]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/ppc/tcg-target.c.inc
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / tcg / ppc / tcg-target.c.inc
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "elf.h"
26 #include "../tcg-pool.c.inc"
27
28 #if defined _CALL_DARWIN || defined __APPLE__
29 #define TCG_TARGET_CALL_DARWIN
30 #endif
31 #ifdef _CALL_SYSV
32 # define TCG_TARGET_CALL_ALIGN_ARGS 1
33 #endif
34
35 /* For some memory operations, we need a scratch that isn't R0. For the AIX
36 calling convention, we can re-use the TOC register since we'll be reloading
37 it at every call. Otherwise R12 will do nicely as neither a call-saved
38 register nor a parameter register. */
39 #ifdef _CALL_AIX
40 # define TCG_REG_TMP1 TCG_REG_R2
41 #else
42 # define TCG_REG_TMP1 TCG_REG_R12
43 #endif
44
45 #define TCG_VEC_TMP1 TCG_REG_V0
46 #define TCG_VEC_TMP2 TCG_REG_V1
47
48 #define TCG_REG_TB TCG_REG_R31
49 #define USE_REG_TB (TCG_TARGET_REG_BITS == 64)
50
51 /* Shorthand for size of a pointer. Avoid promotion to unsigned. */
52 #define SZP ((int)sizeof(void *))
53
54 /* Shorthand for size of a register. */
55 #define SZR (TCG_TARGET_REG_BITS / 8)
56
57 #define TCG_CT_CONST_S16 0x100
58 #define TCG_CT_CONST_U16 0x200
59 #define TCG_CT_CONST_S32 0x400
60 #define TCG_CT_CONST_U32 0x800
61 #define TCG_CT_CONST_ZERO 0x1000
62 #define TCG_CT_CONST_MONE 0x2000
63 #define TCG_CT_CONST_WSZ 0x4000
64
65 #define ALL_GENERAL_REGS 0xffffffffu
66 #define ALL_VECTOR_REGS 0xffffffff00000000ull
67
68 #ifdef CONFIG_SOFTMMU
69 #define ALL_QLOAD_REGS \
70 (ALL_GENERAL_REGS & \
71 ~((1 << TCG_REG_R3) | (1 << TCG_REG_R4) | (1 << TCG_REG_R5)))
72 #define ALL_QSTORE_REGS \
73 (ALL_GENERAL_REGS & ~((1 << TCG_REG_R3) | (1 << TCG_REG_R4) | \
74 (1 << TCG_REG_R5) | (1 << TCG_REG_R6)))
75 #else
76 #define ALL_QLOAD_REGS (ALL_GENERAL_REGS & ~(1 << TCG_REG_R3))
77 #define ALL_QSTORE_REGS ALL_QLOAD_REGS
78 #endif
79
80 TCGPowerISA have_isa;
81 static bool have_isel;
82 bool have_altivec;
83 bool have_vsx;
84
85 #ifndef CONFIG_SOFTMMU
86 #define TCG_GUEST_BASE_REG 30
87 #endif
88
89 #ifdef CONFIG_DEBUG_TCG
90 static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = {
91 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
92 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
93 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
94 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
95 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
96 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
97 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
98 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
99 };
100 #endif
101
102 static const int tcg_target_reg_alloc_order[] = {
103 TCG_REG_R14, /* call saved registers */
104 TCG_REG_R15,
105 TCG_REG_R16,
106 TCG_REG_R17,
107 TCG_REG_R18,
108 TCG_REG_R19,
109 TCG_REG_R20,
110 TCG_REG_R21,
111 TCG_REG_R22,
112 TCG_REG_R23,
113 TCG_REG_R24,
114 TCG_REG_R25,
115 TCG_REG_R26,
116 TCG_REG_R27,
117 TCG_REG_R28,
118 TCG_REG_R29,
119 TCG_REG_R30,
120 TCG_REG_R31,
121 TCG_REG_R12, /* call clobbered, non-arguments */
122 TCG_REG_R11,
123 TCG_REG_R2,
124 TCG_REG_R13,
125 TCG_REG_R10, /* call clobbered, arguments */
126 TCG_REG_R9,
127 TCG_REG_R8,
128 TCG_REG_R7,
129 TCG_REG_R6,
130 TCG_REG_R5,
131 TCG_REG_R4,
132 TCG_REG_R3,
133
134 /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */
135 TCG_REG_V2, /* call clobbered, vectors */
136 TCG_REG_V3,
137 TCG_REG_V4,
138 TCG_REG_V5,
139 TCG_REG_V6,
140 TCG_REG_V7,
141 TCG_REG_V8,
142 TCG_REG_V9,
143 TCG_REG_V10,
144 TCG_REG_V11,
145 TCG_REG_V12,
146 TCG_REG_V13,
147 TCG_REG_V14,
148 TCG_REG_V15,
149 TCG_REG_V16,
150 TCG_REG_V17,
151 TCG_REG_V18,
152 TCG_REG_V19,
153 };
154
155 static const int tcg_target_call_iarg_regs[] = {
156 TCG_REG_R3,
157 TCG_REG_R4,
158 TCG_REG_R5,
159 TCG_REG_R6,
160 TCG_REG_R7,
161 TCG_REG_R8,
162 TCG_REG_R9,
163 TCG_REG_R10
164 };
165
166 static const int tcg_target_call_oarg_regs[] = {
167 TCG_REG_R3,
168 TCG_REG_R4
169 };
170
171 static const int tcg_target_callee_save_regs[] = {
172 #ifdef TCG_TARGET_CALL_DARWIN
173 TCG_REG_R11,
174 #endif
175 TCG_REG_R14,
176 TCG_REG_R15,
177 TCG_REG_R16,
178 TCG_REG_R17,
179 TCG_REG_R18,
180 TCG_REG_R19,
181 TCG_REG_R20,
182 TCG_REG_R21,
183 TCG_REG_R22,
184 TCG_REG_R23,
185 TCG_REG_R24,
186 TCG_REG_R25,
187 TCG_REG_R26,
188 TCG_REG_R27, /* currently used for the global env */
189 TCG_REG_R28,
190 TCG_REG_R29,
191 TCG_REG_R30,
192 TCG_REG_R31
193 };
194
195 static inline bool in_range_b(tcg_target_long target)
196 {
197 return target == sextract64(target, 0, 26);
198 }
199
200 static uint32_t reloc_pc24_val(const tcg_insn_unit *pc,
201 const tcg_insn_unit *target)
202 {
203 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
204 tcg_debug_assert(in_range_b(disp));
205 return disp & 0x3fffffc;
206 }
207
208 static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
209 {
210 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
211 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
212
213 if (in_range_b(disp)) {
214 *src_rw = (*src_rw & ~0x3fffffc) | (disp & 0x3fffffc);
215 return true;
216 }
217 return false;
218 }
219
220 static uint16_t reloc_pc14_val(const tcg_insn_unit *pc,
221 const tcg_insn_unit *target)
222 {
223 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
224 tcg_debug_assert(disp == (int16_t) disp);
225 return disp & 0xfffc;
226 }
227
228 static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
229 {
230 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
231 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
232
233 if (disp == (int16_t) disp) {
234 *src_rw = (*src_rw & ~0xfffc) | (disp & 0xfffc);
235 return true;
236 }
237 return false;
238 }
239
240 /* test if a constant matches the constraint */
241 static int tcg_target_const_match(tcg_target_long val, TCGType type,
242 const TCGArgConstraint *arg_ct)
243 {
244 int ct = arg_ct->ct;
245 if (ct & TCG_CT_CONST) {
246 return 1;
247 }
248
249 /* The only 32-bit constraint we use aside from
250 TCG_CT_CONST is TCG_CT_CONST_S16. */
251 if (type == TCG_TYPE_I32) {
252 val = (int32_t)val;
253 }
254
255 if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
256 return 1;
257 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
258 return 1;
259 } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
260 return 1;
261 } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
262 return 1;
263 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
264 return 1;
265 } else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
266 return 1;
267 } else if ((ct & TCG_CT_CONST_WSZ)
268 && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
269 return 1;
270 }
271 return 0;
272 }
273
274 #define OPCD(opc) ((opc)<<26)
275 #define XO19(opc) (OPCD(19)|((opc)<<1))
276 #define MD30(opc) (OPCD(30)|((opc)<<2))
277 #define MDS30(opc) (OPCD(30)|((opc)<<1))
278 #define XO31(opc) (OPCD(31)|((opc)<<1))
279 #define XO58(opc) (OPCD(58)|(opc))
280 #define XO62(opc) (OPCD(62)|(opc))
281 #define VX4(opc) (OPCD(4)|(opc))
282
283 #define B OPCD( 18)
284 #define BC OPCD( 16)
285 #define LBZ OPCD( 34)
286 #define LHZ OPCD( 40)
287 #define LHA OPCD( 42)
288 #define LWZ OPCD( 32)
289 #define LWZUX XO31( 55)
290 #define STB OPCD( 38)
291 #define STH OPCD( 44)
292 #define STW OPCD( 36)
293
294 #define STD XO62( 0)
295 #define STDU XO62( 1)
296 #define STDX XO31(149)
297
298 #define LD XO58( 0)
299 #define LDX XO31( 21)
300 #define LDU XO58( 1)
301 #define LDUX XO31( 53)
302 #define LWA XO58( 2)
303 #define LWAX XO31(341)
304
305 #define ADDIC OPCD( 12)
306 #define ADDI OPCD( 14)
307 #define ADDIS OPCD( 15)
308 #define ORI OPCD( 24)
309 #define ORIS OPCD( 25)
310 #define XORI OPCD( 26)
311 #define XORIS OPCD( 27)
312 #define ANDI OPCD( 28)
313 #define ANDIS OPCD( 29)
314 #define MULLI OPCD( 7)
315 #define CMPLI OPCD( 10)
316 #define CMPI OPCD( 11)
317 #define SUBFIC OPCD( 8)
318
319 #define LWZU OPCD( 33)
320 #define STWU OPCD( 37)
321
322 #define RLWIMI OPCD( 20)
323 #define RLWINM OPCD( 21)
324 #define RLWNM OPCD( 23)
325
326 #define RLDICL MD30( 0)
327 #define RLDICR MD30( 1)
328 #define RLDIMI MD30( 3)
329 #define RLDCL MDS30( 8)
330
331 #define BCLR XO19( 16)
332 #define BCCTR XO19(528)
333 #define CRAND XO19(257)
334 #define CRANDC XO19(129)
335 #define CRNAND XO19(225)
336 #define CROR XO19(449)
337 #define CRNOR XO19( 33)
338
339 #define EXTSB XO31(954)
340 #define EXTSH XO31(922)
341 #define EXTSW XO31(986)
342 #define ADD XO31(266)
343 #define ADDE XO31(138)
344 #define ADDME XO31(234)
345 #define ADDZE XO31(202)
346 #define ADDC XO31( 10)
347 #define AND XO31( 28)
348 #define SUBF XO31( 40)
349 #define SUBFC XO31( 8)
350 #define SUBFE XO31(136)
351 #define SUBFME XO31(232)
352 #define SUBFZE XO31(200)
353 #define OR XO31(444)
354 #define XOR XO31(316)
355 #define MULLW XO31(235)
356 #define MULHW XO31( 75)
357 #define MULHWU XO31( 11)
358 #define DIVW XO31(491)
359 #define DIVWU XO31(459)
360 #define CMP XO31( 0)
361 #define CMPL XO31( 32)
362 #define LHBRX XO31(790)
363 #define LWBRX XO31(534)
364 #define LDBRX XO31(532)
365 #define STHBRX XO31(918)
366 #define STWBRX XO31(662)
367 #define STDBRX XO31(660)
368 #define MFSPR XO31(339)
369 #define MTSPR XO31(467)
370 #define SRAWI XO31(824)
371 #define NEG XO31(104)
372 #define MFCR XO31( 19)
373 #define MFOCRF (MFCR | (1u << 20))
374 #define NOR XO31(124)
375 #define CNTLZW XO31( 26)
376 #define CNTLZD XO31( 58)
377 #define CNTTZW XO31(538)
378 #define CNTTZD XO31(570)
379 #define CNTPOPW XO31(378)
380 #define CNTPOPD XO31(506)
381 #define ANDC XO31( 60)
382 #define ORC XO31(412)
383 #define EQV XO31(284)
384 #define NAND XO31(476)
385 #define ISEL XO31( 15)
386
387 #define MULLD XO31(233)
388 #define MULHD XO31( 73)
389 #define MULHDU XO31( 9)
390 #define DIVD XO31(489)
391 #define DIVDU XO31(457)
392
393 #define LBZX XO31( 87)
394 #define LHZX XO31(279)
395 #define LHAX XO31(343)
396 #define LWZX XO31( 23)
397 #define STBX XO31(215)
398 #define STHX XO31(407)
399 #define STWX XO31(151)
400
401 #define EIEIO XO31(854)
402 #define HWSYNC XO31(598)
403 #define LWSYNC (HWSYNC | (1u << 21))
404
405 #define SPR(a, b) ((((a)<<5)|(b))<<11)
406 #define LR SPR(8, 0)
407 #define CTR SPR(9, 0)
408
409 #define SLW XO31( 24)
410 #define SRW XO31(536)
411 #define SRAW XO31(792)
412
413 #define SLD XO31( 27)
414 #define SRD XO31(539)
415 #define SRAD XO31(794)
416 #define SRADI XO31(413<<1)
417
418 #define TW XO31( 4)
419 #define TRAP (TW | TO(31))
420
421 #define NOP ORI /* ori 0,0,0 */
422
423 #define LVX XO31(103)
424 #define LVEBX XO31(7)
425 #define LVEHX XO31(39)
426 #define LVEWX XO31(71)
427 #define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */
428 #define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */
429 #define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */
430 #define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */
431 #define LXSD (OPCD(57) | 2) /* v3.00 */
432 #define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */
433
434 #define STVX XO31(231)
435 #define STVEWX XO31(199)
436 #define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */
437 #define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */
438 #define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */
439 #define STXSD (OPCD(61) | 2) /* v3.00 */
440
441 #define VADDSBS VX4(768)
442 #define VADDUBS VX4(512)
443 #define VADDUBM VX4(0)
444 #define VADDSHS VX4(832)
445 #define VADDUHS VX4(576)
446 #define VADDUHM VX4(64)
447 #define VADDSWS VX4(896)
448 #define VADDUWS VX4(640)
449 #define VADDUWM VX4(128)
450 #define VADDUDM VX4(192) /* v2.07 */
451
452 #define VSUBSBS VX4(1792)
453 #define VSUBUBS VX4(1536)
454 #define VSUBUBM VX4(1024)
455 #define VSUBSHS VX4(1856)
456 #define VSUBUHS VX4(1600)
457 #define VSUBUHM VX4(1088)
458 #define VSUBSWS VX4(1920)
459 #define VSUBUWS VX4(1664)
460 #define VSUBUWM VX4(1152)
461 #define VSUBUDM VX4(1216) /* v2.07 */
462
463 #define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */
464 #define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */
465
466 #define VMAXSB VX4(258)
467 #define VMAXSH VX4(322)
468 #define VMAXSW VX4(386)
469 #define VMAXSD VX4(450) /* v2.07 */
470 #define VMAXUB VX4(2)
471 #define VMAXUH VX4(66)
472 #define VMAXUW VX4(130)
473 #define VMAXUD VX4(194) /* v2.07 */
474 #define VMINSB VX4(770)
475 #define VMINSH VX4(834)
476 #define VMINSW VX4(898)
477 #define VMINSD VX4(962) /* v2.07 */
478 #define VMINUB VX4(514)
479 #define VMINUH VX4(578)
480 #define VMINUW VX4(642)
481 #define VMINUD VX4(706) /* v2.07 */
482
483 #define VCMPEQUB VX4(6)
484 #define VCMPEQUH VX4(70)
485 #define VCMPEQUW VX4(134)
486 #define VCMPEQUD VX4(199) /* v2.07 */
487 #define VCMPGTSB VX4(774)
488 #define VCMPGTSH VX4(838)
489 #define VCMPGTSW VX4(902)
490 #define VCMPGTSD VX4(967) /* v2.07 */
491 #define VCMPGTUB VX4(518)
492 #define VCMPGTUH VX4(582)
493 #define VCMPGTUW VX4(646)
494 #define VCMPGTUD VX4(711) /* v2.07 */
495 #define VCMPNEB VX4(7) /* v3.00 */
496 #define VCMPNEH VX4(71) /* v3.00 */
497 #define VCMPNEW VX4(135) /* v3.00 */
498
499 #define VSLB VX4(260)
500 #define VSLH VX4(324)
501 #define VSLW VX4(388)
502 #define VSLD VX4(1476) /* v2.07 */
503 #define VSRB VX4(516)
504 #define VSRH VX4(580)
505 #define VSRW VX4(644)
506 #define VSRD VX4(1732) /* v2.07 */
507 #define VSRAB VX4(772)
508 #define VSRAH VX4(836)
509 #define VSRAW VX4(900)
510 #define VSRAD VX4(964) /* v2.07 */
511 #define VRLB VX4(4)
512 #define VRLH VX4(68)
513 #define VRLW VX4(132)
514 #define VRLD VX4(196) /* v2.07 */
515
516 #define VMULEUB VX4(520)
517 #define VMULEUH VX4(584)
518 #define VMULEUW VX4(648) /* v2.07 */
519 #define VMULOUB VX4(8)
520 #define VMULOUH VX4(72)
521 #define VMULOUW VX4(136) /* v2.07 */
522 #define VMULUWM VX4(137) /* v2.07 */
523 #define VMULLD VX4(457) /* v3.10 */
524 #define VMSUMUHM VX4(38)
525
526 #define VMRGHB VX4(12)
527 #define VMRGHH VX4(76)
528 #define VMRGHW VX4(140)
529 #define VMRGLB VX4(268)
530 #define VMRGLH VX4(332)
531 #define VMRGLW VX4(396)
532
533 #define VPKUHUM VX4(14)
534 #define VPKUWUM VX4(78)
535
536 #define VAND VX4(1028)
537 #define VANDC VX4(1092)
538 #define VNOR VX4(1284)
539 #define VOR VX4(1156)
540 #define VXOR VX4(1220)
541 #define VEQV VX4(1668) /* v2.07 */
542 #define VNAND VX4(1412) /* v2.07 */
543 #define VORC VX4(1348) /* v2.07 */
544
545 #define VSPLTB VX4(524)
546 #define VSPLTH VX4(588)
547 #define VSPLTW VX4(652)
548 #define VSPLTISB VX4(780)
549 #define VSPLTISH VX4(844)
550 #define VSPLTISW VX4(908)
551
552 #define VSLDOI VX4(44)
553
554 #define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */
555 #define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */
556 #define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */
557
558 #define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */
559 #define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */
560 #define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */
561 #define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */
562 #define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */
563 #define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */
564
565 #define RT(r) ((r)<<21)
566 #define RS(r) ((r)<<21)
567 #define RA(r) ((r)<<16)
568 #define RB(r) ((r)<<11)
569 #define TO(t) ((t)<<21)
570 #define SH(s) ((s)<<11)
571 #define MB(b) ((b)<<6)
572 #define ME(e) ((e)<<1)
573 #define BO(o) ((o)<<21)
574 #define MB64(b) ((b)<<5)
575 #define FXM(b) (1 << (19 - (b)))
576
577 #define VRT(r) (((r) & 31) << 21)
578 #define VRA(r) (((r) & 31) << 16)
579 #define VRB(r) (((r) & 31) << 11)
580 #define VRC(r) (((r) & 31) << 6)
581
582 #define LK 1
583
584 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
585 #define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
586 #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
587 #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
588
589 #define BF(n) ((n)<<23)
590 #define BI(n, c) (((c)+((n)*4))<<16)
591 #define BT(n, c) (((c)+((n)*4))<<21)
592 #define BA(n, c) (((c)+((n)*4))<<16)
593 #define BB(n, c) (((c)+((n)*4))<<11)
594 #define BC_(n, c) (((c)+((n)*4))<<6)
595
596 #define BO_COND_TRUE BO(12)
597 #define BO_COND_FALSE BO( 4)
598 #define BO_ALWAYS BO(20)
599
600 enum {
601 CR_LT,
602 CR_GT,
603 CR_EQ,
604 CR_SO
605 };
606
607 static const uint32_t tcg_to_bc[] = {
608 [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE,
609 [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE,
610 [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE,
611 [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE,
612 [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE,
613 [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE,
614 [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE,
615 [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE,
616 [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE,
617 [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE,
618 };
619
620 /* The low bit here is set if the RA and RB fields must be inverted. */
621 static const uint32_t tcg_to_isel[] = {
622 [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
623 [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
624 [TCG_COND_LT] = ISEL | BC_(7, CR_LT),
625 [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
626 [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
627 [TCG_COND_GT] = ISEL | BC_(7, CR_GT),
628 [TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
629 [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
630 [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
631 [TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
632 };
633
634 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
635 intptr_t value, intptr_t addend)
636 {
637 const tcg_insn_unit *target;
638 int16_t lo;
639 int32_t hi;
640
641 value += addend;
642 target = (const tcg_insn_unit *)value;
643
644 switch (type) {
645 case R_PPC_REL14:
646 return reloc_pc14(code_ptr, target);
647 case R_PPC_REL24:
648 return reloc_pc24(code_ptr, target);
649 case R_PPC_ADDR16:
650 /*
651 * We are (slightly) abusing this relocation type. In particular,
652 * assert that the low 2 bits are zero, and do not modify them.
653 * That way we can use this with LD et al that have opcode bits
654 * in the low 2 bits of the insn.
655 */
656 if ((value & 3) || value != (int16_t)value) {
657 return false;
658 }
659 *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc);
660 break;
661 case R_PPC_ADDR32:
662 /*
663 * We are abusing this relocation type. Again, this points to
664 * a pair of insns, lis + load. This is an absolute address
665 * relocation for PPC32 so the lis cannot be removed.
666 */
667 lo = value;
668 hi = value - lo;
669 if (hi + lo != value) {
670 return false;
671 }
672 code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16);
673 code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo);
674 break;
675 default:
676 g_assert_not_reached();
677 }
678 return true;
679 }
680
681 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
682 TCGReg base, tcg_target_long offset);
683
684 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
685 {
686 if (ret == arg) {
687 return true;
688 }
689 switch (type) {
690 case TCG_TYPE_I64:
691 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
692 /* fallthru */
693 case TCG_TYPE_I32:
694 if (ret < TCG_REG_V0) {
695 if (arg < TCG_REG_V0) {
696 tcg_out32(s, OR | SAB(arg, ret, arg));
697 break;
698 } else if (have_isa_2_07) {
699 tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD)
700 | VRT(arg) | RA(ret));
701 break;
702 } else {
703 /* Altivec does not support vector->integer moves. */
704 return false;
705 }
706 } else if (arg < TCG_REG_V0) {
707 if (have_isa_2_07) {
708 tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD)
709 | VRT(ret) | RA(arg));
710 break;
711 } else {
712 /* Altivec does not support integer->vector moves. */
713 return false;
714 }
715 }
716 /* fallthru */
717 case TCG_TYPE_V64:
718 case TCG_TYPE_V128:
719 tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0);
720 tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg));
721 break;
722 default:
723 g_assert_not_reached();
724 }
725 return true;
726 }
727
728 static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
729 int sh, int mb)
730 {
731 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
732 sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1);
733 mb = MB64((mb >> 5) | ((mb << 1) & 0x3f));
734 tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb);
735 }
736
737 static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
738 int sh, int mb, int me)
739 {
740 tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
741 }
742
743 static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
744 {
745 tcg_out_rld(s, RLDICL, dst, src, 0, 32);
746 }
747
748 static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c)
749 {
750 tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c);
751 }
752
753 static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
754 {
755 tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
756 }
757
758 static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c)
759 {
760 tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31);
761 }
762
763 static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
764 {
765 tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
766 }
767
768 /* Emit a move into ret of arg, if it can be done in one insn. */
769 static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
770 {
771 if (arg == (int16_t)arg) {
772 tcg_out32(s, ADDI | TAI(ret, 0, arg));
773 return true;
774 }
775 if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
776 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
777 return true;
778 }
779 return false;
780 }
781
782 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
783 tcg_target_long arg, bool in_prologue)
784 {
785 intptr_t tb_diff;
786 tcg_target_long tmp;
787 int shift;
788
789 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
790
791 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
792 arg = (int32_t)arg;
793 }
794
795 /* Load 16-bit immediates with one insn. */
796 if (tcg_out_movi_one(s, ret, arg)) {
797 return;
798 }
799
800 /* Load addresses within the TB with one insn. */
801 tb_diff = tcg_tbrel_diff(s, (void *)arg);
802 if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) {
803 tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff));
804 return;
805 }
806
807 /* Load 32-bit immediates with two insns. Note that we've already
808 eliminated bare ADDIS, so we know both insns are required. */
809 if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) {
810 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
811 tcg_out32(s, ORI | SAI(ret, ret, arg));
812 return;
813 }
814 if (arg == (uint32_t)arg && !(arg & 0x8000)) {
815 tcg_out32(s, ADDI | TAI(ret, 0, arg));
816 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
817 return;
818 }
819
820 /* Load masked 16-bit value. */
821 if (arg > 0 && (arg & 0x8000)) {
822 tmp = arg | 0x7fff;
823 if ((tmp & (tmp + 1)) == 0) {
824 int mb = clz64(tmp + 1) + 1;
825 tcg_out32(s, ADDI | TAI(ret, 0, arg));
826 tcg_out_rld(s, RLDICL, ret, ret, 0, mb);
827 return;
828 }
829 }
830
831 /* Load common masks with 2 insns. */
832 shift = ctz64(arg);
833 tmp = arg >> shift;
834 if (tmp == (int16_t)tmp) {
835 tcg_out32(s, ADDI | TAI(ret, 0, tmp));
836 tcg_out_shli64(s, ret, ret, shift);
837 return;
838 }
839 shift = clz64(arg);
840 if (tcg_out_movi_one(s, ret, arg << shift)) {
841 tcg_out_shri64(s, ret, ret, shift);
842 return;
843 }
844
845 /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */
846 if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) {
847 tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff);
848 return;
849 }
850
851 /* Use the constant pool, if possible. */
852 if (!in_prologue && USE_REG_TB) {
853 new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr,
854 tcg_tbrel_diff(s, NULL));
855 tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0));
856 return;
857 }
858
859 tmp = arg >> 31 >> 1;
860 tcg_out_movi(s, TCG_TYPE_I32, ret, tmp);
861 if (tmp) {
862 tcg_out_shli64(s, ret, ret, 32);
863 }
864 if (arg & 0xffff0000) {
865 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
866 }
867 if (arg & 0xffff) {
868 tcg_out32(s, ORI | SAI(ret, ret, arg));
869 }
870 }
871
872 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
873 TCGReg ret, int64_t val)
874 {
875 uint32_t load_insn;
876 int rel, low;
877 intptr_t add;
878
879 switch (vece) {
880 case MO_8:
881 low = (int8_t)val;
882 if (low >= -16 && low < 16) {
883 tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16));
884 return;
885 }
886 if (have_isa_3_00) {
887 tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11));
888 return;
889 }
890 break;
891
892 case MO_16:
893 low = (int16_t)val;
894 if (low >= -16 && low < 16) {
895 tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16));
896 return;
897 }
898 break;
899
900 case MO_32:
901 low = (int32_t)val;
902 if (low >= -16 && low < 16) {
903 tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16));
904 return;
905 }
906 break;
907 }
908
909 /*
910 * Otherwise we must load the value from the constant pool.
911 */
912 if (USE_REG_TB) {
913 rel = R_PPC_ADDR16;
914 add = tcg_tbrel_diff(s, NULL);
915 } else {
916 rel = R_PPC_ADDR32;
917 add = 0;
918 }
919
920 if (have_vsx) {
921 load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX;
922 load_insn |= VRT(ret) | RB(TCG_REG_TMP1);
923 if (TCG_TARGET_REG_BITS == 64) {
924 new_pool_label(s, val, rel, s->code_ptr, add);
925 } else {
926 new_pool_l2(s, rel, s->code_ptr, add, val >> 32, val);
927 }
928 } else {
929 load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1);
930 if (TCG_TARGET_REG_BITS == 64) {
931 new_pool_l2(s, rel, s->code_ptr, add, val, val);
932 } else {
933 new_pool_l4(s, rel, s->code_ptr, add,
934 val >> 32, val, val >> 32, val);
935 }
936 }
937
938 if (USE_REG_TB) {
939 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0));
940 load_insn |= RA(TCG_REG_TB);
941 } else {
942 tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0));
943 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0));
944 }
945 tcg_out32(s, load_insn);
946 }
947
948 static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
949 tcg_target_long arg)
950 {
951 switch (type) {
952 case TCG_TYPE_I32:
953 case TCG_TYPE_I64:
954 tcg_debug_assert(ret < TCG_REG_V0);
955 tcg_out_movi_int(s, type, ret, arg, false);
956 break;
957
958 default:
959 g_assert_not_reached();
960 }
961 }
962
963 static bool mask_operand(uint32_t c, int *mb, int *me)
964 {
965 uint32_t lsb, test;
966
967 /* Accept a bit pattern like:
968 0....01....1
969 1....10....0
970 0..01..10..0
971 Keep track of the transitions. */
972 if (c == 0 || c == -1) {
973 return false;
974 }
975 test = c;
976 lsb = test & -test;
977 test += lsb;
978 if (test & (test - 1)) {
979 return false;
980 }
981
982 *me = clz32(lsb);
983 *mb = test ? clz32(test & -test) + 1 : 0;
984 return true;
985 }
986
987 static bool mask64_operand(uint64_t c, int *mb, int *me)
988 {
989 uint64_t lsb;
990
991 if (c == 0) {
992 return false;
993 }
994
995 lsb = c & -c;
996 /* Accept 1..10..0. */
997 if (c == -lsb) {
998 *mb = 0;
999 *me = clz64(lsb);
1000 return true;
1001 }
1002 /* Accept 0..01..1. */
1003 if (lsb == 1 && (c & (c + 1)) == 0) {
1004 *mb = clz64(c + 1) + 1;
1005 *me = 63;
1006 return true;
1007 }
1008 return false;
1009 }
1010
1011 static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1012 {
1013 int mb, me;
1014
1015 if (mask_operand(c, &mb, &me)) {
1016 tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
1017 } else if ((c & 0xffff) == c) {
1018 tcg_out32(s, ANDI | SAI(src, dst, c));
1019 return;
1020 } else if ((c & 0xffff0000) == c) {
1021 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1022 return;
1023 } else {
1024 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c);
1025 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1026 }
1027 }
1028
1029 static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
1030 {
1031 int mb, me;
1032
1033 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1034 if (mask64_operand(c, &mb, &me)) {
1035 if (mb == 0) {
1036 tcg_out_rld(s, RLDICR, dst, src, 0, me);
1037 } else {
1038 tcg_out_rld(s, RLDICL, dst, src, 0, mb);
1039 }
1040 } else if ((c & 0xffff) == c) {
1041 tcg_out32(s, ANDI | SAI(src, dst, c));
1042 return;
1043 } else if ((c & 0xffff0000) == c) {
1044 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1045 return;
1046 } else {
1047 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c);
1048 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1049 }
1050 }
1051
1052 static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
1053 int op_lo, int op_hi)
1054 {
1055 if (c >> 16) {
1056 tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
1057 src = dst;
1058 }
1059 if (c & 0xffff) {
1060 tcg_out32(s, op_lo | SAI(src, dst, c));
1061 src = dst;
1062 }
1063 }
1064
1065 static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1066 {
1067 tcg_out_zori32(s, dst, src, c, ORI, ORIS);
1068 }
1069
1070 static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1071 {
1072 tcg_out_zori32(s, dst, src, c, XORI, XORIS);
1073 }
1074
1075 static void tcg_out_b(TCGContext *s, int mask, const tcg_insn_unit *target)
1076 {
1077 ptrdiff_t disp = tcg_pcrel_diff(s, target);
1078 if (in_range_b(disp)) {
1079 tcg_out32(s, B | (disp & 0x3fffffc) | mask);
1080 } else {
1081 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target);
1082 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR);
1083 tcg_out32(s, BCCTR | BO_ALWAYS | mask);
1084 }
1085 }
1086
1087 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
1088 TCGReg base, tcg_target_long offset)
1089 {
1090 tcg_target_long orig = offset, l0, l1, extra = 0, align = 0;
1091 bool is_int_store = false;
1092 TCGReg rs = TCG_REG_TMP1;
1093
1094 switch (opi) {
1095 case LD: case LWA:
1096 align = 3;
1097 /* FALLTHRU */
1098 default:
1099 if (rt > TCG_REG_R0 && rt < TCG_REG_V0) {
1100 rs = rt;
1101 break;
1102 }
1103 break;
1104 case LXSD:
1105 case STXSD:
1106 align = 3;
1107 break;
1108 case LXV:
1109 case STXV:
1110 align = 15;
1111 break;
1112 case STD:
1113 align = 3;
1114 /* FALLTHRU */
1115 case STB: case STH: case STW:
1116 is_int_store = true;
1117 break;
1118 }
1119
1120 /* For unaligned, or very large offsets, use the indexed form. */
1121 if (offset & align || offset != (int32_t)offset || opi == 0) {
1122 if (rs == base) {
1123 rs = TCG_REG_R0;
1124 }
1125 tcg_debug_assert(!is_int_store || rs != rt);
1126 tcg_out_movi(s, TCG_TYPE_PTR, rs, orig);
1127 tcg_out32(s, opx | TAB(rt & 31, base, rs));
1128 return;
1129 }
1130
1131 l0 = (int16_t)offset;
1132 offset = (offset - l0) >> 16;
1133 l1 = (int16_t)offset;
1134
1135 if (l1 < 0 && orig >= 0) {
1136 extra = 0x4000;
1137 l1 = (int16_t)(offset - 0x4000);
1138 }
1139 if (l1) {
1140 tcg_out32(s, ADDIS | TAI(rs, base, l1));
1141 base = rs;
1142 }
1143 if (extra) {
1144 tcg_out32(s, ADDIS | TAI(rs, base, extra));
1145 base = rs;
1146 }
1147 if (opi != ADDI || base != rt || l0 != 0) {
1148 tcg_out32(s, opi | TAI(rt & 31, base, l0));
1149 }
1150 }
1151
1152 static void tcg_out_vsldoi(TCGContext *s, TCGReg ret,
1153 TCGReg va, TCGReg vb, int shb)
1154 {
1155 tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6));
1156 }
1157
1158 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1159 TCGReg base, intptr_t offset)
1160 {
1161 int shift;
1162
1163 switch (type) {
1164 case TCG_TYPE_I32:
1165 if (ret < TCG_REG_V0) {
1166 tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset);
1167 break;
1168 }
1169 if (have_isa_2_07 && have_vsx) {
1170 tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset);
1171 break;
1172 }
1173 tcg_debug_assert((offset & 3) == 0);
1174 tcg_out_mem_long(s, 0, LVEWX, ret, base, offset);
1175 shift = (offset - 4) & 0xc;
1176 if (shift) {
1177 tcg_out_vsldoi(s, ret, ret, ret, shift);
1178 }
1179 break;
1180 case TCG_TYPE_I64:
1181 if (ret < TCG_REG_V0) {
1182 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1183 tcg_out_mem_long(s, LD, LDX, ret, base, offset);
1184 break;
1185 }
1186 /* fallthru */
1187 case TCG_TYPE_V64:
1188 tcg_debug_assert(ret >= TCG_REG_V0);
1189 if (have_vsx) {
1190 tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX,
1191 ret, base, offset);
1192 break;
1193 }
1194 tcg_debug_assert((offset & 7) == 0);
1195 tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16);
1196 if (offset & 8) {
1197 tcg_out_vsldoi(s, ret, ret, ret, 8);
1198 }
1199 break;
1200 case TCG_TYPE_V128:
1201 tcg_debug_assert(ret >= TCG_REG_V0);
1202 tcg_debug_assert((offset & 15) == 0);
1203 tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0,
1204 LVX, ret, base, offset);
1205 break;
1206 default:
1207 g_assert_not_reached();
1208 }
1209 }
1210
1211 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1212 TCGReg base, intptr_t offset)
1213 {
1214 int shift;
1215
1216 switch (type) {
1217 case TCG_TYPE_I32:
1218 if (arg < TCG_REG_V0) {
1219 tcg_out_mem_long(s, STW, STWX, arg, base, offset);
1220 break;
1221 }
1222 if (have_isa_2_07 && have_vsx) {
1223 tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset);
1224 break;
1225 }
1226 assert((offset & 3) == 0);
1227 tcg_debug_assert((offset & 3) == 0);
1228 shift = (offset - 4) & 0xc;
1229 if (shift) {
1230 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift);
1231 arg = TCG_VEC_TMP1;
1232 }
1233 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1234 break;
1235 case TCG_TYPE_I64:
1236 if (arg < TCG_REG_V0) {
1237 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1238 tcg_out_mem_long(s, STD, STDX, arg, base, offset);
1239 break;
1240 }
1241 /* fallthru */
1242 case TCG_TYPE_V64:
1243 tcg_debug_assert(arg >= TCG_REG_V0);
1244 if (have_vsx) {
1245 tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0,
1246 STXSDX, arg, base, offset);
1247 break;
1248 }
1249 tcg_debug_assert((offset & 7) == 0);
1250 if (offset & 8) {
1251 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8);
1252 arg = TCG_VEC_TMP1;
1253 }
1254 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1255 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4);
1256 break;
1257 case TCG_TYPE_V128:
1258 tcg_debug_assert(arg >= TCG_REG_V0);
1259 tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0,
1260 STVX, arg, base, offset);
1261 break;
1262 default:
1263 g_assert_not_reached();
1264 }
1265 }
1266
1267 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1268 TCGReg base, intptr_t ofs)
1269 {
1270 return false;
1271 }
1272
1273 static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
1274 int const_arg2, int cr, TCGType type)
1275 {
1276 int imm;
1277 uint32_t op;
1278
1279 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1280
1281 /* Simplify the comparisons below wrt CMPI. */
1282 if (type == TCG_TYPE_I32) {
1283 arg2 = (int32_t)arg2;
1284 }
1285
1286 switch (cond) {
1287 case TCG_COND_EQ:
1288 case TCG_COND_NE:
1289 if (const_arg2) {
1290 if ((int16_t) arg2 == arg2) {
1291 op = CMPI;
1292 imm = 1;
1293 break;
1294 } else if ((uint16_t) arg2 == arg2) {
1295 op = CMPLI;
1296 imm = 1;
1297 break;
1298 }
1299 }
1300 op = CMPL;
1301 imm = 0;
1302 break;
1303
1304 case TCG_COND_LT:
1305 case TCG_COND_GE:
1306 case TCG_COND_LE:
1307 case TCG_COND_GT:
1308 if (const_arg2) {
1309 if ((int16_t) arg2 == arg2) {
1310 op = CMPI;
1311 imm = 1;
1312 break;
1313 }
1314 }
1315 op = CMP;
1316 imm = 0;
1317 break;
1318
1319 case TCG_COND_LTU:
1320 case TCG_COND_GEU:
1321 case TCG_COND_LEU:
1322 case TCG_COND_GTU:
1323 if (const_arg2) {
1324 if ((uint16_t) arg2 == arg2) {
1325 op = CMPLI;
1326 imm = 1;
1327 break;
1328 }
1329 }
1330 op = CMPL;
1331 imm = 0;
1332 break;
1333
1334 default:
1335 tcg_abort();
1336 }
1337 op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
1338
1339 if (imm) {
1340 tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
1341 } else {
1342 if (const_arg2) {
1343 tcg_out_movi(s, type, TCG_REG_R0, arg2);
1344 arg2 = TCG_REG_R0;
1345 }
1346 tcg_out32(s, op | RA(arg1) | RB(arg2));
1347 }
1348 }
1349
1350 static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
1351 TCGReg dst, TCGReg src)
1352 {
1353 if (type == TCG_TYPE_I32) {
1354 tcg_out32(s, CNTLZW | RS(src) | RA(dst));
1355 tcg_out_shri32(s, dst, dst, 5);
1356 } else {
1357 tcg_out32(s, CNTLZD | RS(src) | RA(dst));
1358 tcg_out_shri64(s, dst, dst, 6);
1359 }
1360 }
1361
1362 static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
1363 {
1364 /* X != 0 implies X + -1 generates a carry. Extra addition
1365 trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
1366 if (dst != src) {
1367 tcg_out32(s, ADDIC | TAI(dst, src, -1));
1368 tcg_out32(s, SUBFE | TAB(dst, dst, src));
1369 } else {
1370 tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1));
1371 tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src));
1372 }
1373 }
1374
1375 static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
1376 bool const_arg2)
1377 {
1378 if (const_arg2) {
1379 if ((uint32_t)arg2 == arg2) {
1380 tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
1381 } else {
1382 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
1383 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
1384 }
1385 } else {
1386 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
1387 }
1388 return TCG_REG_R0;
1389 }
1390
1391 static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
1392 TCGArg arg0, TCGArg arg1, TCGArg arg2,
1393 int const_arg2)
1394 {
1395 int crop, sh;
1396
1397 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1398
1399 /* Ignore high bits of a potential constant arg2. */
1400 if (type == TCG_TYPE_I32) {
1401 arg2 = (uint32_t)arg2;
1402 }
1403
1404 /* Handle common and trivial cases before handling anything else. */
1405 if (arg2 == 0) {
1406 switch (cond) {
1407 case TCG_COND_EQ:
1408 tcg_out_setcond_eq0(s, type, arg0, arg1);
1409 return;
1410 case TCG_COND_NE:
1411 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1412 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1413 arg1 = TCG_REG_R0;
1414 }
1415 tcg_out_setcond_ne0(s, arg0, arg1);
1416 return;
1417 case TCG_COND_GE:
1418 tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
1419 arg1 = arg0;
1420 /* FALLTHRU */
1421 case TCG_COND_LT:
1422 /* Extract the sign bit. */
1423 if (type == TCG_TYPE_I32) {
1424 tcg_out_shri32(s, arg0, arg1, 31);
1425 } else {
1426 tcg_out_shri64(s, arg0, arg1, 63);
1427 }
1428 return;
1429 default:
1430 break;
1431 }
1432 }
1433
1434 /* If we have ISEL, we can implement everything with 3 or 4 insns.
1435 All other cases below are also at least 3 insns, so speed up the
1436 code generator by not considering them and always using ISEL. */
1437 if (have_isel) {
1438 int isel, tab;
1439
1440 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1441
1442 isel = tcg_to_isel[cond];
1443
1444 tcg_out_movi(s, type, arg0, 1);
1445 if (isel & 1) {
1446 /* arg0 = (bc ? 0 : 1) */
1447 tab = TAB(arg0, 0, arg0);
1448 isel &= ~1;
1449 } else {
1450 /* arg0 = (bc ? 1 : 0) */
1451 tcg_out_movi(s, type, TCG_REG_R0, 0);
1452 tab = TAB(arg0, arg0, TCG_REG_R0);
1453 }
1454 tcg_out32(s, isel | tab);
1455 return;
1456 }
1457
1458 switch (cond) {
1459 case TCG_COND_EQ:
1460 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1461 tcg_out_setcond_eq0(s, type, arg0, arg1);
1462 return;
1463
1464 case TCG_COND_NE:
1465 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1466 /* Discard the high bits only once, rather than both inputs. */
1467 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1468 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1469 arg1 = TCG_REG_R0;
1470 }
1471 tcg_out_setcond_ne0(s, arg0, arg1);
1472 return;
1473
1474 case TCG_COND_GT:
1475 case TCG_COND_GTU:
1476 sh = 30;
1477 crop = 0;
1478 goto crtest;
1479
1480 case TCG_COND_LT:
1481 case TCG_COND_LTU:
1482 sh = 29;
1483 crop = 0;
1484 goto crtest;
1485
1486 case TCG_COND_GE:
1487 case TCG_COND_GEU:
1488 sh = 31;
1489 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT);
1490 goto crtest;
1491
1492 case TCG_COND_LE:
1493 case TCG_COND_LEU:
1494 sh = 31;
1495 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT);
1496 crtest:
1497 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1498 if (crop) {
1499 tcg_out32(s, crop);
1500 }
1501 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1502 tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
1503 break;
1504
1505 default:
1506 tcg_abort();
1507 }
1508 }
1509
1510 static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l)
1511 {
1512 if (l->has_value) {
1513 bc |= reloc_pc14_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr);
1514 } else {
1515 tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0);
1516 }
1517 tcg_out32(s, bc);
1518 }
1519
1520 static void tcg_out_brcond(TCGContext *s, TCGCond cond,
1521 TCGArg arg1, TCGArg arg2, int const_arg2,
1522 TCGLabel *l, TCGType type)
1523 {
1524 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1525 tcg_out_bc(s, tcg_to_bc[cond], l);
1526 }
1527
1528 static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
1529 TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
1530 TCGArg v2, bool const_c2)
1531 {
1532 /* If for some reason both inputs are zero, don't produce bad code. */
1533 if (v1 == 0 && v2 == 0) {
1534 tcg_out_movi(s, type, dest, 0);
1535 return;
1536 }
1537
1538 tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
1539
1540 if (have_isel) {
1541 int isel = tcg_to_isel[cond];
1542
1543 /* Swap the V operands if the operation indicates inversion. */
1544 if (isel & 1) {
1545 int t = v1;
1546 v1 = v2;
1547 v2 = t;
1548 isel &= ~1;
1549 }
1550 /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
1551 if (v2 == 0) {
1552 tcg_out_movi(s, type, TCG_REG_R0, 0);
1553 }
1554 tcg_out32(s, isel | TAB(dest, v1, v2));
1555 } else {
1556 if (dest == v2) {
1557 cond = tcg_invert_cond(cond);
1558 v2 = v1;
1559 } else if (dest != v1) {
1560 if (v1 == 0) {
1561 tcg_out_movi(s, type, dest, 0);
1562 } else {
1563 tcg_out_mov(s, type, dest, v1);
1564 }
1565 }
1566 /* Branch forward over one insn */
1567 tcg_out32(s, tcg_to_bc[cond] | 8);
1568 if (v2 == 0) {
1569 tcg_out_movi(s, type, dest, 0);
1570 } else {
1571 tcg_out_mov(s, type, dest, v2);
1572 }
1573 }
1574 }
1575
1576 static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc,
1577 TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2)
1578 {
1579 if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) {
1580 tcg_out32(s, opc | RA(a0) | RS(a1));
1581 } else {
1582 tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type);
1583 /* Note that the only other valid constant for a2 is 0. */
1584 if (have_isel) {
1585 tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1));
1586 tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0));
1587 } else if (!const_a2 && a0 == a2) {
1588 tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8);
1589 tcg_out32(s, opc | RA(a0) | RS(a1));
1590 } else {
1591 tcg_out32(s, opc | RA(a0) | RS(a1));
1592 tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8);
1593 if (const_a2) {
1594 tcg_out_movi(s, type, a0, 0);
1595 } else {
1596 tcg_out_mov(s, type, a0, a2);
1597 }
1598 }
1599 }
1600 }
1601
1602 static void tcg_out_cmp2(TCGContext *s, const TCGArg *args,
1603 const int *const_args)
1604 {
1605 static const struct { uint8_t bit1, bit2; } bits[] = {
1606 [TCG_COND_LT ] = { CR_LT, CR_LT },
1607 [TCG_COND_LE ] = { CR_LT, CR_GT },
1608 [TCG_COND_GT ] = { CR_GT, CR_GT },
1609 [TCG_COND_GE ] = { CR_GT, CR_LT },
1610 [TCG_COND_LTU] = { CR_LT, CR_LT },
1611 [TCG_COND_LEU] = { CR_LT, CR_GT },
1612 [TCG_COND_GTU] = { CR_GT, CR_GT },
1613 [TCG_COND_GEU] = { CR_GT, CR_LT },
1614 };
1615
1616 TCGCond cond = args[4], cond2;
1617 TCGArg al, ah, bl, bh;
1618 int blconst, bhconst;
1619 int op, bit1, bit2;
1620
1621 al = args[0];
1622 ah = args[1];
1623 bl = args[2];
1624 bh = args[3];
1625 blconst = const_args[2];
1626 bhconst = const_args[3];
1627
1628 switch (cond) {
1629 case TCG_COND_EQ:
1630 op = CRAND;
1631 goto do_equality;
1632 case TCG_COND_NE:
1633 op = CRNAND;
1634 do_equality:
1635 tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32);
1636 tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32);
1637 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1638 break;
1639
1640 case TCG_COND_LT:
1641 case TCG_COND_LE:
1642 case TCG_COND_GT:
1643 case TCG_COND_GE:
1644 case TCG_COND_LTU:
1645 case TCG_COND_LEU:
1646 case TCG_COND_GTU:
1647 case TCG_COND_GEU:
1648 bit1 = bits[cond].bit1;
1649 bit2 = bits[cond].bit2;
1650 op = (bit1 != bit2 ? CRANDC : CRAND);
1651 cond2 = tcg_unsigned_cond(cond);
1652
1653 tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32);
1654 tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32);
1655 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2));
1656 tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ));
1657 break;
1658
1659 default:
1660 tcg_abort();
1661 }
1662 }
1663
1664 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1665 const int *const_args)
1666 {
1667 tcg_out_cmp2(s, args + 1, const_args + 1);
1668 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1669 tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31);
1670 }
1671
1672 static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
1673 const int *const_args)
1674 {
1675 tcg_out_cmp2(s, args, const_args);
1676 tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5]));
1677 }
1678
1679 static void tcg_out_mb(TCGContext *s, TCGArg a0)
1680 {
1681 uint32_t insn = HWSYNC;
1682 a0 &= TCG_MO_ALL;
1683 if (a0 == TCG_MO_LD_LD) {
1684 insn = LWSYNC;
1685 } else if (a0 == TCG_MO_ST_ST) {
1686 insn = EIEIO;
1687 }
1688 tcg_out32(s, insn);
1689 }
1690
1691 void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
1692 uintptr_t jmp_rw, uintptr_t addr)
1693 {
1694 if (TCG_TARGET_REG_BITS == 64) {
1695 tcg_insn_unit i1, i2;
1696 intptr_t tb_diff = addr - tc_ptr;
1697 intptr_t br_diff = addr - (jmp_rx + 4);
1698 uint64_t pair;
1699
1700 /* This does not exercise the range of the branch, but we do
1701 still need to be able to load the new value of TCG_REG_TB.
1702 But this does still happen quite often. */
1703 if (tb_diff == (int16_t)tb_diff) {
1704 i1 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, tb_diff);
1705 i2 = B | (br_diff & 0x3fffffc);
1706 } else {
1707 intptr_t lo = (int16_t)tb_diff;
1708 intptr_t hi = (int32_t)(tb_diff - lo);
1709 assert(tb_diff == hi + lo);
1710 i1 = ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, hi >> 16);
1711 i2 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, lo);
1712 }
1713 #ifdef HOST_WORDS_BIGENDIAN
1714 pair = (uint64_t)i1 << 32 | i2;
1715 #else
1716 pair = (uint64_t)i2 << 32 | i1;
1717 #endif
1718
1719 /* As per the enclosing if, this is ppc64. Avoid the _Static_assert
1720 within qatomic_set that would fail to build a ppc32 host. */
1721 qatomic_set__nocheck((uint64_t *)jmp_rw, pair);
1722 flush_idcache_range(jmp_rx, jmp_rw, 8);
1723 } else {
1724 intptr_t diff = addr - jmp_rx;
1725 tcg_debug_assert(in_range_b(diff));
1726 qatomic_set((uint32_t *)jmp_rw, B | (diff & 0x3fffffc));
1727 flush_idcache_range(jmp_rx, jmp_rw, 4);
1728 }
1729 }
1730
1731 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target)
1732 {
1733 #ifdef _CALL_AIX
1734 /* Look through the descriptor. If the branch is in range, and we
1735 don't have to spend too much effort on building the toc. */
1736 const void *tgt = ((const void * const *)target)[0];
1737 uintptr_t toc = ((const uintptr_t *)target)[1];
1738 intptr_t diff = tcg_pcrel_diff(s, tgt);
1739
1740 if (in_range_b(diff) && toc == (uint32_t)toc) {
1741 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc);
1742 tcg_out_b(s, LK, tgt);
1743 } else {
1744 /* Fold the low bits of the constant into the addresses below. */
1745 intptr_t arg = (intptr_t)target;
1746 int ofs = (int16_t)arg;
1747
1748 if (ofs + 8 < 0x8000) {
1749 arg -= ofs;
1750 } else {
1751 ofs = 0;
1752 }
1753 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg);
1754 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs);
1755 tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR);
1756 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP);
1757 tcg_out32(s, BCCTR | BO_ALWAYS | LK);
1758 }
1759 #elif defined(_CALL_ELF) && _CALL_ELF == 2
1760 intptr_t diff;
1761
1762 /* In the ELFv2 ABI, we have to set up r12 to contain the destination
1763 address, which the callee uses to compute its TOC address. */
1764 /* FIXME: when the branch is in range, we could avoid r12 load if we
1765 knew that the destination uses the same TOC, and what its local
1766 entry point offset is. */
1767 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target);
1768
1769 diff = tcg_pcrel_diff(s, target);
1770 if (in_range_b(diff)) {
1771 tcg_out_b(s, LK, target);
1772 } else {
1773 tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR);
1774 tcg_out32(s, BCCTR | BO_ALWAYS | LK);
1775 }
1776 #else
1777 tcg_out_b(s, LK, target);
1778 #endif
1779 }
1780
1781 static const uint32_t qemu_ldx_opc[16] = {
1782 [MO_UB] = LBZX,
1783 [MO_UW] = LHZX,
1784 [MO_UL] = LWZX,
1785 [MO_Q] = LDX,
1786 [MO_SW] = LHAX,
1787 [MO_SL] = LWAX,
1788 [MO_BSWAP | MO_UB] = LBZX,
1789 [MO_BSWAP | MO_UW] = LHBRX,
1790 [MO_BSWAP | MO_UL] = LWBRX,
1791 [MO_BSWAP | MO_Q] = LDBRX,
1792 };
1793
1794 static const uint32_t qemu_stx_opc[16] = {
1795 [MO_UB] = STBX,
1796 [MO_UW] = STHX,
1797 [MO_UL] = STWX,
1798 [MO_Q] = STDX,
1799 [MO_BSWAP | MO_UB] = STBX,
1800 [MO_BSWAP | MO_UW] = STHBRX,
1801 [MO_BSWAP | MO_UL] = STWBRX,
1802 [MO_BSWAP | MO_Q] = STDBRX,
1803 };
1804
1805 static const uint32_t qemu_exts_opc[4] = {
1806 EXTSB, EXTSH, EXTSW, 0
1807 };
1808
1809 #if defined (CONFIG_SOFTMMU)
1810 #include "../tcg-ldst.c.inc"
1811
1812 /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
1813 * int mmu_idx, uintptr_t ra)
1814 */
1815 static void * const qemu_ld_helpers[16] = {
1816 [MO_UB] = helper_ret_ldub_mmu,
1817 [MO_LEUW] = helper_le_lduw_mmu,
1818 [MO_LEUL] = helper_le_ldul_mmu,
1819 [MO_LEQ] = helper_le_ldq_mmu,
1820 [MO_BEUW] = helper_be_lduw_mmu,
1821 [MO_BEUL] = helper_be_ldul_mmu,
1822 [MO_BEQ] = helper_be_ldq_mmu,
1823 };
1824
1825 /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
1826 * uintxx_t val, int mmu_idx, uintptr_t ra)
1827 */
1828 static void * const qemu_st_helpers[16] = {
1829 [MO_UB] = helper_ret_stb_mmu,
1830 [MO_LEUW] = helper_le_stw_mmu,
1831 [MO_LEUL] = helper_le_stl_mmu,
1832 [MO_LEQ] = helper_le_stq_mmu,
1833 [MO_BEUW] = helper_be_stw_mmu,
1834 [MO_BEUL] = helper_be_stl_mmu,
1835 [MO_BEQ] = helper_be_stq_mmu,
1836 };
1837
1838 /* We expect to use a 16-bit negative offset from ENV. */
1839 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1840 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -32768);
1841
1842 /* Perform the TLB load and compare. Places the result of the comparison
1843 in CR7, loads the addend of the TLB into R3, and returns the register
1844 containing the guest address (zero-extended into R4). Clobbers R0 and R2. */
1845
1846 static TCGReg tcg_out_tlb_read(TCGContext *s, MemOp opc,
1847 TCGReg addrlo, TCGReg addrhi,
1848 int mem_index, bool is_read)
1849 {
1850 int cmp_off
1851 = (is_read
1852 ? offsetof(CPUTLBEntry, addr_read)
1853 : offsetof(CPUTLBEntry, addr_write));
1854 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1855 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1856 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1857 unsigned s_bits = opc & MO_SIZE;
1858 unsigned a_bits = get_alignment_bits(opc);
1859
1860 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
1861 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_AREG0, mask_off);
1862 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R4, TCG_AREG0, table_off);
1863
1864 /* Extract the page index, shifted into place for tlb index. */
1865 if (TCG_TARGET_REG_BITS == 32) {
1866 tcg_out_shri32(s, TCG_REG_TMP1, addrlo,
1867 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1868 } else {
1869 tcg_out_shri64(s, TCG_REG_TMP1, addrlo,
1870 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1871 }
1872 tcg_out32(s, AND | SAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_TMP1));
1873
1874 /* Load the TLB comparator. */
1875 if (cmp_off == 0 && TCG_TARGET_REG_BITS >= TARGET_LONG_BITS) {
1876 uint32_t lxu = (TCG_TARGET_REG_BITS == 32 || TARGET_LONG_BITS == 32
1877 ? LWZUX : LDUX);
1878 tcg_out32(s, lxu | TAB(TCG_REG_TMP1, TCG_REG_R3, TCG_REG_R4));
1879 } else {
1880 tcg_out32(s, ADD | TAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_R4));
1881 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1882 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP1, TCG_REG_R3, cmp_off + 4);
1883 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_R4, TCG_REG_R3, cmp_off);
1884 } else {
1885 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_TMP1, TCG_REG_R3, cmp_off);
1886 }
1887 }
1888
1889 /* Load the TLB addend for use on the fast path. Do this asap
1890 to minimize any load use delay. */
1891 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_REG_R3,
1892 offsetof(CPUTLBEntry, addend));
1893
1894 /* Clear the non-page, non-alignment bits from the address */
1895 if (TCG_TARGET_REG_BITS == 32) {
1896 /* We don't support unaligned accesses on 32-bits.
1897 * Preserve the bottom bits and thus trigger a comparison
1898 * failure on unaligned accesses.
1899 */
1900 if (a_bits < s_bits) {
1901 a_bits = s_bits;
1902 }
1903 tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0,
1904 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
1905 } else {
1906 TCGReg t = addrlo;
1907
1908 /* If the access is unaligned, we need to make sure we fail if we
1909 * cross a page boundary. The trick is to add the access size-1
1910 * to the address before masking the low bits. That will make the
1911 * address overflow to the next page if we cross a page boundary,
1912 * which will then force a mismatch of the TLB compare.
1913 */
1914 if (a_bits < s_bits) {
1915 unsigned a_mask = (1 << a_bits) - 1;
1916 unsigned s_mask = (1 << s_bits) - 1;
1917 tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask));
1918 t = TCG_REG_R0;
1919 }
1920
1921 /* Mask the address for the requested alignment. */
1922 if (TARGET_LONG_BITS == 32) {
1923 tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0,
1924 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
1925 /* Zero-extend the address for use in the final address. */
1926 tcg_out_ext32u(s, TCG_REG_R4, addrlo);
1927 addrlo = TCG_REG_R4;
1928 } else if (a_bits == 0) {
1929 tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - TARGET_PAGE_BITS);
1930 } else {
1931 tcg_out_rld(s, RLDICL, TCG_REG_R0, t,
1932 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - a_bits);
1933 tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, TARGET_PAGE_BITS, 0);
1934 }
1935 }
1936
1937 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1938 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
1939 0, 7, TCG_TYPE_I32);
1940 tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_R4, 0, 6, TCG_TYPE_I32);
1941 tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1942 } else {
1943 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
1944 0, 7, TCG_TYPE_TL);
1945 }
1946
1947 return addrlo;
1948 }
1949
1950 /* Record the context of a call to the out of line helper code for the slow
1951 path for a load or store, so that we can later generate the correct
1952 helper code. */
1953 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, TCGMemOpIdx oi,
1954 TCGReg datalo_reg, TCGReg datahi_reg,
1955 TCGReg addrlo_reg, TCGReg addrhi_reg,
1956 tcg_insn_unit *raddr, tcg_insn_unit *lptr)
1957 {
1958 TCGLabelQemuLdst *label = new_ldst_label(s);
1959
1960 label->is_ld = is_ld;
1961 label->oi = oi;
1962 label->datalo_reg = datalo_reg;
1963 label->datahi_reg = datahi_reg;
1964 label->addrlo_reg = addrlo_reg;
1965 label->addrhi_reg = addrhi_reg;
1966 label->raddr = tcg_splitwx_to_rx(raddr);
1967 label->label_ptr[0] = lptr;
1968 }
1969
1970 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
1971 {
1972 TCGMemOpIdx oi = lb->oi;
1973 MemOp opc = get_memop(oi);
1974 TCGReg hi, lo, arg = TCG_REG_R3;
1975
1976 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
1977 return false;
1978 }
1979
1980 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
1981
1982 lo = lb->addrlo_reg;
1983 hi = lb->addrhi_reg;
1984 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
1985 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1986 arg |= 1;
1987 #endif
1988 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
1989 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
1990 } else {
1991 /* If the address needed to be zero-extended, we'll have already
1992 placed it in R4. The only remaining case is 64-bit guest. */
1993 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
1994 }
1995
1996 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
1997 tcg_out32(s, MFSPR | RT(arg) | LR);
1998
1999 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2000
2001 lo = lb->datalo_reg;
2002 hi = lb->datahi_reg;
2003 if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
2004 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_REG_R4);
2005 tcg_out_mov(s, TCG_TYPE_I32, hi, TCG_REG_R3);
2006 } else if (opc & MO_SIGN) {
2007 uint32_t insn = qemu_exts_opc[opc & MO_SIZE];
2008 tcg_out32(s, insn | RA(lo) | RS(TCG_REG_R3));
2009 } else {
2010 tcg_out_mov(s, TCG_TYPE_REG, lo, TCG_REG_R3);
2011 }
2012
2013 tcg_out_b(s, 0, lb->raddr);
2014 return true;
2015 }
2016
2017 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2018 {
2019 TCGMemOpIdx oi = lb->oi;
2020 MemOp opc = get_memop(oi);
2021 MemOp s_bits = opc & MO_SIZE;
2022 TCGReg hi, lo, arg = TCG_REG_R3;
2023
2024 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2025 return false;
2026 }
2027
2028 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2029
2030 lo = lb->addrlo_reg;
2031 hi = lb->addrhi_reg;
2032 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2033 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2034 arg |= 1;
2035 #endif
2036 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2037 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2038 } else {
2039 /* If the address needed to be zero-extended, we'll have already
2040 placed it in R4. The only remaining case is 64-bit guest. */
2041 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2042 }
2043
2044 lo = lb->datalo_reg;
2045 hi = lb->datahi_reg;
2046 if (TCG_TARGET_REG_BITS == 32) {
2047 switch (s_bits) {
2048 case MO_64:
2049 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
2050 arg |= 1;
2051 #endif
2052 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2053 /* FALLTHRU */
2054 case MO_32:
2055 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2056 break;
2057 default:
2058 tcg_out_rlw(s, RLWINM, arg++, lo, 0, 32 - (8 << s_bits), 31);
2059 break;
2060 }
2061 } else {
2062 if (s_bits == MO_64) {
2063 tcg_out_mov(s, TCG_TYPE_I64, arg++, lo);
2064 } else {
2065 tcg_out_rld(s, RLDICL, arg++, lo, 0, 64 - (8 << s_bits));
2066 }
2067 }
2068
2069 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2070 tcg_out32(s, MFSPR | RT(arg) | LR);
2071
2072 tcg_out_call(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2073
2074 tcg_out_b(s, 0, lb->raddr);
2075 return true;
2076 }
2077 #endif /* SOFTMMU */
2078
2079 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
2080 {
2081 TCGReg datalo, datahi, addrlo, rbase;
2082 TCGReg addrhi __attribute__((unused));
2083 TCGMemOpIdx oi;
2084 MemOp opc, s_bits;
2085 #ifdef CONFIG_SOFTMMU
2086 int mem_index;
2087 tcg_insn_unit *label_ptr;
2088 #endif
2089
2090 datalo = *args++;
2091 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2092 addrlo = *args++;
2093 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2094 oi = *args++;
2095 opc = get_memop(oi);
2096 s_bits = opc & MO_SIZE;
2097
2098 #ifdef CONFIG_SOFTMMU
2099 mem_index = get_mmuidx(oi);
2100 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, true);
2101
2102 /* Load a pointer into the current opcode w/conditional branch-link. */
2103 label_ptr = s->code_ptr;
2104 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2105
2106 rbase = TCG_REG_R3;
2107 #else /* !CONFIG_SOFTMMU */
2108 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2109 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2110 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2111 addrlo = TCG_REG_TMP1;
2112 }
2113 #endif
2114
2115 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2116 if (opc & MO_BSWAP) {
2117 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2118 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2119 tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0));
2120 } else if (rbase != 0) {
2121 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2122 tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo));
2123 tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0));
2124 } else if (addrlo == datahi) {
2125 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2126 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2127 } else {
2128 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2129 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2130 }
2131 } else {
2132 uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)];
2133 if (!have_isa_2_06 && insn == LDBRX) {
2134 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2135 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2136 tcg_out32(s, LWBRX | TAB(TCG_REG_R0, rbase, TCG_REG_R0));
2137 tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0);
2138 } else if (insn) {
2139 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2140 } else {
2141 insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)];
2142 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2143 insn = qemu_exts_opc[s_bits];
2144 tcg_out32(s, insn | RA(datalo) | RS(datalo));
2145 }
2146 }
2147
2148 #ifdef CONFIG_SOFTMMU
2149 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
2150 s->code_ptr, label_ptr);
2151 #endif
2152 }
2153
2154 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
2155 {
2156 TCGReg datalo, datahi, addrlo, rbase;
2157 TCGReg addrhi __attribute__((unused));
2158 TCGMemOpIdx oi;
2159 MemOp opc, s_bits;
2160 #ifdef CONFIG_SOFTMMU
2161 int mem_index;
2162 tcg_insn_unit *label_ptr;
2163 #endif
2164
2165 datalo = *args++;
2166 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2167 addrlo = *args++;
2168 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2169 oi = *args++;
2170 opc = get_memop(oi);
2171 s_bits = opc & MO_SIZE;
2172
2173 #ifdef CONFIG_SOFTMMU
2174 mem_index = get_mmuidx(oi);
2175 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, false);
2176
2177 /* Load a pointer into the current opcode w/conditional branch-link. */
2178 label_ptr = s->code_ptr;
2179 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2180
2181 rbase = TCG_REG_R3;
2182 #else /* !CONFIG_SOFTMMU */
2183 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2184 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2185 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2186 addrlo = TCG_REG_TMP1;
2187 }
2188 #endif
2189
2190 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2191 if (opc & MO_BSWAP) {
2192 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2193 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2194 tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0));
2195 } else if (rbase != 0) {
2196 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2197 tcg_out32(s, STWX | SAB(datahi, rbase, addrlo));
2198 tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0));
2199 } else {
2200 tcg_out32(s, STW | TAI(datahi, addrlo, 0));
2201 tcg_out32(s, STW | TAI(datalo, addrlo, 4));
2202 }
2203 } else {
2204 uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)];
2205 if (!have_isa_2_06 && insn == STDBRX) {
2206 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2207 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, addrlo, 4));
2208 tcg_out_shri64(s, TCG_REG_R0, datalo, 32);
2209 tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, TCG_REG_TMP1));
2210 } else {
2211 tcg_out32(s, insn | SAB(datalo, rbase, addrlo));
2212 }
2213 }
2214
2215 #ifdef CONFIG_SOFTMMU
2216 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi,
2217 s->code_ptr, label_ptr);
2218 #endif
2219 }
2220
2221 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
2222 {
2223 int i;
2224 for (i = 0; i < count; ++i) {
2225 p[i] = NOP;
2226 }
2227 }
2228
2229 /* Parameters for function call generation, used in tcg.c. */
2230 #define TCG_TARGET_STACK_ALIGN 16
2231 #define TCG_TARGET_EXTEND_ARGS 1
2232
2233 #ifdef _CALL_AIX
2234 # define LINK_AREA_SIZE (6 * SZR)
2235 # define LR_OFFSET (1 * SZR)
2236 # define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR)
2237 #elif defined(TCG_TARGET_CALL_DARWIN)
2238 # define LINK_AREA_SIZE (6 * SZR)
2239 # define LR_OFFSET (2 * SZR)
2240 #elif TCG_TARGET_REG_BITS == 64
2241 # if defined(_CALL_ELF) && _CALL_ELF == 2
2242 # define LINK_AREA_SIZE (4 * SZR)
2243 # define LR_OFFSET (1 * SZR)
2244 # endif
2245 #else /* TCG_TARGET_REG_BITS == 32 */
2246 # if defined(_CALL_SYSV)
2247 # define LINK_AREA_SIZE (2 * SZR)
2248 # define LR_OFFSET (1 * SZR)
2249 # endif
2250 #endif
2251 #ifndef LR_OFFSET
2252 # error "Unhandled abi"
2253 #endif
2254 #ifndef TCG_TARGET_CALL_STACK_OFFSET
2255 # define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE
2256 #endif
2257
2258 #define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
2259 #define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR)
2260
2261 #define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \
2262 + TCG_STATIC_CALL_ARGS_SIZE \
2263 + CPU_TEMP_BUF_SIZE \
2264 + REG_SAVE_SIZE \
2265 + TCG_TARGET_STACK_ALIGN - 1) \
2266 & -TCG_TARGET_STACK_ALIGN)
2267
2268 #define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE)
2269
2270 static void tcg_target_qemu_prologue(TCGContext *s)
2271 {
2272 int i;
2273
2274 #ifdef _CALL_AIX
2275 const void **desc = (const void **)s->code_ptr;
2276 desc[0] = tcg_splitwx_to_rx(desc + 2); /* entry point */
2277 desc[1] = 0; /* environment pointer */
2278 s->code_ptr = (void *)(desc + 2); /* skip over descriptor */
2279 #endif
2280
2281 tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE,
2282 CPU_TEMP_BUF_SIZE);
2283
2284 /* Prologue */
2285 tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR);
2286 tcg_out32(s, (SZR == 8 ? STDU : STWU)
2287 | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE));
2288
2289 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2290 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2291 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2292 }
2293 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2294
2295 #ifndef CONFIG_SOFTMMU
2296 if (guest_base) {
2297 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
2298 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
2299 }
2300 #endif
2301
2302 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
2303 tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR);
2304 if (USE_REG_TB) {
2305 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
2306 }
2307 tcg_out32(s, BCCTR | BO_ALWAYS);
2308
2309 /* Epilogue */
2310 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
2311
2312 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2313 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2314 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2315 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2316 }
2317 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR);
2318 tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE));
2319 tcg_out32(s, BCLR | BO_ALWAYS);
2320 }
2321
2322 static void tcg_out_op(TCGContext *s, TCGOpcode opc,
2323 const TCGArg args[TCG_MAX_OP_ARGS],
2324 const int const_args[TCG_MAX_OP_ARGS])
2325 {
2326 TCGArg a0, a1, a2;
2327 int c;
2328
2329 switch (opc) {
2330 case INDEX_op_exit_tb:
2331 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, args[0]);
2332 tcg_out_b(s, 0, tcg_code_gen_epilogue);
2333 break;
2334 case INDEX_op_goto_tb:
2335 if (s->tb_jmp_insn_offset) {
2336 /* Direct jump. */
2337 if (TCG_TARGET_REG_BITS == 64) {
2338 /* Ensure the next insns are 8-byte aligned. */
2339 if ((uintptr_t)s->code_ptr & 7) {
2340 tcg_out32(s, NOP);
2341 }
2342 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2343 tcg_out32(s, ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2344 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2345 } else {
2346 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2347 tcg_out32(s, B);
2348 s->tb_jmp_reset_offset[args[0]] = tcg_current_code_size(s);
2349 break;
2350 }
2351 } else {
2352 /* Indirect jump. */
2353 tcg_debug_assert(s->tb_jmp_insn_offset == NULL);
2354 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TB, 0,
2355 (intptr_t)(s->tb_jmp_insn_offset + args[0]));
2356 }
2357 tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR);
2358 tcg_out32(s, BCCTR | BO_ALWAYS);
2359 set_jmp_reset_offset(s, args[0]);
2360 if (USE_REG_TB) {
2361 /* For the unlinked case, need to reset TCG_REG_TB. */
2362 tcg_out_mem_long(s, ADDI, ADD, TCG_REG_TB, TCG_REG_TB,
2363 -tcg_current_code_size(s));
2364 }
2365 break;
2366 case INDEX_op_goto_ptr:
2367 tcg_out32(s, MTSPR | RS(args[0]) | CTR);
2368 if (USE_REG_TB) {
2369 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]);
2370 }
2371 tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0));
2372 tcg_out32(s, BCCTR | BO_ALWAYS);
2373 break;
2374 case INDEX_op_br:
2375 {
2376 TCGLabel *l = arg_label(args[0]);
2377 uint32_t insn = B;
2378
2379 if (l->has_value) {
2380 insn |= reloc_pc24_val(tcg_splitwx_to_rx(s->code_ptr),
2381 l->u.value_ptr);
2382 } else {
2383 tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0);
2384 }
2385 tcg_out32(s, insn);
2386 }
2387 break;
2388 case INDEX_op_ld8u_i32:
2389 case INDEX_op_ld8u_i64:
2390 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2391 break;
2392 case INDEX_op_ld8s_i32:
2393 case INDEX_op_ld8s_i64:
2394 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2395 tcg_out32(s, EXTSB | RS(args[0]) | RA(args[0]));
2396 break;
2397 case INDEX_op_ld16u_i32:
2398 case INDEX_op_ld16u_i64:
2399 tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]);
2400 break;
2401 case INDEX_op_ld16s_i32:
2402 case INDEX_op_ld16s_i64:
2403 tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]);
2404 break;
2405 case INDEX_op_ld_i32:
2406 case INDEX_op_ld32u_i64:
2407 tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]);
2408 break;
2409 case INDEX_op_ld32s_i64:
2410 tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]);
2411 break;
2412 case INDEX_op_ld_i64:
2413 tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]);
2414 break;
2415 case INDEX_op_st8_i32:
2416 case INDEX_op_st8_i64:
2417 tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]);
2418 break;
2419 case INDEX_op_st16_i32:
2420 case INDEX_op_st16_i64:
2421 tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]);
2422 break;
2423 case INDEX_op_st_i32:
2424 case INDEX_op_st32_i64:
2425 tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]);
2426 break;
2427 case INDEX_op_st_i64:
2428 tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]);
2429 break;
2430
2431 case INDEX_op_add_i32:
2432 a0 = args[0], a1 = args[1], a2 = args[2];
2433 if (const_args[2]) {
2434 do_addi_32:
2435 tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2);
2436 } else {
2437 tcg_out32(s, ADD | TAB(a0, a1, a2));
2438 }
2439 break;
2440 case INDEX_op_sub_i32:
2441 a0 = args[0], a1 = args[1], a2 = args[2];
2442 if (const_args[1]) {
2443 if (const_args[2]) {
2444 tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
2445 } else {
2446 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2447 }
2448 } else if (const_args[2]) {
2449 a2 = -a2;
2450 goto do_addi_32;
2451 } else {
2452 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2453 }
2454 break;
2455
2456 case INDEX_op_and_i32:
2457 a0 = args[0], a1 = args[1], a2 = args[2];
2458 if (const_args[2]) {
2459 tcg_out_andi32(s, a0, a1, a2);
2460 } else {
2461 tcg_out32(s, AND | SAB(a1, a0, a2));
2462 }
2463 break;
2464 case INDEX_op_and_i64:
2465 a0 = args[0], a1 = args[1], a2 = args[2];
2466 if (const_args[2]) {
2467 tcg_out_andi64(s, a0, a1, a2);
2468 } else {
2469 tcg_out32(s, AND | SAB(a1, a0, a2));
2470 }
2471 break;
2472 case INDEX_op_or_i64:
2473 case INDEX_op_or_i32:
2474 a0 = args[0], a1 = args[1], a2 = args[2];
2475 if (const_args[2]) {
2476 tcg_out_ori32(s, a0, a1, a2);
2477 } else {
2478 tcg_out32(s, OR | SAB(a1, a0, a2));
2479 }
2480 break;
2481 case INDEX_op_xor_i64:
2482 case INDEX_op_xor_i32:
2483 a0 = args[0], a1 = args[1], a2 = args[2];
2484 if (const_args[2]) {
2485 tcg_out_xori32(s, a0, a1, a2);
2486 } else {
2487 tcg_out32(s, XOR | SAB(a1, a0, a2));
2488 }
2489 break;
2490 case INDEX_op_andc_i32:
2491 a0 = args[0], a1 = args[1], a2 = args[2];
2492 if (const_args[2]) {
2493 tcg_out_andi32(s, a0, a1, ~a2);
2494 } else {
2495 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2496 }
2497 break;
2498 case INDEX_op_andc_i64:
2499 a0 = args[0], a1 = args[1], a2 = args[2];
2500 if (const_args[2]) {
2501 tcg_out_andi64(s, a0, a1, ~a2);
2502 } else {
2503 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2504 }
2505 break;
2506 case INDEX_op_orc_i32:
2507 if (const_args[2]) {
2508 tcg_out_ori32(s, args[0], args[1], ~args[2]);
2509 break;
2510 }
2511 /* FALLTHRU */
2512 case INDEX_op_orc_i64:
2513 tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
2514 break;
2515 case INDEX_op_eqv_i32:
2516 if (const_args[2]) {
2517 tcg_out_xori32(s, args[0], args[1], ~args[2]);
2518 break;
2519 }
2520 /* FALLTHRU */
2521 case INDEX_op_eqv_i64:
2522 tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
2523 break;
2524 case INDEX_op_nand_i32:
2525 case INDEX_op_nand_i64:
2526 tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
2527 break;
2528 case INDEX_op_nor_i32:
2529 case INDEX_op_nor_i64:
2530 tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
2531 break;
2532
2533 case INDEX_op_clz_i32:
2534 tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1],
2535 args[2], const_args[2]);
2536 break;
2537 case INDEX_op_ctz_i32:
2538 tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1],
2539 args[2], const_args[2]);
2540 break;
2541 case INDEX_op_ctpop_i32:
2542 tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0));
2543 break;
2544
2545 case INDEX_op_clz_i64:
2546 tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1],
2547 args[2], const_args[2]);
2548 break;
2549 case INDEX_op_ctz_i64:
2550 tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1],
2551 args[2], const_args[2]);
2552 break;
2553 case INDEX_op_ctpop_i64:
2554 tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0));
2555 break;
2556
2557 case INDEX_op_mul_i32:
2558 a0 = args[0], a1 = args[1], a2 = args[2];
2559 if (const_args[2]) {
2560 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2561 } else {
2562 tcg_out32(s, MULLW | TAB(a0, a1, a2));
2563 }
2564 break;
2565
2566 case INDEX_op_div_i32:
2567 tcg_out32(s, DIVW | TAB(args[0], args[1], args[2]));
2568 break;
2569
2570 case INDEX_op_divu_i32:
2571 tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2]));
2572 break;
2573
2574 case INDEX_op_shl_i32:
2575 if (const_args[2]) {
2576 /* Limit immediate shift count lest we create an illegal insn. */
2577 tcg_out_shli32(s, args[0], args[1], args[2] & 31);
2578 } else {
2579 tcg_out32(s, SLW | SAB(args[1], args[0], args[2]));
2580 }
2581 break;
2582 case INDEX_op_shr_i32:
2583 if (const_args[2]) {
2584 /* Limit immediate shift count lest we create an illegal insn. */
2585 tcg_out_shri32(s, args[0], args[1], args[2] & 31);
2586 } else {
2587 tcg_out32(s, SRW | SAB(args[1], args[0], args[2]));
2588 }
2589 break;
2590 case INDEX_op_sar_i32:
2591 if (const_args[2]) {
2592 /* Limit immediate shift count lest we create an illegal insn. */
2593 tcg_out32(s, SRAWI | RS(args[1]) | RA(args[0]) | SH(args[2] & 31));
2594 } else {
2595 tcg_out32(s, SRAW | SAB(args[1], args[0], args[2]));
2596 }
2597 break;
2598 case INDEX_op_rotl_i32:
2599 if (const_args[2]) {
2600 tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
2601 } else {
2602 tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
2603 | MB(0) | ME(31));
2604 }
2605 break;
2606 case INDEX_op_rotr_i32:
2607 if (const_args[2]) {
2608 tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
2609 } else {
2610 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32));
2611 tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0)
2612 | MB(0) | ME(31));
2613 }
2614 break;
2615
2616 case INDEX_op_brcond_i32:
2617 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2618 arg_label(args[3]), TCG_TYPE_I32);
2619 break;
2620 case INDEX_op_brcond_i64:
2621 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2622 arg_label(args[3]), TCG_TYPE_I64);
2623 break;
2624 case INDEX_op_brcond2_i32:
2625 tcg_out_brcond2(s, args, const_args);
2626 break;
2627
2628 case INDEX_op_neg_i32:
2629 case INDEX_op_neg_i64:
2630 tcg_out32(s, NEG | RT(args[0]) | RA(args[1]));
2631 break;
2632
2633 case INDEX_op_not_i32:
2634 case INDEX_op_not_i64:
2635 tcg_out32(s, NOR | SAB(args[1], args[0], args[1]));
2636 break;
2637
2638 case INDEX_op_add_i64:
2639 a0 = args[0], a1 = args[1], a2 = args[2];
2640 if (const_args[2]) {
2641 do_addi_64:
2642 tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2);
2643 } else {
2644 tcg_out32(s, ADD | TAB(a0, a1, a2));
2645 }
2646 break;
2647 case INDEX_op_sub_i64:
2648 a0 = args[0], a1 = args[1], a2 = args[2];
2649 if (const_args[1]) {
2650 if (const_args[2]) {
2651 tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
2652 } else {
2653 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2654 }
2655 } else if (const_args[2]) {
2656 a2 = -a2;
2657 goto do_addi_64;
2658 } else {
2659 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2660 }
2661 break;
2662
2663 case INDEX_op_shl_i64:
2664 if (const_args[2]) {
2665 /* Limit immediate shift count lest we create an illegal insn. */
2666 tcg_out_shli64(s, args[0], args[1], args[2] & 63);
2667 } else {
2668 tcg_out32(s, SLD | SAB(args[1], args[0], args[2]));
2669 }
2670 break;
2671 case INDEX_op_shr_i64:
2672 if (const_args[2]) {
2673 /* Limit immediate shift count lest we create an illegal insn. */
2674 tcg_out_shri64(s, args[0], args[1], args[2] & 63);
2675 } else {
2676 tcg_out32(s, SRD | SAB(args[1], args[0], args[2]));
2677 }
2678 break;
2679 case INDEX_op_sar_i64:
2680 if (const_args[2]) {
2681 int sh = SH(args[2] & 0x1f) | (((args[2] >> 5) & 1) << 1);
2682 tcg_out32(s, SRADI | RA(args[0]) | RS(args[1]) | sh);
2683 } else {
2684 tcg_out32(s, SRAD | SAB(args[1], args[0], args[2]));
2685 }
2686 break;
2687 case INDEX_op_rotl_i64:
2688 if (const_args[2]) {
2689 tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
2690 } else {
2691 tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
2692 }
2693 break;
2694 case INDEX_op_rotr_i64:
2695 if (const_args[2]) {
2696 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
2697 } else {
2698 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64));
2699 tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0));
2700 }
2701 break;
2702
2703 case INDEX_op_mul_i64:
2704 a0 = args[0], a1 = args[1], a2 = args[2];
2705 if (const_args[2]) {
2706 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2707 } else {
2708 tcg_out32(s, MULLD | TAB(a0, a1, a2));
2709 }
2710 break;
2711 case INDEX_op_div_i64:
2712 tcg_out32(s, DIVD | TAB(args[0], args[1], args[2]));
2713 break;
2714 case INDEX_op_divu_i64:
2715 tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2]));
2716 break;
2717
2718 case INDEX_op_qemu_ld_i32:
2719 tcg_out_qemu_ld(s, args, false);
2720 break;
2721 case INDEX_op_qemu_ld_i64:
2722 tcg_out_qemu_ld(s, args, true);
2723 break;
2724 case INDEX_op_qemu_st_i32:
2725 tcg_out_qemu_st(s, args, false);
2726 break;
2727 case INDEX_op_qemu_st_i64:
2728 tcg_out_qemu_st(s, args, true);
2729 break;
2730
2731 case INDEX_op_ext8s_i32:
2732 case INDEX_op_ext8s_i64:
2733 c = EXTSB;
2734 goto gen_ext;
2735 case INDEX_op_ext16s_i32:
2736 case INDEX_op_ext16s_i64:
2737 c = EXTSH;
2738 goto gen_ext;
2739 case INDEX_op_ext_i32_i64:
2740 case INDEX_op_ext32s_i64:
2741 c = EXTSW;
2742 goto gen_ext;
2743 gen_ext:
2744 tcg_out32(s, c | RS(args[1]) | RA(args[0]));
2745 break;
2746 case INDEX_op_extu_i32_i64:
2747 tcg_out_ext32u(s, args[0], args[1]);
2748 break;
2749
2750 case INDEX_op_setcond_i32:
2751 tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
2752 const_args[2]);
2753 break;
2754 case INDEX_op_setcond_i64:
2755 tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
2756 const_args[2]);
2757 break;
2758 case INDEX_op_setcond2_i32:
2759 tcg_out_setcond2(s, args, const_args);
2760 break;
2761
2762 case INDEX_op_bswap16_i32:
2763 case INDEX_op_bswap16_i64:
2764 a0 = args[0], a1 = args[1];
2765 /* a1 = abcd */
2766 if (a0 != a1) {
2767 /* a0 = (a1 r<< 24) & 0xff # 000c */
2768 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
2769 /* a0 = (a0 & ~0xff00) | (a1 r<< 8) & 0xff00 # 00dc */
2770 tcg_out_rlw(s, RLWIMI, a0, a1, 8, 16, 23);
2771 } else {
2772 /* r0 = (a1 r<< 8) & 0xff00 # 00d0 */
2773 tcg_out_rlw(s, RLWINM, TCG_REG_R0, a1, 8, 16, 23);
2774 /* a0 = (a1 r<< 24) & 0xff # 000c */
2775 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31);
2776 /* a0 = a0 | r0 # 00dc */
2777 tcg_out32(s, OR | SAB(TCG_REG_R0, a0, a0));
2778 }
2779 break;
2780
2781 case INDEX_op_bswap32_i32:
2782 case INDEX_op_bswap32_i64:
2783 /* Stolen from gcc's builtin_bswap32 */
2784 a1 = args[1];
2785 a0 = args[0] == a1 ? TCG_REG_R0 : args[0];
2786
2787 /* a1 = args[1] # abcd */
2788 /* a0 = rotate_left (a1, 8) # bcda */
2789 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
2790 /* a0 = (a0 & ~0xff000000) | ((a1 r<< 24) & 0xff000000) # dcda */
2791 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
2792 /* a0 = (a0 & ~0x0000ff00) | ((a1 r<< 24) & 0x0000ff00) # dcba */
2793 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
2794
2795 if (a0 == TCG_REG_R0) {
2796 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2797 }
2798 break;
2799
2800 case INDEX_op_bswap64_i64:
2801 a0 = args[0], a1 = args[1], a2 = TCG_REG_R0;
2802 if (a0 == a1) {
2803 a0 = TCG_REG_R0;
2804 a2 = a1;
2805 }
2806
2807 /* a1 = # abcd efgh */
2808 /* a0 = rl32(a1, 8) # 0000 fghe */
2809 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31);
2810 /* a0 = dep(a0, rl32(a1, 24), 0xff000000) # 0000 hghe */
2811 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7);
2812 /* a0 = dep(a0, rl32(a1, 24), 0x0000ff00) # 0000 hgfe */
2813 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23);
2814
2815 /* a0 = rl64(a0, 32) # hgfe 0000 */
2816 /* a2 = rl64(a1, 32) # efgh abcd */
2817 tcg_out_rld(s, RLDICL, a0, a0, 32, 0);
2818 tcg_out_rld(s, RLDICL, a2, a1, 32, 0);
2819
2820 /* a0 = dep(a0, rl32(a2, 8), 0xffffffff) # hgfe bcda */
2821 tcg_out_rlw(s, RLWIMI, a0, a2, 8, 0, 31);
2822 /* a0 = dep(a0, rl32(a2, 24), 0xff000000) # hgfe dcda */
2823 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 0, 7);
2824 /* a0 = dep(a0, rl32(a2, 24), 0x0000ff00) # hgfe dcba */
2825 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 16, 23);
2826
2827 if (a0 == 0) {
2828 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2829 }
2830 break;
2831
2832 case INDEX_op_deposit_i32:
2833 if (const_args[2]) {
2834 uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
2835 tcg_out_andi32(s, args[0], args[0], ~mask);
2836 } else {
2837 tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
2838 32 - args[3] - args[4], 31 - args[3]);
2839 }
2840 break;
2841 case INDEX_op_deposit_i64:
2842 if (const_args[2]) {
2843 uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
2844 tcg_out_andi64(s, args[0], args[0], ~mask);
2845 } else {
2846 tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
2847 64 - args[3] - args[4]);
2848 }
2849 break;
2850
2851 case INDEX_op_extract_i32:
2852 tcg_out_rlw(s, RLWINM, args[0], args[1],
2853 32 - args[2], 32 - args[3], 31);
2854 break;
2855 case INDEX_op_extract_i64:
2856 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]);
2857 break;
2858
2859 case INDEX_op_movcond_i32:
2860 tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
2861 args[3], args[4], const_args[2]);
2862 break;
2863 case INDEX_op_movcond_i64:
2864 tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
2865 args[3], args[4], const_args[2]);
2866 break;
2867
2868 #if TCG_TARGET_REG_BITS == 64
2869 case INDEX_op_add2_i64:
2870 #else
2871 case INDEX_op_add2_i32:
2872 #endif
2873 /* Note that the CA bit is defined based on the word size of the
2874 environment. So in 64-bit mode it's always carry-out of bit 63.
2875 The fallback code using deposit works just as well for 32-bit. */
2876 a0 = args[0], a1 = args[1];
2877 if (a0 == args[3] || (!const_args[5] && a0 == args[5])) {
2878 a0 = TCG_REG_R0;
2879 }
2880 if (const_args[4]) {
2881 tcg_out32(s, ADDIC | TAI(a0, args[2], args[4]));
2882 } else {
2883 tcg_out32(s, ADDC | TAB(a0, args[2], args[4]));
2884 }
2885 if (const_args[5]) {
2886 tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3]));
2887 } else {
2888 tcg_out32(s, ADDE | TAB(a1, args[3], args[5]));
2889 }
2890 if (a0 != args[0]) {
2891 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2892 }
2893 break;
2894
2895 #if TCG_TARGET_REG_BITS == 64
2896 case INDEX_op_sub2_i64:
2897 #else
2898 case INDEX_op_sub2_i32:
2899 #endif
2900 a0 = args[0], a1 = args[1];
2901 if (a0 == args[5] || (!const_args[3] && a0 == args[3])) {
2902 a0 = TCG_REG_R0;
2903 }
2904 if (const_args[2]) {
2905 tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2]));
2906 } else {
2907 tcg_out32(s, SUBFC | TAB(a0, args[4], args[2]));
2908 }
2909 if (const_args[3]) {
2910 tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
2911 } else {
2912 tcg_out32(s, SUBFE | TAB(a1, args[5], args[3]));
2913 }
2914 if (a0 != args[0]) {
2915 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
2916 }
2917 break;
2918
2919 case INDEX_op_muluh_i32:
2920 tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2]));
2921 break;
2922 case INDEX_op_mulsh_i32:
2923 tcg_out32(s, MULHW | TAB(args[0], args[1], args[2]));
2924 break;
2925 case INDEX_op_muluh_i64:
2926 tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2]));
2927 break;
2928 case INDEX_op_mulsh_i64:
2929 tcg_out32(s, MULHD | TAB(args[0], args[1], args[2]));
2930 break;
2931
2932 case INDEX_op_mb:
2933 tcg_out_mb(s, args[0]);
2934 break;
2935
2936 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2937 case INDEX_op_mov_i64:
2938 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2939 default:
2940 tcg_abort();
2941 }
2942 }
2943
2944 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
2945 {
2946 switch (opc) {
2947 case INDEX_op_and_vec:
2948 case INDEX_op_or_vec:
2949 case INDEX_op_xor_vec:
2950 case INDEX_op_andc_vec:
2951 case INDEX_op_not_vec:
2952 return 1;
2953 case INDEX_op_orc_vec:
2954 return have_isa_2_07;
2955 case INDEX_op_add_vec:
2956 case INDEX_op_sub_vec:
2957 case INDEX_op_smax_vec:
2958 case INDEX_op_smin_vec:
2959 case INDEX_op_umax_vec:
2960 case INDEX_op_umin_vec:
2961 case INDEX_op_shlv_vec:
2962 case INDEX_op_shrv_vec:
2963 case INDEX_op_sarv_vec:
2964 case INDEX_op_rotlv_vec:
2965 return vece <= MO_32 || have_isa_2_07;
2966 case INDEX_op_ssadd_vec:
2967 case INDEX_op_sssub_vec:
2968 case INDEX_op_usadd_vec:
2969 case INDEX_op_ussub_vec:
2970 return vece <= MO_32;
2971 case INDEX_op_cmp_vec:
2972 case INDEX_op_shli_vec:
2973 case INDEX_op_shri_vec:
2974 case INDEX_op_sari_vec:
2975 case INDEX_op_rotli_vec:
2976 return vece <= MO_32 || have_isa_2_07 ? -1 : 0;
2977 case INDEX_op_neg_vec:
2978 return vece >= MO_32 && have_isa_3_00;
2979 case INDEX_op_mul_vec:
2980 switch (vece) {
2981 case MO_8:
2982 case MO_16:
2983 return -1;
2984 case MO_32:
2985 return have_isa_2_07 ? 1 : -1;
2986 case MO_64:
2987 return have_isa_3_10;
2988 }
2989 return 0;
2990 case INDEX_op_bitsel_vec:
2991 return have_vsx;
2992 case INDEX_op_rotrv_vec:
2993 return -1;
2994 default:
2995 return 0;
2996 }
2997 }
2998
2999 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
3000 TCGReg dst, TCGReg src)
3001 {
3002 tcg_debug_assert(dst >= TCG_REG_V0);
3003
3004 /* Splat from integer reg allowed via constraints for v3.00. */
3005 if (src < TCG_REG_V0) {
3006 tcg_debug_assert(have_isa_3_00);
3007 switch (vece) {
3008 case MO_64:
3009 tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src));
3010 return true;
3011 case MO_32:
3012 tcg_out32(s, MTVSRWS | VRT(dst) | RA(src));
3013 return true;
3014 default:
3015 /* Fail, so that we fall back on either dupm or mov+dup. */
3016 return false;
3017 }
3018 }
3019
3020 /*
3021 * Recall we use (or emulate) VSX integer loads, so the integer is
3022 * right justified within the left (zero-index) double-word.
3023 */
3024 switch (vece) {
3025 case MO_8:
3026 tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16));
3027 break;
3028 case MO_16:
3029 tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16));
3030 break;
3031 case MO_32:
3032 tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16));
3033 break;
3034 case MO_64:
3035 if (have_vsx) {
3036 tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src));
3037 break;
3038 }
3039 tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8);
3040 tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8);
3041 break;
3042 default:
3043 g_assert_not_reached();
3044 }
3045 return true;
3046 }
3047
3048 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
3049 TCGReg out, TCGReg base, intptr_t offset)
3050 {
3051 int elt;
3052
3053 tcg_debug_assert(out >= TCG_REG_V0);
3054 switch (vece) {
3055 case MO_8:
3056 if (have_isa_3_00) {
3057 tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16);
3058 } else {
3059 tcg_out_mem_long(s, 0, LVEBX, out, base, offset);
3060 }
3061 elt = extract32(offset, 0, 4);
3062 #ifndef HOST_WORDS_BIGENDIAN
3063 elt ^= 15;
3064 #endif
3065 tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16));
3066 break;
3067 case MO_16:
3068 tcg_debug_assert((offset & 1) == 0);
3069 if (have_isa_3_00) {
3070 tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16);
3071 } else {
3072 tcg_out_mem_long(s, 0, LVEHX, out, base, offset);
3073 }
3074 elt = extract32(offset, 1, 3);
3075 #ifndef HOST_WORDS_BIGENDIAN
3076 elt ^= 7;
3077 #endif
3078 tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16));
3079 break;
3080 case MO_32:
3081 if (have_isa_3_00) {
3082 tcg_out_mem_long(s, 0, LXVWSX, out, base, offset);
3083 break;
3084 }
3085 tcg_debug_assert((offset & 3) == 0);
3086 tcg_out_mem_long(s, 0, LVEWX, out, base, offset);
3087 elt = extract32(offset, 2, 2);
3088 #ifndef HOST_WORDS_BIGENDIAN
3089 elt ^= 3;
3090 #endif
3091 tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16));
3092 break;
3093 case MO_64:
3094 if (have_vsx) {
3095 tcg_out_mem_long(s, 0, LXVDSX, out, base, offset);
3096 break;
3097 }
3098 tcg_debug_assert((offset & 7) == 0);
3099 tcg_out_mem_long(s, 0, LVX, out, base, offset & -16);
3100 tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8);
3101 elt = extract32(offset, 3, 1);
3102 #ifndef HOST_WORDS_BIGENDIAN
3103 elt = !elt;
3104 #endif
3105 if (elt) {
3106 tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8);
3107 } else {
3108 tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8);
3109 }
3110 break;
3111 default:
3112 g_assert_not_reached();
3113 }
3114 return true;
3115 }
3116
3117 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3118 unsigned vecl, unsigned vece,
3119 const TCGArg args[TCG_MAX_OP_ARGS],
3120 const int const_args[TCG_MAX_OP_ARGS])
3121 {
3122 static const uint32_t
3123 add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM },
3124 sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM },
3125 mul_op[4] = { 0, 0, VMULUWM, VMULLD },
3126 neg_op[4] = { 0, 0, VNEGW, VNEGD },
3127 eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD },
3128 ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 },
3129 gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD },
3130 gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD },
3131 ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 },
3132 usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 },
3133 sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 },
3134 ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 },
3135 umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD },
3136 smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD },
3137 umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD },
3138 smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD },
3139 shlv_op[4] = { VSLB, VSLH, VSLW, VSLD },
3140 shrv_op[4] = { VSRB, VSRH, VSRW, VSRD },
3141 sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD },
3142 mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 },
3143 mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 },
3144 muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 },
3145 mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 },
3146 pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 },
3147 rotl_op[4] = { VRLB, VRLH, VRLW, VRLD };
3148
3149 TCGType type = vecl + TCG_TYPE_V64;
3150 TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
3151 uint32_t insn;
3152
3153 switch (opc) {
3154 case INDEX_op_ld_vec:
3155 tcg_out_ld(s, type, a0, a1, a2);
3156 return;
3157 case INDEX_op_st_vec:
3158 tcg_out_st(s, type, a0, a1, a2);
3159 return;
3160 case INDEX_op_dupm_vec:
3161 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3162 return;
3163
3164 case INDEX_op_add_vec:
3165 insn = add_op[vece];
3166 break;
3167 case INDEX_op_sub_vec:
3168 insn = sub_op[vece];
3169 break;
3170 case INDEX_op_neg_vec:
3171 insn = neg_op[vece];
3172 a2 = a1;
3173 a1 = 0;
3174 break;
3175 case INDEX_op_mul_vec:
3176 insn = mul_op[vece];
3177 break;
3178 case INDEX_op_ssadd_vec:
3179 insn = ssadd_op[vece];
3180 break;
3181 case INDEX_op_sssub_vec:
3182 insn = sssub_op[vece];
3183 break;
3184 case INDEX_op_usadd_vec:
3185 insn = usadd_op[vece];
3186 break;
3187 case INDEX_op_ussub_vec:
3188 insn = ussub_op[vece];
3189 break;
3190 case INDEX_op_smin_vec:
3191 insn = smin_op[vece];
3192 break;
3193 case INDEX_op_umin_vec:
3194 insn = umin_op[vece];
3195 break;
3196 case INDEX_op_smax_vec:
3197 insn = smax_op[vece];
3198 break;
3199 case INDEX_op_umax_vec:
3200 insn = umax_op[vece];
3201 break;
3202 case INDEX_op_shlv_vec:
3203 insn = shlv_op[vece];
3204 break;
3205 case INDEX_op_shrv_vec:
3206 insn = shrv_op[vece];
3207 break;
3208 case INDEX_op_sarv_vec:
3209 insn = sarv_op[vece];
3210 break;
3211 case INDEX_op_and_vec:
3212 insn = VAND;
3213 break;
3214 case INDEX_op_or_vec:
3215 insn = VOR;
3216 break;
3217 case INDEX_op_xor_vec:
3218 insn = VXOR;
3219 break;
3220 case INDEX_op_andc_vec:
3221 insn = VANDC;
3222 break;
3223 case INDEX_op_not_vec:
3224 insn = VNOR;
3225 a2 = a1;
3226 break;
3227 case INDEX_op_orc_vec:
3228 insn = VORC;
3229 break;
3230
3231 case INDEX_op_cmp_vec:
3232 switch (args[3]) {
3233 case TCG_COND_EQ:
3234 insn = eq_op[vece];
3235 break;
3236 case TCG_COND_NE:
3237 insn = ne_op[vece];
3238 break;
3239 case TCG_COND_GT:
3240 insn = gts_op[vece];
3241 break;
3242 case TCG_COND_GTU:
3243 insn = gtu_op[vece];
3244 break;
3245 default:
3246 g_assert_not_reached();
3247 }
3248 break;
3249
3250 case INDEX_op_bitsel_vec:
3251 tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3]));
3252 return;
3253
3254 case INDEX_op_dup2_vec:
3255 assert(TCG_TARGET_REG_BITS == 32);
3256 /* With inputs a1 = xLxx, a2 = xHxx */
3257 tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */
3258 tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */
3259 tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */
3260 return;
3261
3262 case INDEX_op_ppc_mrgh_vec:
3263 insn = mrgh_op[vece];
3264 break;
3265 case INDEX_op_ppc_mrgl_vec:
3266 insn = mrgl_op[vece];
3267 break;
3268 case INDEX_op_ppc_muleu_vec:
3269 insn = muleu_op[vece];
3270 break;
3271 case INDEX_op_ppc_mulou_vec:
3272 insn = mulou_op[vece];
3273 break;
3274 case INDEX_op_ppc_pkum_vec:
3275 insn = pkum_op[vece];
3276 break;
3277 case INDEX_op_rotlv_vec:
3278 insn = rotl_op[vece];
3279 break;
3280 case INDEX_op_ppc_msum_vec:
3281 tcg_debug_assert(vece == MO_16);
3282 tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3]));
3283 return;
3284
3285 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
3286 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
3287 default:
3288 g_assert_not_reached();
3289 }
3290
3291 tcg_debug_assert(insn != 0);
3292 tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2));
3293 }
3294
3295 static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0,
3296 TCGv_vec v1, TCGArg imm, TCGOpcode opci)
3297 {
3298 TCGv_vec t1;
3299
3300 if (vece == MO_32) {
3301 /*
3302 * Only 5 bits are significant, and VSPLTISB can represent -16..15.
3303 * So using negative numbers gets us the 4th bit easily.
3304 */
3305 imm = sextract32(imm, 0, 5);
3306 } else {
3307 imm &= (8 << vece) - 1;
3308 }
3309
3310 /* Splat w/bytes for xxspltib when 2.07 allows MO_64. */
3311 t1 = tcg_constant_vec(type, MO_8, imm);
3312 vec_gen_3(opci, type, vece, tcgv_vec_arg(v0),
3313 tcgv_vec_arg(v1), tcgv_vec_arg(t1));
3314 }
3315
3316 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3317 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3318 {
3319 bool need_swap = false, need_inv = false;
3320
3321 tcg_debug_assert(vece <= MO_32 || have_isa_2_07);
3322
3323 switch (cond) {
3324 case TCG_COND_EQ:
3325 case TCG_COND_GT:
3326 case TCG_COND_GTU:
3327 break;
3328 case TCG_COND_NE:
3329 if (have_isa_3_00 && vece <= MO_32) {
3330 break;
3331 }
3332 /* fall through */
3333 case TCG_COND_LE:
3334 case TCG_COND_LEU:
3335 need_inv = true;
3336 break;
3337 case TCG_COND_LT:
3338 case TCG_COND_LTU:
3339 need_swap = true;
3340 break;
3341 case TCG_COND_GE:
3342 case TCG_COND_GEU:
3343 need_swap = need_inv = true;
3344 break;
3345 default:
3346 g_assert_not_reached();
3347 }
3348
3349 if (need_inv) {
3350 cond = tcg_invert_cond(cond);
3351 }
3352 if (need_swap) {
3353 TCGv_vec t1;
3354 t1 = v1, v1 = v2, v2 = t1;
3355 cond = tcg_swap_cond(cond);
3356 }
3357
3358 vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
3359 tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3360
3361 if (need_inv) {
3362 tcg_gen_not_vec(vece, v0, v0);
3363 }
3364 }
3365
3366 static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0,
3367 TCGv_vec v1, TCGv_vec v2)
3368 {
3369 TCGv_vec t1 = tcg_temp_new_vec(type);
3370 TCGv_vec t2 = tcg_temp_new_vec(type);
3371 TCGv_vec c0, c16;
3372
3373 switch (vece) {
3374 case MO_8:
3375 case MO_16:
3376 vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1),
3377 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3378 vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2),
3379 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3380 vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0),
3381 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3382 vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1),
3383 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3384 vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0),
3385 tcgv_vec_arg(v0), tcgv_vec_arg(t1));
3386 break;
3387
3388 case MO_32:
3389 tcg_debug_assert(!have_isa_2_07);
3390 /*
3391 * Only 5 bits are significant, and VSPLTISB can represent -16..15.
3392 * So using -16 is a quick way to represent 16.
3393 */
3394 c16 = tcg_constant_vec(type, MO_8, -16);
3395 c0 = tcg_constant_vec(type, MO_8, 0);
3396
3397 vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1),
3398 tcgv_vec_arg(v2), tcgv_vec_arg(c16));
3399 vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2),
3400 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3401 vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t1),
3402 tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(c0));
3403 vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t1),
3404 tcgv_vec_arg(t1), tcgv_vec_arg(c16));
3405 tcg_gen_add_vec(MO_32, v0, t1, t2);
3406 break;
3407
3408 default:
3409 g_assert_not_reached();
3410 }
3411 tcg_temp_free_vec(t1);
3412 tcg_temp_free_vec(t2);
3413 }
3414
3415 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3416 TCGArg a0, ...)
3417 {
3418 va_list va;
3419 TCGv_vec v0, v1, v2, t0;
3420 TCGArg a2;
3421
3422 va_start(va, a0);
3423 v0 = temp_tcgv_vec(arg_temp(a0));
3424 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3425 a2 = va_arg(va, TCGArg);
3426
3427 switch (opc) {
3428 case INDEX_op_shli_vec:
3429 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec);
3430 break;
3431 case INDEX_op_shri_vec:
3432 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec);
3433 break;
3434 case INDEX_op_sari_vec:
3435 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec);
3436 break;
3437 case INDEX_op_rotli_vec:
3438 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec);
3439 break;
3440 case INDEX_op_cmp_vec:
3441 v2 = temp_tcgv_vec(arg_temp(a2));
3442 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3443 break;
3444 case INDEX_op_mul_vec:
3445 v2 = temp_tcgv_vec(arg_temp(a2));
3446 expand_vec_mul(type, vece, v0, v1, v2);
3447 break;
3448 case INDEX_op_rotlv_vec:
3449 v2 = temp_tcgv_vec(arg_temp(a2));
3450 t0 = tcg_temp_new_vec(type);
3451 tcg_gen_neg_vec(vece, t0, v2);
3452 tcg_gen_rotlv_vec(vece, v0, v1, t0);
3453 tcg_temp_free_vec(t0);
3454 break;
3455 default:
3456 g_assert_not_reached();
3457 }
3458 va_end(va);
3459 }
3460
3461 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
3462 {
3463 switch (op) {
3464 case INDEX_op_goto_ptr:
3465 return C_O0_I1(r);
3466
3467 case INDEX_op_ld8u_i32:
3468 case INDEX_op_ld8s_i32:
3469 case INDEX_op_ld16u_i32:
3470 case INDEX_op_ld16s_i32:
3471 case INDEX_op_ld_i32:
3472 case INDEX_op_ctpop_i32:
3473 case INDEX_op_neg_i32:
3474 case INDEX_op_not_i32:
3475 case INDEX_op_ext8s_i32:
3476 case INDEX_op_ext16s_i32:
3477 case INDEX_op_bswap16_i32:
3478 case INDEX_op_bswap32_i32:
3479 case INDEX_op_extract_i32:
3480 case INDEX_op_ld8u_i64:
3481 case INDEX_op_ld8s_i64:
3482 case INDEX_op_ld16u_i64:
3483 case INDEX_op_ld16s_i64:
3484 case INDEX_op_ld32u_i64:
3485 case INDEX_op_ld32s_i64:
3486 case INDEX_op_ld_i64:
3487 case INDEX_op_ctpop_i64:
3488 case INDEX_op_neg_i64:
3489 case INDEX_op_not_i64:
3490 case INDEX_op_ext8s_i64:
3491 case INDEX_op_ext16s_i64:
3492 case INDEX_op_ext32s_i64:
3493 case INDEX_op_ext_i32_i64:
3494 case INDEX_op_extu_i32_i64:
3495 case INDEX_op_bswap16_i64:
3496 case INDEX_op_bswap32_i64:
3497 case INDEX_op_bswap64_i64:
3498 case INDEX_op_extract_i64:
3499 return C_O1_I1(r, r);
3500
3501 case INDEX_op_st8_i32:
3502 case INDEX_op_st16_i32:
3503 case INDEX_op_st_i32:
3504 case INDEX_op_st8_i64:
3505 case INDEX_op_st16_i64:
3506 case INDEX_op_st32_i64:
3507 case INDEX_op_st_i64:
3508 return C_O0_I2(r, r);
3509
3510 case INDEX_op_add_i32:
3511 case INDEX_op_and_i32:
3512 case INDEX_op_or_i32:
3513 case INDEX_op_xor_i32:
3514 case INDEX_op_andc_i32:
3515 case INDEX_op_orc_i32:
3516 case INDEX_op_eqv_i32:
3517 case INDEX_op_shl_i32:
3518 case INDEX_op_shr_i32:
3519 case INDEX_op_sar_i32:
3520 case INDEX_op_rotl_i32:
3521 case INDEX_op_rotr_i32:
3522 case INDEX_op_setcond_i32:
3523 case INDEX_op_and_i64:
3524 case INDEX_op_andc_i64:
3525 case INDEX_op_shl_i64:
3526 case INDEX_op_shr_i64:
3527 case INDEX_op_sar_i64:
3528 case INDEX_op_rotl_i64:
3529 case INDEX_op_rotr_i64:
3530 case INDEX_op_setcond_i64:
3531 return C_O1_I2(r, r, ri);
3532
3533 case INDEX_op_mul_i32:
3534 case INDEX_op_mul_i64:
3535 return C_O1_I2(r, r, rI);
3536
3537 case INDEX_op_div_i32:
3538 case INDEX_op_divu_i32:
3539 case INDEX_op_nand_i32:
3540 case INDEX_op_nor_i32:
3541 case INDEX_op_muluh_i32:
3542 case INDEX_op_mulsh_i32:
3543 case INDEX_op_orc_i64:
3544 case INDEX_op_eqv_i64:
3545 case INDEX_op_nand_i64:
3546 case INDEX_op_nor_i64:
3547 case INDEX_op_div_i64:
3548 case INDEX_op_divu_i64:
3549 case INDEX_op_mulsh_i64:
3550 case INDEX_op_muluh_i64:
3551 return C_O1_I2(r, r, r);
3552
3553 case INDEX_op_sub_i32:
3554 return C_O1_I2(r, rI, ri);
3555 case INDEX_op_add_i64:
3556 return C_O1_I2(r, r, rT);
3557 case INDEX_op_or_i64:
3558 case INDEX_op_xor_i64:
3559 return C_O1_I2(r, r, rU);
3560 case INDEX_op_sub_i64:
3561 return C_O1_I2(r, rI, rT);
3562 case INDEX_op_clz_i32:
3563 case INDEX_op_ctz_i32:
3564 case INDEX_op_clz_i64:
3565 case INDEX_op_ctz_i64:
3566 return C_O1_I2(r, r, rZW);
3567
3568 case INDEX_op_brcond_i32:
3569 case INDEX_op_brcond_i64:
3570 return C_O0_I2(r, ri);
3571
3572 case INDEX_op_movcond_i32:
3573 case INDEX_op_movcond_i64:
3574 return C_O1_I4(r, r, ri, rZ, rZ);
3575 case INDEX_op_deposit_i32:
3576 case INDEX_op_deposit_i64:
3577 return C_O1_I2(r, 0, rZ);
3578 case INDEX_op_brcond2_i32:
3579 return C_O0_I4(r, r, ri, ri);
3580 case INDEX_op_setcond2_i32:
3581 return C_O1_I4(r, r, r, ri, ri);
3582 case INDEX_op_add2_i64:
3583 case INDEX_op_add2_i32:
3584 return C_O2_I4(r, r, r, r, rI, rZM);
3585 case INDEX_op_sub2_i64:
3586 case INDEX_op_sub2_i32:
3587 return C_O2_I4(r, r, rI, rZM, r, r);
3588
3589 case INDEX_op_qemu_ld_i32:
3590 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3591 ? C_O1_I1(r, L)
3592 : C_O1_I2(r, L, L));
3593
3594 case INDEX_op_qemu_st_i32:
3595 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3596 ? C_O0_I2(S, S)
3597 : C_O0_I3(S, S, S));
3598
3599 case INDEX_op_qemu_ld_i64:
3600 return (TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L)
3601 : TARGET_LONG_BITS == 32 ? C_O2_I1(L, L, L)
3602 : C_O2_I2(L, L, L, L));
3603
3604 case INDEX_op_qemu_st_i64:
3605 return (TCG_TARGET_REG_BITS == 64 ? C_O0_I2(S, S)
3606 : TARGET_LONG_BITS == 32 ? C_O0_I3(S, S, S)
3607 : C_O0_I4(S, S, S, S));
3608
3609 case INDEX_op_add_vec:
3610 case INDEX_op_sub_vec:
3611 case INDEX_op_mul_vec:
3612 case INDEX_op_and_vec:
3613 case INDEX_op_or_vec:
3614 case INDEX_op_xor_vec:
3615 case INDEX_op_andc_vec:
3616 case INDEX_op_orc_vec:
3617 case INDEX_op_cmp_vec:
3618 case INDEX_op_ssadd_vec:
3619 case INDEX_op_sssub_vec:
3620 case INDEX_op_usadd_vec:
3621 case INDEX_op_ussub_vec:
3622 case INDEX_op_smax_vec:
3623 case INDEX_op_smin_vec:
3624 case INDEX_op_umax_vec:
3625 case INDEX_op_umin_vec:
3626 case INDEX_op_shlv_vec:
3627 case INDEX_op_shrv_vec:
3628 case INDEX_op_sarv_vec:
3629 case INDEX_op_rotlv_vec:
3630 case INDEX_op_rotrv_vec:
3631 case INDEX_op_ppc_mrgh_vec:
3632 case INDEX_op_ppc_mrgl_vec:
3633 case INDEX_op_ppc_muleu_vec:
3634 case INDEX_op_ppc_mulou_vec:
3635 case INDEX_op_ppc_pkum_vec:
3636 case INDEX_op_dup2_vec:
3637 return C_O1_I2(v, v, v);
3638
3639 case INDEX_op_not_vec:
3640 case INDEX_op_neg_vec:
3641 return C_O1_I1(v, v);
3642
3643 case INDEX_op_dup_vec:
3644 return have_isa_3_00 ? C_O1_I1(v, vr) : C_O1_I1(v, v);
3645
3646 case INDEX_op_ld_vec:
3647 case INDEX_op_dupm_vec:
3648 return C_O1_I1(v, r);
3649
3650 case INDEX_op_st_vec:
3651 return C_O0_I2(v, r);
3652
3653 case INDEX_op_bitsel_vec:
3654 case INDEX_op_ppc_msum_vec:
3655 return C_O1_I3(v, v, v, v);
3656
3657 default:
3658 g_assert_not_reached();
3659 }
3660 }
3661
3662 static void tcg_target_init(TCGContext *s)
3663 {
3664 unsigned long hwcap = qemu_getauxval(AT_HWCAP);
3665 unsigned long hwcap2 = qemu_getauxval(AT_HWCAP2);
3666
3667 have_isa = tcg_isa_base;
3668 if (hwcap & PPC_FEATURE_ARCH_2_06) {
3669 have_isa = tcg_isa_2_06;
3670 }
3671 #ifdef PPC_FEATURE2_ARCH_2_07
3672 if (hwcap2 & PPC_FEATURE2_ARCH_2_07) {
3673 have_isa = tcg_isa_2_07;
3674 }
3675 #endif
3676 #ifdef PPC_FEATURE2_ARCH_3_00
3677 if (hwcap2 & PPC_FEATURE2_ARCH_3_00) {
3678 have_isa = tcg_isa_3_00;
3679 }
3680 #endif
3681 #ifdef PPC_FEATURE2_ARCH_3_10
3682 if (hwcap2 & PPC_FEATURE2_ARCH_3_10) {
3683 have_isa = tcg_isa_3_10;
3684 }
3685 #endif
3686
3687 #ifdef PPC_FEATURE2_HAS_ISEL
3688 /* Prefer explicit instruction from the kernel. */
3689 have_isel = (hwcap2 & PPC_FEATURE2_HAS_ISEL) != 0;
3690 #else
3691 /* Fall back to knowing Power7 (2.06) has ISEL. */
3692 have_isel = have_isa_2_06;
3693 #endif
3694
3695 if (hwcap & PPC_FEATURE_HAS_ALTIVEC) {
3696 have_altivec = true;
3697 /* We only care about the portion of VSX that overlaps Altivec. */
3698 if (hwcap & PPC_FEATURE_HAS_VSX) {
3699 have_vsx = true;
3700 }
3701 }
3702
3703 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
3704 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff;
3705 if (have_altivec) {
3706 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
3707 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
3708 }
3709
3710 tcg_target_call_clobber_regs = 0;
3711 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
3712 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
3713 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
3714 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
3715 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
3716 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
3717 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7);
3718 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
3719 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
3720 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
3721 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
3722 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12);
3723
3724 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
3725 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
3726 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
3727 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
3728 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
3729 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
3730 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
3731 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
3732 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8);
3733 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9);
3734 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10);
3735 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11);
3736 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12);
3737 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13);
3738 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14);
3739 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15);
3740 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
3741 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
3742 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
3743 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
3744
3745 s->reserved_regs = 0;
3746 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */
3747 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */
3748 #if defined(_CALL_SYSV)
3749 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */
3750 #endif
3751 #if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64
3752 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */
3753 #endif
3754 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); /* mem temp */
3755 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1);
3756 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2);
3757 if (USE_REG_TB) {
3758 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */
3759 }
3760 }
3761
3762 #ifdef __ELF__
3763 typedef struct {
3764 DebugFrameCIE cie;
3765 DebugFrameFDEHeader fde;
3766 uint8_t fde_def_cfa[4];
3767 uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3];
3768 } DebugFrame;
3769
3770 /* We're expecting a 2 byte uleb128 encoded value. */
3771 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
3772
3773 #if TCG_TARGET_REG_BITS == 64
3774 # define ELF_HOST_MACHINE EM_PPC64
3775 #else
3776 # define ELF_HOST_MACHINE EM_PPC
3777 #endif
3778
3779 static DebugFrame debug_frame = {
3780 .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3781 .cie.id = -1,
3782 .cie.version = 1,
3783 .cie.code_align = 1,
3784 .cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */
3785 .cie.return_column = 65,
3786
3787 /* Total FDE size does not include the "len" member. */
3788 .fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset),
3789
3790 .fde_def_cfa = {
3791 12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */
3792 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3793 (FRAME_SIZE >> 7)
3794 },
3795 .fde_reg_ofs = {
3796 /* DW_CFA_offset_extended_sf, lr, LR_OFFSET */
3797 0x11, 65, (LR_OFFSET / -SZR) & 0x7f,
3798 }
3799 };
3800
3801 void tcg_register_jit(const void *buf, size_t buf_size)
3802 {
3803 uint8_t *p = &debug_frame.fde_reg_ofs[3];
3804 int i;
3805
3806 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) {
3807 p[0] = 0x80 + tcg_target_callee_save_regs[i];
3808 p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR;
3809 }
3810
3811 debug_frame.fde.func_start = (uintptr_t)buf;
3812 debug_frame.fde.func_len = buf_size;
3813
3814 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
3815 }
3816 #endif /* __ELF__ */