU
1947 h->index = TCG_REG_L0;
1948 h->ofs = 0;
1949 h->seg = 0;
1950 #else
1951 *h = x86_guest_base;
1952 #endif
1953 h->base = addrlo;
1954 h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
1955 a_mask = (1 << h->aa.align) - 1;
1956
1957 #ifdef CONFIG_SOFTMMU
1958 int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
1959 : offsetof(CPUTLBEntry, addr_write);
1960 TCGType ttype = TCG_TYPE_I32;
1961 TCGType tlbtype = TCG_TYPE_I32;
1962 int trexw = 0, hrexw = 0, tlbrexw = 0;
1963 unsigned mem_index = get_mmuidx(oi);
1964 unsigned s_mask = (1 << s_bits) - 1;
1965 int fast_ofs = tlb_mask_table_ofs(s, mem_index);
1966 int tlb_mask;
1967
1968 ldst = new_ldst_label(s);
1969 ldst->is_ld = is_ld;
1970 ldst->oi = oi;
1971 ldst->addrlo_reg = addrlo;
1972 ldst->addrhi_reg = addrhi;
1973
1974 if (TCG_TARGET_REG_BITS == 64) {
1975 ttype = s->addr_type;
1976 trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
1977 if (TCG_TYPE_PTR == TCG_TYPE_I64) {
1978 hrexw = P_REXW;
1979 if (s->page_bits + s->tlb_dyn_max_bits > 32) {
1980 tlbtype = TCG_TYPE_I64;
1981 tlbrexw = P_REXW;
1982 }
1983 }
1984 }
1985
1986 tcg_out_mov(s, tlbtype, TCG_REG_L0, addrlo);
1987 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
1988 s->page_bits - CPU_TLB_ENTRY_BITS);
1989
1990 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
1991 fast_ofs + offsetof(CPUTLBDescFast, mask));
1992
1993 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
1994 fast_ofs + offsetof(CPUTLBDescFast, table));
1995
1996 /*
1997 * If the required alignment is at least as large as the access, simply
1998 * copy the address and mask. For lesser alignments, check that we don't
1999 * cross pages for the complete access.
2000 */
2001 if (a_mask >= s_mask) {
2002 tcg_out_mov(s, ttype, TCG_REG_L1, addrlo);
2003 } else {
2004 tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
2005 addrlo, s_mask - a_mask);
2006 }
2007 tlb_mask = s->page_mask | a_mask;
2008 tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
2009
2010 /* cmp 0(TCG_REG_L0), TCG_REG_L1 */
2011 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
2012 TCG_REG_L1, TCG_REG_L0, cmp_ofs);
2013
2014 /* jne slow_path */
2015 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2016 ldst->label_ptr[0] = s->code_ptr;
2017 s->code_ptr += 4;
2018
2019 if (TCG_TARGET_REG_BITS == 32 && s->addr_type == TCG_TYPE_I64) {
2020 /* cmp 4(TCG_REG_L0), addrhi */
2021 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, TCG_REG_L0, cmp_ofs + 4);
2022
2023 /* jne slow_path */
2024 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2025 ldst->label_ptr[1] = s->code_ptr;
2026 s->code_ptr += 4;
2027 }
2028
2029 /* TLB Hit. */
2030 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
2031 offsetof(CPUTLBEntry, addend));
2032 #else
2033 if (a_mask) {
2034 ldst = new_ldst_label(s);
2035
2036 ldst->is_ld = is_ld;
2037 ldst->oi = oi;
2038 ldst->addrlo_reg = addrlo;
2039 ldst->addrhi_reg = addrhi;
2040
2041 tcg_out_testi(s, addrlo, a_mask);
2042 /* jne slow_path */
2043 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2044 ldst->label_ptr[0] = s->code_ptr;
2045 s->code_ptr += 4;
2046 }
2047 #endif
2048
2049 return ldst;
2050 }
2051
2052 static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2053 HostAddress h, TCGType type, MemOp memop)
2054 {
2055 bool use_movbe = false;
2056 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
2057 int movop = OPC_MOVL_GvEv;
2058
2059 /* Do big-endian loads with movbe. */
2060 if (memop & MO_BSWAP) {
2061 tcg_debug_assert(have_movbe);
2062 use_movbe = true;
2063 movop = OPC_MOVBE_GyMy;
2064 }
2065
2066 switch (memop & MO_SSIZE) {
2067 case MO_UB:
2068 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
2069 h.base, h.index, 0, h.ofs);
2070 break;
2071 case MO_SB:
2072 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
2073 h.base, h.index, 0, h.ofs);
2074 break;
2075 case MO_UW:
2076 if (use_movbe) {
2077 /* There is no extending movbe; only low 16-bits are modified. */
2078 if (datalo != h.base && datalo != h.index) {
2079 /* XOR breaks dependency chains. */
2080 tgen_arithr(s, ARITH_XOR, datalo, datalo);
2081 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2082 datalo, h.base, h.index, 0, h.ofs);
2083 } else {
2084 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2085 datalo, h.base, h.index, 0, h.ofs);
2086 tcg_out_ext16u(s, datalo, datalo);
2087 }
2088 } else {
2089 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
2090 h.base, h.index, 0, h.ofs);
2091 }
2092 break;
2093 case MO_SW:
2094 if (use_movbe) {
2095 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2096 datalo, h.base, h.index, 0, h.ofs);
2097 tcg_out_ext16s(s, type, datalo, datalo);
2098 } else {
2099 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
2100 datalo, h.base, h.index, 0, h.ofs);
2101 }
2102 break;
2103 case MO_UL:
2104 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2105 h.base, h.index, 0, h.ofs);
2106 break;
2107 #if TCG_TARGET_REG_BITS == 64
2108 case MO_SL:
2109 if (use_movbe) {
2110 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
2111 h.base, h.index, 0, h.ofs);
2112 tcg_out_ext32s(s, datalo, datalo);
2113 } else {
2114 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
2115 h.base, h.index, 0, h.ofs);
2116 }
2117 break;
2118 #endif
2119 case MO_UQ:
2120 if (TCG_TARGET_REG_BITS == 64) {
2121 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2122 h.base, h.index, 0, h.ofs);
2123 break;
2124 }
2125 if (use_movbe) {
2126 TCGReg t = datalo;
2127 datalo = datahi;
2128 datahi = t;
2129 }
2130 if (h.base == datalo || h.index == datalo) {
2131 tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
2132 h.base, h.index, 0, h.ofs);
2133 tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
2134 tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
2135 } else {
2136 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2137 h.base, h.index, 0, h.ofs);
2138 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2139 h.base, h.index, 0, h.ofs + 4);
2140 }
2141 break;
2142
2143 case MO_128:
2144 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2145
2146 /*
2147 * Without 16-byte atomicity, use integer regs.
2148 * That is where we want the data, and it allows bswaps.
2149 */
2150 if (h.aa.atom < MO_128) {
2151 if (use_movbe) {
2152 TCGReg t = datalo;
2153 datalo = datahi;
2154 datahi = t;
2155 }
2156 if (h.base == datalo || h.index == datalo) {
2157 tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
2158 h.base, h.index, 0, h.ofs);
2159 tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2160 datalo, datahi, 0);
2161 tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2162 datahi, datahi, 8);
2163 } else {
2164 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2165 h.base, h.index, 0, h.ofs);
2166 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2167 h.base, h.index, 0, h.ofs + 8);
2168 }
2169 break;
2170 }
2171
2172 /*
2173 * With 16-byte atomicity, a vector load is required.
2174 * If we already have 16-byte alignment, then VMOVDQA always works.
2175 * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2176 * Else use we require a runtime test for alignment for VMOVDQA;
2177 * use VMOVDQU on the unaligned nonatomic path for simplicity.
2178 */
2179 if (h.aa.align >= MO_128) {
2180 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2181 TCG_TMP_VEC, 0,
2182 h.base, h.index, 0, h.ofs);
2183 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2184 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2185 TCG_TMP_VEC, 0,
2186 h.base, h.index, 0, h.ofs);
2187 } else {
2188 TCGLabel *l1 = gen_new_label();
2189 TCGLabel *l2 = gen_new_label();
2190
2191 tcg_out_testi(s, h.base, 15);
2192 tcg_out_jxx(s, JCC_JNE, l1, true);
2193
2194 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2195 TCG_TMP_VEC, 0,
2196 h.base, h.index, 0, h.ofs);
2197 tcg_out_jxx(s, JCC_JMP, l2, true);
2198
2199 tcg_out_label(s, l1);
2200 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2201 TCG_TMP_VEC, 0,
2202 h.base, h.index, 0, h.ofs);
2203 tcg_out_label(s, l2);
2204 }
2205 tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
2206 break;
2207
2208 default:
2209 g_assert_not_reached();
2210 }
2211 }
2212
2213 static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
2214 TCGReg addrlo, TCGReg addrhi,
2215 MemOpIdx oi, TCGType data_type)
2216 {
2217 TCGLabelQemuLdst *ldst;
2218 HostAddress h;
2219
2220 ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true);
2221 tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
2222
2223 if (ldst) {
2224 ldst->type = data_type;
2225 ldst->datalo_reg = datalo;
2226 ldst->datahi_reg = datahi;
2227 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2228 }
2229 }
2230
2231 static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2232 HostAddress h, MemOp memop)
2233 {
2234 bool use_movbe = false;
2235 int movop = OPC_MOVL_EvGv;
2236
2237 /*
2238 * Do big-endian stores with movbe or softmmu.
2239 * User-only without movbe will have its swapping done generically.
2240 */
2241 if (memop & MO_BSWAP) {
2242 tcg_debug_assert(have_movbe);
2243 use_movbe = true;
2244 movop = OPC_MOVBE_MyGy;
2245 }
2246
2247 switch (memop & MO_SIZE) {
2248 case MO_8:
2249 /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2250 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2251 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
2252 datalo, h.base, h.index, 0, h.ofs);
2253 break;
2254 case MO_16:
2255 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
2256 h.base, h.index, 0, h.ofs);
2257 break;
2258 case MO_32:
2259 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2260 h.base, h.index, 0, h.ofs);
2261 break;
2262 case MO_64:
2263 if (TCG_TARGET_REG_BITS == 64) {
2264 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2265 h.base, h.index, 0, h.ofs);
2266 } else {
2267 if (use_movbe) {
2268 TCGReg t = datalo;
2269 datalo = datahi;
2270 datahi = t;
2271 }
2272 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2273 h.base, h.index, 0, h.ofs);
2274 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2275 h.base, h.index, 0, h.ofs + 4);
2276 }
2277 break;
2278
2279 case MO_128:
2280 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2281
2282 /*
2283 * Without 16-byte atomicity, use integer regs.
2284 * That is where we have the data, and it allows bswaps.
2285 */
2286 if (h.aa.atom < MO_128) {
2287 if (use_movbe) {
2288 TCGReg t = datalo;
2289 datalo = datahi;
2290 datahi = t;
2291 }
2292 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2293 h.base, h.index, 0, h.ofs);
2294 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2295 h.base, h.index, 0, h.ofs + 8);
2296 break;
2297 }
2298
2299 /*
2300 * With 16-byte atomicity, a vector store is required.
2301 * If we already have 16-byte alignment, then VMOVDQA always works.
2302 * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2303 * Else use we require a runtime test for alignment for VMOVDQA;
2304 * use VMOVDQU on the unaligned nonatomic path for simplicity.
2305 */
2306 tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
2307 if (h.aa.align >= MO_128) {
2308 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2309 TCG_TMP_VEC, 0,
2310 h.base, h.index, 0, h.ofs);
2311 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2312 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2313 TCG_TMP_VEC, 0,
2314 h.base, h.index, 0, h.ofs);
2315 } else {
2316 TCGLabel *l1 = gen_new_label();
2317 TCGLabel *l2 = gen_new_label();
2318
2319 tcg_out_testi(s, h.base, 15);
2320 tcg_out_jxx(s, JCC_JNE, l1, true);
2321
2322 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2323 TCG_TMP_VEC, 0,
2324 h.base, h.index, 0, h.ofs);
2325 tcg_out_jxx(s, JCC_JMP, l2, true);
2326
2327 tcg_out_label(s, l1);
2328 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2329 TCG_TMP_VEC, 0,
2330 h.base, h.index, 0, h.ofs);
2331 tcg_out_label(s, l2);
2332 }
2333 break;
2334
2335 default:
2336 g_assert_not_reached();
2337 }
2338 }
2339
2340 static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
2341 TCGReg addrlo, TCGReg addrhi,
2342 MemOpIdx oi, TCGType data_type)
2343 {
2344 TCGLabelQemuLdst *ldst;
2345 HostAddress h;
2346
2347 ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false);
2348 tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
2349
2350 if (ldst) {
2351 ldst->type = data_type;
2352 ldst->datalo_reg = datalo;
2353 ldst->datahi_reg = datahi;
2354 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2355 }
2356 }
2357
2358 static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2359 {
2360 /* Reuse the zeroing that exists for goto_ptr. */
2361 if (a0 == 0) {
2362 tcg_out_jmp(s, tcg_code_gen_epilogue);
2363 } else {
2364 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2365 tcg_out_jmp(s, tb_ret_addr);
2366 }
2367 }
2368
2369 static void tcg_out_goto_tb(TCGContext *s, int which)
2370 {
2371 /*
2372 * Jump displacement must be aligned for atomic patching;
2373 * see if we need to add extra nops before jump
2374 */
2375 int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2376 if (gap != 1) {
2377 tcg_out_nopn(s, gap - 1);
2378 }
2379 tcg_out8(s, OPC_JMP_long); /* jmp im */
2380 set_jmp_insn_offset(s, which);
2381 tcg_out32(s, 0);
2382 set_jmp_reset_offset(s, which);
2383 }
2384
2385 void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2386 uintptr_t jmp_rx, uintptr_t jmp_rw)
2387 {
2388 /* patch the branch destination */
2389 uintptr_t addr = tb->jmp_target_addr[n];
2390 qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2391 /* no need to flush icache explicitly */
2392 }
2393
2394 static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
2395 const TCGArg args[TCG_MAX_OP_ARGS],
2396 const int const_args[TCG_MAX_OP_ARGS])
2397 {
2398 TCGArg a0, a1, a2;
2399 int c, const_a2, vexop, rexw = 0;
2400
2401 #if TCG_TARGET_REG_BITS == 64
2402 # define OP_32_64(x) \
2403 case glue(glue(INDEX_op_, x), _i64): \
2404 rexw = P_REXW; /* FALLTHRU */ \
2405 case glue(glue(INDEX_op_, x), _i32)
2406 #else
2407 # define OP_32_64(x) \
2408 case glue(glue(INDEX_op_, x), _i32)
2409 #endif
2410
2411 /* Hoist the loads of the most common arguments. */
2412 a0 = args[0];
2413 a1 = args[1];
2414 a2 = args[2];
2415 const_a2 = const_args[2];
2416
2417 switch (opc) {
2418 case INDEX_op_goto_ptr:
2419 /* jmp to the given host address (could be epilogue) */
2420 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2421 break;
2422 case INDEX_op_br:
2423 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2424 break;
2425 OP_32_64(ld8u):
2426 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2427 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2428 break;
2429 OP_32_64(ld8s):
2430 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2431 break;
2432 OP_32_64(ld16u):
2433 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2434 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2435 break;
2436 OP_32_64(ld16s):
2437 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2438 break;
2439 #if TCG_TARGET_REG_BITS == 64
2440 case INDEX_op_ld32u_i64:
2441 #endif
2442 case INDEX_op_ld_i32:
2443 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2444 break;
2445
2446 OP_32_64(st8):
2447 if (const_args[0]) {
2448 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2449 tcg_out8(s, a0);
2450 } else {
2451 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2452 }
2453 break;
2454 OP_32_64(st16):
2455 if (const_args[0]) {
2456 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2457 tcg_out16(s, a0);
2458 } else {
2459 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2460 }
2461 break;
2462 #if TCG_TARGET_REG_BITS == 64
2463 case INDEX_op_st32_i64:
2464 #endif
2465 case INDEX_op_st_i32:
2466 if (const_args[0]) {
2467 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2468 tcg_out32(s, a0);
2469 } else {
2470 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2471 }
2472 break;
2473
2474 OP_32_64(add):
2475 /* For 3-operand addition, use LEA. */
2476 if (a0 != a1) {
2477 TCGArg c3 = 0;
2478 if (const_a2) {
2479 c3 = a2, a2 = -1;
2480 } else if (a0 == a2) {
2481 /* Watch out for dest = src + dest, since we've removed
2482 the matching constraint on the add. */
2483 tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2484 break;
2485 }
2486
2487 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
2488 break;
2489 }
2490 c = ARITH_ADD;
2491 goto gen_arith;
2492 OP_32_64(sub):
2493 c = ARITH_SUB;
2494 goto gen_arith;
2495 OP_32_64(and):
2496 c = ARITH_AND;
2497 goto gen_arith;
2498 OP_32_64(or):
2499 c = ARITH_OR;
2500 goto gen_arith;
2501 OP_32_64(xor):
2502 c = ARITH_XOR;
2503 goto gen_arith;
2504 gen_arith:
2505 if (const_a2) {
2506 tgen_arithi(s, c + rexw, a0, a2, 0);
2507 } else {
2508 tgen_arithr(s, c + rexw, a0, a2);
2509 }
2510 break;
2511
2512 OP_32_64(andc):
2513 if (const_a2) {
2514 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2515 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2516 } else {
2517 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2518 }
2519 break;
2520
2521 OP_32_64(mul):
2522 if (const_a2) {
2523 int32_t val;
2524 val = a2;
2525 if (val == (int8_t)val) {
2526 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2527 tcg_out8(s, val);
2528 } else {
2529 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2530 tcg_out32(s, val);
2531 }
2532 } else {
2533 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2534 }
2535 break;
2536
2537 OP_32_64(div2):
2538 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2539 break;
2540 OP_32_64(divu2):
2541 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2542 break;
2543
2544 OP_32_64(shl):
2545 /* For small constant 3-operand shift, use LEA. */
2546 if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2547 if (a2 - 1 == 0) {
2548 /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2549 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2550 } else {
2551 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2552 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2553 }
2554 break;
2555 }
2556 c = SHIFT_SHL;
2557 vexop = OPC_SHLX;
2558 goto gen_shift_maybe_vex;
2559 OP_32_64(shr):
2560 c = SHIFT_SHR;
2561 vexop = OPC_SHRX;
2562 goto gen_shift_maybe_vex;
2563 OP_32_64(sar):
2564 c = SHIFT_SAR;
2565 vexop = OPC_SARX;
2566 goto gen_shift_maybe_vex;
2567 OP_32_64(rotl):
2568 c = SHIFT_ROL;
2569 goto gen_shift;
2570 OP_32_64(rotr):
2571 c = SHIFT_ROR;
2572 goto gen_shift;
2573 gen_shift_maybe_vex:
2574 if (have_bmi2) {
2575 if (!const_a2) {
2576 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2577 break;
2578 }
2579 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2580 }
2581 /* FALLTHRU */
2582 gen_shift:
2583 if (const_a2) {
2584 tcg_out_shifti(s, c + rexw, a0, a2);
2585 } else {
2586 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2587 }
2588 break;
2589
2590 OP_32_64(ctz):
2591 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2592 break;
2593 OP_32_64(clz):
2594 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2595 break;
2596 OP_32_64(ctpop):
2597 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2598 break;
2599
2600 OP_32_64(brcond):
2601 tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1],
2602 arg_label(args[3]), 0);
2603 break;
2604 OP_32_64(setcond):
2605 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2);
2606 break;
2607 OP_32_64(movcond):
2608 tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]);
2609 break;
2610
2611 OP_32_64(bswap16):
2612 if (a2 & TCG_BSWAP_OS) {
2613 /* Output must be sign-extended. */
2614 if (rexw) {
2615 tcg_out_bswap64(s, a0);
2616 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
2617 } else {
2618 tcg_out_bswap32(s, a0);
2619 tcg_out_shifti(s, SHIFT_SAR, a0, 16);
2620 }
2621 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
2622 /* Output must be zero-extended, but input isn't. */
2623 tcg_out_bswap32(s, a0);
2624 tcg_out_shifti(s, SHIFT_SHR, a0, 16);
2625 } else {
2626 tcg_out_rolw_8(s, a0);
2627 }
2628 break;
2629 OP_32_64(bswap32):
2630 tcg_out_bswap32(s, a0);
2631 if (rexw && (a2 & TCG_BSWAP_OS)) {
2632 tcg_out_ext32s(s, a0, a0);
2633 }
2634 break;
2635
2636 OP_32_64(neg):
2637 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2638 break;
2639 OP_32_64(not):
2640 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2641 break;
2642
2643 case INDEX_op_qemu_ld_a64_i32:
2644 if (TCG_TARGET_REG_BITS == 32) {
2645 tcg_out_qemu_ld(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32);
2646 break;
2647 }
2648 /* fall through */
2649 case INDEX_op_qemu_ld_a32_i32:
2650 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I32);
2651 break;
2652 case INDEX_op_qemu_ld_a32_i64:
2653 if (TCG_TARGET_REG_BITS == 64) {
2654 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
2655 } else {
2656 tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64);
2657 }
2658 break;
2659 case INDEX_op_qemu_ld_a64_i64:
2660 if (TCG_TARGET_REG_BITS == 64) {
2661 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
2662 } else {
2663 tcg_out_qemu_ld(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64);
2664 }
2665 break;
2666 case INDEX_op_qemu_ld_a32_i128:
2667 case INDEX_op_qemu_ld_a64_i128:
2668 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2669 tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128);
2670 break;
2671
2672 case INDEX_op_qemu_st_a64_i32:
2673 case INDEX_op_qemu_st8_a64_i32:
2674 if (TCG_TARGET_REG_BITS == 32) {
2675 tcg_out_qemu_st(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32);
2676 break;
2677 }
2678 /* fall through */
2679 case INDEX_op_qemu_st_a32_i32:
2680 case INDEX_op_qemu_st8_a32_i32:
2681 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I32);
2682 break;
2683 case INDEX_op_qemu_st_a32_i64:
2684 if (TCG_TARGET_REG_BITS == 64) {
2685 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
2686 } else {
2687 tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64);
2688 }
2689 break;
2690 case INDEX_op_qemu_st_a64_i64:
2691 if (TCG_TARGET_REG_BITS == 64) {
2692 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64);
2693 } else {
2694 tcg_out_qemu_st(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64);
2695 }
2696 break;
2697 case INDEX_op_qemu_st_a32_i128:
2698 case INDEX_op_qemu_st_a64_i128:
2699 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2700 tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128);
2701 break;
2702
2703 OP_32_64(mulu2):
2704 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2705 break;
2706 OP_32_64(muls2):
2707 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2708 break;
2709 OP_32_64(add2):
2710 if (const_args[4]) {
2711 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2712 } else {
2713 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2714 }
2715 if (const_args[5]) {
2716 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2717 } else {
2718 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2719 }
2720 break;
2721 OP_32_64(sub2):
2722 if (const_args[4]) {
2723 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2724 } else {
2725 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2726 }
2727 if (const_args[5]) {
2728 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2729 } else {
2730 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2731 }
2732 break;
2733
2734 #if TCG_TARGET_REG_BITS == 32
2735 case INDEX_op_brcond2_i32:
2736 tcg_out_brcond2(s, args, const_args, 0);
2737 break;
2738 case INDEX_op_setcond2_i32:
2739 tcg_out_setcond2(s, args, const_args);
2740 break;
2741 #else /* TCG_TARGET_REG_BITS == 64 */
2742 case INDEX_op_ld32s_i64:
2743 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2744 break;
2745 case INDEX_op_ld_i64:
2746 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2747 break;
2748 case INDEX_op_st_i64:
2749 if (const_args[0]) {
2750 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2751 tcg_out32(s, a0);
2752 } else {
2753 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2754 }
2755 break;
2756
2757 case INDEX_op_bswap64_i64:
2758 tcg_out_bswap64(s, a0);
2759 break;
2760 case INDEX_op_extrh_i64_i32:
2761 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
2762 break;
2763 #endif
2764
2765 OP_32_64(deposit):
2766 if (args[3] == 0 && args[4] == 8) {
2767 /* load bits 0..7 */
2768 if (const_a2) {
2769 tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
2770 0, a0, 0);
2771 tcg_out8(s, a2);
2772 } else {
2773 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2774 }
2775 } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
2776 /* load bits 8..15 */
2777 if (const_a2) {
2778 tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
2779 tcg_out8(s, a2);
2780 } else {
2781 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2782 }
2783 } else if (args[3] == 0 && args[4] == 16) {
2784 /* load bits 0..15 */
2785 if (const_a2) {
2786 tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
2787 0, a0, 0);
2788 tcg_out16(s, a2);
2789 } else {
2790 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2791 }
2792 } else {
2793 g_assert_not_reached();
2794 }
2795 break;
2796
2797 case INDEX_op_extract_i64:
2798 if (a2 + args[3] == 32) {
2799 /* This is a 32-bit zero-extending right shift. */
2800 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2801 tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2802 break;
2803 }
2804 /* FALLTHRU */
2805 case INDEX_op_extract_i32:
2806 /* On the off-chance that we can use the high-byte registers.
2807 Otherwise we emit the same ext16 + shift pattern that we
2808 would have gotten from the normal tcg-op.c expansion. */
2809 tcg_debug_assert(a2 == 8 && args[3] == 8);
2810 if (a1 < 4 && a0 < 8) {
2811 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2812 } else {
2813 tcg_out_ext16u(s, a0, a1);
2814 tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2815 }
2816 break;
2817
2818 case INDEX_op_sextract_i32:
2819 /* We don't implement sextract_i64, as we cannot sign-extend to
2820 64-bits without using the REX prefix that explicitly excludes
2821 access to the high-byte registers. */
2822 tcg_debug_assert(a2 == 8 && args[3] == 8);
2823 if (a1 < 4 && a0 < 8) {
2824 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2825 } else {
2826 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
2827 tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2828 }
2829 break;
2830
2831 OP_32_64(extract2):
2832 /* Note that SHRD outputs to the r/m operand. */
2833 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
2834 tcg_out8(s, args[3]);
2835 break;
2836
2837 case INDEX_op_mb:
2838 tcg_out_mb(s, a0);
2839 break;
2840 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2841 case INDEX_op_mov_i64:
2842 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2843 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
2844 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
2845 case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */
2846 case INDEX_op_ext8s_i64:
2847 case INDEX_op_ext8u_i32:
2848 case INDEX_op_ext8u_i64:
2849 case INDEX_op_ext16s_i32:
2850 case INDEX_op_ext16s_i64:
2851 case INDEX_op_ext16u_i32:
2852 case INDEX_op_ext16u_i64:
2853 case INDEX_op_ext32s_i64:
2854 case INDEX_op_ext32u_i64:
2855 case INDEX_op_ext_i32_i64:
2856 case INDEX_op_extu_i32_i64:
2857 case INDEX_op_extrl_i64_i32:
2858 default:
2859 g_assert_not_reached();
2860 }
2861
2862 #undef OP_32_64
2863 }
2864
2865 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
2866 unsigned vecl, unsigned vece,
2867 const TCGArg args[TCG_MAX_OP_ARGS],
2868 const int const_args[TCG_MAX_OP_ARGS])
2869 {
2870 static int const add_insn[4] = {
2871 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
2872 };
2873 static int const ssadd_insn[4] = {
2874 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
2875 };
2876 static int const usadd_insn[4] = {
2877 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
2878 };
2879 static int const sub_insn[4] = {
2880 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
2881 };
2882 static int const sssub_insn[4] = {
2883 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
2884 };
2885 static int const ussub_insn[4] = {
2886 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
2887 };
2888 static int const mul_insn[4] = {
2889 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
2890 };
2891 static int const shift_imm_insn[4] = {
2892 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
2893 };
2894 static int const cmpeq_insn[4] = {
2895 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
2896 };
2897 static int const cmpgt_insn[4] = {
2898 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
2899 };
2900 static int const punpckl_insn[4] = {
2901 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
2902 };
2903 static int const punpckh_insn[4] = {
2904 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
2905 };
2906 static int const packss_insn[4] = {
2907 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
2908 };
2909 static int const packus_insn[4] = {
2910 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
2911 };
2912 static int const smin_insn[4] = {
2913 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
2914 };
2915 static int const smax_insn[4] = {
2916 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
2917 };
2918 static int const umin_insn[4] = {
2919 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
2920 };
2921 static int const umax_insn[4] = {
2922 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
2923 };
2924 static int const rotlv_insn[4] = {
2925 OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
2926 };
2927 static int const rotrv_insn[4] = {
2928 OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
2929 };
2930 static int const shlv_insn[4] = {
2931 OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
2932 };
2933 static int const shrv_insn[4] = {
2934 OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
2935 };
2936 static int const sarv_insn[4] = {
2937 OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
2938 };
2939 static int const shls_insn[4] = {
2940 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
2941 };
2942 static int const shrs_insn[4] = {
2943 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
2944 };
2945 static int const sars_insn[4] = {
2946 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
2947 };
2948 static int const vpshldi_insn[4] = {
2949 OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
2950 };
2951 static int const vpshldv_insn[4] = {
2952 OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
2953 };
2954 static int const vpshrdv_insn[4] = {
2955 OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
2956 };
2957 static int const abs_insn[4] = {
2958 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
2959 };
2960
2961 TCGType type = vecl + TCG_TYPE_V64;
2962 int insn, sub;
2963 TCGArg a0, a1, a2, a3;
2964
2965 a0 = args[0];
2966 a1 = args[1];
2967 a2 = args[2];
2968
2969 switch (opc) {
2970 case INDEX_op_add_vec:
2971 insn = add_insn[vece];
2972 goto gen_simd;
2973 case INDEX_op_ssadd_vec:
2974 insn = ssadd_insn[vece];
2975 goto gen_simd;
2976 case INDEX_op_usadd_vec:
2977 insn = usadd_insn[vece];
2978 goto gen_simd;
2979 case INDEX_op_sub_vec:
2980 insn = sub_insn[vece];
2981 goto gen_simd;
2982 case INDEX_op_sssub_vec:
2983 insn = sssub_insn[vece];
2984 goto gen_simd;
2985 case INDEX_op_ussub_vec:
2986 insn = ussub_insn[vece];
2987 goto gen_simd;
2988 case INDEX_op_mul_vec:
2989 insn = mul_insn[vece];
2990 goto gen_simd;
2991 case INDEX_op_and_vec:
2992 insn = OPC_PAND;
2993 goto gen_simd;
2994 case INDEX_op_or_vec:
2995 insn = OPC_POR;
2996 goto gen_simd;
2997 case INDEX_op_xor_vec:
2998 insn = OPC_PXOR;
2999 goto gen_simd;
3000 case INDEX_op_smin_vec:
3001 insn = smin_insn[vece];
3002 goto gen_simd;
3003 case INDEX_op_umin_vec:
3004 insn = umin_insn[vece];
3005 goto gen_simd;
3006 case INDEX_op_smax_vec:
3007 insn = smax_insn[vece];
3008 goto gen_simd;
3009 case INDEX_op_umax_vec:
3010 insn = umax_insn[vece];
3011 goto gen_simd;
3012 case INDEX_op_shlv_vec:
3013 insn = shlv_insn[vece];
3014 goto gen_simd;
3015 case INDEX_op_shrv_vec:
3016 insn = shrv_insn[vece];
3017 goto gen_simd;
3018 case INDEX_op_sarv_vec:
3019 insn = sarv_insn[vece];
3020 goto gen_simd;
3021 case INDEX_op_rotlv_vec:
3022 insn = rotlv_insn[vece];
3023 goto gen_simd;
3024 case INDEX_op_rotrv_vec:
3025 insn = rotrv_insn[vece];
3026 goto gen_simd;
3027 case INDEX_op_shls_vec:
3028 insn = shls_insn[vece];
3029 goto gen_simd;
3030 case INDEX_op_shrs_vec:
3031 insn = shrs_insn[vece];
3032 goto gen_simd;
3033 case INDEX_op_sars_vec:
3034 insn = sars_insn[vece];
3035 goto gen_simd;
3036 case INDEX_op_x86_punpckl_vec:
3037 insn = punpckl_insn[vece];
3038 goto gen_simd;
3039 case INDEX_op_x86_punpckh_vec:
3040 insn = punpckh_insn[vece];
3041 goto gen_simd;
3042 case INDEX_op_x86_packss_vec:
3043 insn = packss_insn[vece];
3044 goto gen_simd;
3045 case INDEX_op_x86_packus_vec:
3046 insn = packus_insn[vece];
3047 goto gen_simd;
3048 case INDEX_op_x86_vpshldv_vec:
3049 insn = vpshldv_insn[vece];
3050 a1 = a2;
3051 a2 = args[3];
3052 goto gen_simd;
3053 case INDEX_op_x86_vpshrdv_vec:
3054 insn = vpshrdv_insn[vece];
3055 a1 = a2;
3056 a2 = args[3];
3057 goto gen_simd;
3058 #if TCG_TARGET_REG_BITS == 32
3059 case INDEX_op_dup2_vec:
3060 /* First merge the two 32-bit inputs to a single 64-bit element. */
3061 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3062 /* Then replicate the 64-bit elements across the rest of the vector. */
3063 if (type != TCG_TYPE_V64) {
3064 tcg_out_dup_vec(s, type, MO_64, a0, a0);
3065 }
3066 break;
3067 #endif
3068 case INDEX_op_abs_vec:
3069 insn = abs_insn[vece];
3070 a2 = a1;
3071 a1 = 0;
3072 goto gen_simd;
3073 gen_simd:
3074 tcg_debug_assert(insn != OPC_UD2);
3075 if (type == TCG_TYPE_V256) {
3076 insn |= P_VEXL;
3077 }
3078 tcg_out_vex_modrm(s, insn, a0, a1, a2);
3079 break;
3080
3081 case INDEX_op_cmp_vec:
3082 sub = args[3];
3083 if (sub == TCG_COND_EQ) {
3084 insn = cmpeq_insn[vece];
3085 } else if (sub == TCG_COND_GT) {
3086 insn = cmpgt_insn[vece];
3087 } else {
3088 g_assert_not_reached();
3089 }
3090 goto gen_simd;
3091
3092 case INDEX_op_andc_vec:
3093 insn = OPC_PANDN;
3094 if (type == TCG_TYPE_V256) {
3095 insn |= P_VEXL;
3096 }
3097 tcg_out_vex_modrm(s, insn, a0, a2, a1);
3098 break;
3099
3100 case INDEX_op_shli_vec:
3101 insn = shift_imm_insn[vece];
3102 sub = 6;
3103 goto gen_shift;
3104 case INDEX_op_shri_vec:
3105 insn = shift_imm_insn[vece];
3106 sub = 2;
3107 goto gen_shift;
3108 case INDEX_op_sari_vec:
3109 if (vece == MO_64) {
3110 insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3111 } else {
3112 insn = shift_imm_insn[vece];
3113 }
3114 sub = 4;
3115 goto gen_shift;
3116 case INDEX_op_rotli_vec:
3117 insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */
3118 if (vece == MO_64) {
3119 insn |= P_VEXW;
3120 }
3121 sub = 1;
3122 goto gen_shift;
3123 gen_shift:
3124 tcg_debug_assert(vece != MO_8);
3125 if (type == TCG_TYPE_V256) {
3126 insn |= P_VEXL;
3127 }
3128 tcg_out_vex_modrm(s, insn, sub, a0, a1);
3129 tcg_out8(s, a2);
3130 break;
3131
3132 case INDEX_op_ld_vec:
3133 tcg_out_ld(s, type, a0, a1, a2);
3134 break;
3135 case INDEX_op_st_vec:
3136 tcg_out_st(s, type, a0, a1, a2);
3137 break;
3138 case INDEX_op_dupm_vec:
3139 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3140 break;
3141
3142 case INDEX_op_x86_shufps_vec:
3143 insn = OPC_SHUFPS;
3144 sub = args[3];
3145 goto gen_simd_imm8;
3146 case INDEX_op_x86_blend_vec:
3147 if (vece == MO_16) {
3148 insn = OPC_PBLENDW;
3149 } else if (vece == MO_32) {
3150 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3151 } else {
3152 g_assert_not_reached();
3153 }
3154 sub = args[3];
3155 goto gen_simd_imm8;
3156 case INDEX_op_x86_vperm2i128_vec:
3157 insn = OPC_VPERM2I128;
3158 sub = args[3];
3159 goto gen_simd_imm8;
3160 case INDEX_op_x86_vpshldi_vec:
3161 insn = vpshldi_insn[vece];
3162 sub = args[3];
3163 goto gen_simd_imm8;
3164
3165 case INDEX_op_not_vec:
3166 insn = OPC_VPTERNLOGQ;
3167 a2 = a1;
3168 sub = 0x33; /* !B */
3169 goto gen_simd_imm8;
3170 case INDEX_op_nor_vec:
3171 insn = OPC_VPTERNLOGQ;
3172 sub = 0x11; /* norCB */
3173 goto gen_simd_imm8;
3174 case INDEX_op_nand_vec:
3175 insn = OPC_VPTERNLOGQ;
3176 sub = 0x77; /* nandCB */
3177 goto gen_simd_imm8;
3178 case INDEX_op_eqv_vec:
3179 insn = OPC_VPTERNLOGQ;
3180 sub = 0x99; /* xnorCB */
3181 goto gen_simd_imm8;
3182 case INDEX_op_orc_vec:
3183 insn = OPC_VPTERNLOGQ;
3184 sub = 0xdd; /* orB!C */
3185 goto gen_simd_imm8;
3186
3187 case INDEX_op_bitsel_vec:
3188 insn = OPC_VPTERNLOGQ;
3189 a3 = args[3];
3190 if (a0 == a1) {
3191 a1 = a2;
3192 a2 = a3;
3193 sub = 0xca; /* A?B:C */
3194 } else if (a0 == a2) {
3195 a2 = a3;
3196 sub = 0xe2; /* B?A:C */
3197 } else {
3198 tcg_out_mov(s, type, a0, a3);
3199 sub = 0xb8; /* B?C:A */
3200 }
3201 goto gen_simd_imm8;
3202
3203 gen_simd_imm8:
3204 tcg_debug_assert(insn != OPC_UD2);
3205 if (type == TCG_TYPE_V256) {
3206 insn |= P_VEXL;
3207 }
3208 tcg_out_vex_modrm(s, insn, a0, a1, a2);
3209 tcg_out8(s, sub);
3210 break;
3211
3212 case INDEX_op_x86_vpblendvb_vec:
3213 insn = OPC_VPBLENDVB;
3214 if (type == TCG_TYPE_V256) {
3215 insn |= P_VEXL;
3216 }
3217 tcg_out_vex_modrm(s, insn, a0, a1, a2);
3218 tcg_out8(s, args[3] << 4);
3219 break;
3220
3221 case INDEX_op_x86_psrldq_vec:
3222 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3223 tcg_out8(s, a2);
3224 break;
3225
3226 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
3227 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
3228 default:
3229 g_assert_not_reached();
3230 }
3231 }
3232
3233 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
3234 {
3235 switch (op) {
3236 case INDEX_op_goto_ptr:
3237 return C_O0_I1(r);
3238
3239 case INDEX_op_ld8u_i32:
3240 case INDEX_op_ld8u_i64:
3241 case INDEX_op_ld8s_i32:
3242 case INDEX_op_ld8s_i64:
3243 case INDEX_op_ld16u_i32:
3244 case INDEX_op_ld16u_i64:
3245 case INDEX_op_ld16s_i32:
3246 case INDEX_op_ld16s_i64:
3247 case INDEX_op_ld_i32:
3248 case INDEX_op_ld32u_i64:
3249 case INDEX_op_ld32s_i64:
3250 case INDEX_op_ld_i64:
3251 return C_O1_I1(r, r);
3252
3253 case INDEX_op_st8_i32:
3254 case INDEX_op_st8_i64:
3255 return C_O0_I2(qi, r);
3256
3257 case INDEX_op_st16_i32:
3258 case INDEX_op_st16_i64:
3259 case INDEX_op_st_i32:
3260 case INDEX_op_st32_i64:
3261 return C_O0_I2(ri, r);
3262
3263 case INDEX_op_st_i64:
3264 return C_O0_I2(re, r);
3265
3266 case INDEX_op_add_i32:
3267 case INDEX_op_add_i64:
3268 return C_O1_I2(r, r, re);
3269
3270 case INDEX_op_sub_i32:
3271 case INDEX_op_sub_i64:
3272 case INDEX_op_mul_i32:
3273 case INDEX_op_mul_i64:
3274 case INDEX_op_or_i32:
3275 case INDEX_op_or_i64:
3276 case INDEX_op_xor_i32:
3277 case INDEX_op_xor_i64:
3278 return C_O1_I2(r, 0, re);
3279
3280 case INDEX_op_and_i32:
3281 case INDEX_op_and_i64:
3282 return C_O1_I2(r, 0, reZ);
3283
3284 case INDEX_op_andc_i32:
3285 case INDEX_op_andc_i64:
3286 return C_O1_I2(r, r, rI);
3287
3288 case INDEX_op_shl_i32:
3289 case INDEX_op_shl_i64:
3290 case INDEX_op_shr_i32:
3291 case INDEX_op_shr_i64:
3292 case INDEX_op_sar_i32:
3293 case INDEX_op_sar_i64:
3294 return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
3295
3296 case INDEX_op_rotl_i32:
3297 case INDEX_op_rotl_i64:
3298 case INDEX_op_rotr_i32:
3299 case INDEX_op_rotr_i64:
3300 return C_O1_I2(r, 0, ci);
3301
3302 case INDEX_op_brcond_i32:
3303 case INDEX_op_brcond_i64:
3304 return C_O0_I2(r, re);
3305
3306 case INDEX_op_bswap16_i32:
3307 case INDEX_op_bswap16_i64:
3308 case INDEX_op_bswap32_i32:
3309 case INDEX_op_bswap32_i64:
3310 case INDEX_op_bswap64_i64:
3311 case INDEX_op_neg_i32:
3312 case INDEX_op_neg_i64:
3313 case INDEX_op_not_i32:
3314 case INDEX_op_not_i64:
3315 case INDEX_op_extrh_i64_i32:
3316 return C_O1_I1(r, 0);
3317
3318 case INDEX_op_ext8s_i32:
3319 case INDEX_op_ext8s_i64:
3320 case INDEX_op_ext8u_i32:
3321 case INDEX_op_ext8u_i64:
3322 return C_O1_I1(r, q);
3323
3324 case INDEX_op_ext16s_i32:
3325 case INDEX_op_ext16s_i64:
3326 case INDEX_op_ext16u_i32:
3327 case INDEX_op_ext16u_i64:
3328 case INDEX_op_ext32s_i64:
3329 case INDEX_op_ext32u_i64:
3330 case INDEX_op_ext_i32_i64:
3331 case INDEX_op_extu_i32_i64:
3332 case INDEX_op_extrl_i64_i32:
3333 case INDEX_op_extract_i32:
3334 case INDEX_op_extract_i64:
3335 case INDEX_op_sextract_i32:
3336 case INDEX_op_ctpop_i32:
3337 case INDEX_op_ctpop_i64:
3338 return C_O1_I1(r, r);
3339
3340 case INDEX_op_extract2_i32:
3341 case INDEX_op_extract2_i64:
3342 return C_O1_I2(r, 0, r);
3343
3344 case INDEX_op_deposit_i32:
3345 case INDEX_op_deposit_i64:
3346 return C_O1_I2(q, 0, qi);
3347
3348 case INDEX_op_setcond_i32:
3349 case INDEX_op_setcond_i64:
3350 return C_O1_I2(q, r, re);
3351
3352 case INDEX_op_movcond_i32:
3353 case INDEX_op_movcond_i64:
3354 return C_O1_I4(r, r, re, r, 0);
3355
3356 case INDEX_op_div2_i32:
3357 case INDEX_op_div2_i64:
3358 case INDEX_op_divu2_i32:
3359 case INDEX_op_divu2_i64:
3360 return C_O2_I3(a, d, 0, 1, r);
3361
3362 case INDEX_op_mulu2_i32:
3363 case INDEX_op_mulu2_i64:
3364 case INDEX_op_muls2_i32:
3365 case INDEX_op_muls2_i64:
3366 return C_O2_I2(a, d, a, r);
3367
3368 case INDEX_op_add2_i32:
3369 case INDEX_op_add2_i64:
3370 case INDEX_op_sub2_i32:
3371 case INDEX_op_sub2_i64:
3372 return C_N1_O1_I4(r, r, 0, 1, re, re);
3373
3374 case INDEX_op_ctz_i32:
3375 case INDEX_op_ctz_i64:
3376 return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3377
3378 case INDEX_op_clz_i32:
3379 case INDEX_op_clz_i64:
3380 return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3381
3382 case INDEX_op_qemu_ld_a32_i32:
3383 return C_O1_I1(r, L);
3384 case INDEX_op_qemu_ld_a64_i32:
3385 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O1_I2(r, L, L);
3386
3387 case INDEX_op_qemu_st_a32_i32:
3388 return C_O0_I2(L, L);
3389 case INDEX_op_qemu_st_a64_i32:
3390 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
3391 case INDEX_op_qemu_st8_a32_i32:
3392 return C_O0_I2(s, L);
3393 case INDEX_op_qemu_st8_a64_i32:
3394 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(s, L) : C_O0_I3(s, L, L);
3395
3396 case INDEX_op_qemu_ld_a32_i64:
3397 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
3398 case INDEX_op_qemu_ld_a64_i64:
3399 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I2(r, r, L, L);
3400
3401 case INDEX_op_qemu_st_a32_i64:
3402 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
3403 case INDEX_op_qemu_st_a64_i64:
3404 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I4(L, L, L, L);
3405
3406 case INDEX_op_qemu_ld_a32_i128:
3407 case INDEX_op_qemu_ld_a64_i128:
3408 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3409 return C_O2_I1(r, r, L);
3410 case INDEX_op_qemu_st_a32_i128:
3411 case INDEX_op_qemu_st_a64_i128:
3412 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3413 return C_O0_I3(L, L, L);
3414
3415 case INDEX_op_brcond2_i32:
3416 return C_O0_I4(r, r, ri, ri);
3417
3418 case INDEX_op_setcond2_i32:
3419 return C_O1_I4(r, r, r, ri, ri);
3420
3421 case INDEX_op_ld_vec:
3422 case INDEX_op_dupm_vec:
3423 return C_O1_I1(x, r);
3424
3425 case INDEX_op_st_vec:
3426 return C_O0_I2(x, r);
3427
3428 case INDEX_op_add_vec:
3429 case INDEX_op_sub_vec:
3430 case INDEX_op_mul_vec:
3431 case INDEX_op_and_vec:
3432 case INDEX_op_or_vec:
3433 case INDEX_op_xor_vec:
3434 case INDEX_op_andc_vec:
3435 case INDEX_op_orc_vec:
3436 case INDEX_op_nand_vec:
3437 case INDEX_op_nor_vec:
3438 case INDEX_op_eqv_vec:
3439 case INDEX_op_ssadd_vec:
3440 case INDEX_op_usadd_vec:
3441 case INDEX_op_sssub_vec:
3442 case INDEX_op_ussub_vec:
3443 case INDEX_op_smin_vec:
3444 case INDEX_op_umin_vec:
3445 case INDEX_op_smax_vec:
3446 case INDEX_op_umax_vec:
3447 case INDEX_op_shlv_vec:
3448 case INDEX_op_shrv_vec:
3449 case INDEX_op_sarv_vec:
3450 case INDEX_op_rotlv_vec:
3451 case INDEX_op_rotrv_vec:
3452 case INDEX_op_shls_vec:
3453 case INDEX_op_shrs_vec:
3454 case INDEX_op_sars_vec:
3455 case INDEX_op_cmp_vec:
3456 case INDEX_op_x86_shufps_vec:
3457 case INDEX_op_x86_blend_vec:
3458 case INDEX_op_x86_packss_vec:
3459 case INDEX_op_x86_packus_vec:
3460 case INDEX_op_x86_vperm2i128_vec:
3461 case INDEX_op_x86_punpckl_vec:
3462 case INDEX_op_x86_punpckh_vec:
3463 case INDEX_op_x86_vpshldi_vec:
3464 #if TCG_TARGET_REG_BITS == 32
3465 case INDEX_op_dup2_vec:
3466 #endif
3467 return C_O1_I2(x, x, x);
3468
3469 case INDEX_op_abs_vec:
3470 case INDEX_op_dup_vec:
3471 case INDEX_op_not_vec:
3472 case INDEX_op_shli_vec:
3473 case INDEX_op_shri_vec:
3474 case INDEX_op_sari_vec:
3475 case INDEX_op_rotli_vec:
3476 case INDEX_op_x86_psrldq_vec:
3477 return C_O1_I1(x, x);
3478
3479 case INDEX_op_x86_vpshldv_vec:
3480 case INDEX_op_x86_vpshrdv_vec:
3481 return C_O1_I3(x, 0, x, x);
3482
3483 case INDEX_op_bitsel_vec:
3484 case INDEX_op_x86_vpblendvb_vec:
3485 return C_O1_I3(x, x, x, x);
3486
3487 default:
3488 g_assert_not_reached();
3489 }
3490 }
3491
3492 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3493 {
3494 switch (opc) {
3495 case INDEX_op_add_vec:
3496 case INDEX_op_sub_vec:
3497 case INDEX_op_and_vec:
3498 case INDEX_op_or_vec:
3499 case INDEX_op_xor_vec:
3500 case INDEX_op_andc_vec:
3501 case INDEX_op_orc_vec:
3502 case INDEX_op_nand_vec:
3503 case INDEX_op_nor_vec:
3504 case INDEX_op_eqv_vec:
3505 case INDEX_op_not_vec:
3506 case INDEX_op_bitsel_vec:
3507 return 1;
3508 case INDEX_op_cmp_vec:
3509 case INDEX_op_cmpsel_vec:
3510 return -1;
3511
3512 case INDEX_op_rotli_vec:
3513 return have_avx512vl && vece >= MO_32 ? 1 : -1;
3514
3515 case INDEX_op_shli_vec:
3516 case INDEX_op_shri_vec:
3517 /* We must expand the operation for MO_8. */
3518 return vece == MO_8 ? -1 : 1;
3519
3520 case INDEX_op_sari_vec:
3521 switch (vece) {
3522 case MO_8:
3523 return -1;
3524 case MO_16:
3525 case MO_32:
3526 return 1;
3527 case MO_64:
3528 if (have_avx512vl) {
3529 return 1;
3530 }
3531 /*
3532 * We can emulate this for MO_64, but it does not pay off
3533 * unless we're producing at least 4 values.
3534 */
3535 return type >= TCG_TYPE_V256 ? -1 : 0;
3536 }
3537 return 0;
3538
3539 case INDEX_op_shls_vec:
3540 case INDEX_op_shrs_vec:
3541 return vece >= MO_16;
3542 case INDEX_op_sars_vec:
3543 switch (vece) {
3544 case MO_16:
3545 case MO_32:
3546 return 1;
3547 case MO_64:
3548 return have_avx512vl;
3549 }
3550 return 0;
3551 case INDEX_op_rotls_vec:
3552 return vece >= MO_16 ? -1 : 0;
3553
3554 case INDEX_op_shlv_vec:
3555 case INDEX_op_shrv_vec:
3556 switch (vece) {
3557 case MO_16:
3558 return have_avx512bw;
3559 case MO_32:
3560 case MO_64:
3561 return have_avx2;
3562 }
3563 return 0;
3564 case INDEX_op_sarv_vec:
3565 switch (vece) {
3566 case MO_16:
3567 return have_avx512bw;
3568 case MO_32:
3569 return have_avx2;
3570 case MO_64:
3571 return have_avx512vl;
3572 }
3573 return 0;
3574 case INDEX_op_rotlv_vec:
3575 case INDEX_op_rotrv_vec:
3576 switch (vece) {
3577 case MO_16:
3578 return have_avx512vbmi2 ? -1 : 0;
3579 case MO_32:
3580 case MO_64:
3581 return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
3582 }
3583 return 0;
3584
3585 case INDEX_op_mul_vec:
3586 switch (vece) {
3587 case MO_8:
3588 return -1;
3589 case MO_64:
3590 return have_avx512dq;
3591 }
3592 return 1;
3593
3594 case INDEX_op_ssadd_vec:
3595 case INDEX_op_usadd_vec:
3596 case INDEX_op_sssub_vec:
3597 case INDEX_op_ussub_vec:
3598 return vece <= MO_16;
3599 case INDEX_op_smin_vec:
3600 case INDEX_op_smax_vec:
3601 case INDEX_op_umin_vec:
3602 case INDEX_op_umax_vec:
3603 case INDEX_op_abs_vec:
3604 return vece <= MO_32 || have_avx512vl;
3605
3606 default:
3607 return 0;
3608 }
3609 }
3610
3611 static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc,
3612 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3613 {
3614 TCGv_vec t1, t2;
3615
3616 tcg_debug_assert(vece == MO_8);
3617
3618 t1 = tcg_temp_new_vec(type);
3619 t2 = tcg_temp_new_vec(type);
3620
3621 /*
3622 * Unpack to W, shift, and repack. Tricky bits:
3623 * (1) Use punpck*bw x,x to produce DDCCBBAA,
3624 * i.e. duplicate in other half of the 16-bit lane.
3625 * (2) For right-shift, add 8 so that the high half of the lane
3626 * becomes zero. For left-shift, and left-rotate, we must
3627 * shift up and down again.
3628 * (3) Step 2 leaves high half zero such that PACKUSWB
3629 * (pack with unsigned saturation) does not modify
3630 * the quantity.
3631 */
3632 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3633 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3634 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3635 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3636
3637 if (opc != INDEX_op_rotli_vec) {
3638 imm += 8;
3639 }
3640 if (opc == INDEX_op_shri_vec) {
3641 tcg_gen_shri_vec(MO_16, t1, t1, imm);
3642 tcg_gen_shri_vec(MO_16, t2, t2, imm);
3643 } else {
3644 tcg_gen_shli_vec(MO_16, t1, t1, imm);
3645 tcg_gen_shli_vec(MO_16, t2, t2, imm);
3646 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3647 tcg_gen_shri_vec(MO_16, t2, t2, 8);
3648 }
3649
3650 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3651 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3652 tcg_temp_free_vec(t1);
3653 tcg_temp_free_vec(t2);
3654 }
3655
3656 static void expand_vec_sari(TCGType type, unsigned vece,
3657 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3658 {
3659 TCGv_vec t1, t2;
3660
3661 switch (vece) {
3662 case MO_8:
3663 /* Unpack to W, shift, and repack, as in expand_vec_shi. */
3664 t1 = tcg_temp_new_vec(type);
3665 t2 = tcg_temp_new_vec(type);
3666 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3667 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3668 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3669 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3670 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
3671 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
3672 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
3673 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3674 tcg_temp_free_vec(t1);
3675 tcg_temp_free_vec(t2);
3676 break;
3677
3678 case MO_64:
3679 t1 = tcg_temp_new_vec(type);
3680 if (imm <= 32) {
3681 /*
3682 * We can emulate a small sign extend by performing an arithmetic
3683 * 32-bit shift and overwriting the high half of a 64-bit logical
3684 * shift. Note that the ISA says shift of 32 is valid, but TCG
3685 * does not, so we have to bound the smaller shift -- we get the
3686 * same result in the high half either way.
3687 */
3688 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
3689 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3690 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
3691 tcgv_vec_arg(v0), tcgv_vec_arg(v0),
3692 tcgv_vec_arg(t1), 0xaa);
3693 } else {
3694 /* Otherwise we will need to use a compare vs 0 to produce
3695 * the sign-extend, shift and merge.
3696 */
3697 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
3698 tcg_constant_vec(type, MO_64, 0), v1);
3699 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3700 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
3701 tcg_gen_or_vec(MO_64, v0, v0, t1);
3702 }
3703 tcg_temp_free_vec(t1);
3704 break;
3705
3706 default:
3707 g_assert_not_reached();
3708 }
3709 }
3710
3711 static void expand_vec_rotli(TCGType type, unsigned vece,
3712 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3713 {
3714 TCGv_vec t;
3715
3716 if (vece == MO_8) {
3717 expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm);
3718 return;
3719 }
3720
3721 if (have_avx512vbmi2) {
3722 vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
3723 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
3724 return;
3725 }
3726
3727 t = tcg_temp_new_vec(type);
3728 tcg_gen_shli_vec(vece, t, v1, imm);
3729 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
3730 tcg_gen_or_vec(vece, v0, v0, t);
3731 tcg_temp_free_vec(t);
3732 }
3733
3734 static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
3735 TCGv_vec v1, TCGv_vec sh, bool right)
3736 {
3737 TCGv_vec t;
3738
3739 if (have_avx512vbmi2) {
3740 vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
3741 type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
3742 tcgv_vec_arg(v1), tcgv_vec_arg(sh));
3743 return;
3744 }
3745
3746 t = tcg_temp_new_vec(type);
3747 tcg_gen_dupi_vec(vece, t, 8 << vece);
3748 tcg_gen_sub_vec(vece, t, t, sh);
3749 if (right) {
3750 tcg_gen_shlv_vec(vece, t, v1, t);
3751 tcg_gen_shrv_vec(vece, v0, v1, sh);
3752 } else {
3753 tcg_gen_shrv_vec(vece, t, v1, t);
3754 tcg_gen_shlv_vec(vece, v0, v1, sh);
3755 }
3756 tcg_gen_or_vec(vece, v0, v0, t);
3757 tcg_temp_free_vec(t);
3758 }
3759
3760 static void expand_vec_rotls(TCGType type, unsigned vece,
3761 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
3762 {
3763 TCGv_vec t = tcg_temp_new_vec(type);
3764
3765 tcg_debug_assert(vece != MO_8);
3766
3767 if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
3768 tcg_gen_dup_i32_vec(vece, t, lsh);
3769 if (vece >= MO_32) {
3770 tcg_gen_rotlv_vec(vece, v0, v1, t);
3771 } else {
3772 expand_vec_rotv(type, vece, v0, v1, t, false);
3773 }
3774 } else {
3775 TCGv_i32 rsh = tcg_temp_new_i32();
3776
3777 tcg_gen_neg_i32(rsh, lsh);
3778 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
3779 tcg_gen_shls_vec(vece, t, v1, lsh);
3780 tcg_gen_shrs_vec(vece, v0, v1, rsh);
3781 tcg_gen_or_vec(vece, v0, v0, t);
3782
3783 tcg_temp_free_i32(rsh);
3784 }
3785
3786 tcg_temp_free_vec(t);
3787 }
3788
3789 static void expand_vec_mul(TCGType type, unsigned vece,
3790 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
3791 {
3792 TCGv_vec t1, t2, t3, t4, zero;
3793
3794 tcg_debug_assert(vece == MO_8);
3795
3796 /*
3797 * Unpack v1 bytes to words, 0 | x.
3798 * Unpack v2 bytes to words, y | 0.
3799 * This leaves the 8-bit result, x * y, with 8 bits of right padding.
3800 * Shift logical right by 8 bits to clear the high 8 bytes before
3801 * using an unsigned saturated pack.
3802 *
3803 * The difference between the V64, V128 and V256 cases is merely how
3804 * we distribute the expansion between temporaries.
3805 */
3806 switch (type) {
3807 case TCG_TYPE_V64:
3808 t1 = tcg_temp_new_vec(TCG_TYPE_V128);
3809 t2 = tcg_temp_new_vec(TCG_TYPE_V128);
3810 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
3811 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3812 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3813 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3814 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3815 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3816 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3817 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
3818 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
3819 tcg_temp_free_vec(t1);
3820 tcg_temp_free_vec(t2);
3821 break;
3822
3823 case TCG_TYPE_V128:
3824 case TCG_TYPE_V256:
3825 t1 = tcg_temp_new_vec(type);
3826 t2 = tcg_temp_new_vec(type);
3827 t3 = tcg_temp_new_vec(type);
3828 t4 = tcg_temp_new_vec(type);
3829 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
3830 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3831 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3832 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3833 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3834 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3835 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3836 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3837 tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3838 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3839 tcg_gen_mul_vec(MO_16, t3, t3, t4);
3840 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3841 tcg_gen_shri_vec(MO_16, t3, t3, 8);
3842 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3843 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
3844 tcg_temp_free_vec(t1);
3845 tcg_temp_free_vec(t2);
3846 tcg_temp_free_vec(t3);
3847 tcg_temp_free_vec(t4);
3848 break;
3849
3850 default:
3851 g_assert_not_reached();
3852 }
3853 }
3854
3855 static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
3856 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3857 {
3858 enum {
3859 NEED_INV = 1,
3860 NEED_SWAP = 2,
3861 NEED_BIAS = 4,
3862 NEED_UMIN = 8,
3863 NEED_UMAX = 16,
3864 };
3865 TCGv_vec t1, t2, t3;
3866 uint8_t fixup;
3867
3868 switch (cond) {
3869 case TCG_COND_EQ:
3870 case TCG_COND_GT:
3871 fixup = 0;
3872 break;
3873 case TCG_COND_NE:
3874 case TCG_COND_LE:
3875 fixup = NEED_INV;
3876 break;
3877 case TCG_COND_LT:
3878 fixup = NEED_SWAP;
3879 break;
3880 case TCG_COND_GE:
3881 fixup = NEED_SWAP | NEED_INV;
3882 break;
3883 case TCG_COND_LEU:
3884 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
3885 fixup = NEED_UMIN;
3886 } else {
3887 fixup = NEED_BIAS | NEED_INV;
3888 }
3889 break;
3890 case TCG_COND_GTU:
3891 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
3892 fixup = NEED_UMIN | NEED_INV;
3893 } else {
3894 fixup = NEED_BIAS;
3895 }
3896 break;
3897 case TCG_COND_GEU:
3898 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
3899 fixup = NEED_UMAX;
3900 } else {
3901 fixup = NEED_BIAS | NEED_SWAP | NEED_INV;
3902 }
3903 break;
3904 case TCG_COND_LTU:
3905 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
3906 fixup = NEED_UMAX | NEED_INV;
3907 } else {
3908 fixup = NEED_BIAS | NEED_SWAP;
3909 }
3910 break;
3911 default:
3912 g_assert_not_reached();
3913 }
3914
3915 if (fixup & NEED_INV) {
3916 cond = tcg_invert_cond(cond);
3917 }
3918 if (fixup & NEED_SWAP) {
3919 t1 = v1, v1 = v2, v2 = t1;
3920 cond = tcg_swap_cond(cond);
3921 }
3922
3923 t1 = t2 = NULL;
3924 if (fixup & (NEED_UMIN | NEED_UMAX)) {
3925 t1 = tcg_temp_new_vec(type);
3926 if (fixup & NEED_UMIN) {
3927 tcg_gen_umin_vec(vece, t1, v1, v2);
3928 } else {
3929 tcg_gen_umax_vec(vece, t1, v1, v2);
3930 }
3931 v2 = t1;
3932 cond = TCG_COND_EQ;
3933 } else if (fixup & NEED_BIAS) {
3934 t1 = tcg_temp_new_vec(type);
3935 t2 = tcg_temp_new_vec(type);
3936 t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
3937 tcg_gen_sub_vec(vece, t1, v1, t3);
3938 tcg_gen_sub_vec(vece, t2, v2, t3);
3939 v1 = t1;
3940 v2 = t2;
3941 cond = tcg_signed_cond(cond);
3942 }
3943
3944 tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT);
3945 /* Expand directly; do not recurse. */
3946 vec_gen_4(INDEX_op_cmp_vec, type, vece,
3947 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3948
3949 if (t1) {
3950 tcg_temp_free_vec(t1);
3951 if (t2) {
3952 tcg_temp_free_vec(t2);
3953 }
3954 }
3955 return fixup & NEED_INV;
3956 }
3957
3958 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3959 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3960 {
3961 if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
3962 tcg_gen_not_vec(vece, v0, v0);
3963 }
3964 }
3965
3966 static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
3967 TCGv_vec c1, TCGv_vec c2,
3968 TCGv_vec v3, TCGv_vec v4, TCGCond cond)
3969 {
3970 TCGv_vec t = tcg_temp_new_vec(type);
3971
3972 if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
3973 /* Invert the sense of the compare by swapping arguments. */
3974 TCGv_vec x;
3975 x = v3, v3 = v4, v4 = x;
3976 }
3977 vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece,
3978 tcgv_vec_arg(v0), tcgv_vec_arg(v4),
3979 tcgv_vec_arg(v3), tcgv_vec_arg(t));
3980 tcg_temp_free_vec(t);
3981 }
3982
3983 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3984 TCGArg a0, ...)
3985 {
3986 va_list va;
3987 TCGArg a2;
3988 TCGv_vec v0, v1, v2, v3, v4;
3989
3990 va_start(va, a0);
3991 v0 = temp_tcgv_vec(arg_temp(a0));
3992 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3993 a2 = va_arg(va, TCGArg);
3994
3995 switch (opc) {
3996 case INDEX_op_shli_vec:
3997 case INDEX_op_shri_vec:
3998 expand_vec_shi(type, vece, opc, v0, v1, a2);
3999 break;
4000
4001 case INDEX_op_sari_vec:
4002 expand_vec_sari(type, vece, v0, v1, a2);
4003 break;
4004
4005 case INDEX_op_rotli_vec:
4006 expand_vec_rotli(type, vece, v0, v1, a2);
4007 break;
4008
4009 case INDEX_op_rotls_vec:
4010 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
4011 break;
4012
4013 case INDEX_op_rotlv_vec:
4014 v2 = temp_tcgv_vec(arg_temp(a2));
4015 expand_vec_rotv(type, vece, v0, v1, v2, false);
4016 break;
4017 case INDEX_op_rotrv_vec:
4018 v2 = temp_tcgv_vec(arg_temp(a2));
4019 expand_vec_rotv(type, vece, v0, v1, v2, true);
4020 break;
4021
4022 case INDEX_op_mul_vec:
4023 v2 = temp_tcgv_vec(arg_temp(a2));
4024 expand_vec_mul(type, vece, v0, v1, v2);
4025 break;
4026
4027 case INDEX_op_cmp_vec:
4028 v2 = temp_tcgv_vec(arg_temp(a2));
4029 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
4030 break;
4031
4032 case INDEX_op_cmpsel_vec:
4033 v2 = temp_tcgv_vec(arg_temp(a2));
4034 v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
4035 v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
4036 expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
4037 break;
4038
4039 default:
4040 break;
4041 }
4042
4043 va_end(va);
4044 }
4045
4046 static const int tcg_target_callee_save_regs[] = {
4047 #if TCG_TARGET_REG_BITS == 64
4048 TCG_REG_RBP,
4049 TCG_REG_RBX,
4050 #if defined(_WIN64)
4051 TCG_REG_RDI,
4052 TCG_REG_RSI,
4053 #endif
4054 TCG_REG_R12,
4055 TCG_REG_R13,
4056 TCG_REG_R14, /* Currently used for the global env. */
4057 TCG_REG_R15,
4058 #else
4059 TCG_REG_EBP, /* Currently used for the global env. */
4060 TCG_REG_EBX,
4061 TCG_REG_ESI,
4062 TCG_REG_EDI,
4063 #endif
4064 };
4065
4066 /* Compute frame size via macros, to share between tcg_target_qemu_prologue
4067 and tcg_register_jit. */
4068
4069 #define PUSH_SIZE \
4070 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4071 * (TCG_TARGET_REG_BITS / 8))
4072
4073 #define FRAME_SIZE \
4074 ((PUSH_SIZE \
4075 + TCG_STATIC_CALL_ARGS_SIZE \
4076 + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4077 + TCG_TARGET_STACK_ALIGN - 1) \
4078 & ~(TCG_TARGET_STACK_ALIGN - 1))
4079
4080 /* Generate global QEMU prologue and epilogue code */
4081 static void tcg_target_qemu_prologue(TCGContext *s)
4082 {
4083 int i, stack_addend;
4084
4085 /* TB prologue */
4086
4087 /* Reserve some stack space, also for TCG temps. */
4088 stack_addend = FRAME_SIZE - PUSH_SIZE;
4089 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4090 CPU_TEMP_BUF_NLONGS * sizeof(long));
4091
4092 /* Save all callee saved registers. */
4093 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4094 tcg_out_push(s, tcg_target_callee_save_regs[i]);
4095 }
4096
4097 #if TCG_TARGET_REG_BITS == 32
4098 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4099 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4100 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4101 /* jmp *tb. */
4102 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4103 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4104 + stack_addend);
4105 #else
4106 # if !defined(CONFIG_SOFTMMU)
4107 if (guest_base) {
4108 int seg = setup_guest_base_seg();
4109 if (seg != 0) {
4110 x86_guest_base.seg = seg;
4111 } else if (guest_base == (int32_t)guest_base) {
4112 x86_guest_base.ofs = guest_base;
4113 } else {
4114 /* Choose R12 because, as a base, it requires a SIB byte. */
4115 x86_guest_base.index = TCG_REG_R12;
4116 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
4117 tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
4118 }
4119 }
4120 # endif
4121 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4122 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4123 /* jmp *tb. */
4124 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4125 #endif
4126
4127 /*
4128 * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4129 * and fall through to the rest of the epilogue.
4130 */
4131 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4132 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4133
4134 /* TB epilogue */
4135 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4136
4137 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4138
4139 if (have_avx2) {
4140 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4141 }
4142 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4143 tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4144 }
4145 tcg_out_opc(s, OPC_RET, 0, 0, 0);
4146 }
4147
4148 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4149 {
4150 memset(p, 0x90, count);
4151 }
4152
4153 static void tcg_target_init(TCGContext *s)
4154 {
4155 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4156 if (TCG_TARGET_REG_BITS == 64) {
4157 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4158 }
4159 if (have_avx1) {
4160 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4161 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4162 }
4163 if (have_avx2) {
4164 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4165 }
4166
4167 tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4168 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4169 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4170 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4171 if (TCG_TARGET_REG_BITS == 64) {
4172 #if !defined(_WIN64)
4173 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4174 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4175 #endif
4176 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4177 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4178 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4179 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4180 }
4181
4182 s->reserved_regs = 0;
4183 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4184 tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
4185 #ifdef _WIN64
4186 /* These are call saved, and we don't save them, so don't use them. */
4187 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4188 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4189 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4190 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4191 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4192 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4193 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4194 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4195 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4196 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4197 #endif
4198 }
4199
4200 typedef struct {
4201 DebugFrameHeader h;
4202 uint8_t fde_def_cfa[4];
4203 uint8_t fde_reg_ofs[14];
4204 } DebugFrame;
4205
4206 /* We're expecting a 2 byte uleb128 encoded value. */
4207 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4208
4209 #if !defined(__ELF__)
4210 /* Host machine without ELF. */
4211 #elif TCG_TARGET_REG_BITS == 64
4212 #define ELF_HOST_MACHINE EM_X86_64
4213 static const DebugFrame debug_frame = {
4214 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4215 .h.cie.id = -1,
4216 .h.cie.version = 1,
4217 .h.cie.code_align = 1,
4218 .h.cie.data_align = 0x78, /* sleb128 -8 */
4219 .h.cie.return_column = 16,
4220
4221 /* Total FDE size does not include the "len" member. */
4222 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4223
4224 .fde_def_cfa = {
4225 12, 7, /* DW_CFA_def_cfa %rsp, ... */
4226 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
4227 (FRAME_SIZE >> 7)
4228 },
4229 .fde_reg_ofs = {
4230 0x90, 1, /* DW_CFA_offset, %rip, -8 */
4231 /* The following ordering must match tcg_target_callee_save_regs. */
4232 0x86, 2, /* DW_CFA_offset, %rbp, -16 */
4233 0x83, 3, /* DW_CFA_offset, %rbx, -24 */
4234 0x8c, 4, /* DW_CFA_offset, %r12, -32 */
4235 0x8d, 5, /* DW_CFA_offset, %r13, -40 */
4236 0x8e, 6, /* DW_CFA_offset, %r14, -48 */
4237 0x8f, 7, /* DW_CFA_offset, %r15, -56 */
4238 }
4239 };
4240 #else
4241 #define ELF_HOST_MACHINE EM_386
4242 static const DebugFrame debug_frame = {
4243 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4244 .h.cie.id = -1,
4245 .h.cie.version = 1,
4246 .h.cie.code_align = 1,
4247 .h.cie.data_align = 0x7c, /* sleb128 -4 */
4248 .h.cie.return_column = 8,
4249
4250 /* Total FDE size does not include the "len" member. */
4251 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4252
4253 .fde_def_cfa = {
4254 12, 4, /* DW_CFA_def_cfa %esp, ... */
4255 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
4256 (FRAME_SIZE >> 7)
4257 },
4258 .fde_reg_ofs = {
4259 0x88, 1, /* DW_CFA_offset, %eip, -4 */
4260 /* The following ordering must match tcg_target_callee_save_regs. */
4261 0x85, 2, /* DW_CFA_offset, %ebp, -8 */
4262 0x83, 3, /* DW_CFA_offset, %ebx, -12 */
4263 0x86, 4, /* DW_CFA_offset, %esi, -16 */
4264 0x87, 5, /* DW_CFA_offset, %edi, -20 */
4265 }
4266 };
4267 #endif
4268
4269 #if defined(ELF_HOST_MACHINE)
4270 void tcg_register_jit(const void *buf, size_t buf_size)
4271 {
4272 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4273 }
4274 #endif