]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/mips/tcg-target.inc.c
2b116eaef5249ec7a7dc5b9da39010822f9b9b1f
[mirror_qemu.git] / tcg / mips / tcg-target.inc.c
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008-2009 Arnaud Patard <arnaud.patard@rtp-net.org>
5 * Copyright (c) 2009 Aurelien Jarno <aurelien@aurel32.net>
6 * Based on i386/tcg-target.c - Copyright (c) 2008 Fabrice Bellard
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "tcg-be-ldst.h"
28
29 #ifdef HOST_WORDS_BIGENDIAN
30 # define MIPS_BE 1
31 #else
32 # define MIPS_BE 0
33 #endif
34
35 #define LO_OFF (MIPS_BE * 4)
36 #define HI_OFF (4 - LO_OFF)
37
38 #ifdef CONFIG_DEBUG_TCG
39 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
40 "zero",
41 "at",
42 "v0",
43 "v1",
44 "a0",
45 "a1",
46 "a2",
47 "a3",
48 "t0",
49 "t1",
50 "t2",
51 "t3",
52 "t4",
53 "t5",
54 "t6",
55 "t7",
56 "s0",
57 "s1",
58 "s2",
59 "s3",
60 "s4",
61 "s5",
62 "s6",
63 "s7",
64 "t8",
65 "t9",
66 "k0",
67 "k1",
68 "gp",
69 "sp",
70 "s8",
71 "ra",
72 };
73 #endif
74
75 #define TCG_TMP0 TCG_REG_AT
76 #define TCG_TMP1 TCG_REG_T9
77 #define TCG_TMP2 TCG_REG_T8
78 #define TCG_TMP3 TCG_REG_T7
79
80 /* check if we really need so many registers :P */
81 static const int tcg_target_reg_alloc_order[] = {
82 /* Call saved registers. */
83 TCG_REG_S0,
84 TCG_REG_S1,
85 TCG_REG_S2,
86 TCG_REG_S3,
87 TCG_REG_S4,
88 TCG_REG_S5,
89 TCG_REG_S6,
90 TCG_REG_S7,
91 TCG_REG_S8,
92
93 /* Call clobbered registers. */
94 TCG_REG_T0,
95 TCG_REG_T1,
96 TCG_REG_T2,
97 TCG_REG_T3,
98 TCG_REG_T4,
99 TCG_REG_T5,
100 TCG_REG_T6,
101 TCG_REG_T7,
102 TCG_REG_T8,
103 TCG_REG_T9,
104 TCG_REG_V1,
105 TCG_REG_V0,
106
107 /* Argument registers, opposite order of allocation. */
108 TCG_REG_A3,
109 TCG_REG_A2,
110 TCG_REG_A1,
111 TCG_REG_A0,
112 };
113
114 static const TCGReg tcg_target_call_iarg_regs[4] = {
115 TCG_REG_A0,
116 TCG_REG_A1,
117 TCG_REG_A2,
118 TCG_REG_A3
119 };
120
121 static const TCGReg tcg_target_call_oarg_regs[2] = {
122 TCG_REG_V0,
123 TCG_REG_V1
124 };
125
126 static tcg_insn_unit *tb_ret_addr;
127 static tcg_insn_unit *bswap32_addr;
128
129 static inline uint32_t reloc_pc16_val(tcg_insn_unit *pc, tcg_insn_unit *target)
130 {
131 /* Let the compiler perform the right-shift as part of the arithmetic. */
132 ptrdiff_t disp = target - (pc + 1);
133 tcg_debug_assert(disp == (int16_t)disp);
134 return disp & 0xffff;
135 }
136
137 static inline void reloc_pc16(tcg_insn_unit *pc, tcg_insn_unit *target)
138 {
139 *pc = deposit32(*pc, 0, 16, reloc_pc16_val(pc, target));
140 }
141
142 static inline uint32_t reloc_26_val(tcg_insn_unit *pc, tcg_insn_unit *target)
143 {
144 tcg_debug_assert((((uintptr_t)pc ^ (uintptr_t)target) & 0xf0000000) == 0);
145 return ((uintptr_t)target >> 2) & 0x3ffffff;
146 }
147
148 static inline void reloc_26(tcg_insn_unit *pc, tcg_insn_unit *target)
149 {
150 *pc = deposit32(*pc, 0, 26, reloc_26_val(pc, target));
151 }
152
153 static void patch_reloc(tcg_insn_unit *code_ptr, int type,
154 intptr_t value, intptr_t addend)
155 {
156 tcg_debug_assert(type == R_MIPS_PC16);
157 tcg_debug_assert(addend == 0);
158 reloc_pc16(code_ptr, (tcg_insn_unit *)value);
159 }
160
161 #define TCG_CT_CONST_ZERO 0x100
162 #define TCG_CT_CONST_U16 0x200 /* Unsigned 16-bit: 0 - 0xffff. */
163 #define TCG_CT_CONST_S16 0x400 /* Signed 16-bit: -32768 - 32767 */
164 #define TCG_CT_CONST_P2M1 0x800 /* Power of 2 minus 1. */
165 #define TCG_CT_CONST_N16 0x1000 /* "Negatable" 16-bit: -32767 - 32767 */
166
167 static inline bool is_p2m1(tcg_target_long val)
168 {
169 return val && ((val + 1) & val) == 0;
170 }
171
172 /* parse target specific constraints */
173 static int target_parse_constraint(TCGArgConstraint *ct, const char **pct_str)
174 {
175 const char *ct_str;
176
177 ct_str = *pct_str;
178 switch(ct_str[0]) {
179 case 'r':
180 ct->ct |= TCG_CT_REG;
181 tcg_regset_set(ct->u.regs, 0xffffffff);
182 break;
183 case 'L': /* qemu_ld input arg constraint */
184 ct->ct |= TCG_CT_REG;
185 tcg_regset_set(ct->u.regs, 0xffffffff);
186 tcg_regset_reset_reg(ct->u.regs, TCG_REG_A0);
187 #if defined(CONFIG_SOFTMMU)
188 if (TARGET_LONG_BITS == 64) {
189 tcg_regset_reset_reg(ct->u.regs, TCG_REG_A2);
190 }
191 #endif
192 break;
193 case 'S': /* qemu_st constraint */
194 ct->ct |= TCG_CT_REG;
195 tcg_regset_set(ct->u.regs, 0xffffffff);
196 tcg_regset_reset_reg(ct->u.regs, TCG_REG_A0);
197 #if defined(CONFIG_SOFTMMU)
198 if (TARGET_LONG_BITS == 32) {
199 tcg_regset_reset_reg(ct->u.regs, TCG_REG_A1);
200 } else {
201 tcg_regset_reset_reg(ct->u.regs, TCG_REG_A2);
202 tcg_regset_reset_reg(ct->u.regs, TCG_REG_A3);
203 }
204 #endif
205 break;
206 case 'I':
207 ct->ct |= TCG_CT_CONST_U16;
208 break;
209 case 'J':
210 ct->ct |= TCG_CT_CONST_S16;
211 break;
212 case 'K':
213 ct->ct |= TCG_CT_CONST_P2M1;
214 break;
215 case 'N':
216 ct->ct |= TCG_CT_CONST_N16;
217 break;
218 case 'Z':
219 /* We are cheating a bit here, using the fact that the register
220 ZERO is also the register number 0. Hence there is no need
221 to check for const_args in each instruction. */
222 ct->ct |= TCG_CT_CONST_ZERO;
223 break;
224 default:
225 return -1;
226 }
227 ct_str++;
228 *pct_str = ct_str;
229 return 0;
230 }
231
232 /* test if a constant matches the constraint */
233 static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
234 const TCGArgConstraint *arg_ct)
235 {
236 int ct;
237 ct = arg_ct->ct;
238 if (ct & TCG_CT_CONST) {
239 return 1;
240 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
241 return 1;
242 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
243 return 1;
244 } else if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
245 return 1;
246 } else if ((ct & TCG_CT_CONST_N16) && val >= -32767 && val <= 32767) {
247 return 1;
248 } else if ((ct & TCG_CT_CONST_P2M1)
249 && use_mips32r2_instructions && is_p2m1(val)) {
250 return 1;
251 }
252 return 0;
253 }
254
255 /* instruction opcodes */
256 typedef enum {
257 OPC_J = 0x02 << 26,
258 OPC_JAL = 0x03 << 26,
259 OPC_BEQ = 0x04 << 26,
260 OPC_BNE = 0x05 << 26,
261 OPC_BLEZ = 0x06 << 26,
262 OPC_BGTZ = 0x07 << 26,
263 OPC_ADDIU = 0x09 << 26,
264 OPC_SLTI = 0x0A << 26,
265 OPC_SLTIU = 0x0B << 26,
266 OPC_ANDI = 0x0C << 26,
267 OPC_ORI = 0x0D << 26,
268 OPC_XORI = 0x0E << 26,
269 OPC_LUI = 0x0F << 26,
270 OPC_LB = 0x20 << 26,
271 OPC_LH = 0x21 << 26,
272 OPC_LW = 0x23 << 26,
273 OPC_LBU = 0x24 << 26,
274 OPC_LHU = 0x25 << 26,
275 OPC_LWU = 0x27 << 26,
276 OPC_SB = 0x28 << 26,
277 OPC_SH = 0x29 << 26,
278 OPC_SW = 0x2B << 26,
279
280 OPC_SPECIAL = 0x00 << 26,
281 OPC_SLL = OPC_SPECIAL | 0x00,
282 OPC_SRL = OPC_SPECIAL | 0x02,
283 OPC_ROTR = OPC_SPECIAL | (0x01 << 21) | 0x02,
284 OPC_SRA = OPC_SPECIAL | 0x03,
285 OPC_SLLV = OPC_SPECIAL | 0x04,
286 OPC_SRLV = OPC_SPECIAL | 0x06,
287 OPC_ROTRV = OPC_SPECIAL | (0x01 << 6) | 0x06,
288 OPC_SRAV = OPC_SPECIAL | 0x07,
289 OPC_JR_R5 = OPC_SPECIAL | 0x08,
290 OPC_JALR = OPC_SPECIAL | 0x09,
291 OPC_MOVZ = OPC_SPECIAL | 0x0A,
292 OPC_MOVN = OPC_SPECIAL | 0x0B,
293 OPC_SYNC = OPC_SPECIAL | 0x0F,
294 OPC_MFHI = OPC_SPECIAL | 0x10,
295 OPC_MFLO = OPC_SPECIAL | 0x12,
296 OPC_MULT = OPC_SPECIAL | 0x18,
297 OPC_MUL_R6 = OPC_SPECIAL | (0x02 << 6) | 0x18,
298 OPC_MUH = OPC_SPECIAL | (0x03 << 6) | 0x18,
299 OPC_MULTU = OPC_SPECIAL | 0x19,
300 OPC_MULU = OPC_SPECIAL | (0x02 << 6) | 0x19,
301 OPC_MUHU = OPC_SPECIAL | (0x03 << 6) | 0x19,
302 OPC_DIV = OPC_SPECIAL | 0x1A,
303 OPC_DIV_R6 = OPC_SPECIAL | (0x02 << 6) | 0x1A,
304 OPC_MOD = OPC_SPECIAL | (0x03 << 6) | 0x1A,
305 OPC_DIVU = OPC_SPECIAL | 0x1B,
306 OPC_DIVU_R6 = OPC_SPECIAL | (0x02 << 6) | 0x1B,
307 OPC_MODU = OPC_SPECIAL | (0x03 << 6) | 0x1B,
308 OPC_ADDU = OPC_SPECIAL | 0x21,
309 OPC_SUBU = OPC_SPECIAL | 0x23,
310 OPC_AND = OPC_SPECIAL | 0x24,
311 OPC_OR = OPC_SPECIAL | 0x25,
312 OPC_XOR = OPC_SPECIAL | 0x26,
313 OPC_NOR = OPC_SPECIAL | 0x27,
314 OPC_SLT = OPC_SPECIAL | 0x2A,
315 OPC_SLTU = OPC_SPECIAL | 0x2B,
316 OPC_SELEQZ = OPC_SPECIAL | 0x35,
317 OPC_SELNEZ = OPC_SPECIAL | 0x37,
318
319 OPC_REGIMM = 0x01 << 26,
320 OPC_BLTZ = OPC_REGIMM | (0x00 << 16),
321 OPC_BGEZ = OPC_REGIMM | (0x01 << 16),
322
323 OPC_SPECIAL2 = 0x1c << 26,
324 OPC_MUL_R5 = OPC_SPECIAL2 | 0x002,
325
326 OPC_SPECIAL3 = 0x1f << 26,
327 OPC_EXT = OPC_SPECIAL3 | 0x000,
328 OPC_INS = OPC_SPECIAL3 | 0x004,
329 OPC_WSBH = OPC_SPECIAL3 | 0x0a0,
330 OPC_SEB = OPC_SPECIAL3 | 0x420,
331 OPC_SEH = OPC_SPECIAL3 | 0x620,
332
333 /* MIPS r6 doesn't have JR, JALR should be used instead */
334 OPC_JR = use_mips32r6_instructions ? OPC_JALR : OPC_JR_R5,
335
336 /*
337 * MIPS r6 replaces MUL with an alternative encoding which is
338 * backwards-compatible at the assembly level.
339 */
340 OPC_MUL = use_mips32r6_instructions ? OPC_MUL_R6 : OPC_MUL_R5,
341
342 /* MIPS r6 introduced names for weaker variants of SYNC. These are
343 backward compatible to previous architecture revisions. */
344 OPC_SYNC_WMB = OPC_SYNC | 0x04 << 5,
345 OPC_SYNC_MB = OPC_SYNC | 0x10 << 5,
346 OPC_SYNC_ACQUIRE = OPC_SYNC | 0x11 << 5,
347 OPC_SYNC_RELEASE = OPC_SYNC | 0x12 << 5,
348 OPC_SYNC_RMB = OPC_SYNC | 0x13 << 5,
349 } MIPSInsn;
350
351 /*
352 * Type reg
353 */
354 static inline void tcg_out_opc_reg(TCGContext *s, MIPSInsn opc,
355 TCGReg rd, TCGReg rs, TCGReg rt)
356 {
357 int32_t inst;
358
359 inst = opc;
360 inst |= (rs & 0x1F) << 21;
361 inst |= (rt & 0x1F) << 16;
362 inst |= (rd & 0x1F) << 11;
363 tcg_out32(s, inst);
364 }
365
366 /*
367 * Type immediate
368 */
369 static inline void tcg_out_opc_imm(TCGContext *s, MIPSInsn opc,
370 TCGReg rt, TCGReg rs, TCGArg imm)
371 {
372 int32_t inst;
373
374 inst = opc;
375 inst |= (rs & 0x1F) << 21;
376 inst |= (rt & 0x1F) << 16;
377 inst |= (imm & 0xffff);
378 tcg_out32(s, inst);
379 }
380
381 /*
382 * Type bitfield
383 */
384 static inline void tcg_out_opc_bf(TCGContext *s, MIPSInsn opc, TCGReg rt,
385 TCGReg rs, int msb, int lsb)
386 {
387 int32_t inst;
388
389 inst = opc;
390 inst |= (rs & 0x1F) << 21;
391 inst |= (rt & 0x1F) << 16;
392 inst |= (msb & 0x1F) << 11;
393 inst |= (lsb & 0x1F) << 6;
394 tcg_out32(s, inst);
395 }
396
397 /*
398 * Type branch
399 */
400 static inline void tcg_out_opc_br(TCGContext *s, MIPSInsn opc,
401 TCGReg rt, TCGReg rs)
402 {
403 /* We pay attention here to not modify the branch target by reading
404 the existing value and using it again. This ensure that caches and
405 memory are kept coherent during retranslation. */
406 uint16_t offset = (uint16_t)*s->code_ptr;
407
408 tcg_out_opc_imm(s, opc, rt, rs, offset);
409 }
410
411 /*
412 * Type sa
413 */
414 static inline void tcg_out_opc_sa(TCGContext *s, MIPSInsn opc,
415 TCGReg rd, TCGReg rt, TCGArg sa)
416 {
417 int32_t inst;
418
419 inst = opc;
420 inst |= (rt & 0x1F) << 16;
421 inst |= (rd & 0x1F) << 11;
422 inst |= (sa & 0x1F) << 6;
423 tcg_out32(s, inst);
424
425 }
426
427 /*
428 * Type jump.
429 * Returns true if the branch was in range and the insn was emitted.
430 */
431 static bool tcg_out_opc_jmp(TCGContext *s, MIPSInsn opc, void *target)
432 {
433 uintptr_t dest = (uintptr_t)target;
434 uintptr_t from = (uintptr_t)s->code_ptr + 4;
435 int32_t inst;
436
437 /* The pc-region branch happens within the 256MB region of
438 the delay slot (thus the +4). */
439 if ((from ^ dest) & -(1 << 28)) {
440 return false;
441 }
442 tcg_debug_assert((dest & 3) == 0);
443
444 inst = opc;
445 inst |= (dest >> 2) & 0x3ffffff;
446 tcg_out32(s, inst);
447 return true;
448 }
449
450 static inline void tcg_out_nop(TCGContext *s)
451 {
452 tcg_out32(s, 0);
453 }
454
455 static inline void tcg_out_mov(TCGContext *s, TCGType type,
456 TCGReg ret, TCGReg arg)
457 {
458 /* Simple reg-reg move, optimising out the 'do nothing' case */
459 if (ret != arg) {
460 tcg_out_opc_reg(s, OPC_ADDU, ret, arg, TCG_REG_ZERO);
461 }
462 }
463
464 static inline void tcg_out_movi(TCGContext *s, TCGType type,
465 TCGReg reg, tcg_target_long arg)
466 {
467 if (arg == (int16_t)arg) {
468 tcg_out_opc_imm(s, OPC_ADDIU, reg, TCG_REG_ZERO, arg);
469 } else if (arg == (uint16_t)arg) {
470 tcg_out_opc_imm(s, OPC_ORI, reg, TCG_REG_ZERO, arg);
471 } else {
472 tcg_out_opc_imm(s, OPC_LUI, reg, TCG_REG_ZERO, arg >> 16);
473 if (arg & 0xffff) {
474 tcg_out_opc_imm(s, OPC_ORI, reg, reg, arg & 0xffff);
475 }
476 }
477 }
478
479 static inline void tcg_out_bswap16(TCGContext *s, TCGReg ret, TCGReg arg)
480 {
481 if (use_mips32r2_instructions) {
482 tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
483 } else {
484 /* ret and arg can't be register at */
485 if (ret == TCG_TMP0 || arg == TCG_TMP0) {
486 tcg_abort();
487 }
488
489 tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8);
490 tcg_out_opc_sa(s, OPC_SLL, ret, arg, 8);
491 tcg_out_opc_imm(s, OPC_ANDI, ret, ret, 0xff00);
492 tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
493 }
494 }
495
496 static inline void tcg_out_bswap16s(TCGContext *s, TCGReg ret, TCGReg arg)
497 {
498 if (use_mips32r2_instructions) {
499 tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
500 tcg_out_opc_reg(s, OPC_SEH, ret, 0, ret);
501 } else {
502 /* ret and arg can't be register at */
503 if (ret == TCG_TMP0 || arg == TCG_TMP0) {
504 tcg_abort();
505 }
506
507 tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8);
508 tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24);
509 tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16);
510 tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0);
511 }
512 }
513
514 static void tcg_out_bswap_subr(TCGContext *s, tcg_insn_unit *sub)
515 {
516 bool ok = tcg_out_opc_jmp(s, OPC_JAL, sub);
517 tcg_debug_assert(ok);
518 }
519
520 static void tcg_out_bswap32(TCGContext *s, TCGReg ret, TCGReg arg)
521 {
522 if (use_mips32r2_instructions) {
523 tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
524 tcg_out_opc_sa(s, OPC_ROTR, ret, ret, 16);
525 } else {
526 tcg_out_bswap_subr(s, bswap32_addr);
527 /* delay slot -- never omit the insn, like tcg_out_mov might. */
528 tcg_out_opc_reg(s, OPC_OR, TCG_TMP0, arg, TCG_REG_ZERO);
529 tcg_out_mov(s, TCG_TYPE_I32, ret, TCG_TMP3);
530 }
531 }
532
533 static inline void tcg_out_ext8s(TCGContext *s, TCGReg ret, TCGReg arg)
534 {
535 if (use_mips32r2_instructions) {
536 tcg_out_opc_reg(s, OPC_SEB, ret, 0, arg);
537 } else {
538 tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24);
539 tcg_out_opc_sa(s, OPC_SRA, ret, ret, 24);
540 }
541 }
542
543 static inline void tcg_out_ext16s(TCGContext *s, TCGReg ret, TCGReg arg)
544 {
545 if (use_mips32r2_instructions) {
546 tcg_out_opc_reg(s, OPC_SEH, ret, 0, arg);
547 } else {
548 tcg_out_opc_sa(s, OPC_SLL, ret, arg, 16);
549 tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16);
550 }
551 }
552
553 static void tcg_out_ldst(TCGContext *s, MIPSInsn opc, TCGReg data,
554 TCGReg addr, intptr_t ofs)
555 {
556 int16_t lo = ofs;
557 if (ofs != lo) {
558 tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs - lo);
559 if (addr != TCG_REG_ZERO) {
560 tcg_out_opc_reg(s, OPC_ADDU, TCG_TMP0, TCG_TMP0, addr);
561 }
562 addr = TCG_TMP0;
563 }
564 tcg_out_opc_imm(s, opc, data, addr, lo);
565 }
566
567 static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg,
568 TCGReg arg1, intptr_t arg2)
569 {
570 tcg_out_ldst(s, OPC_LW, arg, arg1, arg2);
571 }
572
573 static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
574 TCGReg arg1, intptr_t arg2)
575 {
576 tcg_out_ldst(s, OPC_SW, arg, arg1, arg2);
577 }
578
579 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
580 TCGReg base, intptr_t ofs)
581 {
582 if (val == 0) {
583 tcg_out_st(s, type, TCG_REG_ZERO, base, ofs);
584 return true;
585 }
586 return false;
587 }
588
589 static inline void tcg_out_addi(TCGContext *s, TCGReg reg, TCGArg val)
590 {
591 if (val == (int16_t)val) {
592 tcg_out_opc_imm(s, OPC_ADDIU, reg, reg, val);
593 } else {
594 tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, val);
595 tcg_out_opc_reg(s, OPC_ADDU, reg, reg, TCG_TMP0);
596 }
597 }
598
599 static void tcg_out_addsub2(TCGContext *s, TCGReg rl, TCGReg rh, TCGReg al,
600 TCGReg ah, TCGArg bl, TCGArg bh, bool cbl,
601 bool cbh, bool is_sub)
602 {
603 TCGReg th = TCG_TMP1;
604
605 /* If we have a negative constant such that negating it would
606 make the high part zero, we can (usually) eliminate one insn. */
607 if (cbl && cbh && bh == -1 && bl != 0) {
608 bl = -bl;
609 bh = 0;
610 is_sub = !is_sub;
611 }
612
613 /* By operating on the high part first, we get to use the final
614 carry operation to move back from the temporary. */
615 if (!cbh) {
616 tcg_out_opc_reg(s, (is_sub ? OPC_SUBU : OPC_ADDU), th, ah, bh);
617 } else if (bh != 0 || ah == rl) {
618 tcg_out_opc_imm(s, OPC_ADDIU, th, ah, (is_sub ? -bh : bh));
619 } else {
620 th = ah;
621 }
622
623 /* Note that tcg optimization should eliminate the bl == 0 case. */
624 if (is_sub) {
625 if (cbl) {
626 tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, al, bl);
627 tcg_out_opc_imm(s, OPC_ADDIU, rl, al, -bl);
628 } else {
629 tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, al, bl);
630 tcg_out_opc_reg(s, OPC_SUBU, rl, al, bl);
631 }
632 tcg_out_opc_reg(s, OPC_SUBU, rh, th, TCG_TMP0);
633 } else {
634 if (cbl) {
635 tcg_out_opc_imm(s, OPC_ADDIU, rl, al, bl);
636 tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, rl, bl);
637 } else if (rl == al && rl == bl) {
638 tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, al, 31);
639 tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl);
640 } else {
641 tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl);
642 tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, rl, (rl == bl ? al : bl));
643 }
644 tcg_out_opc_reg(s, OPC_ADDU, rh, th, TCG_TMP0);
645 }
646 }
647
648 /* Bit 0 set if inversion required; bit 1 set if swapping required. */
649 #define MIPS_CMP_INV 1
650 #define MIPS_CMP_SWAP 2
651
652 static const uint8_t mips_cmp_map[16] = {
653 [TCG_COND_LT] = 0,
654 [TCG_COND_LTU] = 0,
655 [TCG_COND_GE] = MIPS_CMP_INV,
656 [TCG_COND_GEU] = MIPS_CMP_INV,
657 [TCG_COND_LE] = MIPS_CMP_INV | MIPS_CMP_SWAP,
658 [TCG_COND_LEU] = MIPS_CMP_INV | MIPS_CMP_SWAP,
659 [TCG_COND_GT] = MIPS_CMP_SWAP,
660 [TCG_COND_GTU] = MIPS_CMP_SWAP,
661 };
662
663 static void tcg_out_setcond(TCGContext *s, TCGCond cond, TCGReg ret,
664 TCGReg arg1, TCGReg arg2)
665 {
666 MIPSInsn s_opc = OPC_SLTU;
667 int cmp_map;
668
669 switch (cond) {
670 case TCG_COND_EQ:
671 if (arg2 != 0) {
672 tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2);
673 arg1 = ret;
674 }
675 tcg_out_opc_imm(s, OPC_SLTIU, ret, arg1, 1);
676 break;
677
678 case TCG_COND_NE:
679 if (arg2 != 0) {
680 tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2);
681 arg1 = ret;
682 }
683 tcg_out_opc_reg(s, OPC_SLTU, ret, TCG_REG_ZERO, arg1);
684 break;
685
686 case TCG_COND_LT:
687 case TCG_COND_GE:
688 case TCG_COND_LE:
689 case TCG_COND_GT:
690 s_opc = OPC_SLT;
691 /* FALLTHRU */
692
693 case TCG_COND_LTU:
694 case TCG_COND_GEU:
695 case TCG_COND_LEU:
696 case TCG_COND_GTU:
697 cmp_map = mips_cmp_map[cond];
698 if (cmp_map & MIPS_CMP_SWAP) {
699 TCGReg t = arg1;
700 arg1 = arg2;
701 arg2 = t;
702 }
703 tcg_out_opc_reg(s, s_opc, ret, arg1, arg2);
704 if (cmp_map & MIPS_CMP_INV) {
705 tcg_out_opc_imm(s, OPC_XORI, ret, ret, 1);
706 }
707 break;
708
709 default:
710 tcg_abort();
711 break;
712 }
713 }
714
715 static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGReg arg1,
716 TCGReg arg2, TCGLabel *l)
717 {
718 static const MIPSInsn b_zero[16] = {
719 [TCG_COND_LT] = OPC_BLTZ,
720 [TCG_COND_GT] = OPC_BGTZ,
721 [TCG_COND_LE] = OPC_BLEZ,
722 [TCG_COND_GE] = OPC_BGEZ,
723 };
724
725 MIPSInsn s_opc = OPC_SLTU;
726 MIPSInsn b_opc;
727 int cmp_map;
728
729 switch (cond) {
730 case TCG_COND_EQ:
731 b_opc = OPC_BEQ;
732 break;
733 case TCG_COND_NE:
734 b_opc = OPC_BNE;
735 break;
736
737 case TCG_COND_LT:
738 case TCG_COND_GT:
739 case TCG_COND_LE:
740 case TCG_COND_GE:
741 if (arg2 == 0) {
742 b_opc = b_zero[cond];
743 arg2 = arg1;
744 arg1 = 0;
745 break;
746 }
747 s_opc = OPC_SLT;
748 /* FALLTHRU */
749
750 case TCG_COND_LTU:
751 case TCG_COND_GTU:
752 case TCG_COND_LEU:
753 case TCG_COND_GEU:
754 cmp_map = mips_cmp_map[cond];
755 if (cmp_map & MIPS_CMP_SWAP) {
756 TCGReg t = arg1;
757 arg1 = arg2;
758 arg2 = t;
759 }
760 tcg_out_opc_reg(s, s_opc, TCG_TMP0, arg1, arg2);
761 b_opc = (cmp_map & MIPS_CMP_INV ? OPC_BEQ : OPC_BNE);
762 arg1 = TCG_TMP0;
763 arg2 = TCG_REG_ZERO;
764 break;
765
766 default:
767 tcg_abort();
768 break;
769 }
770
771 tcg_out_opc_br(s, b_opc, arg1, arg2);
772 if (l->has_value) {
773 reloc_pc16(s->code_ptr - 1, l->u.value_ptr);
774 } else {
775 tcg_out_reloc(s, s->code_ptr - 1, R_MIPS_PC16, l, 0);
776 }
777 tcg_out_nop(s);
778 }
779
780 static TCGReg tcg_out_reduce_eq2(TCGContext *s, TCGReg tmp0, TCGReg tmp1,
781 TCGReg al, TCGReg ah,
782 TCGReg bl, TCGReg bh)
783 {
784 /* Merge highpart comparison into AH. */
785 if (bh != 0) {
786 if (ah != 0) {
787 tcg_out_opc_reg(s, OPC_XOR, tmp0, ah, bh);
788 ah = tmp0;
789 } else {
790 ah = bh;
791 }
792 }
793 /* Merge lowpart comparison into AL. */
794 if (bl != 0) {
795 if (al != 0) {
796 tcg_out_opc_reg(s, OPC_XOR, tmp1, al, bl);
797 al = tmp1;
798 } else {
799 al = bl;
800 }
801 }
802 /* Merge high and low part comparisons into AL. */
803 if (ah != 0) {
804 if (al != 0) {
805 tcg_out_opc_reg(s, OPC_OR, tmp0, ah, al);
806 al = tmp0;
807 } else {
808 al = ah;
809 }
810 }
811 return al;
812 }
813
814 static void tcg_out_setcond2(TCGContext *s, TCGCond cond, TCGReg ret,
815 TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh)
816 {
817 TCGReg tmp0 = TCG_TMP0;
818 TCGReg tmp1 = ret;
819
820 tcg_debug_assert(ret != TCG_TMP0);
821 if (ret == ah || ret == bh) {
822 tcg_debug_assert(ret != TCG_TMP1);
823 tmp1 = TCG_TMP1;
824 }
825
826 switch (cond) {
827 case TCG_COND_EQ:
828 case TCG_COND_NE:
829 tmp1 = tcg_out_reduce_eq2(s, tmp0, tmp1, al, ah, bl, bh);
830 tcg_out_setcond(s, cond, ret, tmp1, TCG_REG_ZERO);
831 break;
832
833 default:
834 tcg_out_setcond(s, TCG_COND_EQ, tmp0, ah, bh);
835 tcg_out_setcond(s, tcg_unsigned_cond(cond), tmp1, al, bl);
836 tcg_out_opc_reg(s, OPC_AND, tmp1, tmp1, tmp0);
837 tcg_out_setcond(s, tcg_high_cond(cond), tmp0, ah, bh);
838 tcg_out_opc_reg(s, OPC_OR, ret, tmp1, tmp0);
839 break;
840 }
841 }
842
843 static void tcg_out_brcond2(TCGContext *s, TCGCond cond, TCGReg al, TCGReg ah,
844 TCGReg bl, TCGReg bh, TCGLabel *l)
845 {
846 TCGCond b_cond = TCG_COND_NE;
847 TCGReg tmp = TCG_TMP1;
848
849 /* With branches, we emit between 4 and 9 insns with 2 or 3 branches.
850 With setcond, we emit between 3 and 10 insns and only 1 branch,
851 which ought to get better branch prediction. */
852 switch (cond) {
853 case TCG_COND_EQ:
854 case TCG_COND_NE:
855 b_cond = cond;
856 tmp = tcg_out_reduce_eq2(s, TCG_TMP0, TCG_TMP1, al, ah, bl, bh);
857 break;
858
859 default:
860 /* Minimize code size by preferring a compare not requiring INV. */
861 if (mips_cmp_map[cond] & MIPS_CMP_INV) {
862 cond = tcg_invert_cond(cond);
863 b_cond = TCG_COND_EQ;
864 }
865 tcg_out_setcond2(s, cond, tmp, al, ah, bl, bh);
866 break;
867 }
868
869 tcg_out_brcond(s, b_cond, tmp, TCG_REG_ZERO, l);
870 }
871
872 static void tcg_out_movcond(TCGContext *s, TCGCond cond, TCGReg ret,
873 TCGReg c1, TCGReg c2, TCGReg v1, TCGReg v2)
874 {
875 bool eqz = false;
876
877 /* If one of the values is zero, put it last to match SEL*Z instructions */
878 if (use_mips32r6_instructions && v1 == 0) {
879 v1 = v2;
880 v2 = 0;
881 cond = tcg_invert_cond(cond);
882 }
883
884 switch (cond) {
885 case TCG_COND_EQ:
886 eqz = true;
887 /* FALLTHRU */
888 case TCG_COND_NE:
889 if (c2 != 0) {
890 tcg_out_opc_reg(s, OPC_XOR, TCG_TMP0, c1, c2);
891 c1 = TCG_TMP0;
892 }
893 break;
894
895 default:
896 /* Minimize code size by preferring a compare not requiring INV. */
897 if (mips_cmp_map[cond] & MIPS_CMP_INV) {
898 cond = tcg_invert_cond(cond);
899 eqz = true;
900 }
901 tcg_out_setcond(s, cond, TCG_TMP0, c1, c2);
902 c1 = TCG_TMP0;
903 break;
904 }
905
906 if (use_mips32r6_instructions) {
907 MIPSInsn m_opc_t = eqz ? OPC_SELEQZ : OPC_SELNEZ;
908 MIPSInsn m_opc_f = eqz ? OPC_SELNEZ : OPC_SELEQZ;
909
910 if (v2 != 0) {
911 tcg_out_opc_reg(s, m_opc_f, TCG_TMP1, v2, c1);
912 }
913 tcg_out_opc_reg(s, m_opc_t, ret, v1, c1);
914 if (v2 != 0) {
915 tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP1);
916 }
917 } else {
918 MIPSInsn m_opc = eqz ? OPC_MOVZ : OPC_MOVN;
919
920 tcg_out_opc_reg(s, m_opc, ret, v1, c1);
921
922 /* This should be guaranteed via constraints */
923 tcg_debug_assert(v2 == ret);
924 }
925 }
926
927 static void tcg_out_call_int(TCGContext *s, tcg_insn_unit *arg, bool tail)
928 {
929 /* Note that the ABI requires the called function's address to be
930 loaded into T9, even if a direct branch is in range. */
931 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T9, (uintptr_t)arg);
932
933 /* But do try a direct branch, allowing the cpu better insn prefetch. */
934 if (tail) {
935 if (!tcg_out_opc_jmp(s, OPC_J, arg)) {
936 tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_T9, 0);
937 }
938 } else {
939 if (!tcg_out_opc_jmp(s, OPC_JAL, arg)) {
940 tcg_out_opc_reg(s, OPC_JALR, TCG_REG_RA, TCG_REG_T9, 0);
941 }
942 }
943 }
944
945 static void tcg_out_call(TCGContext *s, tcg_insn_unit *arg)
946 {
947 tcg_out_call_int(s, arg, false);
948 tcg_out_nop(s);
949 }
950
951 #if defined(CONFIG_SOFTMMU)
952 static void * const qemu_ld_helpers[16] = {
953 [MO_UB] = helper_ret_ldub_mmu,
954 [MO_SB] = helper_ret_ldsb_mmu,
955 [MO_LEUW] = helper_le_lduw_mmu,
956 [MO_LESW] = helper_le_ldsw_mmu,
957 [MO_LEUL] = helper_le_ldul_mmu,
958 [MO_LEQ] = helper_le_ldq_mmu,
959 [MO_BEUW] = helper_be_lduw_mmu,
960 [MO_BESW] = helper_be_ldsw_mmu,
961 [MO_BEUL] = helper_be_ldul_mmu,
962 [MO_BEQ] = helper_be_ldq_mmu,
963 };
964
965 static void * const qemu_st_helpers[16] = {
966 [MO_UB] = helper_ret_stb_mmu,
967 [MO_LEUW] = helper_le_stw_mmu,
968 [MO_LEUL] = helper_le_stl_mmu,
969 [MO_LEQ] = helper_le_stq_mmu,
970 [MO_BEUW] = helper_be_stw_mmu,
971 [MO_BEUL] = helper_be_stl_mmu,
972 [MO_BEQ] = helper_be_stq_mmu,
973 };
974
975 /* Helper routines for marshalling helper function arguments into
976 * the correct registers and stack.
977 * I is where we want to put this argument, and is updated and returned
978 * for the next call. ARG is the argument itself.
979 *
980 * We provide routines for arguments which are: immediate, 32 bit
981 * value in register, 16 and 8 bit values in register (which must be zero
982 * extended before use) and 64 bit value in a lo:hi register pair.
983 */
984
985 static int tcg_out_call_iarg_reg(TCGContext *s, int i, TCGReg arg)
986 {
987 if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
988 tcg_out_mov(s, TCG_TYPE_REG, tcg_target_call_iarg_regs[i], arg);
989 } else {
990 tcg_out_st(s, TCG_TYPE_REG, arg, TCG_REG_SP, 4 * i);
991 }
992 return i + 1;
993 }
994
995 static int tcg_out_call_iarg_reg8(TCGContext *s, int i, TCGReg arg)
996 {
997 TCGReg tmp = TCG_TMP0;
998 if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
999 tmp = tcg_target_call_iarg_regs[i];
1000 }
1001 tcg_out_opc_imm(s, OPC_ANDI, tmp, arg, 0xff);
1002 return tcg_out_call_iarg_reg(s, i, tmp);
1003 }
1004
1005 static int tcg_out_call_iarg_reg16(TCGContext *s, int i, TCGReg arg)
1006 {
1007 TCGReg tmp = TCG_TMP0;
1008 if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
1009 tmp = tcg_target_call_iarg_regs[i];
1010 }
1011 tcg_out_opc_imm(s, OPC_ANDI, tmp, arg, 0xffff);
1012 return tcg_out_call_iarg_reg(s, i, tmp);
1013 }
1014
1015 static int tcg_out_call_iarg_imm(TCGContext *s, int i, TCGArg arg)
1016 {
1017 TCGReg tmp = TCG_TMP0;
1018 if (arg == 0) {
1019 tmp = TCG_REG_ZERO;
1020 } else {
1021 if (i < ARRAY_SIZE(tcg_target_call_iarg_regs)) {
1022 tmp = tcg_target_call_iarg_regs[i];
1023 }
1024 tcg_out_movi(s, TCG_TYPE_REG, tmp, arg);
1025 }
1026 return tcg_out_call_iarg_reg(s, i, tmp);
1027 }
1028
1029 static int tcg_out_call_iarg_reg2(TCGContext *s, int i, TCGReg al, TCGReg ah)
1030 {
1031 i = (i + 1) & ~1;
1032 i = tcg_out_call_iarg_reg(s, i, (MIPS_BE ? ah : al));
1033 i = tcg_out_call_iarg_reg(s, i, (MIPS_BE ? al : ah));
1034 return i;
1035 }
1036
1037 /* Perform the tlb comparison operation. The complete host address is
1038 placed in BASE. Clobbers TMP0, TMP1, A0. */
1039 static void tcg_out_tlb_load(TCGContext *s, TCGReg base, TCGReg addrl,
1040 TCGReg addrh, TCGMemOpIdx oi,
1041 tcg_insn_unit *label_ptr[2], bool is_load)
1042 {
1043 TCGMemOp opc = get_memop(oi);
1044 unsigned s_bits = opc & MO_SIZE;
1045 unsigned a_bits = get_alignment_bits(opc);
1046 int mem_index = get_mmuidx(oi);
1047 int cmp_off
1048 = (is_load
1049 ? offsetof(CPUArchState, tlb_table[mem_index][0].addr_read)
1050 : offsetof(CPUArchState, tlb_table[mem_index][0].addr_write));
1051 int add_off = offsetof(CPUArchState, tlb_table[mem_index][0].addend);
1052
1053 tcg_out_opc_sa(s, OPC_SRL, TCG_REG_A0, addrl,
1054 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1055 tcg_out_opc_imm(s, OPC_ANDI, TCG_REG_A0, TCG_REG_A0,
1056 (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS);
1057 tcg_out_opc_reg(s, OPC_ADDU, TCG_REG_A0, TCG_REG_A0, TCG_AREG0);
1058
1059 /* Compensate for very large offsets. */
1060 if (add_off >= 0x8000) {
1061 /* Most target env are smaller than 32k; none are larger than 64k.
1062 Simplify the logic here merely to offset by 0x7ff0, giving us a
1063 range just shy of 64k. Check this assumption. */
1064 QEMU_BUILD_BUG_ON(offsetof(CPUArchState,
1065 tlb_table[NB_MMU_MODES - 1][1])
1066 > 0x7ff0 + 0x7fff);
1067 tcg_out_opc_imm(s, OPC_ADDIU, TCG_REG_A0, TCG_REG_A0, 0x7ff0);
1068 cmp_off -= 0x7ff0;
1069 add_off -= 0x7ff0;
1070 }
1071
1072 /* Load the (low half) tlb comparator. */
1073 tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, TCG_REG_A0,
1074 cmp_off + (TARGET_LONG_BITS == 64 ? LO_OFF : 0));
1075
1076 /* We don't currently support unaligned accesses.
1077 We could do so with mips32r6. */
1078 if (a_bits < s_bits) {
1079 a_bits = s_bits;
1080 }
1081 /* Mask the page bits, keeping the alignment bits to compare against.
1082 In between on 32-bit targets, load the tlb addend for the fast path. */
1083 tcg_out_movi(s, TCG_TYPE_I32, TCG_TMP1,
1084 TARGET_PAGE_MASK | ((1 << a_bits) - 1));
1085 if (TARGET_LONG_BITS == 32) {
1086 tcg_out_opc_imm(s, OPC_LW, TCG_REG_A0, TCG_REG_A0, add_off);
1087 }
1088 tcg_out_opc_reg(s, OPC_AND, TCG_TMP1, TCG_TMP1, addrl);
1089
1090 label_ptr[0] = s->code_ptr;
1091 tcg_out_opc_br(s, OPC_BNE, TCG_TMP1, TCG_TMP0);
1092
1093 /* Load and test the high half tlb comparator. */
1094 if (TARGET_LONG_BITS == 64) {
1095 /* delay slot */
1096 tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, TCG_REG_A0, cmp_off + HI_OFF);
1097
1098 /* Load the tlb addend for the fast path. We can't do it earlier with
1099 64-bit targets or we'll clobber a0 before reading the high half tlb
1100 comparator. */
1101 tcg_out_opc_imm(s, OPC_LW, TCG_REG_A0, TCG_REG_A0, add_off);
1102
1103 label_ptr[1] = s->code_ptr;
1104 tcg_out_opc_br(s, OPC_BNE, addrh, TCG_TMP0);
1105 }
1106
1107 /* delay slot */
1108 tcg_out_opc_reg(s, OPC_ADDU, base, TCG_REG_A0, addrl);
1109 }
1110
1111 static void add_qemu_ldst_label(TCGContext *s, int is_ld, TCGMemOpIdx oi,
1112 TCGReg datalo, TCGReg datahi,
1113 TCGReg addrlo, TCGReg addrhi,
1114 void *raddr, tcg_insn_unit *label_ptr[2])
1115 {
1116 TCGLabelQemuLdst *label = new_ldst_label(s);
1117
1118 label->is_ld = is_ld;
1119 label->oi = oi;
1120 label->datalo_reg = datalo;
1121 label->datahi_reg = datahi;
1122 label->addrlo_reg = addrlo;
1123 label->addrhi_reg = addrhi;
1124 label->raddr = raddr;
1125 label->label_ptr[0] = label_ptr[0];
1126 if (TARGET_LONG_BITS == 64) {
1127 label->label_ptr[1] = label_ptr[1];
1128 }
1129 }
1130
1131 static void tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1132 {
1133 TCGMemOpIdx oi = l->oi;
1134 TCGMemOp opc = get_memop(oi);
1135 TCGReg v0;
1136 int i;
1137
1138 /* resolve label address */
1139 reloc_pc16(l->label_ptr[0], s->code_ptr);
1140 if (TARGET_LONG_BITS == 64) {
1141 reloc_pc16(l->label_ptr[1], s->code_ptr);
1142 }
1143
1144 i = 1;
1145 if (TARGET_LONG_BITS == 64) {
1146 i = tcg_out_call_iarg_reg2(s, i, l->addrlo_reg, l->addrhi_reg);
1147 } else {
1148 i = tcg_out_call_iarg_reg(s, i, l->addrlo_reg);
1149 }
1150 i = tcg_out_call_iarg_imm(s, i, oi);
1151 i = tcg_out_call_iarg_imm(s, i, (intptr_t)l->raddr);
1152 tcg_out_call_int(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SSIZE)], false);
1153 /* delay slot */
1154 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1155
1156 v0 = l->datalo_reg;
1157 if ((opc & MO_SIZE) == MO_64) {
1158 /* We eliminated V0 from the possible output registers, so it
1159 cannot be clobbered here. So we must move V1 first. */
1160 if (MIPS_BE) {
1161 tcg_out_mov(s, TCG_TYPE_I32, v0, TCG_REG_V1);
1162 v0 = l->datahi_reg;
1163 } else {
1164 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_V1);
1165 }
1166 }
1167
1168 reloc_pc16(s->code_ptr, l->raddr);
1169 tcg_out_opc_br(s, OPC_BEQ, TCG_REG_ZERO, TCG_REG_ZERO);
1170 /* delay slot */
1171 tcg_out_mov(s, TCG_TYPE_REG, v0, TCG_REG_V0);
1172 }
1173
1174 static void tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1175 {
1176 TCGMemOpIdx oi = l->oi;
1177 TCGMemOp opc = get_memop(oi);
1178 TCGMemOp s_bits = opc & MO_SIZE;
1179 int i;
1180
1181 /* resolve label address */
1182 reloc_pc16(l->label_ptr[0], s->code_ptr);
1183 if (TARGET_LONG_BITS == 64) {
1184 reloc_pc16(l->label_ptr[1], s->code_ptr);
1185 }
1186
1187 i = 1;
1188 if (TARGET_LONG_BITS == 64) {
1189 i = tcg_out_call_iarg_reg2(s, i, l->addrlo_reg, l->addrhi_reg);
1190 } else {
1191 i = tcg_out_call_iarg_reg(s, i, l->addrlo_reg);
1192 }
1193 switch (s_bits) {
1194 case MO_8:
1195 i = tcg_out_call_iarg_reg8(s, i, l->datalo_reg);
1196 break;
1197 case MO_16:
1198 i = tcg_out_call_iarg_reg16(s, i, l->datalo_reg);
1199 break;
1200 case MO_32:
1201 i = tcg_out_call_iarg_reg(s, i, l->datalo_reg);
1202 break;
1203 case MO_64:
1204 i = tcg_out_call_iarg_reg2(s, i, l->datalo_reg, l->datahi_reg);
1205 break;
1206 default:
1207 tcg_abort();
1208 }
1209 i = tcg_out_call_iarg_imm(s, i, oi);
1210
1211 /* Tail call to the store helper. Thus force the return address
1212 computation to take place in the return address register. */
1213 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_RA, (intptr_t)l->raddr);
1214 i = tcg_out_call_iarg_reg(s, i, TCG_REG_RA);
1215 tcg_out_call_int(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)], true);
1216 /* delay slot */
1217 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1218 }
1219 #endif
1220
1221 static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg lo, TCGReg hi,
1222 TCGReg base, TCGMemOp opc)
1223 {
1224 switch (opc & (MO_SSIZE | MO_BSWAP)) {
1225 case MO_UB:
1226 tcg_out_opc_imm(s, OPC_LBU, lo, base, 0);
1227 break;
1228 case MO_SB:
1229 tcg_out_opc_imm(s, OPC_LB, lo, base, 0);
1230 break;
1231 case MO_UW | MO_BSWAP:
1232 tcg_out_opc_imm(s, OPC_LHU, TCG_TMP1, base, 0);
1233 tcg_out_bswap16(s, lo, TCG_TMP1);
1234 break;
1235 case MO_UW:
1236 tcg_out_opc_imm(s, OPC_LHU, lo, base, 0);
1237 break;
1238 case MO_SW | MO_BSWAP:
1239 tcg_out_opc_imm(s, OPC_LHU, TCG_TMP1, base, 0);
1240 tcg_out_bswap16s(s, lo, TCG_TMP1);
1241 break;
1242 case MO_SW:
1243 tcg_out_opc_imm(s, OPC_LH, lo, base, 0);
1244 break;
1245 case MO_UL | MO_BSWAP:
1246 if (use_mips32r2_instructions) {
1247 tcg_out_opc_imm(s, OPC_LW, lo, base, 0);
1248 tcg_out_bswap32(s, lo, lo);
1249 } else {
1250 tcg_out_bswap_subr(s, bswap32_addr);
1251 /* delay slot */
1252 tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, base, 0);
1253 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_TMP3);
1254 }
1255 break;
1256 case MO_UL:
1257 tcg_out_opc_imm(s, OPC_LW, lo, base, 0);
1258 break;
1259 case MO_Q | MO_BSWAP:
1260 if (use_mips32r2_instructions) {
1261 tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, base, 0);
1262 tcg_out_opc_imm(s, OPC_LW, TCG_TMP1, base, 4);
1263 tcg_out_opc_reg(s, OPC_WSBH, TCG_TMP0, 0, TCG_TMP0);
1264 tcg_out_opc_reg(s, OPC_WSBH, TCG_TMP1, 0, TCG_TMP1);
1265 tcg_out_opc_sa(s, OPC_ROTR, MIPS_BE ? lo : hi, TCG_TMP0, 16);
1266 tcg_out_opc_sa(s, OPC_ROTR, MIPS_BE ? hi : lo, TCG_TMP1, 16);
1267 } else {
1268 tcg_out_bswap_subr(s, bswap32_addr);
1269 /* delay slot */
1270 tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, base, 0);
1271 tcg_out_opc_imm(s, OPC_LW, TCG_TMP0, base, 4);
1272 tcg_out_bswap_subr(s, bswap32_addr);
1273 /* delay slot */
1274 tcg_out_mov(s, TCG_TYPE_I32, MIPS_BE ? lo : hi, TCG_TMP3);
1275 tcg_out_mov(s, TCG_TYPE_I32, MIPS_BE ? hi : lo, TCG_TMP3);
1276 }
1277 break;
1278 case MO_Q:
1279 /* Prefer to load from offset 0 first, but allow for overlap. */
1280 if (MIPS_BE ? hi != base : lo == base) {
1281 tcg_out_opc_imm(s, OPC_LW, hi, base, HI_OFF);
1282 tcg_out_opc_imm(s, OPC_LW, lo, base, LO_OFF);
1283 } else {
1284 tcg_out_opc_imm(s, OPC_LW, lo, base, LO_OFF);
1285 tcg_out_opc_imm(s, OPC_LW, hi, base, HI_OFF);
1286 }
1287 break;
1288 default:
1289 tcg_abort();
1290 }
1291 }
1292
1293 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
1294 {
1295 TCGReg addr_regl, addr_regh __attribute__((unused));
1296 TCGReg data_regl, data_regh;
1297 TCGMemOpIdx oi;
1298 TCGMemOp opc;
1299 #if defined(CONFIG_SOFTMMU)
1300 tcg_insn_unit *label_ptr[2];
1301 #endif
1302 TCGReg base = TCG_REG_A0;
1303
1304 data_regl = *args++;
1305 data_regh = (is_64 ? *args++ : 0);
1306 addr_regl = *args++;
1307 addr_regh = (TARGET_LONG_BITS == 64 ? *args++ : 0);
1308 oi = *args++;
1309 opc = get_memop(oi);
1310
1311 #if defined(CONFIG_SOFTMMU)
1312 tcg_out_tlb_load(s, base, addr_regl, addr_regh, oi, label_ptr, 1);
1313 tcg_out_qemu_ld_direct(s, data_regl, data_regh, base, opc);
1314 add_qemu_ldst_label(s, 1, oi, data_regl, data_regh, addr_regl, addr_regh,
1315 s->code_ptr, label_ptr);
1316 #else
1317 if (guest_base == 0 && data_regl != addr_regl) {
1318 base = addr_regl;
1319 } else if (guest_base == (int16_t)guest_base) {
1320 tcg_out_opc_imm(s, OPC_ADDIU, base, addr_regl, guest_base);
1321 } else {
1322 tcg_out_movi(s, TCG_TYPE_PTR, base, guest_base);
1323 tcg_out_opc_reg(s, OPC_ADDU, base, base, addr_regl);
1324 }
1325 tcg_out_qemu_ld_direct(s, data_regl, data_regh, base, opc);
1326 #endif
1327 }
1328
1329 static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg lo, TCGReg hi,
1330 TCGReg base, TCGMemOp opc)
1331 {
1332 /* Don't clutter the code below with checks to avoid bswapping ZERO. */
1333 if ((lo | hi) == 0) {
1334 opc &= ~MO_BSWAP;
1335 }
1336
1337 switch (opc & (MO_SIZE | MO_BSWAP)) {
1338 case MO_8:
1339 tcg_out_opc_imm(s, OPC_SB, lo, base, 0);
1340 break;
1341
1342 case MO_16 | MO_BSWAP:
1343 tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, lo, 0xffff);
1344 tcg_out_bswap16(s, TCG_TMP1, TCG_TMP1);
1345 lo = TCG_TMP1;
1346 /* FALLTHRU */
1347 case MO_16:
1348 tcg_out_opc_imm(s, OPC_SH, lo, base, 0);
1349 break;
1350
1351 case MO_32 | MO_BSWAP:
1352 tcg_out_bswap32(s, TCG_TMP3, lo);
1353 lo = TCG_TMP3;
1354 /* FALLTHRU */
1355 case MO_32:
1356 tcg_out_opc_imm(s, OPC_SW, lo, base, 0);
1357 break;
1358
1359 case MO_64 | MO_BSWAP:
1360 if (use_mips32r2_instructions) {
1361 tcg_out_opc_reg(s, OPC_WSBH, TCG_TMP0, 0, MIPS_BE ? lo : hi);
1362 tcg_out_opc_reg(s, OPC_WSBH, TCG_TMP1, 0, MIPS_BE ? hi : lo);
1363 tcg_out_opc_sa(s, OPC_ROTR, TCG_TMP0, TCG_TMP0, 16);
1364 tcg_out_opc_sa(s, OPC_ROTR, TCG_TMP1, TCG_TMP1, 16);
1365 tcg_out_opc_imm(s, OPC_SW, TCG_TMP0, base, 0);
1366 tcg_out_opc_imm(s, OPC_SW, TCG_TMP1, base, 4);
1367 } else {
1368 tcg_out_bswap32(s, TCG_TMP3, MIPS_BE ? lo : hi);
1369 tcg_out_opc_imm(s, OPC_SW, TCG_TMP3, base, 0);
1370 tcg_out_bswap32(s, TCG_TMP3, MIPS_BE ? hi : lo);
1371 tcg_out_opc_imm(s, OPC_SW, TCG_TMP3, base, 4);
1372 }
1373 break;
1374 case MO_64:
1375 tcg_out_opc_imm(s, OPC_SW, MIPS_BE ? hi : lo, base, 0);
1376 tcg_out_opc_imm(s, OPC_SW, MIPS_BE ? lo : hi, base, 4);
1377 break;
1378
1379 default:
1380 tcg_abort();
1381 }
1382 }
1383
1384 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
1385 {
1386 TCGReg addr_regl, addr_regh __attribute__((unused));
1387 TCGReg data_regl, data_regh;
1388 TCGMemOpIdx oi;
1389 TCGMemOp opc;
1390 #if defined(CONFIG_SOFTMMU)
1391 tcg_insn_unit *label_ptr[2];
1392 #endif
1393 TCGReg base = TCG_REG_A0;
1394
1395 data_regl = *args++;
1396 data_regh = (is_64 ? *args++ : 0);
1397 addr_regl = *args++;
1398 addr_regh = (TARGET_LONG_BITS == 64 ? *args++ : 0);
1399 oi = *args++;
1400 opc = get_memop(oi);
1401
1402 #if defined(CONFIG_SOFTMMU)
1403 tcg_out_tlb_load(s, base, addr_regl, addr_regh, oi, label_ptr, 0);
1404 tcg_out_qemu_st_direct(s, data_regl, data_regh, base, opc);
1405 add_qemu_ldst_label(s, 0, oi, data_regl, data_regh, addr_regl, addr_regh,
1406 s->code_ptr, label_ptr);
1407 #else
1408 if (guest_base == 0) {
1409 base = addr_regl;
1410 } else {
1411 if (guest_base == (int16_t)guest_base) {
1412 tcg_out_opc_imm(s, OPC_ADDIU, base, addr_regl, guest_base);
1413 } else {
1414 tcg_out_movi(s, TCG_TYPE_PTR, base, guest_base);
1415 tcg_out_opc_reg(s, OPC_ADDU, base, base, addr_regl);
1416 }
1417 }
1418 tcg_out_qemu_st_direct(s, data_regl, data_regh, base, opc);
1419 #endif
1420 }
1421
1422 static void tcg_out_mb(TCGContext *s, TCGArg a0)
1423 {
1424 static const MIPSInsn sync[] = {
1425 /* Note that SYNC_MB is a slightly weaker than SYNC 0,
1426 as the former is an ordering barrier and the latter
1427 is a completion barrier. */
1428 [0 ... TCG_MO_ALL] = OPC_SYNC_MB,
1429 [TCG_MO_LD_LD] = OPC_SYNC_RMB,
1430 [TCG_MO_ST_ST] = OPC_SYNC_WMB,
1431 [TCG_MO_LD_ST] = OPC_SYNC_RELEASE,
1432 [TCG_MO_LD_ST | TCG_MO_ST_ST] = OPC_SYNC_RELEASE,
1433 [TCG_MO_LD_ST | TCG_MO_LD_LD] = OPC_SYNC_ACQUIRE,
1434 };
1435 tcg_out32(s, sync[a0 & TCG_MO_ALL]);
1436 }
1437
1438 static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
1439 const TCGArg *args, const int *const_args)
1440 {
1441 MIPSInsn i1, i2;
1442 TCGArg a0, a1, a2;
1443 int c2;
1444
1445 a0 = args[0];
1446 a1 = args[1];
1447 a2 = args[2];
1448 c2 = const_args[2];
1449
1450 switch (opc) {
1451 case INDEX_op_exit_tb:
1452 {
1453 TCGReg b0 = TCG_REG_ZERO;
1454
1455 if (a0 & ~0xffff) {
1456 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_V0, a0 & ~0xffff);
1457 b0 = TCG_REG_V0;
1458 }
1459 if (!tcg_out_opc_jmp(s, OPC_J, tb_ret_addr)) {
1460 tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0,
1461 (uintptr_t)tb_ret_addr);
1462 tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0);
1463 }
1464 tcg_out_opc_imm(s, OPC_ORI, TCG_REG_V0, b0, a0 & 0xffff);
1465 }
1466 break;
1467 case INDEX_op_goto_tb:
1468 if (s->tb_jmp_insn_offset) {
1469 /* direct jump method */
1470 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1471 /* Avoid clobbering the address during retranslation. */
1472 tcg_out32(s, OPC_J | (*(uint32_t *)s->code_ptr & 0x3ffffff));
1473 } else {
1474 /* indirect jump method */
1475 tcg_out_ld(s, TCG_TYPE_PTR, TCG_TMP0, TCG_REG_ZERO,
1476 (uintptr_t)(s->tb_jmp_target_addr + a0));
1477 tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0);
1478 }
1479 tcg_out_nop(s);
1480 s->tb_jmp_reset_offset[a0] = tcg_current_code_size(s);
1481 break;
1482 case INDEX_op_br:
1483 tcg_out_brcond(s, TCG_COND_EQ, TCG_REG_ZERO, TCG_REG_ZERO,
1484 arg_label(a0));
1485 break;
1486
1487 case INDEX_op_ld8u_i32:
1488 i1 = OPC_LBU;
1489 goto do_ldst;
1490 case INDEX_op_ld8s_i32:
1491 i1 = OPC_LB;
1492 goto do_ldst;
1493 case INDEX_op_ld16u_i32:
1494 i1 = OPC_LHU;
1495 goto do_ldst;
1496 case INDEX_op_ld16s_i32:
1497 i1 = OPC_LH;
1498 goto do_ldst;
1499 case INDEX_op_ld_i32:
1500 i1 = OPC_LW;
1501 goto do_ldst;
1502 case INDEX_op_st8_i32:
1503 i1 = OPC_SB;
1504 goto do_ldst;
1505 case INDEX_op_st16_i32:
1506 i1 = OPC_SH;
1507 goto do_ldst;
1508 case INDEX_op_st_i32:
1509 i1 = OPC_SW;
1510 do_ldst:
1511 tcg_out_ldst(s, i1, a0, a1, a2);
1512 break;
1513
1514 case INDEX_op_add_i32:
1515 i1 = OPC_ADDU, i2 = OPC_ADDIU;
1516 goto do_binary;
1517 case INDEX_op_or_i32:
1518 i1 = OPC_OR, i2 = OPC_ORI;
1519 goto do_binary;
1520 case INDEX_op_xor_i32:
1521 i1 = OPC_XOR, i2 = OPC_XORI;
1522 do_binary:
1523 if (c2) {
1524 tcg_out_opc_imm(s, i2, a0, a1, a2);
1525 break;
1526 }
1527 do_binaryv:
1528 tcg_out_opc_reg(s, i1, a0, a1, a2);
1529 break;
1530
1531 case INDEX_op_sub_i32:
1532 if (c2) {
1533 tcg_out_opc_imm(s, OPC_ADDIU, a0, a1, -a2);
1534 break;
1535 }
1536 i1 = OPC_SUBU;
1537 goto do_binary;
1538 case INDEX_op_and_i32:
1539 if (c2 && a2 != (uint16_t)a2) {
1540 int msb = ctz32(~a2) - 1;
1541 tcg_debug_assert(use_mips32r2_instructions);
1542 tcg_debug_assert(is_p2m1(a2));
1543 tcg_out_opc_bf(s, OPC_EXT, a0, a1, msb, 0);
1544 break;
1545 }
1546 i1 = OPC_AND, i2 = OPC_ANDI;
1547 goto do_binary;
1548 case INDEX_op_nor_i32:
1549 i1 = OPC_NOR;
1550 goto do_binaryv;
1551
1552 case INDEX_op_mul_i32:
1553 if (use_mips32_instructions) {
1554 tcg_out_opc_reg(s, OPC_MUL, a0, a1, a2);
1555 break;
1556 }
1557 i1 = OPC_MULT, i2 = OPC_MFLO;
1558 goto do_hilo1;
1559 case INDEX_op_mulsh_i32:
1560 if (use_mips32r6_instructions) {
1561 tcg_out_opc_reg(s, OPC_MUH, a0, a1, a2);
1562 break;
1563 }
1564 i1 = OPC_MULT, i2 = OPC_MFHI;
1565 goto do_hilo1;
1566 case INDEX_op_muluh_i32:
1567 if (use_mips32r6_instructions) {
1568 tcg_out_opc_reg(s, OPC_MUHU, a0, a1, a2);
1569 break;
1570 }
1571 i1 = OPC_MULTU, i2 = OPC_MFHI;
1572 goto do_hilo1;
1573 case INDEX_op_div_i32:
1574 if (use_mips32r6_instructions) {
1575 tcg_out_opc_reg(s, OPC_DIV_R6, a0, a1, a2);
1576 break;
1577 }
1578 i1 = OPC_DIV, i2 = OPC_MFLO;
1579 goto do_hilo1;
1580 case INDEX_op_divu_i32:
1581 if (use_mips32r6_instructions) {
1582 tcg_out_opc_reg(s, OPC_DIVU_R6, a0, a1, a2);
1583 break;
1584 }
1585 i1 = OPC_DIVU, i2 = OPC_MFLO;
1586 goto do_hilo1;
1587 case INDEX_op_rem_i32:
1588 if (use_mips32r6_instructions) {
1589 tcg_out_opc_reg(s, OPC_MOD, a0, a1, a2);
1590 break;
1591 }
1592 i1 = OPC_DIV, i2 = OPC_MFHI;
1593 goto do_hilo1;
1594 case INDEX_op_remu_i32:
1595 if (use_mips32r6_instructions) {
1596 tcg_out_opc_reg(s, OPC_MODU, a0, a1, a2);
1597 break;
1598 }
1599 i1 = OPC_DIVU, i2 = OPC_MFHI;
1600 do_hilo1:
1601 tcg_out_opc_reg(s, i1, 0, a1, a2);
1602 tcg_out_opc_reg(s, i2, a0, 0, 0);
1603 break;
1604
1605 case INDEX_op_muls2_i32:
1606 i1 = OPC_MULT;
1607 goto do_hilo2;
1608 case INDEX_op_mulu2_i32:
1609 i1 = OPC_MULTU;
1610 do_hilo2:
1611 tcg_out_opc_reg(s, i1, 0, a2, args[3]);
1612 tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0);
1613 tcg_out_opc_reg(s, OPC_MFHI, a1, 0, 0);
1614 break;
1615
1616 case INDEX_op_not_i32:
1617 i1 = OPC_NOR;
1618 goto do_unary;
1619 case INDEX_op_bswap16_i32:
1620 i1 = OPC_WSBH;
1621 goto do_unary;
1622 case INDEX_op_ext8s_i32:
1623 i1 = OPC_SEB;
1624 goto do_unary;
1625 case INDEX_op_ext16s_i32:
1626 i1 = OPC_SEH;
1627 do_unary:
1628 tcg_out_opc_reg(s, i1, a0, TCG_REG_ZERO, a1);
1629 break;
1630
1631 case INDEX_op_sar_i32:
1632 i1 = OPC_SRAV, i2 = OPC_SRA;
1633 goto do_shift;
1634 case INDEX_op_shl_i32:
1635 i1 = OPC_SLLV, i2 = OPC_SLL;
1636 goto do_shift;
1637 case INDEX_op_shr_i32:
1638 i1 = OPC_SRLV, i2 = OPC_SRL;
1639 goto do_shift;
1640 case INDEX_op_rotr_i32:
1641 i1 = OPC_ROTRV, i2 = OPC_ROTR;
1642 do_shift:
1643 if (c2) {
1644 tcg_out_opc_sa(s, i2, a0, a1, a2);
1645 } else {
1646 tcg_out_opc_reg(s, i1, a0, a2, a1);
1647 }
1648 break;
1649 case INDEX_op_rotl_i32:
1650 if (c2) {
1651 tcg_out_opc_sa(s, OPC_ROTR, a0, a1, 32 - a2);
1652 } else {
1653 tcg_out_opc_reg(s, OPC_SUBU, TCG_TMP0, TCG_REG_ZERO, a2);
1654 tcg_out_opc_reg(s, OPC_ROTRV, a0, TCG_TMP0, a1);
1655 }
1656 break;
1657
1658 case INDEX_op_bswap32_i32:
1659 tcg_out_bswap32(s, a0, a1);
1660 break;
1661
1662 case INDEX_op_deposit_i32:
1663 tcg_out_opc_bf(s, OPC_INS, a0, a2, args[3] + args[4] - 1, args[3]);
1664 break;
1665
1666 case INDEX_op_brcond_i32:
1667 tcg_out_brcond(s, a2, a0, a1, arg_label(args[3]));
1668 break;
1669 case INDEX_op_brcond2_i32:
1670 tcg_out_brcond2(s, args[4], a0, a1, a2, args[3], arg_label(args[5]));
1671 break;
1672
1673 case INDEX_op_movcond_i32:
1674 tcg_out_movcond(s, args[5], a0, a1, a2, args[3], args[4]);
1675 break;
1676
1677 case INDEX_op_setcond_i32:
1678 tcg_out_setcond(s, args[3], a0, a1, a2);
1679 break;
1680 case INDEX_op_setcond2_i32:
1681 tcg_out_setcond2(s, args[5], a0, a1, a2, args[3], args[4]);
1682 break;
1683
1684 case INDEX_op_qemu_ld_i32:
1685 tcg_out_qemu_ld(s, args, false);
1686 break;
1687 case INDEX_op_qemu_ld_i64:
1688 tcg_out_qemu_ld(s, args, true);
1689 break;
1690 case INDEX_op_qemu_st_i32:
1691 tcg_out_qemu_st(s, args, false);
1692 break;
1693 case INDEX_op_qemu_st_i64:
1694 tcg_out_qemu_st(s, args, true);
1695 break;
1696
1697 case INDEX_op_add2_i32:
1698 tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5],
1699 const_args[4], const_args[5], false);
1700 break;
1701 case INDEX_op_sub2_i32:
1702 tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5],
1703 const_args[4], const_args[5], true);
1704 break;
1705
1706 case INDEX_op_mb:
1707 tcg_out_mb(s, a0);
1708 break;
1709 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
1710 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
1711 case INDEX_op_call: /* Always emitted via tcg_out_call. */
1712 default:
1713 tcg_abort();
1714 }
1715 }
1716
1717 static const TCGTargetOpDef mips_op_defs[] = {
1718 { INDEX_op_exit_tb, { } },
1719 { INDEX_op_goto_tb, { } },
1720 { INDEX_op_br, { } },
1721
1722 { INDEX_op_ld8u_i32, { "r", "r" } },
1723 { INDEX_op_ld8s_i32, { "r", "r" } },
1724 { INDEX_op_ld16u_i32, { "r", "r" } },
1725 { INDEX_op_ld16s_i32, { "r", "r" } },
1726 { INDEX_op_ld_i32, { "r", "r" } },
1727 { INDEX_op_st8_i32, { "rZ", "r" } },
1728 { INDEX_op_st16_i32, { "rZ", "r" } },
1729 { INDEX_op_st_i32, { "rZ", "r" } },
1730
1731 { INDEX_op_add_i32, { "r", "rZ", "rJ" } },
1732 { INDEX_op_mul_i32, { "r", "rZ", "rZ" } },
1733 #if !use_mips32r6_instructions
1734 { INDEX_op_muls2_i32, { "r", "r", "rZ", "rZ" } },
1735 { INDEX_op_mulu2_i32, { "r", "r", "rZ", "rZ" } },
1736 #endif
1737 { INDEX_op_mulsh_i32, { "r", "rZ", "rZ" } },
1738 { INDEX_op_muluh_i32, { "r", "rZ", "rZ" } },
1739 { INDEX_op_div_i32, { "r", "rZ", "rZ" } },
1740 { INDEX_op_divu_i32, { "r", "rZ", "rZ" } },
1741 { INDEX_op_rem_i32, { "r", "rZ", "rZ" } },
1742 { INDEX_op_remu_i32, { "r", "rZ", "rZ" } },
1743 { INDEX_op_sub_i32, { "r", "rZ", "rN" } },
1744
1745 { INDEX_op_and_i32, { "r", "rZ", "rIK" } },
1746 { INDEX_op_nor_i32, { "r", "rZ", "rZ" } },
1747 { INDEX_op_not_i32, { "r", "rZ" } },
1748 { INDEX_op_or_i32, { "r", "rZ", "rIZ" } },
1749 { INDEX_op_xor_i32, { "r", "rZ", "rIZ" } },
1750
1751 { INDEX_op_shl_i32, { "r", "rZ", "ri" } },
1752 { INDEX_op_shr_i32, { "r", "rZ", "ri" } },
1753 { INDEX_op_sar_i32, { "r", "rZ", "ri" } },
1754 { INDEX_op_rotr_i32, { "r", "rZ", "ri" } },
1755 { INDEX_op_rotl_i32, { "r", "rZ", "ri" } },
1756
1757 { INDEX_op_bswap16_i32, { "r", "r" } },
1758 { INDEX_op_bswap32_i32, { "r", "r" } },
1759
1760 { INDEX_op_ext8s_i32, { "r", "rZ" } },
1761 { INDEX_op_ext16s_i32, { "r", "rZ" } },
1762
1763 { INDEX_op_deposit_i32, { "r", "0", "rZ" } },
1764
1765 { INDEX_op_brcond_i32, { "rZ", "rZ" } },
1766 #if use_mips32r6_instructions
1767 { INDEX_op_movcond_i32, { "r", "rZ", "rZ", "rZ", "rZ" } },
1768 #else
1769 { INDEX_op_movcond_i32, { "r", "rZ", "rZ", "rZ", "0" } },
1770 #endif
1771 { INDEX_op_setcond_i32, { "r", "rZ", "rZ" } },
1772 { INDEX_op_setcond2_i32, { "r", "rZ", "rZ", "rZ", "rZ" } },
1773
1774 { INDEX_op_add2_i32, { "r", "r", "rZ", "rZ", "rN", "rN" } },
1775 { INDEX_op_sub2_i32, { "r", "r", "rZ", "rZ", "rN", "rN" } },
1776 { INDEX_op_brcond2_i32, { "rZ", "rZ", "rZ", "rZ" } },
1777
1778 #if TARGET_LONG_BITS == 32
1779 { INDEX_op_qemu_ld_i32, { "r", "LZ" } },
1780 { INDEX_op_qemu_st_i32, { "SZ", "SZ" } },
1781 { INDEX_op_qemu_ld_i64, { "r", "r", "LZ" } },
1782 { INDEX_op_qemu_st_i64, { "SZ", "SZ", "SZ" } },
1783 #else
1784 { INDEX_op_qemu_ld_i32, { "r", "LZ", "LZ" } },
1785 { INDEX_op_qemu_st_i32, { "SZ", "SZ", "SZ" } },
1786 { INDEX_op_qemu_ld_i64, { "r", "r", "LZ", "LZ" } },
1787 { INDEX_op_qemu_st_i64, { "SZ", "SZ", "SZ", "SZ" } },
1788 #endif
1789
1790 { INDEX_op_mb, { } },
1791 { -1 },
1792 };
1793
1794 static int tcg_target_callee_save_regs[] = {
1795 TCG_REG_S0, /* used for the global env (TCG_AREG0) */
1796 TCG_REG_S1,
1797 TCG_REG_S2,
1798 TCG_REG_S3,
1799 TCG_REG_S4,
1800 TCG_REG_S5,
1801 TCG_REG_S6,
1802 TCG_REG_S7,
1803 TCG_REG_S8,
1804 TCG_REG_RA, /* should be last for ABI compliance */
1805 };
1806
1807 /* The Linux kernel doesn't provide any information about the available
1808 instruction set. Probe it using a signal handler. */
1809
1810
1811 #ifndef use_movnz_instructions
1812 bool use_movnz_instructions = false;
1813 #endif
1814
1815 #ifndef use_mips32_instructions
1816 bool use_mips32_instructions = false;
1817 #endif
1818
1819 #ifndef use_mips32r2_instructions
1820 bool use_mips32r2_instructions = false;
1821 #endif
1822
1823 static volatile sig_atomic_t got_sigill;
1824
1825 static void sigill_handler(int signo, siginfo_t *si, void *data)
1826 {
1827 /* Skip the faulty instruction */
1828 ucontext_t *uc = (ucontext_t *)data;
1829 uc->uc_mcontext.pc += 4;
1830
1831 got_sigill = 1;
1832 }
1833
1834 static void tcg_target_detect_isa(void)
1835 {
1836 struct sigaction sa_old, sa_new;
1837
1838 memset(&sa_new, 0, sizeof(sa_new));
1839 sa_new.sa_flags = SA_SIGINFO;
1840 sa_new.sa_sigaction = sigill_handler;
1841 sigaction(SIGILL, &sa_new, &sa_old);
1842
1843 /* Probe for movn/movz, necessary to implement movcond. */
1844 #ifndef use_movnz_instructions
1845 got_sigill = 0;
1846 asm volatile(".set push\n"
1847 ".set mips32\n"
1848 "movn $zero, $zero, $zero\n"
1849 "movz $zero, $zero, $zero\n"
1850 ".set pop\n"
1851 : : : );
1852 use_movnz_instructions = !got_sigill;
1853 #endif
1854
1855 /* Probe for MIPS32 instructions. As no subsetting is allowed
1856 by the specification, it is only necessary to probe for one
1857 of the instructions. */
1858 #ifndef use_mips32_instructions
1859 got_sigill = 0;
1860 asm volatile(".set push\n"
1861 ".set mips32\n"
1862 "mul $zero, $zero\n"
1863 ".set pop\n"
1864 : : : );
1865 use_mips32_instructions = !got_sigill;
1866 #endif
1867
1868 /* Probe for MIPS32r2 instructions if MIPS32 instructions are
1869 available. As no subsetting is allowed by the specification,
1870 it is only necessary to probe for one of the instructions. */
1871 #ifndef use_mips32r2_instructions
1872 if (use_mips32_instructions) {
1873 got_sigill = 0;
1874 asm volatile(".set push\n"
1875 ".set mips32r2\n"
1876 "seb $zero, $zero\n"
1877 ".set pop\n"
1878 : : : );
1879 use_mips32r2_instructions = !got_sigill;
1880 }
1881 #endif
1882
1883 sigaction(SIGILL, &sa_old, NULL);
1884 }
1885
1886 static tcg_insn_unit *align_code_ptr(TCGContext *s)
1887 {
1888 uintptr_t p = (uintptr_t)s->code_ptr;
1889 if (p & 15) {
1890 p = (p + 15) & -16;
1891 s->code_ptr = (void *)p;
1892 }
1893 return s->code_ptr;
1894 }
1895
1896 /* Generate global QEMU prologue and epilogue code */
1897 static void tcg_target_qemu_prologue(TCGContext *s)
1898 {
1899 int i, frame_size;
1900
1901 /* reserve some stack space, also for TCG temps. */
1902 frame_size = ARRAY_SIZE(tcg_target_callee_save_regs) * 4
1903 + TCG_STATIC_CALL_ARGS_SIZE
1904 + CPU_TEMP_BUF_NLONGS * sizeof(long);
1905 frame_size = (frame_size + TCG_TARGET_STACK_ALIGN - 1) &
1906 ~(TCG_TARGET_STACK_ALIGN - 1);
1907 tcg_set_frame(s, TCG_REG_SP, ARRAY_SIZE(tcg_target_callee_save_regs) * 4
1908 + TCG_STATIC_CALL_ARGS_SIZE,
1909 CPU_TEMP_BUF_NLONGS * sizeof(long));
1910
1911 /* TB prologue */
1912 tcg_out_addi(s, TCG_REG_SP, -frame_size);
1913 for(i = 0 ; i < ARRAY_SIZE(tcg_target_callee_save_regs) ; i++) {
1914 tcg_out_st(s, TCG_TYPE_I32, tcg_target_callee_save_regs[i],
1915 TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE + i * 4);
1916 }
1917
1918 /* Call generated code */
1919 tcg_out_opc_reg(s, OPC_JR, 0, tcg_target_call_iarg_regs[1], 0);
1920 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
1921 tb_ret_addr = s->code_ptr;
1922
1923 /* TB epilogue */
1924 for(i = 0 ; i < ARRAY_SIZE(tcg_target_callee_save_regs) ; i++) {
1925 tcg_out_ld(s, TCG_TYPE_I32, tcg_target_callee_save_regs[i],
1926 TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE + i * 4);
1927 }
1928
1929 tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
1930 /* delay slot */
1931 tcg_out_addi(s, TCG_REG_SP, frame_size);
1932
1933 if (use_mips32r2_instructions) {
1934 return;
1935 }
1936
1937 /* Bswap subroutine: Input in TCG_TMP0, output in TCG_TMP3;
1938 clobbers TCG_TMP1, TCG_TMP2. */
1939
1940 /*
1941 * bswap32 -- 32-bit swap (signed result for mips64). a0 = abcd.
1942 */
1943 bswap32_addr = align_code_ptr(s);
1944 /* t3 = (ssss)d000 */
1945 tcg_out_opc_sa(s, OPC_SLL, TCG_TMP3, TCG_TMP0, 24);
1946 /* t1 = 000a */
1947 tcg_out_opc_sa(s, OPC_SRL, TCG_TMP1, TCG_TMP0, 24);
1948 /* t2 = 00c0 */
1949 tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP2, TCG_TMP0, 0xff00);
1950 /* t3 = d00a */
1951 tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
1952 /* t1 = 0abc */
1953 tcg_out_opc_sa(s, OPC_SRL, TCG_TMP1, TCG_TMP0, 8);
1954 /* t2 = 0c00 */
1955 tcg_out_opc_sa(s, OPC_SLL, TCG_TMP2, TCG_TMP2, 8);
1956 /* t1 = 00b0 */
1957 tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP1, 0xff00);
1958 /* t3 = dc0a */
1959 tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP2);
1960 tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
1961 /* t3 = dcba -- delay slot */
1962 tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
1963 }
1964
1965 static void tcg_target_init(TCGContext *s)
1966 {
1967 tcg_target_detect_isa();
1968 tcg_regset_set(tcg_target_available_regs[TCG_TYPE_I32], 0xffffffff);
1969 tcg_regset_set(tcg_target_call_clobber_regs,
1970 (1 << TCG_REG_V0) |
1971 (1 << TCG_REG_V1) |
1972 (1 << TCG_REG_A0) |
1973 (1 << TCG_REG_A1) |
1974 (1 << TCG_REG_A2) |
1975 (1 << TCG_REG_A3) |
1976 (1 << TCG_REG_T0) |
1977 (1 << TCG_REG_T1) |
1978 (1 << TCG_REG_T2) |
1979 (1 << TCG_REG_T3) |
1980 (1 << TCG_REG_T4) |
1981 (1 << TCG_REG_T5) |
1982 (1 << TCG_REG_T6) |
1983 (1 << TCG_REG_T7) |
1984 (1 << TCG_REG_T8) |
1985 (1 << TCG_REG_T9));
1986
1987 tcg_regset_clear(s->reserved_regs);
1988 tcg_regset_set_reg(s->reserved_regs, TCG_REG_ZERO); /* zero register */
1989 tcg_regset_set_reg(s->reserved_regs, TCG_REG_K0); /* kernel use only */
1990 tcg_regset_set_reg(s->reserved_regs, TCG_REG_K1); /* kernel use only */
1991 tcg_regset_set_reg(s->reserved_regs, TCG_TMP0); /* internal use */
1992 tcg_regset_set_reg(s->reserved_regs, TCG_TMP1); /* internal use */
1993 tcg_regset_set_reg(s->reserved_regs, TCG_TMP2); /* internal use */
1994 tcg_regset_set_reg(s->reserved_regs, TCG_TMP3); /* internal use */
1995 tcg_regset_set_reg(s->reserved_regs, TCG_REG_RA); /* return address */
1996 tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); /* stack pointer */
1997 tcg_regset_set_reg(s->reserved_regs, TCG_REG_GP); /* global pointer */
1998
1999 tcg_add_target_add_op_defs(mips_op_defs);
2000 }
2001
2002 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
2003 {
2004 atomic_set((uint32_t *)jmp_addr, deposit32(OPC_J, 0, 26, addr >> 2));
2005 flush_icache_range(jmp_addr, jmp_addr + 4);
2006 }