]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/ppc/tcg-target.c.inc
8d6899cf403fb048f9677ff3c7fff4a0cca2ed49
[mirror_qemu.git] / tcg / ppc / tcg-target.c.inc
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "elf.h"
26 #include "../tcg-pool.c.inc"
27 #include "../tcg-ldst.c.inc"
28
29 /*
30 * Standardize on the _CALL_FOO symbols used by GCC:
31 * Apple XCode does not define _CALL_DARWIN.
32 * Clang defines _CALL_ELF (64-bit) but not _CALL_SYSV (32-bit).
33 */
34 #if !defined(_CALL_SYSV) && \
35 !defined(_CALL_DARWIN) && \
36 !defined(_CALL_AIX) && \
37 !defined(_CALL_ELF)
38 # if defined(__APPLE__)
39 # define _CALL_DARWIN
40 # elif defined(__ELF__) && TCG_TARGET_REG_BITS == 32
41 # define _CALL_SYSV
42 # else
43 # error "Unknown ABI"
44 # endif
45 #endif
46
47 #if TCG_TARGET_REG_BITS == 64
48 # define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_EXTEND
49 #else
50 # define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL
51 #endif
52 #ifdef _CALL_SYSV
53 # define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_EVEN
54 #else
55 # define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL
56 #endif
57
58 /* For some memory operations, we need a scratch that isn't R0. For the AIX
59 calling convention, we can re-use the TOC register since we'll be reloading
60 it at every call. Otherwise R12 will do nicely as neither a call-saved
61 register nor a parameter register. */
62 #ifdef _CALL_AIX
63 # define TCG_REG_TMP1 TCG_REG_R2
64 #else
65 # define TCG_REG_TMP1 TCG_REG_R12
66 #endif
67
68 #define TCG_VEC_TMP1 TCG_REG_V0
69 #define TCG_VEC_TMP2 TCG_REG_V1
70
71 #define TCG_REG_TB TCG_REG_R31
72 #define USE_REG_TB (TCG_TARGET_REG_BITS == 64)
73
74 /* Shorthand for size of a pointer. Avoid promotion to unsigned. */
75 #define SZP ((int)sizeof(void *))
76
77 /* Shorthand for size of a register. */
78 #define SZR (TCG_TARGET_REG_BITS / 8)
79
80 #define TCG_CT_CONST_S16 0x100
81 #define TCG_CT_CONST_U16 0x200
82 #define TCG_CT_CONST_S32 0x400
83 #define TCG_CT_CONST_U32 0x800
84 #define TCG_CT_CONST_ZERO 0x1000
85 #define TCG_CT_CONST_MONE 0x2000
86 #define TCG_CT_CONST_WSZ 0x4000
87
88 #define ALL_GENERAL_REGS 0xffffffffu
89 #define ALL_VECTOR_REGS 0xffffffff00000000ull
90
91 #ifdef CONFIG_SOFTMMU
92 #define ALL_QLOAD_REGS \
93 (ALL_GENERAL_REGS & \
94 ~((1 << TCG_REG_R3) | (1 << TCG_REG_R4) | (1 << TCG_REG_R5)))
95 #define ALL_QSTORE_REGS \
96 (ALL_GENERAL_REGS & ~((1 << TCG_REG_R3) | (1 << TCG_REG_R4) | \
97 (1 << TCG_REG_R5) | (1 << TCG_REG_R6)))
98 #else
99 #define ALL_QLOAD_REGS (ALL_GENERAL_REGS & ~(1 << TCG_REG_R3))
100 #define ALL_QSTORE_REGS ALL_QLOAD_REGS
101 #endif
102
103 TCGPowerISA have_isa;
104 static bool have_isel;
105 bool have_altivec;
106 bool have_vsx;
107
108 #ifndef CONFIG_SOFTMMU
109 #define TCG_GUEST_BASE_REG 30
110 #endif
111
112 #ifdef CONFIG_DEBUG_TCG
113 static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = {
114 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
115 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
116 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
117 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
118 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
119 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
120 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
121 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
122 };
123 #endif
124
125 static const int tcg_target_reg_alloc_order[] = {
126 TCG_REG_R14, /* call saved registers */
127 TCG_REG_R15,
128 TCG_REG_R16,
129 TCG_REG_R17,
130 TCG_REG_R18,
131 TCG_REG_R19,
132 TCG_REG_R20,
133 TCG_REG_R21,
134 TCG_REG_R22,
135 TCG_REG_R23,
136 TCG_REG_R24,
137 TCG_REG_R25,
138 TCG_REG_R26,
139 TCG_REG_R27,
140 TCG_REG_R28,
141 TCG_REG_R29,
142 TCG_REG_R30,
143 TCG_REG_R31,
144 TCG_REG_R12, /* call clobbered, non-arguments */
145 TCG_REG_R11,
146 TCG_REG_R2,
147 TCG_REG_R13,
148 TCG_REG_R10, /* call clobbered, arguments */
149 TCG_REG_R9,
150 TCG_REG_R8,
151 TCG_REG_R7,
152 TCG_REG_R6,
153 TCG_REG_R5,
154 TCG_REG_R4,
155 TCG_REG_R3,
156
157 /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */
158 TCG_REG_V2, /* call clobbered, vectors */
159 TCG_REG_V3,
160 TCG_REG_V4,
161 TCG_REG_V5,
162 TCG_REG_V6,
163 TCG_REG_V7,
164 TCG_REG_V8,
165 TCG_REG_V9,
166 TCG_REG_V10,
167 TCG_REG_V11,
168 TCG_REG_V12,
169 TCG_REG_V13,
170 TCG_REG_V14,
171 TCG_REG_V15,
172 TCG_REG_V16,
173 TCG_REG_V17,
174 TCG_REG_V18,
175 TCG_REG_V19,
176 };
177
178 static const int tcg_target_call_iarg_regs[] = {
179 TCG_REG_R3,
180 TCG_REG_R4,
181 TCG_REG_R5,
182 TCG_REG_R6,
183 TCG_REG_R7,
184 TCG_REG_R8,
185 TCG_REG_R9,
186 TCG_REG_R10
187 };
188
189 static const int tcg_target_call_oarg_regs[] = {
190 TCG_REG_R3,
191 TCG_REG_R4
192 };
193
194 static const int tcg_target_callee_save_regs[] = {
195 #ifdef _CALL_DARWIN
196 TCG_REG_R11,
197 #endif
198 TCG_REG_R14,
199 TCG_REG_R15,
200 TCG_REG_R16,
201 TCG_REG_R17,
202 TCG_REG_R18,
203 TCG_REG_R19,
204 TCG_REG_R20,
205 TCG_REG_R21,
206 TCG_REG_R22,
207 TCG_REG_R23,
208 TCG_REG_R24,
209 TCG_REG_R25,
210 TCG_REG_R26,
211 TCG_REG_R27, /* currently used for the global env */
212 TCG_REG_R28,
213 TCG_REG_R29,
214 TCG_REG_R30,
215 TCG_REG_R31
216 };
217
218 static inline bool in_range_b(tcg_target_long target)
219 {
220 return target == sextract64(target, 0, 26);
221 }
222
223 static uint32_t reloc_pc24_val(const tcg_insn_unit *pc,
224 const tcg_insn_unit *target)
225 {
226 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
227 tcg_debug_assert(in_range_b(disp));
228 return disp & 0x3fffffc;
229 }
230
231 static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
232 {
233 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
234 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
235
236 if (in_range_b(disp)) {
237 *src_rw = (*src_rw & ~0x3fffffc) | (disp & 0x3fffffc);
238 return true;
239 }
240 return false;
241 }
242
243 static uint16_t reloc_pc14_val(const tcg_insn_unit *pc,
244 const tcg_insn_unit *target)
245 {
246 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
247 tcg_debug_assert(disp == (int16_t) disp);
248 return disp & 0xfffc;
249 }
250
251 static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
252 {
253 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
254 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
255
256 if (disp == (int16_t) disp) {
257 *src_rw = (*src_rw & ~0xfffc) | (disp & 0xfffc);
258 return true;
259 }
260 return false;
261 }
262
263 /* test if a constant matches the constraint */
264 static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
265 {
266 if (ct & TCG_CT_CONST) {
267 return 1;
268 }
269
270 /* The only 32-bit constraint we use aside from
271 TCG_CT_CONST is TCG_CT_CONST_S16. */
272 if (type == TCG_TYPE_I32) {
273 val = (int32_t)val;
274 }
275
276 if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
277 return 1;
278 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
279 return 1;
280 } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
281 return 1;
282 } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
283 return 1;
284 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
285 return 1;
286 } else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
287 return 1;
288 } else if ((ct & TCG_CT_CONST_WSZ)
289 && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
290 return 1;
291 }
292 return 0;
293 }
294
295 #define OPCD(opc) ((opc)<<26)
296 #define XO19(opc) (OPCD(19)|((opc)<<1))
297 #define MD30(opc) (OPCD(30)|((opc)<<2))
298 #define MDS30(opc) (OPCD(30)|((opc)<<1))
299 #define XO31(opc) (OPCD(31)|((opc)<<1))
300 #define XO58(opc) (OPCD(58)|(opc))
301 #define XO62(opc) (OPCD(62)|(opc))
302 #define VX4(opc) (OPCD(4)|(opc))
303
304 #define B OPCD( 18)
305 #define BC OPCD( 16)
306 #define LBZ OPCD( 34)
307 #define LHZ OPCD( 40)
308 #define LHA OPCD( 42)
309 #define LWZ OPCD( 32)
310 #define LWZUX XO31( 55)
311 #define STB OPCD( 38)
312 #define STH OPCD( 44)
313 #define STW OPCD( 36)
314
315 #define STD XO62( 0)
316 #define STDU XO62( 1)
317 #define STDX XO31(149)
318
319 #define LD XO58( 0)
320 #define LDX XO31( 21)
321 #define LDU XO58( 1)
322 #define LDUX XO31( 53)
323 #define LWA XO58( 2)
324 #define LWAX XO31(341)
325
326 #define ADDIC OPCD( 12)
327 #define ADDI OPCD( 14)
328 #define ADDIS OPCD( 15)
329 #define ORI OPCD( 24)
330 #define ORIS OPCD( 25)
331 #define XORI OPCD( 26)
332 #define XORIS OPCD( 27)
333 #define ANDI OPCD( 28)
334 #define ANDIS OPCD( 29)
335 #define MULLI OPCD( 7)
336 #define CMPLI OPCD( 10)
337 #define CMPI OPCD( 11)
338 #define SUBFIC OPCD( 8)
339
340 #define LWZU OPCD( 33)
341 #define STWU OPCD( 37)
342
343 #define RLWIMI OPCD( 20)
344 #define RLWINM OPCD( 21)
345 #define RLWNM OPCD( 23)
346
347 #define RLDICL MD30( 0)
348 #define RLDICR MD30( 1)
349 #define RLDIMI MD30( 3)
350 #define RLDCL MDS30( 8)
351
352 #define BCLR XO19( 16)
353 #define BCCTR XO19(528)
354 #define CRAND XO19(257)
355 #define CRANDC XO19(129)
356 #define CRNAND XO19(225)
357 #define CROR XO19(449)
358 #define CRNOR XO19( 33)
359
360 #define EXTSB XO31(954)
361 #define EXTSH XO31(922)
362 #define EXTSW XO31(986)
363 #define ADD XO31(266)
364 #define ADDE XO31(138)
365 #define ADDME XO31(234)
366 #define ADDZE XO31(202)
367 #define ADDC XO31( 10)
368 #define AND XO31( 28)
369 #define SUBF XO31( 40)
370 #define SUBFC XO31( 8)
371 #define SUBFE XO31(136)
372 #define SUBFME XO31(232)
373 #define SUBFZE XO31(200)
374 #define OR XO31(444)
375 #define XOR XO31(316)
376 #define MULLW XO31(235)
377 #define MULHW XO31( 75)
378 #define MULHWU XO31( 11)
379 #define DIVW XO31(491)
380 #define DIVWU XO31(459)
381 #define MODSW XO31(779)
382 #define MODUW XO31(267)
383 #define CMP XO31( 0)
384 #define CMPL XO31( 32)
385 #define LHBRX XO31(790)
386 #define LWBRX XO31(534)
387 #define LDBRX XO31(532)
388 #define STHBRX XO31(918)
389 #define STWBRX XO31(662)
390 #define STDBRX XO31(660)
391 #define MFSPR XO31(339)
392 #define MTSPR XO31(467)
393 #define SRAWI XO31(824)
394 #define NEG XO31(104)
395 #define MFCR XO31( 19)
396 #define MFOCRF (MFCR | (1u << 20))
397 #define NOR XO31(124)
398 #define CNTLZW XO31( 26)
399 #define CNTLZD XO31( 58)
400 #define CNTTZW XO31(538)
401 #define CNTTZD XO31(570)
402 #define CNTPOPW XO31(378)
403 #define CNTPOPD XO31(506)
404 #define ANDC XO31( 60)
405 #define ORC XO31(412)
406 #define EQV XO31(284)
407 #define NAND XO31(476)
408 #define ISEL XO31( 15)
409
410 #define MULLD XO31(233)
411 #define MULHD XO31( 73)
412 #define MULHDU XO31( 9)
413 #define DIVD XO31(489)
414 #define DIVDU XO31(457)
415 #define MODSD XO31(777)
416 #define MODUD XO31(265)
417
418 #define LBZX XO31( 87)
419 #define LHZX XO31(279)
420 #define LHAX XO31(343)
421 #define LWZX XO31( 23)
422 #define STBX XO31(215)
423 #define STHX XO31(407)
424 #define STWX XO31(151)
425
426 #define EIEIO XO31(854)
427 #define HWSYNC XO31(598)
428 #define LWSYNC (HWSYNC | (1u << 21))
429
430 #define SPR(a, b) ((((a)<<5)|(b))<<11)
431 #define LR SPR(8, 0)
432 #define CTR SPR(9, 0)
433
434 #define SLW XO31( 24)
435 #define SRW XO31(536)
436 #define SRAW XO31(792)
437
438 #define SLD XO31( 27)
439 #define SRD XO31(539)
440 #define SRAD XO31(794)
441 #define SRADI XO31(413<<1)
442
443 #define BRH XO31(219)
444 #define BRW XO31(155)
445 #define BRD XO31(187)
446
447 #define TW XO31( 4)
448 #define TRAP (TW | TO(31))
449
450 #define NOP ORI /* ori 0,0,0 */
451
452 #define LVX XO31(103)
453 #define LVEBX XO31(7)
454 #define LVEHX XO31(39)
455 #define LVEWX XO31(71)
456 #define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */
457 #define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */
458 #define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */
459 #define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */
460 #define LXSD (OPCD(57) | 2) /* v3.00 */
461 #define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */
462
463 #define STVX XO31(231)
464 #define STVEWX XO31(199)
465 #define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */
466 #define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */
467 #define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */
468 #define STXSD (OPCD(61) | 2) /* v3.00 */
469
470 #define VADDSBS VX4(768)
471 #define VADDUBS VX4(512)
472 #define VADDUBM VX4(0)
473 #define VADDSHS VX4(832)
474 #define VADDUHS VX4(576)
475 #define VADDUHM VX4(64)
476 #define VADDSWS VX4(896)
477 #define VADDUWS VX4(640)
478 #define VADDUWM VX4(128)
479 #define VADDUDM VX4(192) /* v2.07 */
480
481 #define VSUBSBS VX4(1792)
482 #define VSUBUBS VX4(1536)
483 #define VSUBUBM VX4(1024)
484 #define VSUBSHS VX4(1856)
485 #define VSUBUHS VX4(1600)
486 #define VSUBUHM VX4(1088)
487 #define VSUBSWS VX4(1920)
488 #define VSUBUWS VX4(1664)
489 #define VSUBUWM VX4(1152)
490 #define VSUBUDM VX4(1216) /* v2.07 */
491
492 #define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */
493 #define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */
494
495 #define VMAXSB VX4(258)
496 #define VMAXSH VX4(322)
497 #define VMAXSW VX4(386)
498 #define VMAXSD VX4(450) /* v2.07 */
499 #define VMAXUB VX4(2)
500 #define VMAXUH VX4(66)
501 #define VMAXUW VX4(130)
502 #define VMAXUD VX4(194) /* v2.07 */
503 #define VMINSB VX4(770)
504 #define VMINSH VX4(834)
505 #define VMINSW VX4(898)
506 #define VMINSD VX4(962) /* v2.07 */
507 #define VMINUB VX4(514)
508 #define VMINUH VX4(578)
509 #define VMINUW VX4(642)
510 #define VMINUD VX4(706) /* v2.07 */
511
512 #define VCMPEQUB VX4(6)
513 #define VCMPEQUH VX4(70)
514 #define VCMPEQUW VX4(134)
515 #define VCMPEQUD VX4(199) /* v2.07 */
516 #define VCMPGTSB VX4(774)
517 #define VCMPGTSH VX4(838)
518 #define VCMPGTSW VX4(902)
519 #define VCMPGTSD VX4(967) /* v2.07 */
520 #define VCMPGTUB VX4(518)
521 #define VCMPGTUH VX4(582)
522 #define VCMPGTUW VX4(646)
523 #define VCMPGTUD VX4(711) /* v2.07 */
524 #define VCMPNEB VX4(7) /* v3.00 */
525 #define VCMPNEH VX4(71) /* v3.00 */
526 #define VCMPNEW VX4(135) /* v3.00 */
527
528 #define VSLB VX4(260)
529 #define VSLH VX4(324)
530 #define VSLW VX4(388)
531 #define VSLD VX4(1476) /* v2.07 */
532 #define VSRB VX4(516)
533 #define VSRH VX4(580)
534 #define VSRW VX4(644)
535 #define VSRD VX4(1732) /* v2.07 */
536 #define VSRAB VX4(772)
537 #define VSRAH VX4(836)
538 #define VSRAW VX4(900)
539 #define VSRAD VX4(964) /* v2.07 */
540 #define VRLB VX4(4)
541 #define VRLH VX4(68)
542 #define VRLW VX4(132)
543 #define VRLD VX4(196) /* v2.07 */
544
545 #define VMULEUB VX4(520)
546 #define VMULEUH VX4(584)
547 #define VMULEUW VX4(648) /* v2.07 */
548 #define VMULOUB VX4(8)
549 #define VMULOUH VX4(72)
550 #define VMULOUW VX4(136) /* v2.07 */
551 #define VMULUWM VX4(137) /* v2.07 */
552 #define VMULLD VX4(457) /* v3.10 */
553 #define VMSUMUHM VX4(38)
554
555 #define VMRGHB VX4(12)
556 #define VMRGHH VX4(76)
557 #define VMRGHW VX4(140)
558 #define VMRGLB VX4(268)
559 #define VMRGLH VX4(332)
560 #define VMRGLW VX4(396)
561
562 #define VPKUHUM VX4(14)
563 #define VPKUWUM VX4(78)
564
565 #define VAND VX4(1028)
566 #define VANDC VX4(1092)
567 #define VNOR VX4(1284)
568 #define VOR VX4(1156)
569 #define VXOR VX4(1220)
570 #define VEQV VX4(1668) /* v2.07 */
571 #define VNAND VX4(1412) /* v2.07 */
572 #define VORC VX4(1348) /* v2.07 */
573
574 #define VSPLTB VX4(524)
575 #define VSPLTH VX4(588)
576 #define VSPLTW VX4(652)
577 #define VSPLTISB VX4(780)
578 #define VSPLTISH VX4(844)
579 #define VSPLTISW VX4(908)
580
581 #define VSLDOI VX4(44)
582
583 #define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */
584 #define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */
585 #define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */
586
587 #define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */
588 #define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */
589 #define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */
590 #define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */
591 #define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */
592 #define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */
593
594 #define RT(r) ((r)<<21)
595 #define RS(r) ((r)<<21)
596 #define RA(r) ((r)<<16)
597 #define RB(r) ((r)<<11)
598 #define TO(t) ((t)<<21)
599 #define SH(s) ((s)<<11)
600 #define MB(b) ((b)<<6)
601 #define ME(e) ((e)<<1)
602 #define BO(o) ((o)<<21)
603 #define MB64(b) ((b)<<5)
604 #define FXM(b) (1 << (19 - (b)))
605
606 #define VRT(r) (((r) & 31) << 21)
607 #define VRA(r) (((r) & 31) << 16)
608 #define VRB(r) (((r) & 31) << 11)
609 #define VRC(r) (((r) & 31) << 6)
610
611 #define LK 1
612
613 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
614 #define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
615 #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
616 #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
617
618 #define BF(n) ((n)<<23)
619 #define BI(n, c) (((c)+((n)*4))<<16)
620 #define BT(n, c) (((c)+((n)*4))<<21)
621 #define BA(n, c) (((c)+((n)*4))<<16)
622 #define BB(n, c) (((c)+((n)*4))<<11)
623 #define BC_(n, c) (((c)+((n)*4))<<6)
624
625 #define BO_COND_TRUE BO(12)
626 #define BO_COND_FALSE BO( 4)
627 #define BO_ALWAYS BO(20)
628
629 enum {
630 CR_LT,
631 CR_GT,
632 CR_EQ,
633 CR_SO
634 };
635
636 static const uint32_t tcg_to_bc[] = {
637 [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE,
638 [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE,
639 [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE,
640 [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE,
641 [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE,
642 [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE,
643 [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE,
644 [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE,
645 [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE,
646 [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE,
647 };
648
649 /* The low bit here is set if the RA and RB fields must be inverted. */
650 static const uint32_t tcg_to_isel[] = {
651 [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
652 [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
653 [TCG_COND_LT] = ISEL | BC_(7, CR_LT),
654 [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
655 [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
656 [TCG_COND_GT] = ISEL | BC_(7, CR_GT),
657 [TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
658 [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
659 [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
660 [TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
661 };
662
663 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
664 intptr_t value, intptr_t addend)
665 {
666 const tcg_insn_unit *target;
667 int16_t lo;
668 int32_t hi;
669
670 value += addend;
671 target = (const tcg_insn_unit *)value;
672
673 switch (type) {
674 case R_PPC_REL14:
675 return reloc_pc14(code_ptr, target);
676 case R_PPC_REL24:
677 return reloc_pc24(code_ptr, target);
678 case R_PPC_ADDR16:
679 /*
680 * We are (slightly) abusing this relocation type. In particular,
681 * assert that the low 2 bits are zero, and do not modify them.
682 * That way we can use this with LD et al that have opcode bits
683 * in the low 2 bits of the insn.
684 */
685 if ((value & 3) || value != (int16_t)value) {
686 return false;
687 }
688 *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc);
689 break;
690 case R_PPC_ADDR32:
691 /*
692 * We are abusing this relocation type. Again, this points to
693 * a pair of insns, lis + load. This is an absolute address
694 * relocation for PPC32 so the lis cannot be removed.
695 */
696 lo = value;
697 hi = value - lo;
698 if (hi + lo != value) {
699 return false;
700 }
701 code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16);
702 code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo);
703 break;
704 default:
705 g_assert_not_reached();
706 }
707 return true;
708 }
709
710 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
711 TCGReg base, tcg_target_long offset);
712
713 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
714 {
715 if (ret == arg) {
716 return true;
717 }
718 switch (type) {
719 case TCG_TYPE_I64:
720 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
721 /* fallthru */
722 case TCG_TYPE_I32:
723 if (ret < TCG_REG_V0) {
724 if (arg < TCG_REG_V0) {
725 tcg_out32(s, OR | SAB(arg, ret, arg));
726 break;
727 } else if (have_isa_2_07) {
728 tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD)
729 | VRT(arg) | RA(ret));
730 break;
731 } else {
732 /* Altivec does not support vector->integer moves. */
733 return false;
734 }
735 } else if (arg < TCG_REG_V0) {
736 if (have_isa_2_07) {
737 tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD)
738 | VRT(ret) | RA(arg));
739 break;
740 } else {
741 /* Altivec does not support integer->vector moves. */
742 return false;
743 }
744 }
745 /* fallthru */
746 case TCG_TYPE_V64:
747 case TCG_TYPE_V128:
748 tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0);
749 tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg));
750 break;
751 default:
752 g_assert_not_reached();
753 }
754 return true;
755 }
756
757 static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
758 int sh, int mb)
759 {
760 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
761 sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1);
762 mb = MB64((mb >> 5) | ((mb << 1) & 0x3f));
763 tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb);
764 }
765
766 static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
767 int sh, int mb, int me)
768 {
769 tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
770 }
771
772 static inline void tcg_out_ext8s(TCGContext *s, TCGReg dst, TCGReg src)
773 {
774 tcg_out32(s, EXTSB | RA(dst) | RS(src));
775 }
776
777 static inline void tcg_out_ext16s(TCGContext *s, TCGReg dst, TCGReg src)
778 {
779 tcg_out32(s, EXTSH | RA(dst) | RS(src));
780 }
781
782 static inline void tcg_out_ext16u(TCGContext *s, TCGReg dst, TCGReg src)
783 {
784 tcg_out32(s, ANDI | SAI(src, dst, 0xffff));
785 }
786
787 static inline void tcg_out_ext32s(TCGContext *s, TCGReg dst, TCGReg src)
788 {
789 tcg_out32(s, EXTSW | RA(dst) | RS(src));
790 }
791
792 static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
793 {
794 tcg_out_rld(s, RLDICL, dst, src, 0, 32);
795 }
796
797 static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c)
798 {
799 tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c);
800 }
801
802 static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
803 {
804 tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
805 }
806
807 static inline void tcg_out_sari32(TCGContext *s, TCGReg dst, TCGReg src, int c)
808 {
809 /* Limit immediate shift count lest we create an illegal insn. */
810 tcg_out32(s, SRAWI | RA(dst) | RS(src) | SH(c & 31));
811 }
812
813 static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c)
814 {
815 tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31);
816 }
817
818 static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
819 {
820 tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
821 }
822
823 static inline void tcg_out_sari64(TCGContext *s, TCGReg dst, TCGReg src, int c)
824 {
825 tcg_out32(s, SRADI | RA(dst) | RS(src) | SH(c & 0x1f) | ((c >> 4) & 2));
826 }
827
828 static void tcg_out_bswap16(TCGContext *s, TCGReg dst, TCGReg src, int flags)
829 {
830 TCGReg tmp = dst == src ? TCG_REG_R0 : dst;
831
832 if (have_isa_3_10) {
833 tcg_out32(s, BRH | RA(dst) | RS(src));
834 if (flags & TCG_BSWAP_OS) {
835 tcg_out_ext16s(s, dst, dst);
836 } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
837 tcg_out_ext16u(s, dst, dst);
838 }
839 return;
840 }
841
842 /*
843 * In the following,
844 * dep(a, b, m) -> (a & ~m) | (b & m)
845 *
846 * Begin with: src = xxxxabcd
847 */
848 /* tmp = rol32(src, 24) & 0x000000ff = 0000000c */
849 tcg_out_rlw(s, RLWINM, tmp, src, 24, 24, 31);
850 /* tmp = dep(tmp, rol32(src, 8), 0x0000ff00) = 000000dc */
851 tcg_out_rlw(s, RLWIMI, tmp, src, 8, 16, 23);
852
853 if (flags & TCG_BSWAP_OS) {
854 tcg_out_ext16s(s, dst, tmp);
855 } else {
856 tcg_out_mov(s, TCG_TYPE_REG, dst, tmp);
857 }
858 }
859
860 static void tcg_out_bswap32(TCGContext *s, TCGReg dst, TCGReg src, int flags)
861 {
862 TCGReg tmp = dst == src ? TCG_REG_R0 : dst;
863
864 if (have_isa_3_10) {
865 tcg_out32(s, BRW | RA(dst) | RS(src));
866 if (flags & TCG_BSWAP_OS) {
867 tcg_out_ext32s(s, dst, dst);
868 } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
869 tcg_out_ext32u(s, dst, dst);
870 }
871 return;
872 }
873
874 /*
875 * Stolen from gcc's builtin_bswap32.
876 * In the following,
877 * dep(a, b, m) -> (a & ~m) | (b & m)
878 *
879 * Begin with: src = xxxxabcd
880 */
881 /* tmp = rol32(src, 8) & 0xffffffff = 0000bcda */
882 tcg_out_rlw(s, RLWINM, tmp, src, 8, 0, 31);
883 /* tmp = dep(tmp, rol32(src, 24), 0xff000000) = 0000dcda */
884 tcg_out_rlw(s, RLWIMI, tmp, src, 24, 0, 7);
885 /* tmp = dep(tmp, rol32(src, 24), 0x0000ff00) = 0000dcba */
886 tcg_out_rlw(s, RLWIMI, tmp, src, 24, 16, 23);
887
888 if (flags & TCG_BSWAP_OS) {
889 tcg_out_ext32s(s, dst, tmp);
890 } else {
891 tcg_out_mov(s, TCG_TYPE_REG, dst, tmp);
892 }
893 }
894
895 static void tcg_out_bswap64(TCGContext *s, TCGReg dst, TCGReg src)
896 {
897 TCGReg t0 = dst == src ? TCG_REG_R0 : dst;
898 TCGReg t1 = dst == src ? dst : TCG_REG_R0;
899
900 if (have_isa_3_10) {
901 tcg_out32(s, BRD | RA(dst) | RS(src));
902 return;
903 }
904
905 /*
906 * In the following,
907 * dep(a, b, m) -> (a & ~m) | (b & m)
908 *
909 * Begin with: src = abcdefgh
910 */
911 /* t0 = rol32(src, 8) & 0xffffffff = 0000fghe */
912 tcg_out_rlw(s, RLWINM, t0, src, 8, 0, 31);
913 /* t0 = dep(t0, rol32(src, 24), 0xff000000) = 0000hghe */
914 tcg_out_rlw(s, RLWIMI, t0, src, 24, 0, 7);
915 /* t0 = dep(t0, rol32(src, 24), 0x0000ff00) = 0000hgfe */
916 tcg_out_rlw(s, RLWIMI, t0, src, 24, 16, 23);
917
918 /* t0 = rol64(t0, 32) = hgfe0000 */
919 tcg_out_rld(s, RLDICL, t0, t0, 32, 0);
920 /* t1 = rol64(src, 32) = efghabcd */
921 tcg_out_rld(s, RLDICL, t1, src, 32, 0);
922
923 /* t0 = dep(t0, rol32(t1, 24), 0xffffffff) = hgfebcda */
924 tcg_out_rlw(s, RLWIMI, t0, t1, 8, 0, 31);
925 /* t0 = dep(t0, rol32(t1, 24), 0xff000000) = hgfedcda */
926 tcg_out_rlw(s, RLWIMI, t0, t1, 24, 0, 7);
927 /* t0 = dep(t0, rol32(t1, 24), 0x0000ff00) = hgfedcba */
928 tcg_out_rlw(s, RLWIMI, t0, t1, 24, 16, 23);
929
930 tcg_out_mov(s, TCG_TYPE_REG, dst, t0);
931 }
932
933 /* Emit a move into ret of arg, if it can be done in one insn. */
934 static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
935 {
936 if (arg == (int16_t)arg) {
937 tcg_out32(s, ADDI | TAI(ret, 0, arg));
938 return true;
939 }
940 if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
941 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
942 return true;
943 }
944 return false;
945 }
946
947 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
948 tcg_target_long arg, bool in_prologue)
949 {
950 intptr_t tb_diff;
951 tcg_target_long tmp;
952 int shift;
953
954 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
955
956 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
957 arg = (int32_t)arg;
958 }
959
960 /* Load 16-bit immediates with one insn. */
961 if (tcg_out_movi_one(s, ret, arg)) {
962 return;
963 }
964
965 /* Load addresses within the TB with one insn. */
966 tb_diff = tcg_tbrel_diff(s, (void *)arg);
967 if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) {
968 tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff));
969 return;
970 }
971
972 /* Load 32-bit immediates with two insns. Note that we've already
973 eliminated bare ADDIS, so we know both insns are required. */
974 if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) {
975 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
976 tcg_out32(s, ORI | SAI(ret, ret, arg));
977 return;
978 }
979 if (arg == (uint32_t)arg && !(arg & 0x8000)) {
980 tcg_out32(s, ADDI | TAI(ret, 0, arg));
981 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
982 return;
983 }
984
985 /* Load masked 16-bit value. */
986 if (arg > 0 && (arg & 0x8000)) {
987 tmp = arg | 0x7fff;
988 if ((tmp & (tmp + 1)) == 0) {
989 int mb = clz64(tmp + 1) + 1;
990 tcg_out32(s, ADDI | TAI(ret, 0, arg));
991 tcg_out_rld(s, RLDICL, ret, ret, 0, mb);
992 return;
993 }
994 }
995
996 /* Load common masks with 2 insns. */
997 shift = ctz64(arg);
998 tmp = arg >> shift;
999 if (tmp == (int16_t)tmp) {
1000 tcg_out32(s, ADDI | TAI(ret, 0, tmp));
1001 tcg_out_shli64(s, ret, ret, shift);
1002 return;
1003 }
1004 shift = clz64(arg);
1005 if (tcg_out_movi_one(s, ret, arg << shift)) {
1006 tcg_out_shri64(s, ret, ret, shift);
1007 return;
1008 }
1009
1010 /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */
1011 if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) {
1012 tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff);
1013 return;
1014 }
1015
1016 /* Use the constant pool, if possible. */
1017 if (!in_prologue && USE_REG_TB) {
1018 new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr,
1019 tcg_tbrel_diff(s, NULL));
1020 tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0));
1021 return;
1022 }
1023
1024 tmp = arg >> 31 >> 1;
1025 tcg_out_movi(s, TCG_TYPE_I32, ret, tmp);
1026 if (tmp) {
1027 tcg_out_shli64(s, ret, ret, 32);
1028 }
1029 if (arg & 0xffff0000) {
1030 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
1031 }
1032 if (arg & 0xffff) {
1033 tcg_out32(s, ORI | SAI(ret, ret, arg));
1034 }
1035 }
1036
1037 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1038 TCGReg ret, int64_t val)
1039 {
1040 uint32_t load_insn;
1041 int rel, low;
1042 intptr_t add;
1043
1044 switch (vece) {
1045 case MO_8:
1046 low = (int8_t)val;
1047 if (low >= -16 && low < 16) {
1048 tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16));
1049 return;
1050 }
1051 if (have_isa_3_00) {
1052 tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11));
1053 return;
1054 }
1055 break;
1056
1057 case MO_16:
1058 low = (int16_t)val;
1059 if (low >= -16 && low < 16) {
1060 tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16));
1061 return;
1062 }
1063 break;
1064
1065 case MO_32:
1066 low = (int32_t)val;
1067 if (low >= -16 && low < 16) {
1068 tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16));
1069 return;
1070 }
1071 break;
1072 }
1073
1074 /*
1075 * Otherwise we must load the value from the constant pool.
1076 */
1077 if (USE_REG_TB) {
1078 rel = R_PPC_ADDR16;
1079 add = tcg_tbrel_diff(s, NULL);
1080 } else {
1081 rel = R_PPC_ADDR32;
1082 add = 0;
1083 }
1084
1085 if (have_vsx) {
1086 load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX;
1087 load_insn |= VRT(ret) | RB(TCG_REG_TMP1);
1088 if (TCG_TARGET_REG_BITS == 64) {
1089 new_pool_label(s, val, rel, s->code_ptr, add);
1090 } else {
1091 new_pool_l2(s, rel, s->code_ptr, add, val >> 32, val);
1092 }
1093 } else {
1094 load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1);
1095 if (TCG_TARGET_REG_BITS == 64) {
1096 new_pool_l2(s, rel, s->code_ptr, add, val, val);
1097 } else {
1098 new_pool_l4(s, rel, s->code_ptr, add,
1099 val >> 32, val, val >> 32, val);
1100 }
1101 }
1102
1103 if (USE_REG_TB) {
1104 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0));
1105 load_insn |= RA(TCG_REG_TB);
1106 } else {
1107 tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0));
1108 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0));
1109 }
1110 tcg_out32(s, load_insn);
1111 }
1112
1113 static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
1114 tcg_target_long arg)
1115 {
1116 switch (type) {
1117 case TCG_TYPE_I32:
1118 case TCG_TYPE_I64:
1119 tcg_debug_assert(ret < TCG_REG_V0);
1120 tcg_out_movi_int(s, type, ret, arg, false);
1121 break;
1122
1123 default:
1124 g_assert_not_reached();
1125 }
1126 }
1127
1128 static bool mask_operand(uint32_t c, int *mb, int *me)
1129 {
1130 uint32_t lsb, test;
1131
1132 /* Accept a bit pattern like:
1133 0....01....1
1134 1....10....0
1135 0..01..10..0
1136 Keep track of the transitions. */
1137 if (c == 0 || c == -1) {
1138 return false;
1139 }
1140 test = c;
1141 lsb = test & -test;
1142 test += lsb;
1143 if (test & (test - 1)) {
1144 return false;
1145 }
1146
1147 *me = clz32(lsb);
1148 *mb = test ? clz32(test & -test) + 1 : 0;
1149 return true;
1150 }
1151
1152 static bool mask64_operand(uint64_t c, int *mb, int *me)
1153 {
1154 uint64_t lsb;
1155
1156 if (c == 0) {
1157 return false;
1158 }
1159
1160 lsb = c & -c;
1161 /* Accept 1..10..0. */
1162 if (c == -lsb) {
1163 *mb = 0;
1164 *me = clz64(lsb);
1165 return true;
1166 }
1167 /* Accept 0..01..1. */
1168 if (lsb == 1 && (c & (c + 1)) == 0) {
1169 *mb = clz64(c + 1) + 1;
1170 *me = 63;
1171 return true;
1172 }
1173 return false;
1174 }
1175
1176 static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1177 {
1178 int mb, me;
1179
1180 if (mask_operand(c, &mb, &me)) {
1181 tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
1182 } else if ((c & 0xffff) == c) {
1183 tcg_out32(s, ANDI | SAI(src, dst, c));
1184 return;
1185 } else if ((c & 0xffff0000) == c) {
1186 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1187 return;
1188 } else {
1189 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c);
1190 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1191 }
1192 }
1193
1194 static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
1195 {
1196 int mb, me;
1197
1198 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1199 if (mask64_operand(c, &mb, &me)) {
1200 if (mb == 0) {
1201 tcg_out_rld(s, RLDICR, dst, src, 0, me);
1202 } else {
1203 tcg_out_rld(s, RLDICL, dst, src, 0, mb);
1204 }
1205 } else if ((c & 0xffff) == c) {
1206 tcg_out32(s, ANDI | SAI(src, dst, c));
1207 return;
1208 } else if ((c & 0xffff0000) == c) {
1209 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1210 return;
1211 } else {
1212 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c);
1213 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1214 }
1215 }
1216
1217 static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
1218 int op_lo, int op_hi)
1219 {
1220 if (c >> 16) {
1221 tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
1222 src = dst;
1223 }
1224 if (c & 0xffff) {
1225 tcg_out32(s, op_lo | SAI(src, dst, c));
1226 src = dst;
1227 }
1228 }
1229
1230 static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1231 {
1232 tcg_out_zori32(s, dst, src, c, ORI, ORIS);
1233 }
1234
1235 static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1236 {
1237 tcg_out_zori32(s, dst, src, c, XORI, XORIS);
1238 }
1239
1240 static void tcg_out_b(TCGContext *s, int mask, const tcg_insn_unit *target)
1241 {
1242 ptrdiff_t disp = tcg_pcrel_diff(s, target);
1243 if (in_range_b(disp)) {
1244 tcg_out32(s, B | (disp & 0x3fffffc) | mask);
1245 } else {
1246 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target);
1247 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR);
1248 tcg_out32(s, BCCTR | BO_ALWAYS | mask);
1249 }
1250 }
1251
1252 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
1253 TCGReg base, tcg_target_long offset)
1254 {
1255 tcg_target_long orig = offset, l0, l1, extra = 0, align = 0;
1256 bool is_int_store = false;
1257 TCGReg rs = TCG_REG_TMP1;
1258
1259 switch (opi) {
1260 case LD: case LWA:
1261 align = 3;
1262 /* FALLTHRU */
1263 default:
1264 if (rt > TCG_REG_R0 && rt < TCG_REG_V0) {
1265 rs = rt;
1266 break;
1267 }
1268 break;
1269 case LXSD:
1270 case STXSD:
1271 align = 3;
1272 break;
1273 case LXV:
1274 case STXV:
1275 align = 15;
1276 break;
1277 case STD:
1278 align = 3;
1279 /* FALLTHRU */
1280 case STB: case STH: case STW:
1281 is_int_store = true;
1282 break;
1283 }
1284
1285 /* For unaligned, or very large offsets, use the indexed form. */
1286 if (offset & align || offset != (int32_t)offset || opi == 0) {
1287 if (rs == base) {
1288 rs = TCG_REG_R0;
1289 }
1290 tcg_debug_assert(!is_int_store || rs != rt);
1291 tcg_out_movi(s, TCG_TYPE_PTR, rs, orig);
1292 tcg_out32(s, opx | TAB(rt & 31, base, rs));
1293 return;
1294 }
1295
1296 l0 = (int16_t)offset;
1297 offset = (offset - l0) >> 16;
1298 l1 = (int16_t)offset;
1299
1300 if (l1 < 0 && orig >= 0) {
1301 extra = 0x4000;
1302 l1 = (int16_t)(offset - 0x4000);
1303 }
1304 if (l1) {
1305 tcg_out32(s, ADDIS | TAI(rs, base, l1));
1306 base = rs;
1307 }
1308 if (extra) {
1309 tcg_out32(s, ADDIS | TAI(rs, base, extra));
1310 base = rs;
1311 }
1312 if (opi != ADDI || base != rt || l0 != 0) {
1313 tcg_out32(s, opi | TAI(rt & 31, base, l0));
1314 }
1315 }
1316
1317 static void tcg_out_vsldoi(TCGContext *s, TCGReg ret,
1318 TCGReg va, TCGReg vb, int shb)
1319 {
1320 tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6));
1321 }
1322
1323 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1324 TCGReg base, intptr_t offset)
1325 {
1326 int shift;
1327
1328 switch (type) {
1329 case TCG_TYPE_I32:
1330 if (ret < TCG_REG_V0) {
1331 tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset);
1332 break;
1333 }
1334 if (have_isa_2_07 && have_vsx) {
1335 tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset);
1336 break;
1337 }
1338 tcg_debug_assert((offset & 3) == 0);
1339 tcg_out_mem_long(s, 0, LVEWX, ret, base, offset);
1340 shift = (offset - 4) & 0xc;
1341 if (shift) {
1342 tcg_out_vsldoi(s, ret, ret, ret, shift);
1343 }
1344 break;
1345 case TCG_TYPE_I64:
1346 if (ret < TCG_REG_V0) {
1347 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1348 tcg_out_mem_long(s, LD, LDX, ret, base, offset);
1349 break;
1350 }
1351 /* fallthru */
1352 case TCG_TYPE_V64:
1353 tcg_debug_assert(ret >= TCG_REG_V0);
1354 if (have_vsx) {
1355 tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX,
1356 ret, base, offset);
1357 break;
1358 }
1359 tcg_debug_assert((offset & 7) == 0);
1360 tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16);
1361 if (offset & 8) {
1362 tcg_out_vsldoi(s, ret, ret, ret, 8);
1363 }
1364 break;
1365 case TCG_TYPE_V128:
1366 tcg_debug_assert(ret >= TCG_REG_V0);
1367 tcg_debug_assert((offset & 15) == 0);
1368 tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0,
1369 LVX, ret, base, offset);
1370 break;
1371 default:
1372 g_assert_not_reached();
1373 }
1374 }
1375
1376 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1377 TCGReg base, intptr_t offset)
1378 {
1379 int shift;
1380
1381 switch (type) {
1382 case TCG_TYPE_I32:
1383 if (arg < TCG_REG_V0) {
1384 tcg_out_mem_long(s, STW, STWX, arg, base, offset);
1385 break;
1386 }
1387 if (have_isa_2_07 && have_vsx) {
1388 tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset);
1389 break;
1390 }
1391 assert((offset & 3) == 0);
1392 tcg_debug_assert((offset & 3) == 0);
1393 shift = (offset - 4) & 0xc;
1394 if (shift) {
1395 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift);
1396 arg = TCG_VEC_TMP1;
1397 }
1398 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1399 break;
1400 case TCG_TYPE_I64:
1401 if (arg < TCG_REG_V0) {
1402 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1403 tcg_out_mem_long(s, STD, STDX, arg, base, offset);
1404 break;
1405 }
1406 /* fallthru */
1407 case TCG_TYPE_V64:
1408 tcg_debug_assert(arg >= TCG_REG_V0);
1409 if (have_vsx) {
1410 tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0,
1411 STXSDX, arg, base, offset);
1412 break;
1413 }
1414 tcg_debug_assert((offset & 7) == 0);
1415 if (offset & 8) {
1416 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8);
1417 arg = TCG_VEC_TMP1;
1418 }
1419 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1420 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4);
1421 break;
1422 case TCG_TYPE_V128:
1423 tcg_debug_assert(arg >= TCG_REG_V0);
1424 tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0,
1425 STVX, arg, base, offset);
1426 break;
1427 default:
1428 g_assert_not_reached();
1429 }
1430 }
1431
1432 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1433 TCGReg base, intptr_t ofs)
1434 {
1435 return false;
1436 }
1437
1438 static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
1439 int const_arg2, int cr, TCGType type)
1440 {
1441 int imm;
1442 uint32_t op;
1443
1444 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1445
1446 /* Simplify the comparisons below wrt CMPI. */
1447 if (type == TCG_TYPE_I32) {
1448 arg2 = (int32_t)arg2;
1449 }
1450
1451 switch (cond) {
1452 case TCG_COND_EQ:
1453 case TCG_COND_NE:
1454 if (const_arg2) {
1455 if ((int16_t) arg2 == arg2) {
1456 op = CMPI;
1457 imm = 1;
1458 break;
1459 } else if ((uint16_t) arg2 == arg2) {
1460 op = CMPLI;
1461 imm = 1;
1462 break;
1463 }
1464 }
1465 op = CMPL;
1466 imm = 0;
1467 break;
1468
1469 case TCG_COND_LT:
1470 case TCG_COND_GE:
1471 case TCG_COND_LE:
1472 case TCG_COND_GT:
1473 if (const_arg2) {
1474 if ((int16_t) arg2 == arg2) {
1475 op = CMPI;
1476 imm = 1;
1477 break;
1478 }
1479 }
1480 op = CMP;
1481 imm = 0;
1482 break;
1483
1484 case TCG_COND_LTU:
1485 case TCG_COND_GEU:
1486 case TCG_COND_LEU:
1487 case TCG_COND_GTU:
1488 if (const_arg2) {
1489 if ((uint16_t) arg2 == arg2) {
1490 op = CMPLI;
1491 imm = 1;
1492 break;
1493 }
1494 }
1495 op = CMPL;
1496 imm = 0;
1497 break;
1498
1499 default:
1500 tcg_abort();
1501 }
1502 op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
1503
1504 if (imm) {
1505 tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
1506 } else {
1507 if (const_arg2) {
1508 tcg_out_movi(s, type, TCG_REG_R0, arg2);
1509 arg2 = TCG_REG_R0;
1510 }
1511 tcg_out32(s, op | RA(arg1) | RB(arg2));
1512 }
1513 }
1514
1515 static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
1516 TCGReg dst, TCGReg src)
1517 {
1518 if (type == TCG_TYPE_I32) {
1519 tcg_out32(s, CNTLZW | RS(src) | RA(dst));
1520 tcg_out_shri32(s, dst, dst, 5);
1521 } else {
1522 tcg_out32(s, CNTLZD | RS(src) | RA(dst));
1523 tcg_out_shri64(s, dst, dst, 6);
1524 }
1525 }
1526
1527 static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
1528 {
1529 /* X != 0 implies X + -1 generates a carry. Extra addition
1530 trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
1531 if (dst != src) {
1532 tcg_out32(s, ADDIC | TAI(dst, src, -1));
1533 tcg_out32(s, SUBFE | TAB(dst, dst, src));
1534 } else {
1535 tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1));
1536 tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src));
1537 }
1538 }
1539
1540 static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
1541 bool const_arg2)
1542 {
1543 if (const_arg2) {
1544 if ((uint32_t)arg2 == arg2) {
1545 tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
1546 } else {
1547 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
1548 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
1549 }
1550 } else {
1551 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
1552 }
1553 return TCG_REG_R0;
1554 }
1555
1556 static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
1557 TCGArg arg0, TCGArg arg1, TCGArg arg2,
1558 int const_arg2)
1559 {
1560 int crop, sh;
1561
1562 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1563
1564 /* Ignore high bits of a potential constant arg2. */
1565 if (type == TCG_TYPE_I32) {
1566 arg2 = (uint32_t)arg2;
1567 }
1568
1569 /* Handle common and trivial cases before handling anything else. */
1570 if (arg2 == 0) {
1571 switch (cond) {
1572 case TCG_COND_EQ:
1573 tcg_out_setcond_eq0(s, type, arg0, arg1);
1574 return;
1575 case TCG_COND_NE:
1576 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1577 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1578 arg1 = TCG_REG_R0;
1579 }
1580 tcg_out_setcond_ne0(s, arg0, arg1);
1581 return;
1582 case TCG_COND_GE:
1583 tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
1584 arg1 = arg0;
1585 /* FALLTHRU */
1586 case TCG_COND_LT:
1587 /* Extract the sign bit. */
1588 if (type == TCG_TYPE_I32) {
1589 tcg_out_shri32(s, arg0, arg1, 31);
1590 } else {
1591 tcg_out_shri64(s, arg0, arg1, 63);
1592 }
1593 return;
1594 default:
1595 break;
1596 }
1597 }
1598
1599 /* If we have ISEL, we can implement everything with 3 or 4 insns.
1600 All other cases below are also at least 3 insns, so speed up the
1601 code generator by not considering them and always using ISEL. */
1602 if (have_isel) {
1603 int isel, tab;
1604
1605 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1606
1607 isel = tcg_to_isel[cond];
1608
1609 tcg_out_movi(s, type, arg0, 1);
1610 if (isel & 1) {
1611 /* arg0 = (bc ? 0 : 1) */
1612 tab = TAB(arg0, 0, arg0);
1613 isel &= ~1;
1614 } else {
1615 /* arg0 = (bc ? 1 : 0) */
1616 tcg_out_movi(s, type, TCG_REG_R0, 0);
1617 tab = TAB(arg0, arg0, TCG_REG_R0);
1618 }
1619 tcg_out32(s, isel | tab);
1620 return;
1621 }
1622
1623 switch (cond) {
1624 case TCG_COND_EQ:
1625 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1626 tcg_out_setcond_eq0(s, type, arg0, arg1);
1627 return;
1628
1629 case TCG_COND_NE:
1630 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1631 /* Discard the high bits only once, rather than both inputs. */
1632 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1633 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1634 arg1 = TCG_REG_R0;
1635 }
1636 tcg_out_setcond_ne0(s, arg0, arg1);
1637 return;
1638
1639 case TCG_COND_GT:
1640 case TCG_COND_GTU:
1641 sh = 30;
1642 crop = 0;
1643 goto crtest;
1644
1645 case TCG_COND_LT:
1646 case TCG_COND_LTU:
1647 sh = 29;
1648 crop = 0;
1649 goto crtest;
1650
1651 case TCG_COND_GE:
1652 case TCG_COND_GEU:
1653 sh = 31;
1654 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT);
1655 goto crtest;
1656
1657 case TCG_COND_LE:
1658 case TCG_COND_LEU:
1659 sh = 31;
1660 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT);
1661 crtest:
1662 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1663 if (crop) {
1664 tcg_out32(s, crop);
1665 }
1666 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1667 tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
1668 break;
1669
1670 default:
1671 tcg_abort();
1672 }
1673 }
1674
1675 static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l)
1676 {
1677 if (l->has_value) {
1678 bc |= reloc_pc14_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr);
1679 } else {
1680 tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0);
1681 }
1682 tcg_out32(s, bc);
1683 }
1684
1685 static void tcg_out_brcond(TCGContext *s, TCGCond cond,
1686 TCGArg arg1, TCGArg arg2, int const_arg2,
1687 TCGLabel *l, TCGType type)
1688 {
1689 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1690 tcg_out_bc(s, tcg_to_bc[cond], l);
1691 }
1692
1693 static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
1694 TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
1695 TCGArg v2, bool const_c2)
1696 {
1697 /* If for some reason both inputs are zero, don't produce bad code. */
1698 if (v1 == 0 && v2 == 0) {
1699 tcg_out_movi(s, type, dest, 0);
1700 return;
1701 }
1702
1703 tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
1704
1705 if (have_isel) {
1706 int isel = tcg_to_isel[cond];
1707
1708 /* Swap the V operands if the operation indicates inversion. */
1709 if (isel & 1) {
1710 int t = v1;
1711 v1 = v2;
1712 v2 = t;
1713 isel &= ~1;
1714 }
1715 /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
1716 if (v2 == 0) {
1717 tcg_out_movi(s, type, TCG_REG_R0, 0);
1718 }
1719 tcg_out32(s, isel | TAB(dest, v1, v2));
1720 } else {
1721 if (dest == v2) {
1722 cond = tcg_invert_cond(cond);
1723 v2 = v1;
1724 } else if (dest != v1) {
1725 if (v1 == 0) {
1726 tcg_out_movi(s, type, dest, 0);
1727 } else {
1728 tcg_out_mov(s, type, dest, v1);
1729 }
1730 }
1731 /* Branch forward over one insn */
1732 tcg_out32(s, tcg_to_bc[cond] | 8);
1733 if (v2 == 0) {
1734 tcg_out_movi(s, type, dest, 0);
1735 } else {
1736 tcg_out_mov(s, type, dest, v2);
1737 }
1738 }
1739 }
1740
1741 static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc,
1742 TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2)
1743 {
1744 if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) {
1745 tcg_out32(s, opc | RA(a0) | RS(a1));
1746 } else {
1747 tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type);
1748 /* Note that the only other valid constant for a2 is 0. */
1749 if (have_isel) {
1750 tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1));
1751 tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0));
1752 } else if (!const_a2 && a0 == a2) {
1753 tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8);
1754 tcg_out32(s, opc | RA(a0) | RS(a1));
1755 } else {
1756 tcg_out32(s, opc | RA(a0) | RS(a1));
1757 tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8);
1758 if (const_a2) {
1759 tcg_out_movi(s, type, a0, 0);
1760 } else {
1761 tcg_out_mov(s, type, a0, a2);
1762 }
1763 }
1764 }
1765 }
1766
1767 static void tcg_out_cmp2(TCGContext *s, const TCGArg *args,
1768 const int *const_args)
1769 {
1770 static const struct { uint8_t bit1, bit2; } bits[] = {
1771 [TCG_COND_LT ] = { CR_LT, CR_LT },
1772 [TCG_COND_LE ] = { CR_LT, CR_GT },
1773 [TCG_COND_GT ] = { CR_GT, CR_GT },
1774 [TCG_COND_GE ] = { CR_GT, CR_LT },
1775 [TCG_COND_LTU] = { CR_LT, CR_LT },
1776 [TCG_COND_LEU] = { CR_LT, CR_GT },
1777 [TCG_COND_GTU] = { CR_GT, CR_GT },
1778 [TCG_COND_GEU] = { CR_GT, CR_LT },
1779 };
1780
1781 TCGCond cond = args[4], cond2;
1782 TCGArg al, ah, bl, bh;
1783 int blconst, bhconst;
1784 int op, bit1, bit2;
1785
1786 al = args[0];
1787 ah = args[1];
1788 bl = args[2];
1789 bh = args[3];
1790 blconst = const_args[2];
1791 bhconst = const_args[3];
1792
1793 switch (cond) {
1794 case TCG_COND_EQ:
1795 op = CRAND;
1796 goto do_equality;
1797 case TCG_COND_NE:
1798 op = CRNAND;
1799 do_equality:
1800 tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32);
1801 tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32);
1802 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1803 break;
1804
1805 case TCG_COND_LT:
1806 case TCG_COND_LE:
1807 case TCG_COND_GT:
1808 case TCG_COND_GE:
1809 case TCG_COND_LTU:
1810 case TCG_COND_LEU:
1811 case TCG_COND_GTU:
1812 case TCG_COND_GEU:
1813 bit1 = bits[cond].bit1;
1814 bit2 = bits[cond].bit2;
1815 op = (bit1 != bit2 ? CRANDC : CRAND);
1816 cond2 = tcg_unsigned_cond(cond);
1817
1818 tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32);
1819 tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32);
1820 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2));
1821 tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ));
1822 break;
1823
1824 default:
1825 tcg_abort();
1826 }
1827 }
1828
1829 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1830 const int *const_args)
1831 {
1832 tcg_out_cmp2(s, args + 1, const_args + 1);
1833 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1834 tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31);
1835 }
1836
1837 static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
1838 const int *const_args)
1839 {
1840 tcg_out_cmp2(s, args, const_args);
1841 tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5]));
1842 }
1843
1844 static void tcg_out_mb(TCGContext *s, TCGArg a0)
1845 {
1846 uint32_t insn;
1847
1848 if (a0 & TCG_MO_ST_LD) {
1849 insn = HWSYNC;
1850 } else {
1851 insn = LWSYNC;
1852 }
1853
1854 tcg_out32(s, insn);
1855 }
1856
1857 static void tcg_out_call_int(TCGContext *s, int lk,
1858 const tcg_insn_unit *target)
1859 {
1860 #ifdef _CALL_AIX
1861 /* Look through the descriptor. If the branch is in range, and we
1862 don't have to spend too much effort on building the toc. */
1863 const void *tgt = ((const void * const *)target)[0];
1864 uintptr_t toc = ((const uintptr_t *)target)[1];
1865 intptr_t diff = tcg_pcrel_diff(s, tgt);
1866
1867 if (in_range_b(diff) && toc == (uint32_t)toc) {
1868 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc);
1869 tcg_out_b(s, lk, tgt);
1870 } else {
1871 /* Fold the low bits of the constant into the addresses below. */
1872 intptr_t arg = (intptr_t)target;
1873 int ofs = (int16_t)arg;
1874
1875 if (ofs + 8 < 0x8000) {
1876 arg -= ofs;
1877 } else {
1878 ofs = 0;
1879 }
1880 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg);
1881 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs);
1882 tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR);
1883 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP);
1884 tcg_out32(s, BCCTR | BO_ALWAYS | lk);
1885 }
1886 #elif defined(_CALL_ELF) && _CALL_ELF == 2
1887 intptr_t diff;
1888
1889 /* In the ELFv2 ABI, we have to set up r12 to contain the destination
1890 address, which the callee uses to compute its TOC address. */
1891 /* FIXME: when the branch is in range, we could avoid r12 load if we
1892 knew that the destination uses the same TOC, and what its local
1893 entry point offset is. */
1894 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target);
1895
1896 diff = tcg_pcrel_diff(s, target);
1897 if (in_range_b(diff)) {
1898 tcg_out_b(s, lk, target);
1899 } else {
1900 tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR);
1901 tcg_out32(s, BCCTR | BO_ALWAYS | lk);
1902 }
1903 #else
1904 tcg_out_b(s, lk, target);
1905 #endif
1906 }
1907
1908 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target,
1909 const TCGHelperInfo *info)
1910 {
1911 tcg_out_call_int(s, LK, target);
1912 }
1913
1914 static const uint32_t qemu_ldx_opc[(MO_SSIZE + MO_BSWAP) + 1] = {
1915 [MO_UB] = LBZX,
1916 [MO_UW] = LHZX,
1917 [MO_UL] = LWZX,
1918 [MO_UQ] = LDX,
1919 [MO_SW] = LHAX,
1920 [MO_SL] = LWAX,
1921 [MO_BSWAP | MO_UB] = LBZX,
1922 [MO_BSWAP | MO_UW] = LHBRX,
1923 [MO_BSWAP | MO_UL] = LWBRX,
1924 [MO_BSWAP | MO_UQ] = LDBRX,
1925 };
1926
1927 static const uint32_t qemu_stx_opc[(MO_SIZE + MO_BSWAP) + 1] = {
1928 [MO_UB] = STBX,
1929 [MO_UW] = STHX,
1930 [MO_UL] = STWX,
1931 [MO_UQ] = STDX,
1932 [MO_BSWAP | MO_UB] = STBX,
1933 [MO_BSWAP | MO_UW] = STHBRX,
1934 [MO_BSWAP | MO_UL] = STWBRX,
1935 [MO_BSWAP | MO_UQ] = STDBRX,
1936 };
1937
1938 static const uint32_t qemu_exts_opc[4] = {
1939 EXTSB, EXTSH, EXTSW, 0
1940 };
1941
1942 #if defined (CONFIG_SOFTMMU)
1943 /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
1944 * int mmu_idx, uintptr_t ra)
1945 */
1946 static void * const qemu_ld_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
1947 [MO_UB] = helper_ret_ldub_mmu,
1948 [MO_LEUW] = helper_le_lduw_mmu,
1949 [MO_LEUL] = helper_le_ldul_mmu,
1950 [MO_LEUQ] = helper_le_ldq_mmu,
1951 [MO_BEUW] = helper_be_lduw_mmu,
1952 [MO_BEUL] = helper_be_ldul_mmu,
1953 [MO_BEUQ] = helper_be_ldq_mmu,
1954 };
1955
1956 /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
1957 * uintxx_t val, int mmu_idx, uintptr_t ra)
1958 */
1959 static void * const qemu_st_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
1960 [MO_UB] = helper_ret_stb_mmu,
1961 [MO_LEUW] = helper_le_stw_mmu,
1962 [MO_LEUL] = helper_le_stl_mmu,
1963 [MO_LEUQ] = helper_le_stq_mmu,
1964 [MO_BEUW] = helper_be_stw_mmu,
1965 [MO_BEUL] = helper_be_stl_mmu,
1966 [MO_BEUQ] = helper_be_stq_mmu,
1967 };
1968
1969 /* We expect to use a 16-bit negative offset from ENV. */
1970 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1971 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -32768);
1972
1973 /* Perform the TLB load and compare. Places the result of the comparison
1974 in CR7, loads the addend of the TLB into R3, and returns the register
1975 containing the guest address (zero-extended into R4). Clobbers R0 and R2. */
1976
1977 static TCGReg tcg_out_tlb_read(TCGContext *s, MemOp opc,
1978 TCGReg addrlo, TCGReg addrhi,
1979 int mem_index, bool is_read)
1980 {
1981 int cmp_off
1982 = (is_read
1983 ? offsetof(CPUTLBEntry, addr_read)
1984 : offsetof(CPUTLBEntry, addr_write));
1985 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1986 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1987 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1988 unsigned s_bits = opc & MO_SIZE;
1989 unsigned a_bits = get_alignment_bits(opc);
1990
1991 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
1992 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_AREG0, mask_off);
1993 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R4, TCG_AREG0, table_off);
1994
1995 /* Extract the page index, shifted into place for tlb index. */
1996 if (TCG_TARGET_REG_BITS == 32) {
1997 tcg_out_shri32(s, TCG_REG_TMP1, addrlo,
1998 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1999 } else {
2000 tcg_out_shri64(s, TCG_REG_TMP1, addrlo,
2001 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
2002 }
2003 tcg_out32(s, AND | SAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_TMP1));
2004
2005 /* Load the TLB comparator. */
2006 if (cmp_off == 0 && TCG_TARGET_REG_BITS >= TARGET_LONG_BITS) {
2007 uint32_t lxu = (TCG_TARGET_REG_BITS == 32 || TARGET_LONG_BITS == 32
2008 ? LWZUX : LDUX);
2009 tcg_out32(s, lxu | TAB(TCG_REG_TMP1, TCG_REG_R3, TCG_REG_R4));
2010 } else {
2011 tcg_out32(s, ADD | TAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_R4));
2012 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2013 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP1, TCG_REG_R3, cmp_off + 4);
2014 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_R4, TCG_REG_R3, cmp_off);
2015 } else {
2016 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_TMP1, TCG_REG_R3, cmp_off);
2017 }
2018 }
2019
2020 /* Load the TLB addend for use on the fast path. Do this asap
2021 to minimize any load use delay. */
2022 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_REG_R3,
2023 offsetof(CPUTLBEntry, addend));
2024
2025 /* Clear the non-page, non-alignment bits from the address */
2026 if (TCG_TARGET_REG_BITS == 32) {
2027 /* We don't support unaligned accesses on 32-bits.
2028 * Preserve the bottom bits and thus trigger a comparison
2029 * failure on unaligned accesses.
2030 */
2031 if (a_bits < s_bits) {
2032 a_bits = s_bits;
2033 }
2034 tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0,
2035 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
2036 } else {
2037 TCGReg t = addrlo;
2038
2039 /* If the access is unaligned, we need to make sure we fail if we
2040 * cross a page boundary. The trick is to add the access size-1
2041 * to the address before masking the low bits. That will make the
2042 * address overflow to the next page if we cross a page boundary,
2043 * which will then force a mismatch of the TLB compare.
2044 */
2045 if (a_bits < s_bits) {
2046 unsigned a_mask = (1 << a_bits) - 1;
2047 unsigned s_mask = (1 << s_bits) - 1;
2048 tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask));
2049 t = TCG_REG_R0;
2050 }
2051
2052 /* Mask the address for the requested alignment. */
2053 if (TARGET_LONG_BITS == 32) {
2054 tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0,
2055 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
2056 /* Zero-extend the address for use in the final address. */
2057 tcg_out_ext32u(s, TCG_REG_R4, addrlo);
2058 addrlo = TCG_REG_R4;
2059 } else if (a_bits == 0) {
2060 tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - TARGET_PAGE_BITS);
2061 } else {
2062 tcg_out_rld(s, RLDICL, TCG_REG_R0, t,
2063 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - a_bits);
2064 tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, TARGET_PAGE_BITS, 0);
2065 }
2066 }
2067
2068 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2069 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
2070 0, 7, TCG_TYPE_I32);
2071 tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_R4, 0, 6, TCG_TYPE_I32);
2072 tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
2073 } else {
2074 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
2075 0, 7, TCG_TYPE_TL);
2076 }
2077
2078 return addrlo;
2079 }
2080
2081 /* Record the context of a call to the out of line helper code for the slow
2082 path for a load or store, so that we can later generate the correct
2083 helper code. */
2084 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, MemOpIdx oi,
2085 TCGReg datalo_reg, TCGReg datahi_reg,
2086 TCGReg addrlo_reg, TCGReg addrhi_reg,
2087 tcg_insn_unit *raddr, tcg_insn_unit *lptr)
2088 {
2089 TCGLabelQemuLdst *label = new_ldst_label(s);
2090
2091 label->is_ld = is_ld;
2092 label->oi = oi;
2093 label->datalo_reg = datalo_reg;
2094 label->datahi_reg = datahi_reg;
2095 label->addrlo_reg = addrlo_reg;
2096 label->addrhi_reg = addrhi_reg;
2097 label->raddr = tcg_splitwx_to_rx(raddr);
2098 label->label_ptr[0] = lptr;
2099 }
2100
2101 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2102 {
2103 MemOpIdx oi = lb->oi;
2104 MemOp opc = get_memop(oi);
2105 TCGReg hi, lo, arg = TCG_REG_R3;
2106
2107 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2108 return false;
2109 }
2110
2111 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2112
2113 lo = lb->addrlo_reg;
2114 hi = lb->addrhi_reg;
2115 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2116 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2117 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2118 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2119 } else {
2120 /* If the address needed to be zero-extended, we'll have already
2121 placed it in R4. The only remaining case is 64-bit guest. */
2122 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2123 }
2124
2125 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2126 tcg_out32(s, MFSPR | RT(arg) | LR);
2127
2128 tcg_out_call_int(s, LK, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2129
2130 lo = lb->datalo_reg;
2131 hi = lb->datahi_reg;
2132 if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
2133 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_REG_R4);
2134 tcg_out_mov(s, TCG_TYPE_I32, hi, TCG_REG_R3);
2135 } else if (opc & MO_SIGN) {
2136 uint32_t insn = qemu_exts_opc[opc & MO_SIZE];
2137 tcg_out32(s, insn | RA(lo) | RS(TCG_REG_R3));
2138 } else {
2139 tcg_out_mov(s, TCG_TYPE_REG, lo, TCG_REG_R3);
2140 }
2141
2142 tcg_out_b(s, 0, lb->raddr);
2143 return true;
2144 }
2145
2146 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2147 {
2148 MemOpIdx oi = lb->oi;
2149 MemOp opc = get_memop(oi);
2150 MemOp s_bits = opc & MO_SIZE;
2151 TCGReg hi, lo, arg = TCG_REG_R3;
2152
2153 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2154 return false;
2155 }
2156
2157 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2158
2159 lo = lb->addrlo_reg;
2160 hi = lb->addrhi_reg;
2161 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2162 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2163 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2164 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2165 } else {
2166 /* If the address needed to be zero-extended, we'll have already
2167 placed it in R4. The only remaining case is 64-bit guest. */
2168 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2169 }
2170
2171 lo = lb->datalo_reg;
2172 hi = lb->datahi_reg;
2173 if (TCG_TARGET_REG_BITS == 32) {
2174 switch (s_bits) {
2175 case MO_64:
2176 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2177 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2178 /* FALLTHRU */
2179 case MO_32:
2180 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2181 break;
2182 default:
2183 tcg_out_rlw(s, RLWINM, arg++, lo, 0, 32 - (8 << s_bits), 31);
2184 break;
2185 }
2186 } else {
2187 if (s_bits == MO_64) {
2188 tcg_out_mov(s, TCG_TYPE_I64, arg++, lo);
2189 } else {
2190 tcg_out_rld(s, RLDICL, arg++, lo, 0, 64 - (8 << s_bits));
2191 }
2192 }
2193
2194 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2195 tcg_out32(s, MFSPR | RT(arg) | LR);
2196
2197 tcg_out_call_int(s, LK, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2198
2199 tcg_out_b(s, 0, lb->raddr);
2200 return true;
2201 }
2202 #else
2203
2204 static void tcg_out_test_alignment(TCGContext *s, bool is_ld, TCGReg addrlo,
2205 TCGReg addrhi, unsigned a_bits)
2206 {
2207 unsigned a_mask = (1 << a_bits) - 1;
2208 TCGLabelQemuLdst *label = new_ldst_label(s);
2209
2210 label->is_ld = is_ld;
2211 label->addrlo_reg = addrlo;
2212 label->addrhi_reg = addrhi;
2213
2214 /* We are expecting a_bits to max out at 7, much lower than ANDI. */
2215 tcg_debug_assert(a_bits < 16);
2216 tcg_out32(s, ANDI | SAI(addrlo, TCG_REG_R0, a_mask));
2217
2218 label->label_ptr[0] = s->code_ptr;
2219 tcg_out32(s, BC | BI(0, CR_EQ) | BO_COND_FALSE | LK);
2220
2221 label->raddr = tcg_splitwx_to_rx(s->code_ptr);
2222 }
2223
2224 static bool tcg_out_fail_alignment(TCGContext *s, TCGLabelQemuLdst *l)
2225 {
2226 if (!reloc_pc14(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2227 return false;
2228 }
2229
2230 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2231 TCGReg arg = TCG_REG_R4;
2232
2233 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2234 if (l->addrlo_reg != arg) {
2235 tcg_out_mov(s, TCG_TYPE_I32, arg, l->addrhi_reg);
2236 tcg_out_mov(s, TCG_TYPE_I32, arg + 1, l->addrlo_reg);
2237 } else if (l->addrhi_reg != arg + 1) {
2238 tcg_out_mov(s, TCG_TYPE_I32, arg + 1, l->addrlo_reg);
2239 tcg_out_mov(s, TCG_TYPE_I32, arg, l->addrhi_reg);
2240 } else {
2241 tcg_out_mov(s, TCG_TYPE_I32, TCG_REG_R0, arg);
2242 tcg_out_mov(s, TCG_TYPE_I32, arg, arg + 1);
2243 tcg_out_mov(s, TCG_TYPE_I32, arg + 1, TCG_REG_R0);
2244 }
2245 } else {
2246 tcg_out_mov(s, TCG_TYPE_TL, TCG_REG_R4, l->addrlo_reg);
2247 }
2248 tcg_out_mov(s, TCG_TYPE_TL, TCG_REG_R3, TCG_AREG0);
2249
2250 /* "Tail call" to the helper, with the return address back inline. */
2251 tcg_out_call_int(s, 0, (const void *)(l->is_ld ? helper_unaligned_ld
2252 : helper_unaligned_st));
2253 return true;
2254 }
2255
2256 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2257 {
2258 return tcg_out_fail_alignment(s, l);
2259 }
2260
2261 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2262 {
2263 return tcg_out_fail_alignment(s, l);
2264 }
2265
2266 #endif /* SOFTMMU */
2267
2268 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
2269 {
2270 TCGReg datalo, datahi, addrlo, rbase;
2271 TCGReg addrhi __attribute__((unused));
2272 MemOpIdx oi;
2273 MemOp opc, s_bits;
2274 #ifdef CONFIG_SOFTMMU
2275 int mem_index;
2276 tcg_insn_unit *label_ptr;
2277 #else
2278 unsigned a_bits;
2279 #endif
2280
2281 datalo = *args++;
2282 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2283 addrlo = *args++;
2284 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2285 oi = *args++;
2286 opc = get_memop(oi);
2287 s_bits = opc & MO_SIZE;
2288
2289 #ifdef CONFIG_SOFTMMU
2290 mem_index = get_mmuidx(oi);
2291 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, true);
2292
2293 /* Load a pointer into the current opcode w/conditional branch-link. */
2294 label_ptr = s->code_ptr;
2295 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2296
2297 rbase = TCG_REG_R3;
2298 #else /* !CONFIG_SOFTMMU */
2299 a_bits = get_alignment_bits(opc);
2300 if (a_bits) {
2301 tcg_out_test_alignment(s, true, addrlo, addrhi, a_bits);
2302 }
2303 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2304 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2305 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2306 addrlo = TCG_REG_TMP1;
2307 }
2308 #endif
2309
2310 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2311 if (opc & MO_BSWAP) {
2312 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2313 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2314 tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0));
2315 } else if (rbase != 0) {
2316 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2317 tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo));
2318 tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0));
2319 } else if (addrlo == datahi) {
2320 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2321 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2322 } else {
2323 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2324 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2325 }
2326 } else {
2327 uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)];
2328 if (!have_isa_2_06 && insn == LDBRX) {
2329 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2330 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2331 tcg_out32(s, LWBRX | TAB(TCG_REG_R0, rbase, TCG_REG_R0));
2332 tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0);
2333 } else if (insn) {
2334 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2335 } else {
2336 insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)];
2337 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2338 insn = qemu_exts_opc[s_bits];
2339 tcg_out32(s, insn | RA(datalo) | RS(datalo));
2340 }
2341 }
2342
2343 #ifdef CONFIG_SOFTMMU
2344 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
2345 s->code_ptr, label_ptr);
2346 #endif
2347 }
2348
2349 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
2350 {
2351 TCGReg datalo, datahi, addrlo, rbase;
2352 TCGReg addrhi __attribute__((unused));
2353 MemOpIdx oi;
2354 MemOp opc, s_bits;
2355 #ifdef CONFIG_SOFTMMU
2356 int mem_index;
2357 tcg_insn_unit *label_ptr;
2358 #else
2359 unsigned a_bits;
2360 #endif
2361
2362 datalo = *args++;
2363 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2364 addrlo = *args++;
2365 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2366 oi = *args++;
2367 opc = get_memop(oi);
2368 s_bits = opc & MO_SIZE;
2369
2370 #ifdef CONFIG_SOFTMMU
2371 mem_index = get_mmuidx(oi);
2372 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, false);
2373
2374 /* Load a pointer into the current opcode w/conditional branch-link. */
2375 label_ptr = s->code_ptr;
2376 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2377
2378 rbase = TCG_REG_R3;
2379 #else /* !CONFIG_SOFTMMU */
2380 a_bits = get_alignment_bits(opc);
2381 if (a_bits) {
2382 tcg_out_test_alignment(s, false, addrlo, addrhi, a_bits);
2383 }
2384 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2385 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2386 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2387 addrlo = TCG_REG_TMP1;
2388 }
2389 #endif
2390
2391 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2392 if (opc & MO_BSWAP) {
2393 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2394 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2395 tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0));
2396 } else if (rbase != 0) {
2397 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2398 tcg_out32(s, STWX | SAB(datahi, rbase, addrlo));
2399 tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0));
2400 } else {
2401 tcg_out32(s, STW | TAI(datahi, addrlo, 0));
2402 tcg_out32(s, STW | TAI(datalo, addrlo, 4));
2403 }
2404 } else {
2405 uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)];
2406 if (!have_isa_2_06 && insn == STDBRX) {
2407 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2408 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, addrlo, 4));
2409 tcg_out_shri64(s, TCG_REG_R0, datalo, 32);
2410 tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, TCG_REG_TMP1));
2411 } else {
2412 tcg_out32(s, insn | SAB(datalo, rbase, addrlo));
2413 }
2414 }
2415
2416 #ifdef CONFIG_SOFTMMU
2417 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi,
2418 s->code_ptr, label_ptr);
2419 #endif
2420 }
2421
2422 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
2423 {
2424 int i;
2425 for (i = 0; i < count; ++i) {
2426 p[i] = NOP;
2427 }
2428 }
2429
2430 /* Parameters for function call generation, used in tcg.c. */
2431 #define TCG_TARGET_STACK_ALIGN 16
2432
2433 #ifdef _CALL_AIX
2434 # define LINK_AREA_SIZE (6 * SZR)
2435 # define LR_OFFSET (1 * SZR)
2436 # define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR)
2437 #elif defined(_CALL_DARWIN)
2438 # define LINK_AREA_SIZE (6 * SZR)
2439 # define LR_OFFSET (2 * SZR)
2440 #elif TCG_TARGET_REG_BITS == 64
2441 # if defined(_CALL_ELF) && _CALL_ELF == 2
2442 # define LINK_AREA_SIZE (4 * SZR)
2443 # define LR_OFFSET (1 * SZR)
2444 # endif
2445 #else /* TCG_TARGET_REG_BITS == 32 */
2446 # if defined(_CALL_SYSV)
2447 # define LINK_AREA_SIZE (2 * SZR)
2448 # define LR_OFFSET (1 * SZR)
2449 # endif
2450 #endif
2451 #ifndef LR_OFFSET
2452 # error "Unhandled abi"
2453 #endif
2454 #ifndef TCG_TARGET_CALL_STACK_OFFSET
2455 # define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE
2456 #endif
2457
2458 #define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
2459 #define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR)
2460
2461 #define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \
2462 + TCG_STATIC_CALL_ARGS_SIZE \
2463 + CPU_TEMP_BUF_SIZE \
2464 + REG_SAVE_SIZE \
2465 + TCG_TARGET_STACK_ALIGN - 1) \
2466 & -TCG_TARGET_STACK_ALIGN)
2467
2468 #define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE)
2469
2470 static void tcg_target_qemu_prologue(TCGContext *s)
2471 {
2472 int i;
2473
2474 #ifdef _CALL_AIX
2475 const void **desc = (const void **)s->code_ptr;
2476 desc[0] = tcg_splitwx_to_rx(desc + 2); /* entry point */
2477 desc[1] = 0; /* environment pointer */
2478 s->code_ptr = (void *)(desc + 2); /* skip over descriptor */
2479 #endif
2480
2481 tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE,
2482 CPU_TEMP_BUF_SIZE);
2483
2484 /* Prologue */
2485 tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR);
2486 tcg_out32(s, (SZR == 8 ? STDU : STWU)
2487 | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE));
2488
2489 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2490 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2491 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2492 }
2493 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2494
2495 #ifndef CONFIG_SOFTMMU
2496 if (guest_base) {
2497 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
2498 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
2499 }
2500 #endif
2501
2502 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
2503 tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR);
2504 if (USE_REG_TB) {
2505 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
2506 }
2507 tcg_out32(s, BCCTR | BO_ALWAYS);
2508
2509 /* Epilogue */
2510 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
2511
2512 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2513 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2514 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2515 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2516 }
2517 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR);
2518 tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE));
2519 tcg_out32(s, BCLR | BO_ALWAYS);
2520 }
2521
2522 static void tcg_out_exit_tb(TCGContext *s, uintptr_t arg)
2523 {
2524 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, arg);
2525 tcg_out_b(s, 0, tcg_code_gen_epilogue);
2526 }
2527
2528 static void tcg_out_goto_tb(TCGContext *s, int which)
2529 {
2530 uintptr_t ptr = get_jmp_target_addr(s, which);
2531
2532 if (USE_REG_TB) {
2533 ptrdiff_t offset = tcg_tbrel_diff(s, (void *)ptr);
2534 tcg_out_mem_long(s, LD, LDX, TCG_REG_TB, TCG_REG_TB, offset);
2535
2536 /* Direct branch will be patched by tb_target_set_jmp_target. */
2537 set_jmp_insn_offset(s, which);
2538 tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR);
2539
2540 /* When branch is out of range, fall through to indirect. */
2541 tcg_out32(s, BCCTR | BO_ALWAYS);
2542
2543 /* For the unlinked case, need to reset TCG_REG_TB. */
2544 set_jmp_reset_offset(s, which);
2545 tcg_out_mem_long(s, ADDI, ADD, TCG_REG_TB, TCG_REG_TB,
2546 -tcg_current_code_size(s));
2547 } else {
2548 /* Direct branch will be patched by tb_target_set_jmp_target. */
2549 set_jmp_insn_offset(s, which);
2550 tcg_out32(s, NOP);
2551
2552 /* When branch is out of range, fall through to indirect. */
2553 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, ptr - (int16_t)ptr);
2554 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, (int16_t)ptr);
2555 tcg_out32(s, MTSPR | RS(TCG_REG_TMP1) | CTR);
2556 tcg_out32(s, BCCTR | BO_ALWAYS);
2557 set_jmp_reset_offset(s, which);
2558 }
2559 }
2560
2561 void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2562 uintptr_t jmp_rx, uintptr_t jmp_rw)
2563 {
2564 uintptr_t addr = tb->jmp_target_addr[n];
2565 intptr_t diff = addr - jmp_rx;
2566 tcg_insn_unit insn;
2567
2568 if (in_range_b(diff)) {
2569 insn = B | (diff & 0x3fffffc);
2570 } else if (USE_REG_TB) {
2571 insn = MTSPR | RS(TCG_REG_TB) | CTR;
2572 } else {
2573 insn = NOP;
2574 }
2575
2576 qatomic_set((uint32_t *)jmp_rw, insn);
2577 flush_idcache_range(jmp_rx, jmp_rw, 4);
2578 }
2579
2580 static void tcg_out_op(TCGContext *s, TCGOpcode opc,
2581 const TCGArg args[TCG_MAX_OP_ARGS],
2582 const int const_args[TCG_MAX_OP_ARGS])
2583 {
2584 TCGArg a0, a1, a2;
2585
2586 switch (opc) {
2587 case INDEX_op_goto_ptr:
2588 tcg_out32(s, MTSPR | RS(args[0]) | CTR);
2589 if (USE_REG_TB) {
2590 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]);
2591 }
2592 tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0));
2593 tcg_out32(s, BCCTR | BO_ALWAYS);
2594 break;
2595 case INDEX_op_br:
2596 {
2597 TCGLabel *l = arg_label(args[0]);
2598 uint32_t insn = B;
2599
2600 if (l->has_value) {
2601 insn |= reloc_pc24_val(tcg_splitwx_to_rx(s->code_ptr),
2602 l->u.value_ptr);
2603 } else {
2604 tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0);
2605 }
2606 tcg_out32(s, insn);
2607 }
2608 break;
2609 case INDEX_op_ld8u_i32:
2610 case INDEX_op_ld8u_i64:
2611 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2612 break;
2613 case INDEX_op_ld8s_i32:
2614 case INDEX_op_ld8s_i64:
2615 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2616 tcg_out_ext8s(s, args[0], args[0]);
2617 break;
2618 case INDEX_op_ld16u_i32:
2619 case INDEX_op_ld16u_i64:
2620 tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]);
2621 break;
2622 case INDEX_op_ld16s_i32:
2623 case INDEX_op_ld16s_i64:
2624 tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]);
2625 break;
2626 case INDEX_op_ld_i32:
2627 case INDEX_op_ld32u_i64:
2628 tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]);
2629 break;
2630 case INDEX_op_ld32s_i64:
2631 tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]);
2632 break;
2633 case INDEX_op_ld_i64:
2634 tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]);
2635 break;
2636 case INDEX_op_st8_i32:
2637 case INDEX_op_st8_i64:
2638 tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]);
2639 break;
2640 case INDEX_op_st16_i32:
2641 case INDEX_op_st16_i64:
2642 tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]);
2643 break;
2644 case INDEX_op_st_i32:
2645 case INDEX_op_st32_i64:
2646 tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]);
2647 break;
2648 case INDEX_op_st_i64:
2649 tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]);
2650 break;
2651
2652 case INDEX_op_add_i32:
2653 a0 = args[0], a1 = args[1], a2 = args[2];
2654 if (const_args[2]) {
2655 do_addi_32:
2656 tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2);
2657 } else {
2658 tcg_out32(s, ADD | TAB(a0, a1, a2));
2659 }
2660 break;
2661 case INDEX_op_sub_i32:
2662 a0 = args[0], a1 = args[1], a2 = args[2];
2663 if (const_args[1]) {
2664 if (const_args[2]) {
2665 tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
2666 } else {
2667 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2668 }
2669 } else if (const_args[2]) {
2670 a2 = -a2;
2671 goto do_addi_32;
2672 } else {
2673 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2674 }
2675 break;
2676
2677 case INDEX_op_and_i32:
2678 a0 = args[0], a1 = args[1], a2 = args[2];
2679 if (const_args[2]) {
2680 tcg_out_andi32(s, a0, a1, a2);
2681 } else {
2682 tcg_out32(s, AND | SAB(a1, a0, a2));
2683 }
2684 break;
2685 case INDEX_op_and_i64:
2686 a0 = args[0], a1 = args[1], a2 = args[2];
2687 if (const_args[2]) {
2688 tcg_out_andi64(s, a0, a1, a2);
2689 } else {
2690 tcg_out32(s, AND | SAB(a1, a0, a2));
2691 }
2692 break;
2693 case INDEX_op_or_i64:
2694 case INDEX_op_or_i32:
2695 a0 = args[0], a1 = args[1], a2 = args[2];
2696 if (const_args[2]) {
2697 tcg_out_ori32(s, a0, a1, a2);
2698 } else {
2699 tcg_out32(s, OR | SAB(a1, a0, a2));
2700 }
2701 break;
2702 case INDEX_op_xor_i64:
2703 case INDEX_op_xor_i32:
2704 a0 = args[0], a1 = args[1], a2 = args[2];
2705 if (const_args[2]) {
2706 tcg_out_xori32(s, a0, a1, a2);
2707 } else {
2708 tcg_out32(s, XOR | SAB(a1, a0, a2));
2709 }
2710 break;
2711 case INDEX_op_andc_i32:
2712 a0 = args[0], a1 = args[1], a2 = args[2];
2713 if (const_args[2]) {
2714 tcg_out_andi32(s, a0, a1, ~a2);
2715 } else {
2716 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2717 }
2718 break;
2719 case INDEX_op_andc_i64:
2720 a0 = args[0], a1 = args[1], a2 = args[2];
2721 if (const_args[2]) {
2722 tcg_out_andi64(s, a0, a1, ~a2);
2723 } else {
2724 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2725 }
2726 break;
2727 case INDEX_op_orc_i32:
2728 if (const_args[2]) {
2729 tcg_out_ori32(s, args[0], args[1], ~args[2]);
2730 break;
2731 }
2732 /* FALLTHRU */
2733 case INDEX_op_orc_i64:
2734 tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
2735 break;
2736 case INDEX_op_eqv_i32:
2737 if (const_args[2]) {
2738 tcg_out_xori32(s, args[0], args[1], ~args[2]);
2739 break;
2740 }
2741 /* FALLTHRU */
2742 case INDEX_op_eqv_i64:
2743 tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
2744 break;
2745 case INDEX_op_nand_i32:
2746 case INDEX_op_nand_i64:
2747 tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
2748 break;
2749 case INDEX_op_nor_i32:
2750 case INDEX_op_nor_i64:
2751 tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
2752 break;
2753
2754 case INDEX_op_clz_i32:
2755 tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1],
2756 args[2], const_args[2]);
2757 break;
2758 case INDEX_op_ctz_i32:
2759 tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1],
2760 args[2], const_args[2]);
2761 break;
2762 case INDEX_op_ctpop_i32:
2763 tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0));
2764 break;
2765
2766 case INDEX_op_clz_i64:
2767 tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1],
2768 args[2], const_args[2]);
2769 break;
2770 case INDEX_op_ctz_i64:
2771 tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1],
2772 args[2], const_args[2]);
2773 break;
2774 case INDEX_op_ctpop_i64:
2775 tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0));
2776 break;
2777
2778 case INDEX_op_mul_i32:
2779 a0 = args[0], a1 = args[1], a2 = args[2];
2780 if (const_args[2]) {
2781 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2782 } else {
2783 tcg_out32(s, MULLW | TAB(a0, a1, a2));
2784 }
2785 break;
2786
2787 case INDEX_op_div_i32:
2788 tcg_out32(s, DIVW | TAB(args[0], args[1], args[2]));
2789 break;
2790
2791 case INDEX_op_divu_i32:
2792 tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2]));
2793 break;
2794
2795 case INDEX_op_rem_i32:
2796 tcg_out32(s, MODSW | TAB(args[0], args[1], args[2]));
2797 break;
2798
2799 case INDEX_op_remu_i32:
2800 tcg_out32(s, MODUW | TAB(args[0], args[1], args[2]));
2801 break;
2802
2803 case INDEX_op_shl_i32:
2804 if (const_args[2]) {
2805 /* Limit immediate shift count lest we create an illegal insn. */
2806 tcg_out_shli32(s, args[0], args[1], args[2] & 31);
2807 } else {
2808 tcg_out32(s, SLW | SAB(args[1], args[0], args[2]));
2809 }
2810 break;
2811 case INDEX_op_shr_i32:
2812 if (const_args[2]) {
2813 /* Limit immediate shift count lest we create an illegal insn. */
2814 tcg_out_shri32(s, args[0], args[1], args[2] & 31);
2815 } else {
2816 tcg_out32(s, SRW | SAB(args[1], args[0], args[2]));
2817 }
2818 break;
2819 case INDEX_op_sar_i32:
2820 if (const_args[2]) {
2821 tcg_out_sari32(s, args[0], args[1], args[2]);
2822 } else {
2823 tcg_out32(s, SRAW | SAB(args[1], args[0], args[2]));
2824 }
2825 break;
2826 case INDEX_op_rotl_i32:
2827 if (const_args[2]) {
2828 tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
2829 } else {
2830 tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
2831 | MB(0) | ME(31));
2832 }
2833 break;
2834 case INDEX_op_rotr_i32:
2835 if (const_args[2]) {
2836 tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
2837 } else {
2838 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32));
2839 tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0)
2840 | MB(0) | ME(31));
2841 }
2842 break;
2843
2844 case INDEX_op_brcond_i32:
2845 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2846 arg_label(args[3]), TCG_TYPE_I32);
2847 break;
2848 case INDEX_op_brcond_i64:
2849 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2850 arg_label(args[3]), TCG_TYPE_I64);
2851 break;
2852 case INDEX_op_brcond2_i32:
2853 tcg_out_brcond2(s, args, const_args);
2854 break;
2855
2856 case INDEX_op_neg_i32:
2857 case INDEX_op_neg_i64:
2858 tcg_out32(s, NEG | RT(args[0]) | RA(args[1]));
2859 break;
2860
2861 case INDEX_op_not_i32:
2862 case INDEX_op_not_i64:
2863 tcg_out32(s, NOR | SAB(args[1], args[0], args[1]));
2864 break;
2865
2866 case INDEX_op_add_i64:
2867 a0 = args[0], a1 = args[1], a2 = args[2];
2868 if (const_args[2]) {
2869 do_addi_64:
2870 tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2);
2871 } else {
2872 tcg_out32(s, ADD | TAB(a0, a1, a2));
2873 }
2874 break;
2875 case INDEX_op_sub_i64:
2876 a0 = args[0], a1 = args[1], a2 = args[2];
2877 if (const_args[1]) {
2878 if (const_args[2]) {
2879 tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
2880 } else {
2881 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2882 }
2883 } else if (const_args[2]) {
2884 a2 = -a2;
2885 goto do_addi_64;
2886 } else {
2887 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2888 }
2889 break;
2890
2891 case INDEX_op_shl_i64:
2892 if (const_args[2]) {
2893 /* Limit immediate shift count lest we create an illegal insn. */
2894 tcg_out_shli64(s, args[0], args[1], args[2] & 63);
2895 } else {
2896 tcg_out32(s, SLD | SAB(args[1], args[0], args[2]));
2897 }
2898 break;
2899 case INDEX_op_shr_i64:
2900 if (const_args[2]) {
2901 /* Limit immediate shift count lest we create an illegal insn. */
2902 tcg_out_shri64(s, args[0], args[1], args[2] & 63);
2903 } else {
2904 tcg_out32(s, SRD | SAB(args[1], args[0], args[2]));
2905 }
2906 break;
2907 case INDEX_op_sar_i64:
2908 if (const_args[2]) {
2909 tcg_out_sari64(s, args[0], args[1], args[2]);
2910 } else {
2911 tcg_out32(s, SRAD | SAB(args[1], args[0], args[2]));
2912 }
2913 break;
2914 case INDEX_op_rotl_i64:
2915 if (const_args[2]) {
2916 tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
2917 } else {
2918 tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
2919 }
2920 break;
2921 case INDEX_op_rotr_i64:
2922 if (const_args[2]) {
2923 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
2924 } else {
2925 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64));
2926 tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0));
2927 }
2928 break;
2929
2930 case INDEX_op_mul_i64:
2931 a0 = args[0], a1 = args[1], a2 = args[2];
2932 if (const_args[2]) {
2933 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2934 } else {
2935 tcg_out32(s, MULLD | TAB(a0, a1, a2));
2936 }
2937 break;
2938 case INDEX_op_div_i64:
2939 tcg_out32(s, DIVD | TAB(args[0], args[1], args[2]));
2940 break;
2941 case INDEX_op_divu_i64:
2942 tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2]));
2943 break;
2944 case INDEX_op_rem_i64:
2945 tcg_out32(s, MODSD | TAB(args[0], args[1], args[2]));
2946 break;
2947 case INDEX_op_remu_i64:
2948 tcg_out32(s, MODUD | TAB(args[0], args[1], args[2]));
2949 break;
2950
2951 case INDEX_op_qemu_ld_i32:
2952 tcg_out_qemu_ld(s, args, false);
2953 break;
2954 case INDEX_op_qemu_ld_i64:
2955 tcg_out_qemu_ld(s, args, true);
2956 break;
2957 case INDEX_op_qemu_st_i32:
2958 tcg_out_qemu_st(s, args, false);
2959 break;
2960 case INDEX_op_qemu_st_i64:
2961 tcg_out_qemu_st(s, args, true);
2962 break;
2963
2964 case INDEX_op_ext8s_i32:
2965 case INDEX_op_ext8s_i64:
2966 tcg_out_ext8s(s, args[0], args[1]);
2967 break;
2968 case INDEX_op_ext16s_i32:
2969 case INDEX_op_ext16s_i64:
2970 tcg_out_ext16s(s, args[0], args[1]);
2971 break;
2972 case INDEX_op_ext_i32_i64:
2973 case INDEX_op_ext32s_i64:
2974 tcg_out_ext32s(s, args[0], args[1]);
2975 break;
2976 case INDEX_op_extu_i32_i64:
2977 tcg_out_ext32u(s, args[0], args[1]);
2978 break;
2979
2980 case INDEX_op_setcond_i32:
2981 tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
2982 const_args[2]);
2983 break;
2984 case INDEX_op_setcond_i64:
2985 tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
2986 const_args[2]);
2987 break;
2988 case INDEX_op_setcond2_i32:
2989 tcg_out_setcond2(s, args, const_args);
2990 break;
2991
2992 case INDEX_op_bswap16_i32:
2993 case INDEX_op_bswap16_i64:
2994 tcg_out_bswap16(s, args[0], args[1], args[2]);
2995 break;
2996 case INDEX_op_bswap32_i32:
2997 tcg_out_bswap32(s, args[0], args[1], 0);
2998 break;
2999 case INDEX_op_bswap32_i64:
3000 tcg_out_bswap32(s, args[0], args[1], args[2]);
3001 break;
3002 case INDEX_op_bswap64_i64:
3003 tcg_out_bswap64(s, args[0], args[1]);
3004 break;
3005
3006 case INDEX_op_deposit_i32:
3007 if (const_args[2]) {
3008 uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
3009 tcg_out_andi32(s, args[0], args[0], ~mask);
3010 } else {
3011 tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
3012 32 - args[3] - args[4], 31 - args[3]);
3013 }
3014 break;
3015 case INDEX_op_deposit_i64:
3016 if (const_args[2]) {
3017 uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
3018 tcg_out_andi64(s, args[0], args[0], ~mask);
3019 } else {
3020 tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
3021 64 - args[3] - args[4]);
3022 }
3023 break;
3024
3025 case INDEX_op_extract_i32:
3026 tcg_out_rlw(s, RLWINM, args[0], args[1],
3027 32 - args[2], 32 - args[3], 31);
3028 break;
3029 case INDEX_op_extract_i64:
3030 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]);
3031 break;
3032
3033 case INDEX_op_movcond_i32:
3034 tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
3035 args[3], args[4], const_args[2]);
3036 break;
3037 case INDEX_op_movcond_i64:
3038 tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
3039 args[3], args[4], const_args[2]);
3040 break;
3041
3042 #if TCG_TARGET_REG_BITS == 64
3043 case INDEX_op_add2_i64:
3044 #else
3045 case INDEX_op_add2_i32:
3046 #endif
3047 /* Note that the CA bit is defined based on the word size of the
3048 environment. So in 64-bit mode it's always carry-out of bit 63.
3049 The fallback code using deposit works just as well for 32-bit. */
3050 a0 = args[0], a1 = args[1];
3051 if (a0 == args[3] || (!const_args[5] && a0 == args[5])) {
3052 a0 = TCG_REG_R0;
3053 }
3054 if (const_args[4]) {
3055 tcg_out32(s, ADDIC | TAI(a0, args[2], args[4]));
3056 } else {
3057 tcg_out32(s, ADDC | TAB(a0, args[2], args[4]));
3058 }
3059 if (const_args[5]) {
3060 tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3]));
3061 } else {
3062 tcg_out32(s, ADDE | TAB(a1, args[3], args[5]));
3063 }
3064 if (a0 != args[0]) {
3065 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
3066 }
3067 break;
3068
3069 #if TCG_TARGET_REG_BITS == 64
3070 case INDEX_op_sub2_i64:
3071 #else
3072 case INDEX_op_sub2_i32:
3073 #endif
3074 a0 = args[0], a1 = args[1];
3075 if (a0 == args[5] || (!const_args[3] && a0 == args[3])) {
3076 a0 = TCG_REG_R0;
3077 }
3078 if (const_args[2]) {
3079 tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2]));
3080 } else {
3081 tcg_out32(s, SUBFC | TAB(a0, args[4], args[2]));
3082 }
3083 if (const_args[3]) {
3084 tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
3085 } else {
3086 tcg_out32(s, SUBFE | TAB(a1, args[5], args[3]));
3087 }
3088 if (a0 != args[0]) {
3089 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
3090 }
3091 break;
3092
3093 case INDEX_op_muluh_i32:
3094 tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2]));
3095 break;
3096 case INDEX_op_mulsh_i32:
3097 tcg_out32(s, MULHW | TAB(args[0], args[1], args[2]));
3098 break;
3099 case INDEX_op_muluh_i64:
3100 tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2]));
3101 break;
3102 case INDEX_op_mulsh_i64:
3103 tcg_out32(s, MULHD | TAB(args[0], args[1], args[2]));
3104 break;
3105
3106 case INDEX_op_mb:
3107 tcg_out_mb(s, args[0]);
3108 break;
3109
3110 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
3111 case INDEX_op_mov_i64:
3112 case INDEX_op_call: /* Always emitted via tcg_out_call. */
3113 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
3114 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
3115 default:
3116 tcg_abort();
3117 }
3118 }
3119
3120 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3121 {
3122 switch (opc) {
3123 case INDEX_op_and_vec:
3124 case INDEX_op_or_vec:
3125 case INDEX_op_xor_vec:
3126 case INDEX_op_andc_vec:
3127 case INDEX_op_not_vec:
3128 case INDEX_op_nor_vec:
3129 case INDEX_op_eqv_vec:
3130 case INDEX_op_nand_vec:
3131 return 1;
3132 case INDEX_op_orc_vec:
3133 return have_isa_2_07;
3134 case INDEX_op_add_vec:
3135 case INDEX_op_sub_vec:
3136 case INDEX_op_smax_vec:
3137 case INDEX_op_smin_vec:
3138 case INDEX_op_umax_vec:
3139 case INDEX_op_umin_vec:
3140 case INDEX_op_shlv_vec:
3141 case INDEX_op_shrv_vec:
3142 case INDEX_op_sarv_vec:
3143 case INDEX_op_rotlv_vec:
3144 return vece <= MO_32 || have_isa_2_07;
3145 case INDEX_op_ssadd_vec:
3146 case INDEX_op_sssub_vec:
3147 case INDEX_op_usadd_vec:
3148 case INDEX_op_ussub_vec:
3149 return vece <= MO_32;
3150 case INDEX_op_cmp_vec:
3151 case INDEX_op_shli_vec:
3152 case INDEX_op_shri_vec:
3153 case INDEX_op_sari_vec:
3154 case INDEX_op_rotli_vec:
3155 return vece <= MO_32 || have_isa_2_07 ? -1 : 0;
3156 case INDEX_op_neg_vec:
3157 return vece >= MO_32 && have_isa_3_00;
3158 case INDEX_op_mul_vec:
3159 switch (vece) {
3160 case MO_8:
3161 case MO_16:
3162 return -1;
3163 case MO_32:
3164 return have_isa_2_07 ? 1 : -1;
3165 case MO_64:
3166 return have_isa_3_10;
3167 }
3168 return 0;
3169 case INDEX_op_bitsel_vec:
3170 return have_vsx;
3171 case INDEX_op_rotrv_vec:
3172 return -1;
3173 default:
3174 return 0;
3175 }
3176 }
3177
3178 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
3179 TCGReg dst, TCGReg src)
3180 {
3181 tcg_debug_assert(dst >= TCG_REG_V0);
3182
3183 /* Splat from integer reg allowed via constraints for v3.00. */
3184 if (src < TCG_REG_V0) {
3185 tcg_debug_assert(have_isa_3_00);
3186 switch (vece) {
3187 case MO_64:
3188 tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src));
3189 return true;
3190 case MO_32:
3191 tcg_out32(s, MTVSRWS | VRT(dst) | RA(src));
3192 return true;
3193 default:
3194 /* Fail, so that we fall back on either dupm or mov+dup. */
3195 return false;
3196 }
3197 }
3198
3199 /*
3200 * Recall we use (or emulate) VSX integer loads, so the integer is
3201 * right justified within the left (zero-index) double-word.
3202 */
3203 switch (vece) {
3204 case MO_8:
3205 tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16));
3206 break;
3207 case MO_16:
3208 tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16));
3209 break;
3210 case MO_32:
3211 tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16));
3212 break;
3213 case MO_64:
3214 if (have_vsx) {
3215 tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src));
3216 break;
3217 }
3218 tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8);
3219 tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8);
3220 break;
3221 default:
3222 g_assert_not_reached();
3223 }
3224 return true;
3225 }
3226
3227 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
3228 TCGReg out, TCGReg base, intptr_t offset)
3229 {
3230 int elt;
3231
3232 tcg_debug_assert(out >= TCG_REG_V0);
3233 switch (vece) {
3234 case MO_8:
3235 if (have_isa_3_00) {
3236 tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16);
3237 } else {
3238 tcg_out_mem_long(s, 0, LVEBX, out, base, offset);
3239 }
3240 elt = extract32(offset, 0, 4);
3241 #if !HOST_BIG_ENDIAN
3242 elt ^= 15;
3243 #endif
3244 tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16));
3245 break;
3246 case MO_16:
3247 tcg_debug_assert((offset & 1) == 0);
3248 if (have_isa_3_00) {
3249 tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16);
3250 } else {
3251 tcg_out_mem_long(s, 0, LVEHX, out, base, offset);
3252 }
3253 elt = extract32(offset, 1, 3);
3254 #if !HOST_BIG_ENDIAN
3255 elt ^= 7;
3256 #endif
3257 tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16));
3258 break;
3259 case MO_32:
3260 if (have_isa_3_00) {
3261 tcg_out_mem_long(s, 0, LXVWSX, out, base, offset);
3262 break;
3263 }
3264 tcg_debug_assert((offset & 3) == 0);
3265 tcg_out_mem_long(s, 0, LVEWX, out, base, offset);
3266 elt = extract32(offset, 2, 2);
3267 #if !HOST_BIG_ENDIAN
3268 elt ^= 3;
3269 #endif
3270 tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16));
3271 break;
3272 case MO_64:
3273 if (have_vsx) {
3274 tcg_out_mem_long(s, 0, LXVDSX, out, base, offset);
3275 break;
3276 }
3277 tcg_debug_assert((offset & 7) == 0);
3278 tcg_out_mem_long(s, 0, LVX, out, base, offset & -16);
3279 tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8);
3280 elt = extract32(offset, 3, 1);
3281 #if !HOST_BIG_ENDIAN
3282 elt = !elt;
3283 #endif
3284 if (elt) {
3285 tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8);
3286 } else {
3287 tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8);
3288 }
3289 break;
3290 default:
3291 g_assert_not_reached();
3292 }
3293 return true;
3294 }
3295
3296 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3297 unsigned vecl, unsigned vece,
3298 const TCGArg args[TCG_MAX_OP_ARGS],
3299 const int const_args[TCG_MAX_OP_ARGS])
3300 {
3301 static const uint32_t
3302 add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM },
3303 sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM },
3304 mul_op[4] = { 0, 0, VMULUWM, VMULLD },
3305 neg_op[4] = { 0, 0, VNEGW, VNEGD },
3306 eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD },
3307 ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 },
3308 gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD },
3309 gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD },
3310 ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 },
3311 usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 },
3312 sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 },
3313 ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 },
3314 umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD },
3315 smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD },
3316 umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD },
3317 smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD },
3318 shlv_op[4] = { VSLB, VSLH, VSLW, VSLD },
3319 shrv_op[4] = { VSRB, VSRH, VSRW, VSRD },
3320 sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD },
3321 mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 },
3322 mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 },
3323 muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 },
3324 mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 },
3325 pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 },
3326 rotl_op[4] = { VRLB, VRLH, VRLW, VRLD };
3327
3328 TCGType type = vecl + TCG_TYPE_V64;
3329 TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
3330 uint32_t insn;
3331
3332 switch (opc) {
3333 case INDEX_op_ld_vec:
3334 tcg_out_ld(s, type, a0, a1, a2);
3335 return;
3336 case INDEX_op_st_vec:
3337 tcg_out_st(s, type, a0, a1, a2);
3338 return;
3339 case INDEX_op_dupm_vec:
3340 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3341 return;
3342
3343 case INDEX_op_add_vec:
3344 insn = add_op[vece];
3345 break;
3346 case INDEX_op_sub_vec:
3347 insn = sub_op[vece];
3348 break;
3349 case INDEX_op_neg_vec:
3350 insn = neg_op[vece];
3351 a2 = a1;
3352 a1 = 0;
3353 break;
3354 case INDEX_op_mul_vec:
3355 insn = mul_op[vece];
3356 break;
3357 case INDEX_op_ssadd_vec:
3358 insn = ssadd_op[vece];
3359 break;
3360 case INDEX_op_sssub_vec:
3361 insn = sssub_op[vece];
3362 break;
3363 case INDEX_op_usadd_vec:
3364 insn = usadd_op[vece];
3365 break;
3366 case INDEX_op_ussub_vec:
3367 insn = ussub_op[vece];
3368 break;
3369 case INDEX_op_smin_vec:
3370 insn = smin_op[vece];
3371 break;
3372 case INDEX_op_umin_vec:
3373 insn = umin_op[vece];
3374 break;
3375 case INDEX_op_smax_vec:
3376 insn = smax_op[vece];
3377 break;
3378 case INDEX_op_umax_vec:
3379 insn = umax_op[vece];
3380 break;
3381 case INDEX_op_shlv_vec:
3382 insn = shlv_op[vece];
3383 break;
3384 case INDEX_op_shrv_vec:
3385 insn = shrv_op[vece];
3386 break;
3387 case INDEX_op_sarv_vec:
3388 insn = sarv_op[vece];
3389 break;
3390 case INDEX_op_and_vec:
3391 insn = VAND;
3392 break;
3393 case INDEX_op_or_vec:
3394 insn = VOR;
3395 break;
3396 case INDEX_op_xor_vec:
3397 insn = VXOR;
3398 break;
3399 case INDEX_op_andc_vec:
3400 insn = VANDC;
3401 break;
3402 case INDEX_op_not_vec:
3403 insn = VNOR;
3404 a2 = a1;
3405 break;
3406 case INDEX_op_orc_vec:
3407 insn = VORC;
3408 break;
3409 case INDEX_op_nand_vec:
3410 insn = VNAND;
3411 break;
3412 case INDEX_op_nor_vec:
3413 insn = VNOR;
3414 break;
3415 case INDEX_op_eqv_vec:
3416 insn = VEQV;
3417 break;
3418
3419 case INDEX_op_cmp_vec:
3420 switch (args[3]) {
3421 case TCG_COND_EQ:
3422 insn = eq_op[vece];
3423 break;
3424 case TCG_COND_NE:
3425 insn = ne_op[vece];
3426 break;
3427 case TCG_COND_GT:
3428 insn = gts_op[vece];
3429 break;
3430 case TCG_COND_GTU:
3431 insn = gtu_op[vece];
3432 break;
3433 default:
3434 g_assert_not_reached();
3435 }
3436 break;
3437
3438 case INDEX_op_bitsel_vec:
3439 tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3]));
3440 return;
3441
3442 case INDEX_op_dup2_vec:
3443 assert(TCG_TARGET_REG_BITS == 32);
3444 /* With inputs a1 = xLxx, a2 = xHxx */
3445 tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */
3446 tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */
3447 tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */
3448 return;
3449
3450 case INDEX_op_ppc_mrgh_vec:
3451 insn = mrgh_op[vece];
3452 break;
3453 case INDEX_op_ppc_mrgl_vec:
3454 insn = mrgl_op[vece];
3455 break;
3456 case INDEX_op_ppc_muleu_vec:
3457 insn = muleu_op[vece];
3458 break;
3459 case INDEX_op_ppc_mulou_vec:
3460 insn = mulou_op[vece];
3461 break;
3462 case INDEX_op_ppc_pkum_vec:
3463 insn = pkum_op[vece];
3464 break;
3465 case INDEX_op_rotlv_vec:
3466 insn = rotl_op[vece];
3467 break;
3468 case INDEX_op_ppc_msum_vec:
3469 tcg_debug_assert(vece == MO_16);
3470 tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3]));
3471 return;
3472
3473 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
3474 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
3475 default:
3476 g_assert_not_reached();
3477 }
3478
3479 tcg_debug_assert(insn != 0);
3480 tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2));
3481 }
3482
3483 static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0,
3484 TCGv_vec v1, TCGArg imm, TCGOpcode opci)
3485 {
3486 TCGv_vec t1;
3487
3488 if (vece == MO_32) {
3489 /*
3490 * Only 5 bits are significant, and VSPLTISB can represent -16..15.
3491 * So using negative numbers gets us the 4th bit easily.
3492 */
3493 imm = sextract32(imm, 0, 5);
3494 } else {
3495 imm &= (8 << vece) - 1;
3496 }
3497
3498 /* Splat w/bytes for xxspltib when 2.07 allows MO_64. */
3499 t1 = tcg_constant_vec(type, MO_8, imm);
3500 vec_gen_3(opci, type, vece, tcgv_vec_arg(v0),
3501 tcgv_vec_arg(v1), tcgv_vec_arg(t1));
3502 }
3503
3504 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3505 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3506 {
3507 bool need_swap = false, need_inv = false;
3508
3509 tcg_debug_assert(vece <= MO_32 || have_isa_2_07);
3510
3511 switch (cond) {
3512 case TCG_COND_EQ:
3513 case TCG_COND_GT:
3514 case TCG_COND_GTU:
3515 break;
3516 case TCG_COND_NE:
3517 if (have_isa_3_00 && vece <= MO_32) {
3518 break;
3519 }
3520 /* fall through */
3521 case TCG_COND_LE:
3522 case TCG_COND_LEU:
3523 need_inv = true;
3524 break;
3525 case TCG_COND_LT:
3526 case TCG_COND_LTU:
3527 need_swap = true;
3528 break;
3529 case TCG_COND_GE:
3530 case TCG_COND_GEU:
3531 need_swap = need_inv = true;
3532 break;
3533 default:
3534 g_assert_not_reached();
3535 }
3536
3537 if (need_inv) {
3538 cond = tcg_invert_cond(cond);
3539 }
3540 if (need_swap) {
3541 TCGv_vec t1;
3542 t1 = v1, v1 = v2, v2 = t1;
3543 cond = tcg_swap_cond(cond);
3544 }
3545
3546 vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
3547 tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3548
3549 if (need_inv) {
3550 tcg_gen_not_vec(vece, v0, v0);
3551 }
3552 }
3553
3554 static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0,
3555 TCGv_vec v1, TCGv_vec v2)
3556 {
3557 TCGv_vec t1 = tcg_temp_new_vec(type);
3558 TCGv_vec t2 = tcg_temp_new_vec(type);
3559 TCGv_vec c0, c16;
3560
3561 switch (vece) {
3562 case MO_8:
3563 case MO_16:
3564 vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1),
3565 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3566 vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2),
3567 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3568 vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0),
3569 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3570 vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1),
3571 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3572 vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0),
3573 tcgv_vec_arg(v0), tcgv_vec_arg(t1));
3574 break;
3575
3576 case MO_32:
3577 tcg_debug_assert(!have_isa_2_07);
3578 /*
3579 * Only 5 bits are significant, and VSPLTISB can represent -16..15.
3580 * So using -16 is a quick way to represent 16.
3581 */
3582 c16 = tcg_constant_vec(type, MO_8, -16);
3583 c0 = tcg_constant_vec(type, MO_8, 0);
3584
3585 vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1),
3586 tcgv_vec_arg(v2), tcgv_vec_arg(c16));
3587 vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2),
3588 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3589 vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t1),
3590 tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(c0));
3591 vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t1),
3592 tcgv_vec_arg(t1), tcgv_vec_arg(c16));
3593 tcg_gen_add_vec(MO_32, v0, t1, t2);
3594 break;
3595
3596 default:
3597 g_assert_not_reached();
3598 }
3599 tcg_temp_free_vec(t1);
3600 tcg_temp_free_vec(t2);
3601 }
3602
3603 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3604 TCGArg a0, ...)
3605 {
3606 va_list va;
3607 TCGv_vec v0, v1, v2, t0;
3608 TCGArg a2;
3609
3610 va_start(va, a0);
3611 v0 = temp_tcgv_vec(arg_temp(a0));
3612 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3613 a2 = va_arg(va, TCGArg);
3614
3615 switch (opc) {
3616 case INDEX_op_shli_vec:
3617 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec);
3618 break;
3619 case INDEX_op_shri_vec:
3620 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec);
3621 break;
3622 case INDEX_op_sari_vec:
3623 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec);
3624 break;
3625 case INDEX_op_rotli_vec:
3626 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec);
3627 break;
3628 case INDEX_op_cmp_vec:
3629 v2 = temp_tcgv_vec(arg_temp(a2));
3630 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3631 break;
3632 case INDEX_op_mul_vec:
3633 v2 = temp_tcgv_vec(arg_temp(a2));
3634 expand_vec_mul(type, vece, v0, v1, v2);
3635 break;
3636 case INDEX_op_rotlv_vec:
3637 v2 = temp_tcgv_vec(arg_temp(a2));
3638 t0 = tcg_temp_new_vec(type);
3639 tcg_gen_neg_vec(vece, t0, v2);
3640 tcg_gen_rotlv_vec(vece, v0, v1, t0);
3641 tcg_temp_free_vec(t0);
3642 break;
3643 default:
3644 g_assert_not_reached();
3645 }
3646 va_end(va);
3647 }
3648
3649 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
3650 {
3651 switch (op) {
3652 case INDEX_op_goto_ptr:
3653 return C_O0_I1(r);
3654
3655 case INDEX_op_ld8u_i32:
3656 case INDEX_op_ld8s_i32:
3657 case INDEX_op_ld16u_i32:
3658 case INDEX_op_ld16s_i32:
3659 case INDEX_op_ld_i32:
3660 case INDEX_op_ctpop_i32:
3661 case INDEX_op_neg_i32:
3662 case INDEX_op_not_i32:
3663 case INDEX_op_ext8s_i32:
3664 case INDEX_op_ext16s_i32:
3665 case INDEX_op_bswap16_i32:
3666 case INDEX_op_bswap32_i32:
3667 case INDEX_op_extract_i32:
3668 case INDEX_op_ld8u_i64:
3669 case INDEX_op_ld8s_i64:
3670 case INDEX_op_ld16u_i64:
3671 case INDEX_op_ld16s_i64:
3672 case INDEX_op_ld32u_i64:
3673 case INDEX_op_ld32s_i64:
3674 case INDEX_op_ld_i64:
3675 case INDEX_op_ctpop_i64:
3676 case INDEX_op_neg_i64:
3677 case INDEX_op_not_i64:
3678 case INDEX_op_ext8s_i64:
3679 case INDEX_op_ext16s_i64:
3680 case INDEX_op_ext32s_i64:
3681 case INDEX_op_ext_i32_i64:
3682 case INDEX_op_extu_i32_i64:
3683 case INDEX_op_bswap16_i64:
3684 case INDEX_op_bswap32_i64:
3685 case INDEX_op_bswap64_i64:
3686 case INDEX_op_extract_i64:
3687 return C_O1_I1(r, r);
3688
3689 case INDEX_op_st8_i32:
3690 case INDEX_op_st16_i32:
3691 case INDEX_op_st_i32:
3692 case INDEX_op_st8_i64:
3693 case INDEX_op_st16_i64:
3694 case INDEX_op_st32_i64:
3695 case INDEX_op_st_i64:
3696 return C_O0_I2(r, r);
3697
3698 case INDEX_op_add_i32:
3699 case INDEX_op_and_i32:
3700 case INDEX_op_or_i32:
3701 case INDEX_op_xor_i32:
3702 case INDEX_op_andc_i32:
3703 case INDEX_op_orc_i32:
3704 case INDEX_op_eqv_i32:
3705 case INDEX_op_shl_i32:
3706 case INDEX_op_shr_i32:
3707 case INDEX_op_sar_i32:
3708 case INDEX_op_rotl_i32:
3709 case INDEX_op_rotr_i32:
3710 case INDEX_op_setcond_i32:
3711 case INDEX_op_and_i64:
3712 case INDEX_op_andc_i64:
3713 case INDEX_op_shl_i64:
3714 case INDEX_op_shr_i64:
3715 case INDEX_op_sar_i64:
3716 case INDEX_op_rotl_i64:
3717 case INDEX_op_rotr_i64:
3718 case INDEX_op_setcond_i64:
3719 return C_O1_I2(r, r, ri);
3720
3721 case INDEX_op_mul_i32:
3722 case INDEX_op_mul_i64:
3723 return C_O1_I2(r, r, rI);
3724
3725 case INDEX_op_div_i32:
3726 case INDEX_op_divu_i32:
3727 case INDEX_op_rem_i32:
3728 case INDEX_op_remu_i32:
3729 case INDEX_op_nand_i32:
3730 case INDEX_op_nor_i32:
3731 case INDEX_op_muluh_i32:
3732 case INDEX_op_mulsh_i32:
3733 case INDEX_op_orc_i64:
3734 case INDEX_op_eqv_i64:
3735 case INDEX_op_nand_i64:
3736 case INDEX_op_nor_i64:
3737 case INDEX_op_div_i64:
3738 case INDEX_op_divu_i64:
3739 case INDEX_op_rem_i64:
3740 case INDEX_op_remu_i64:
3741 case INDEX_op_mulsh_i64:
3742 case INDEX_op_muluh_i64:
3743 return C_O1_I2(r, r, r);
3744
3745 case INDEX_op_sub_i32:
3746 return C_O1_I2(r, rI, ri);
3747 case INDEX_op_add_i64:
3748 return C_O1_I2(r, r, rT);
3749 case INDEX_op_or_i64:
3750 case INDEX_op_xor_i64:
3751 return C_O1_I2(r, r, rU);
3752 case INDEX_op_sub_i64:
3753 return C_O1_I2(r, rI, rT);
3754 case INDEX_op_clz_i32:
3755 case INDEX_op_ctz_i32:
3756 case INDEX_op_clz_i64:
3757 case INDEX_op_ctz_i64:
3758 return C_O1_I2(r, r, rZW);
3759
3760 case INDEX_op_brcond_i32:
3761 case INDEX_op_brcond_i64:
3762 return C_O0_I2(r, ri);
3763
3764 case INDEX_op_movcond_i32:
3765 case INDEX_op_movcond_i64:
3766 return C_O1_I4(r, r, ri, rZ, rZ);
3767 case INDEX_op_deposit_i32:
3768 case INDEX_op_deposit_i64:
3769 return C_O1_I2(r, 0, rZ);
3770 case INDEX_op_brcond2_i32:
3771 return C_O0_I4(r, r, ri, ri);
3772 case INDEX_op_setcond2_i32:
3773 return C_O1_I4(r, r, r, ri, ri);
3774 case INDEX_op_add2_i64:
3775 case INDEX_op_add2_i32:
3776 return C_O2_I4(r, r, r, r, rI, rZM);
3777 case INDEX_op_sub2_i64:
3778 case INDEX_op_sub2_i32:
3779 return C_O2_I4(r, r, rI, rZM, r, r);
3780
3781 case INDEX_op_qemu_ld_i32:
3782 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3783 ? C_O1_I1(r, L)
3784 : C_O1_I2(r, L, L));
3785
3786 case INDEX_op_qemu_st_i32:
3787 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3788 ? C_O0_I2(S, S)
3789 : C_O0_I3(S, S, S));
3790
3791 case INDEX_op_qemu_ld_i64:
3792 return (TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L)
3793 : TARGET_LONG_BITS == 32 ? C_O2_I1(L, L, L)
3794 : C_O2_I2(L, L, L, L));
3795
3796 case INDEX_op_qemu_st_i64:
3797 return (TCG_TARGET_REG_BITS == 64 ? C_O0_I2(S, S)
3798 : TARGET_LONG_BITS == 32 ? C_O0_I3(S, S, S)
3799 : C_O0_I4(S, S, S, S));
3800
3801 case INDEX_op_add_vec:
3802 case INDEX_op_sub_vec:
3803 case INDEX_op_mul_vec:
3804 case INDEX_op_and_vec:
3805 case INDEX_op_or_vec:
3806 case INDEX_op_xor_vec:
3807 case INDEX_op_andc_vec:
3808 case INDEX_op_orc_vec:
3809 case INDEX_op_nor_vec:
3810 case INDEX_op_eqv_vec:
3811 case INDEX_op_nand_vec:
3812 case INDEX_op_cmp_vec:
3813 case INDEX_op_ssadd_vec:
3814 case INDEX_op_sssub_vec:
3815 case INDEX_op_usadd_vec:
3816 case INDEX_op_ussub_vec:
3817 case INDEX_op_smax_vec:
3818 case INDEX_op_smin_vec:
3819 case INDEX_op_umax_vec:
3820 case INDEX_op_umin_vec:
3821 case INDEX_op_shlv_vec:
3822 case INDEX_op_shrv_vec:
3823 case INDEX_op_sarv_vec:
3824 case INDEX_op_rotlv_vec:
3825 case INDEX_op_rotrv_vec:
3826 case INDEX_op_ppc_mrgh_vec:
3827 case INDEX_op_ppc_mrgl_vec:
3828 case INDEX_op_ppc_muleu_vec:
3829 case INDEX_op_ppc_mulou_vec:
3830 case INDEX_op_ppc_pkum_vec:
3831 case INDEX_op_dup2_vec:
3832 return C_O1_I2(v, v, v);
3833
3834 case INDEX_op_not_vec:
3835 case INDEX_op_neg_vec:
3836 return C_O1_I1(v, v);
3837
3838 case INDEX_op_dup_vec:
3839 return have_isa_3_00 ? C_O1_I1(v, vr) : C_O1_I1(v, v);
3840
3841 case INDEX_op_ld_vec:
3842 case INDEX_op_dupm_vec:
3843 return C_O1_I1(v, r);
3844
3845 case INDEX_op_st_vec:
3846 return C_O0_I2(v, r);
3847
3848 case INDEX_op_bitsel_vec:
3849 case INDEX_op_ppc_msum_vec:
3850 return C_O1_I3(v, v, v, v);
3851
3852 default:
3853 g_assert_not_reached();
3854 }
3855 }
3856
3857 static void tcg_target_init(TCGContext *s)
3858 {
3859 unsigned long hwcap = qemu_getauxval(AT_HWCAP);
3860 unsigned long hwcap2 = qemu_getauxval(AT_HWCAP2);
3861
3862 have_isa = tcg_isa_base;
3863 if (hwcap & PPC_FEATURE_ARCH_2_06) {
3864 have_isa = tcg_isa_2_06;
3865 }
3866 #ifdef PPC_FEATURE2_ARCH_2_07
3867 if (hwcap2 & PPC_FEATURE2_ARCH_2_07) {
3868 have_isa = tcg_isa_2_07;
3869 }
3870 #endif
3871 #ifdef PPC_FEATURE2_ARCH_3_00
3872 if (hwcap2 & PPC_FEATURE2_ARCH_3_00) {
3873 have_isa = tcg_isa_3_00;
3874 }
3875 #endif
3876 #ifdef PPC_FEATURE2_ARCH_3_10
3877 if (hwcap2 & PPC_FEATURE2_ARCH_3_10) {
3878 have_isa = tcg_isa_3_10;
3879 }
3880 #endif
3881
3882 #ifdef PPC_FEATURE2_HAS_ISEL
3883 /* Prefer explicit instruction from the kernel. */
3884 have_isel = (hwcap2 & PPC_FEATURE2_HAS_ISEL) != 0;
3885 #else
3886 /* Fall back to knowing Power7 (2.06) has ISEL. */
3887 have_isel = have_isa_2_06;
3888 #endif
3889
3890 if (hwcap & PPC_FEATURE_HAS_ALTIVEC) {
3891 have_altivec = true;
3892 /* We only care about the portion of VSX that overlaps Altivec. */
3893 if (hwcap & PPC_FEATURE_HAS_VSX) {
3894 have_vsx = true;
3895 }
3896 }
3897
3898 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
3899 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff;
3900 if (have_altivec) {
3901 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
3902 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
3903 }
3904
3905 tcg_target_call_clobber_regs = 0;
3906 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
3907 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
3908 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
3909 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
3910 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
3911 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
3912 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7);
3913 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
3914 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
3915 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
3916 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
3917 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12);
3918
3919 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
3920 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
3921 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
3922 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
3923 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
3924 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
3925 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
3926 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
3927 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8);
3928 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9);
3929 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10);
3930 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11);
3931 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12);
3932 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13);
3933 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14);
3934 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15);
3935 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
3936 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
3937 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
3938 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
3939
3940 s->reserved_regs = 0;
3941 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */
3942 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */
3943 #if defined(_CALL_SYSV)
3944 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */
3945 #endif
3946 #if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64
3947 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */
3948 #endif
3949 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); /* mem temp */
3950 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1);
3951 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2);
3952 if (USE_REG_TB) {
3953 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */
3954 }
3955 }
3956
3957 #ifdef __ELF__
3958 typedef struct {
3959 DebugFrameCIE cie;
3960 DebugFrameFDEHeader fde;
3961 uint8_t fde_def_cfa[4];
3962 uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3];
3963 } DebugFrame;
3964
3965 /* We're expecting a 2 byte uleb128 encoded value. */
3966 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
3967
3968 #if TCG_TARGET_REG_BITS == 64
3969 # define ELF_HOST_MACHINE EM_PPC64
3970 #else
3971 # define ELF_HOST_MACHINE EM_PPC
3972 #endif
3973
3974 static DebugFrame debug_frame = {
3975 .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
3976 .cie.id = -1,
3977 .cie.version = 1,
3978 .cie.code_align = 1,
3979 .cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */
3980 .cie.return_column = 65,
3981
3982 /* Total FDE size does not include the "len" member. */
3983 .fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset),
3984
3985 .fde_def_cfa = {
3986 12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */
3987 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
3988 (FRAME_SIZE >> 7)
3989 },
3990 .fde_reg_ofs = {
3991 /* DW_CFA_offset_extended_sf, lr, LR_OFFSET */
3992 0x11, 65, (LR_OFFSET / -SZR) & 0x7f,
3993 }
3994 };
3995
3996 void tcg_register_jit(const void *buf, size_t buf_size)
3997 {
3998 uint8_t *p = &debug_frame.fde_reg_ofs[3];
3999 int i;
4000
4001 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) {
4002 p[0] = 0x80 + tcg_target_callee_save_regs[i];
4003 p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR;
4004 }
4005
4006 debug_frame.fde.func_start = (uintptr_t)buf;
4007 debug_frame.fde.func_len = buf_size;
4008
4009 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4010 }
4011 #endif /* __ELF__ */
4012 #undef VMULEUB
4013 #undef VMULEUH
4014 #undef VMULEUW
4015 #undef VMULOUB
4016 #undef VMULOUH
4017 #undef VMULOUW
4018 #undef VMSUMUHM