]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/ppc/tcg-target.c.inc
tcg: Split out tcg_out_exit_tb
[mirror_qemu.git] / tcg / ppc / tcg-target.c.inc
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "elf.h"
26 #include "../tcg-pool.c.inc"
27 #include "../tcg-ldst.c.inc"
28
29 /*
30 * Standardize on the _CALL_FOO symbols used by GCC:
31 * Apple XCode does not define _CALL_DARWIN.
32 * Clang defines _CALL_ELF (64-bit) but not _CALL_SYSV (32-bit).
33 */
34 #if !defined(_CALL_SYSV) && \
35 !defined(_CALL_DARWIN) && \
36 !defined(_CALL_AIX) && \
37 !defined(_CALL_ELF)
38 # if defined(__APPLE__)
39 # define _CALL_DARWIN
40 # elif defined(__ELF__) && TCG_TARGET_REG_BITS == 32
41 # define _CALL_SYSV
42 # else
43 # error "Unknown ABI"
44 # endif
45 #endif
46
47 #if TCG_TARGET_REG_BITS == 64
48 # define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_EXTEND
49 #else
50 # define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL
51 #endif
52 #ifdef _CALL_SYSV
53 # define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_EVEN
54 #else
55 # define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL
56 #endif
57
58 /* For some memory operations, we need a scratch that isn't R0. For the AIX
59 calling convention, we can re-use the TOC register since we'll be reloading
60 it at every call. Otherwise R12 will do nicely as neither a call-saved
61 register nor a parameter register. */
62 #ifdef _CALL_AIX
63 # define TCG_REG_TMP1 TCG_REG_R2
64 #else
65 # define TCG_REG_TMP1 TCG_REG_R12
66 #endif
67
68 #define TCG_VEC_TMP1 TCG_REG_V0
69 #define TCG_VEC_TMP2 TCG_REG_V1
70
71 #define TCG_REG_TB TCG_REG_R31
72 #define USE_REG_TB (TCG_TARGET_REG_BITS == 64)
73
74 /* Shorthand for size of a pointer. Avoid promotion to unsigned. */
75 #define SZP ((int)sizeof(void *))
76
77 /* Shorthand for size of a register. */
78 #define SZR (TCG_TARGET_REG_BITS / 8)
79
80 #define TCG_CT_CONST_S16 0x100
81 #define TCG_CT_CONST_U16 0x200
82 #define TCG_CT_CONST_S32 0x400
83 #define TCG_CT_CONST_U32 0x800
84 #define TCG_CT_CONST_ZERO 0x1000
85 #define TCG_CT_CONST_MONE 0x2000
86 #define TCG_CT_CONST_WSZ 0x4000
87
88 #define ALL_GENERAL_REGS 0xffffffffu
89 #define ALL_VECTOR_REGS 0xffffffff00000000ull
90
91 #ifdef CONFIG_SOFTMMU
92 #define ALL_QLOAD_REGS \
93 (ALL_GENERAL_REGS & \
94 ~((1 << TCG_REG_R3) | (1 << TCG_REG_R4) | (1 << TCG_REG_R5)))
95 #define ALL_QSTORE_REGS \
96 (ALL_GENERAL_REGS & ~((1 << TCG_REG_R3) | (1 << TCG_REG_R4) | \
97 (1 << TCG_REG_R5) | (1 << TCG_REG_R6)))
98 #else
99 #define ALL_QLOAD_REGS (ALL_GENERAL_REGS & ~(1 << TCG_REG_R3))
100 #define ALL_QSTORE_REGS ALL_QLOAD_REGS
101 #endif
102
103 TCGPowerISA have_isa;
104 static bool have_isel;
105 bool have_altivec;
106 bool have_vsx;
107
108 #ifndef CONFIG_SOFTMMU
109 #define TCG_GUEST_BASE_REG 30
110 #endif
111
112 #ifdef CONFIG_DEBUG_TCG
113 static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = {
114 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
115 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
116 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
117 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
118 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
119 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
120 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
121 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
122 };
123 #endif
124
125 static const int tcg_target_reg_alloc_order[] = {
126 TCG_REG_R14, /* call saved registers */
127 TCG_REG_R15,
128 TCG_REG_R16,
129 TCG_REG_R17,
130 TCG_REG_R18,
131 TCG_REG_R19,
132 TCG_REG_R20,
133 TCG_REG_R21,
134 TCG_REG_R22,
135 TCG_REG_R23,
136 TCG_REG_R24,
137 TCG_REG_R25,
138 TCG_REG_R26,
139 TCG_REG_R27,
140 TCG_REG_R28,
141 TCG_REG_R29,
142 TCG_REG_R30,
143 TCG_REG_R31,
144 TCG_REG_R12, /* call clobbered, non-arguments */
145 TCG_REG_R11,
146 TCG_REG_R2,
147 TCG_REG_R13,
148 TCG_REG_R10, /* call clobbered, arguments */
149 TCG_REG_R9,
150 TCG_REG_R8,
151 TCG_REG_R7,
152 TCG_REG_R6,
153 TCG_REG_R5,
154 TCG_REG_R4,
155 TCG_REG_R3,
156
157 /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */
158 TCG_REG_V2, /* call clobbered, vectors */
159 TCG_REG_V3,
160 TCG_REG_V4,
161 TCG_REG_V5,
162 TCG_REG_V6,
163 TCG_REG_V7,
164 TCG_REG_V8,
165 TCG_REG_V9,
166 TCG_REG_V10,
167 TCG_REG_V11,
168 TCG_REG_V12,
169 TCG_REG_V13,
170 TCG_REG_V14,
171 TCG_REG_V15,
172 TCG_REG_V16,
173 TCG_REG_V17,
174 TCG_REG_V18,
175 TCG_REG_V19,
176 };
177
178 static const int tcg_target_call_iarg_regs[] = {
179 TCG_REG_R3,
180 TCG_REG_R4,
181 TCG_REG_R5,
182 TCG_REG_R6,
183 TCG_REG_R7,
184 TCG_REG_R8,
185 TCG_REG_R9,
186 TCG_REG_R10
187 };
188
189 static const int tcg_target_call_oarg_regs[] = {
190 TCG_REG_R3,
191 TCG_REG_R4
192 };
193
194 static const int tcg_target_callee_save_regs[] = {
195 #ifdef _CALL_DARWIN
196 TCG_REG_R11,
197 #endif
198 TCG_REG_R14,
199 TCG_REG_R15,
200 TCG_REG_R16,
201 TCG_REG_R17,
202 TCG_REG_R18,
203 TCG_REG_R19,
204 TCG_REG_R20,
205 TCG_REG_R21,
206 TCG_REG_R22,
207 TCG_REG_R23,
208 TCG_REG_R24,
209 TCG_REG_R25,
210 TCG_REG_R26,
211 TCG_REG_R27, /* currently used for the global env */
212 TCG_REG_R28,
213 TCG_REG_R29,
214 TCG_REG_R30,
215 TCG_REG_R31
216 };
217
218 static inline bool in_range_b(tcg_target_long target)
219 {
220 return target == sextract64(target, 0, 26);
221 }
222
223 static uint32_t reloc_pc24_val(const tcg_insn_unit *pc,
224 const tcg_insn_unit *target)
225 {
226 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
227 tcg_debug_assert(in_range_b(disp));
228 return disp & 0x3fffffc;
229 }
230
231 static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
232 {
233 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
234 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
235
236 if (in_range_b(disp)) {
237 *src_rw = (*src_rw & ~0x3fffffc) | (disp & 0x3fffffc);
238 return true;
239 }
240 return false;
241 }
242
243 static uint16_t reloc_pc14_val(const tcg_insn_unit *pc,
244 const tcg_insn_unit *target)
245 {
246 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
247 tcg_debug_assert(disp == (int16_t) disp);
248 return disp & 0xfffc;
249 }
250
251 static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
252 {
253 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
254 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
255
256 if (disp == (int16_t) disp) {
257 *src_rw = (*src_rw & ~0xfffc) | (disp & 0xfffc);
258 return true;
259 }
260 return false;
261 }
262
263 /* test if a constant matches the constraint */
264 static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
265 {
266 if (ct & TCG_CT_CONST) {
267 return 1;
268 }
269
270 /* The only 32-bit constraint we use aside from
271 TCG_CT_CONST is TCG_CT_CONST_S16. */
272 if (type == TCG_TYPE_I32) {
273 val = (int32_t)val;
274 }
275
276 if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
277 return 1;
278 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
279 return 1;
280 } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
281 return 1;
282 } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
283 return 1;
284 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
285 return 1;
286 } else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
287 return 1;
288 } else if ((ct & TCG_CT_CONST_WSZ)
289 && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
290 return 1;
291 }
292 return 0;
293 }
294
295 #define OPCD(opc) ((opc)<<26)
296 #define XO19(opc) (OPCD(19)|((opc)<<1))
297 #define MD30(opc) (OPCD(30)|((opc)<<2))
298 #define MDS30(opc) (OPCD(30)|((opc)<<1))
299 #define XO31(opc) (OPCD(31)|((opc)<<1))
300 #define XO58(opc) (OPCD(58)|(opc))
301 #define XO62(opc) (OPCD(62)|(opc))
302 #define VX4(opc) (OPCD(4)|(opc))
303
304 #define B OPCD( 18)
305 #define BC OPCD( 16)
306 #define LBZ OPCD( 34)
307 #define LHZ OPCD( 40)
308 #define LHA OPCD( 42)
309 #define LWZ OPCD( 32)
310 #define LWZUX XO31( 55)
311 #define STB OPCD( 38)
312 #define STH OPCD( 44)
313 #define STW OPCD( 36)
314
315 #define STD XO62( 0)
316 #define STDU XO62( 1)
317 #define STDX XO31(149)
318
319 #define LD XO58( 0)
320 #define LDX XO31( 21)
321 #define LDU XO58( 1)
322 #define LDUX XO31( 53)
323 #define LWA XO58( 2)
324 #define LWAX XO31(341)
325
326 #define ADDIC OPCD( 12)
327 #define ADDI OPCD( 14)
328 #define ADDIS OPCD( 15)
329 #define ORI OPCD( 24)
330 #define ORIS OPCD( 25)
331 #define XORI OPCD( 26)
332 #define XORIS OPCD( 27)
333 #define ANDI OPCD( 28)
334 #define ANDIS OPCD( 29)
335 #define MULLI OPCD( 7)
336 #define CMPLI OPCD( 10)
337 #define CMPI OPCD( 11)
338 #define SUBFIC OPCD( 8)
339
340 #define LWZU OPCD( 33)
341 #define STWU OPCD( 37)
342
343 #define RLWIMI OPCD( 20)
344 #define RLWINM OPCD( 21)
345 #define RLWNM OPCD( 23)
346
347 #define RLDICL MD30( 0)
348 #define RLDICR MD30( 1)
349 #define RLDIMI MD30( 3)
350 #define RLDCL MDS30( 8)
351
352 #define BCLR XO19( 16)
353 #define BCCTR XO19(528)
354 #define CRAND XO19(257)
355 #define CRANDC XO19(129)
356 #define CRNAND XO19(225)
357 #define CROR XO19(449)
358 #define CRNOR XO19( 33)
359
360 #define EXTSB XO31(954)
361 #define EXTSH XO31(922)
362 #define EXTSW XO31(986)
363 #define ADD XO31(266)
364 #define ADDE XO31(138)
365 #define ADDME XO31(234)
366 #define ADDZE XO31(202)
367 #define ADDC XO31( 10)
368 #define AND XO31( 28)
369 #define SUBF XO31( 40)
370 #define SUBFC XO31( 8)
371 #define SUBFE XO31(136)
372 #define SUBFME XO31(232)
373 #define SUBFZE XO31(200)
374 #define OR XO31(444)
375 #define XOR XO31(316)
376 #define MULLW XO31(235)
377 #define MULHW XO31( 75)
378 #define MULHWU XO31( 11)
379 #define DIVW XO31(491)
380 #define DIVWU XO31(459)
381 #define MODSW XO31(779)
382 #define MODUW XO31(267)
383 #define CMP XO31( 0)
384 #define CMPL XO31( 32)
385 #define LHBRX XO31(790)
386 #define LWBRX XO31(534)
387 #define LDBRX XO31(532)
388 #define STHBRX XO31(918)
389 #define STWBRX XO31(662)
390 #define STDBRX XO31(660)
391 #define MFSPR XO31(339)
392 #define MTSPR XO31(467)
393 #define SRAWI XO31(824)
394 #define NEG XO31(104)
395 #define MFCR XO31( 19)
396 #define MFOCRF (MFCR | (1u << 20))
397 #define NOR XO31(124)
398 #define CNTLZW XO31( 26)
399 #define CNTLZD XO31( 58)
400 #define CNTTZW XO31(538)
401 #define CNTTZD XO31(570)
402 #define CNTPOPW XO31(378)
403 #define CNTPOPD XO31(506)
404 #define ANDC XO31( 60)
405 #define ORC XO31(412)
406 #define EQV XO31(284)
407 #define NAND XO31(476)
408 #define ISEL XO31( 15)
409
410 #define MULLD XO31(233)
411 #define MULHD XO31( 73)
412 #define MULHDU XO31( 9)
413 #define DIVD XO31(489)
414 #define DIVDU XO31(457)
415 #define MODSD XO31(777)
416 #define MODUD XO31(265)
417
418 #define LBZX XO31( 87)
419 #define LHZX XO31(279)
420 #define LHAX XO31(343)
421 #define LWZX XO31( 23)
422 #define STBX XO31(215)
423 #define STHX XO31(407)
424 #define STWX XO31(151)
425
426 #define EIEIO XO31(854)
427 #define HWSYNC XO31(598)
428 #define LWSYNC (HWSYNC | (1u << 21))
429
430 #define SPR(a, b) ((((a)<<5)|(b))<<11)
431 #define LR SPR(8, 0)
432 #define CTR SPR(9, 0)
433
434 #define SLW XO31( 24)
435 #define SRW XO31(536)
436 #define SRAW XO31(792)
437
438 #define SLD XO31( 27)
439 #define SRD XO31(539)
440 #define SRAD XO31(794)
441 #define SRADI XO31(413<<1)
442
443 #define BRH XO31(219)
444 #define BRW XO31(155)
445 #define BRD XO31(187)
446
447 #define TW XO31( 4)
448 #define TRAP (TW | TO(31))
449
450 #define NOP ORI /* ori 0,0,0 */
451
452 #define LVX XO31(103)
453 #define LVEBX XO31(7)
454 #define LVEHX XO31(39)
455 #define LVEWX XO31(71)
456 #define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */
457 #define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */
458 #define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */
459 #define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */
460 #define LXSD (OPCD(57) | 2) /* v3.00 */
461 #define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */
462
463 #define STVX XO31(231)
464 #define STVEWX XO31(199)
465 #define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */
466 #define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */
467 #define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */
468 #define STXSD (OPCD(61) | 2) /* v3.00 */
469
470 #define VADDSBS VX4(768)
471 #define VADDUBS VX4(512)
472 #define VADDUBM VX4(0)
473 #define VADDSHS VX4(832)
474 #define VADDUHS VX4(576)
475 #define VADDUHM VX4(64)
476 #define VADDSWS VX4(896)
477 #define VADDUWS VX4(640)
478 #define VADDUWM VX4(128)
479 #define VADDUDM VX4(192) /* v2.07 */
480
481 #define VSUBSBS VX4(1792)
482 #define VSUBUBS VX4(1536)
483 #define VSUBUBM VX4(1024)
484 #define VSUBSHS VX4(1856)
485 #define VSUBUHS VX4(1600)
486 #define VSUBUHM VX4(1088)
487 #define VSUBSWS VX4(1920)
488 #define VSUBUWS VX4(1664)
489 #define VSUBUWM VX4(1152)
490 #define VSUBUDM VX4(1216) /* v2.07 */
491
492 #define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */
493 #define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */
494
495 #define VMAXSB VX4(258)
496 #define VMAXSH VX4(322)
497 #define VMAXSW VX4(386)
498 #define VMAXSD VX4(450) /* v2.07 */
499 #define VMAXUB VX4(2)
500 #define VMAXUH VX4(66)
501 #define VMAXUW VX4(130)
502 #define VMAXUD VX4(194) /* v2.07 */
503 #define VMINSB VX4(770)
504 #define VMINSH VX4(834)
505 #define VMINSW VX4(898)
506 #define VMINSD VX4(962) /* v2.07 */
507 #define VMINUB VX4(514)
508 #define VMINUH VX4(578)
509 #define VMINUW VX4(642)
510 #define VMINUD VX4(706) /* v2.07 */
511
512 #define VCMPEQUB VX4(6)
513 #define VCMPEQUH VX4(70)
514 #define VCMPEQUW VX4(134)
515 #define VCMPEQUD VX4(199) /* v2.07 */
516 #define VCMPGTSB VX4(774)
517 #define VCMPGTSH VX4(838)
518 #define VCMPGTSW VX4(902)
519 #define VCMPGTSD VX4(967) /* v2.07 */
520 #define VCMPGTUB VX4(518)
521 #define VCMPGTUH VX4(582)
522 #define VCMPGTUW VX4(646)
523 #define VCMPGTUD VX4(711) /* v2.07 */
524 #define VCMPNEB VX4(7) /* v3.00 */
525 #define VCMPNEH VX4(71) /* v3.00 */
526 #define VCMPNEW VX4(135) /* v3.00 */
527
528 #define VSLB VX4(260)
529 #define VSLH VX4(324)
530 #define VSLW VX4(388)
531 #define VSLD VX4(1476) /* v2.07 */
532 #define VSRB VX4(516)
533 #define VSRH VX4(580)
534 #define VSRW VX4(644)
535 #define VSRD VX4(1732) /* v2.07 */
536 #define VSRAB VX4(772)
537 #define VSRAH VX4(836)
538 #define VSRAW VX4(900)
539 #define VSRAD VX4(964) /* v2.07 */
540 #define VRLB VX4(4)
541 #define VRLH VX4(68)
542 #define VRLW VX4(132)
543 #define VRLD VX4(196) /* v2.07 */
544
545 #define VMULEUB VX4(520)
546 #define VMULEUH VX4(584)
547 #define VMULEUW VX4(648) /* v2.07 */
548 #define VMULOUB VX4(8)
549 #define VMULOUH VX4(72)
550 #define VMULOUW VX4(136) /* v2.07 */
551 #define VMULUWM VX4(137) /* v2.07 */
552 #define VMULLD VX4(457) /* v3.10 */
553 #define VMSUMUHM VX4(38)
554
555 #define VMRGHB VX4(12)
556 #define VMRGHH VX4(76)
557 #define VMRGHW VX4(140)
558 #define VMRGLB VX4(268)
559 #define VMRGLH VX4(332)
560 #define VMRGLW VX4(396)
561
562 #define VPKUHUM VX4(14)
563 #define VPKUWUM VX4(78)
564
565 #define VAND VX4(1028)
566 #define VANDC VX4(1092)
567 #define VNOR VX4(1284)
568 #define VOR VX4(1156)
569 #define VXOR VX4(1220)
570 #define VEQV VX4(1668) /* v2.07 */
571 #define VNAND VX4(1412) /* v2.07 */
572 #define VORC VX4(1348) /* v2.07 */
573
574 #define VSPLTB VX4(524)
575 #define VSPLTH VX4(588)
576 #define VSPLTW VX4(652)
577 #define VSPLTISB VX4(780)
578 #define VSPLTISH VX4(844)
579 #define VSPLTISW VX4(908)
580
581 #define VSLDOI VX4(44)
582
583 #define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */
584 #define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */
585 #define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */
586
587 #define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */
588 #define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */
589 #define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */
590 #define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */
591 #define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */
592 #define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */
593
594 #define RT(r) ((r)<<21)
595 #define RS(r) ((r)<<21)
596 #define RA(r) ((r)<<16)
597 #define RB(r) ((r)<<11)
598 #define TO(t) ((t)<<21)
599 #define SH(s) ((s)<<11)
600 #define MB(b) ((b)<<6)
601 #define ME(e) ((e)<<1)
602 #define BO(o) ((o)<<21)
603 #define MB64(b) ((b)<<5)
604 #define FXM(b) (1 << (19 - (b)))
605
606 #define VRT(r) (((r) & 31) << 21)
607 #define VRA(r) (((r) & 31) << 16)
608 #define VRB(r) (((r) & 31) << 11)
609 #define VRC(r) (((r) & 31) << 6)
610
611 #define LK 1
612
613 #define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
614 #define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
615 #define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
616 #define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
617
618 #define BF(n) ((n)<<23)
619 #define BI(n, c) (((c)+((n)*4))<<16)
620 #define BT(n, c) (((c)+((n)*4))<<21)
621 #define BA(n, c) (((c)+((n)*4))<<16)
622 #define BB(n, c) (((c)+((n)*4))<<11)
623 #define BC_(n, c) (((c)+((n)*4))<<6)
624
625 #define BO_COND_TRUE BO(12)
626 #define BO_COND_FALSE BO( 4)
627 #define BO_ALWAYS BO(20)
628
629 enum {
630 CR_LT,
631 CR_GT,
632 CR_EQ,
633 CR_SO
634 };
635
636 static const uint32_t tcg_to_bc[] = {
637 [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE,
638 [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE,
639 [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE,
640 [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE,
641 [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE,
642 [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE,
643 [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE,
644 [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE,
645 [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE,
646 [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE,
647 };
648
649 /* The low bit here is set if the RA and RB fields must be inverted. */
650 static const uint32_t tcg_to_isel[] = {
651 [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
652 [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
653 [TCG_COND_LT] = ISEL | BC_(7, CR_LT),
654 [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
655 [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
656 [TCG_COND_GT] = ISEL | BC_(7, CR_GT),
657 [TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
658 [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
659 [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
660 [TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
661 };
662
663 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
664 intptr_t value, intptr_t addend)
665 {
666 const tcg_insn_unit *target;
667 int16_t lo;
668 int32_t hi;
669
670 value += addend;
671 target = (const tcg_insn_unit *)value;
672
673 switch (type) {
674 case R_PPC_REL14:
675 return reloc_pc14(code_ptr, target);
676 case R_PPC_REL24:
677 return reloc_pc24(code_ptr, target);
678 case R_PPC_ADDR16:
679 /*
680 * We are (slightly) abusing this relocation type. In particular,
681 * assert that the low 2 bits are zero, and do not modify them.
682 * That way we can use this with LD et al that have opcode bits
683 * in the low 2 bits of the insn.
684 */
685 if ((value & 3) || value != (int16_t)value) {
686 return false;
687 }
688 *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc);
689 break;
690 case R_PPC_ADDR32:
691 /*
692 * We are abusing this relocation type. Again, this points to
693 * a pair of insns, lis + load. This is an absolute address
694 * relocation for PPC32 so the lis cannot be removed.
695 */
696 lo = value;
697 hi = value - lo;
698 if (hi + lo != value) {
699 return false;
700 }
701 code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16);
702 code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo);
703 break;
704 default:
705 g_assert_not_reached();
706 }
707 return true;
708 }
709
710 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
711 TCGReg base, tcg_target_long offset);
712
713 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
714 {
715 if (ret == arg) {
716 return true;
717 }
718 switch (type) {
719 case TCG_TYPE_I64:
720 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
721 /* fallthru */
722 case TCG_TYPE_I32:
723 if (ret < TCG_REG_V0) {
724 if (arg < TCG_REG_V0) {
725 tcg_out32(s, OR | SAB(arg, ret, arg));
726 break;
727 } else if (have_isa_2_07) {
728 tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD)
729 | VRT(arg) | RA(ret));
730 break;
731 } else {
732 /* Altivec does not support vector->integer moves. */
733 return false;
734 }
735 } else if (arg < TCG_REG_V0) {
736 if (have_isa_2_07) {
737 tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD)
738 | VRT(ret) | RA(arg));
739 break;
740 } else {
741 /* Altivec does not support integer->vector moves. */
742 return false;
743 }
744 }
745 /* fallthru */
746 case TCG_TYPE_V64:
747 case TCG_TYPE_V128:
748 tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0);
749 tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg));
750 break;
751 default:
752 g_assert_not_reached();
753 }
754 return true;
755 }
756
757 static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
758 int sh, int mb)
759 {
760 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
761 sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1);
762 mb = MB64((mb >> 5) | ((mb << 1) & 0x3f));
763 tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb);
764 }
765
766 static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
767 int sh, int mb, int me)
768 {
769 tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
770 }
771
772 static inline void tcg_out_ext8s(TCGContext *s, TCGReg dst, TCGReg src)
773 {
774 tcg_out32(s, EXTSB | RA(dst) | RS(src));
775 }
776
777 static inline void tcg_out_ext16s(TCGContext *s, TCGReg dst, TCGReg src)
778 {
779 tcg_out32(s, EXTSH | RA(dst) | RS(src));
780 }
781
782 static inline void tcg_out_ext16u(TCGContext *s, TCGReg dst, TCGReg src)
783 {
784 tcg_out32(s, ANDI | SAI(src, dst, 0xffff));
785 }
786
787 static inline void tcg_out_ext32s(TCGContext *s, TCGReg dst, TCGReg src)
788 {
789 tcg_out32(s, EXTSW | RA(dst) | RS(src));
790 }
791
792 static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
793 {
794 tcg_out_rld(s, RLDICL, dst, src, 0, 32);
795 }
796
797 static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c)
798 {
799 tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c);
800 }
801
802 static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
803 {
804 tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
805 }
806
807 static inline void tcg_out_sari32(TCGContext *s, TCGReg dst, TCGReg src, int c)
808 {
809 /* Limit immediate shift count lest we create an illegal insn. */
810 tcg_out32(s, SRAWI | RA(dst) | RS(src) | SH(c & 31));
811 }
812
813 static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c)
814 {
815 tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31);
816 }
817
818 static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
819 {
820 tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
821 }
822
823 static inline void tcg_out_sari64(TCGContext *s, TCGReg dst, TCGReg src, int c)
824 {
825 tcg_out32(s, SRADI | RA(dst) | RS(src) | SH(c & 0x1f) | ((c >> 4) & 2));
826 }
827
828 static void tcg_out_bswap16(TCGContext *s, TCGReg dst, TCGReg src, int flags)
829 {
830 TCGReg tmp = dst == src ? TCG_REG_R0 : dst;
831
832 if (have_isa_3_10) {
833 tcg_out32(s, BRH | RA(dst) | RS(src));
834 if (flags & TCG_BSWAP_OS) {
835 tcg_out_ext16s(s, dst, dst);
836 } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
837 tcg_out_ext16u(s, dst, dst);
838 }
839 return;
840 }
841
842 /*
843 * In the following,
844 * dep(a, b, m) -> (a & ~m) | (b & m)
845 *
846 * Begin with: src = xxxxabcd
847 */
848 /* tmp = rol32(src, 24) & 0x000000ff = 0000000c */
849 tcg_out_rlw(s, RLWINM, tmp, src, 24, 24, 31);
850 /* tmp = dep(tmp, rol32(src, 8), 0x0000ff00) = 000000dc */
851 tcg_out_rlw(s, RLWIMI, tmp, src, 8, 16, 23);
852
853 if (flags & TCG_BSWAP_OS) {
854 tcg_out_ext16s(s, dst, tmp);
855 } else {
856 tcg_out_mov(s, TCG_TYPE_REG, dst, tmp);
857 }
858 }
859
860 static void tcg_out_bswap32(TCGContext *s, TCGReg dst, TCGReg src, int flags)
861 {
862 TCGReg tmp = dst == src ? TCG_REG_R0 : dst;
863
864 if (have_isa_3_10) {
865 tcg_out32(s, BRW | RA(dst) | RS(src));
866 if (flags & TCG_BSWAP_OS) {
867 tcg_out_ext32s(s, dst, dst);
868 } else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
869 tcg_out_ext32u(s, dst, dst);
870 }
871 return;
872 }
873
874 /*
875 * Stolen from gcc's builtin_bswap32.
876 * In the following,
877 * dep(a, b, m) -> (a & ~m) | (b & m)
878 *
879 * Begin with: src = xxxxabcd
880 */
881 /* tmp = rol32(src, 8) & 0xffffffff = 0000bcda */
882 tcg_out_rlw(s, RLWINM, tmp, src, 8, 0, 31);
883 /* tmp = dep(tmp, rol32(src, 24), 0xff000000) = 0000dcda */
884 tcg_out_rlw(s, RLWIMI, tmp, src, 24, 0, 7);
885 /* tmp = dep(tmp, rol32(src, 24), 0x0000ff00) = 0000dcba */
886 tcg_out_rlw(s, RLWIMI, tmp, src, 24, 16, 23);
887
888 if (flags & TCG_BSWAP_OS) {
889 tcg_out_ext32s(s, dst, tmp);
890 } else {
891 tcg_out_mov(s, TCG_TYPE_REG, dst, tmp);
892 }
893 }
894
895 static void tcg_out_bswap64(TCGContext *s, TCGReg dst, TCGReg src)
896 {
897 TCGReg t0 = dst == src ? TCG_REG_R0 : dst;
898 TCGReg t1 = dst == src ? dst : TCG_REG_R0;
899
900 if (have_isa_3_10) {
901 tcg_out32(s, BRD | RA(dst) | RS(src));
902 return;
903 }
904
905 /*
906 * In the following,
907 * dep(a, b, m) -> (a & ~m) | (b & m)
908 *
909 * Begin with: src = abcdefgh
910 */
911 /* t0 = rol32(src, 8) & 0xffffffff = 0000fghe */
912 tcg_out_rlw(s, RLWINM, t0, src, 8, 0, 31);
913 /* t0 = dep(t0, rol32(src, 24), 0xff000000) = 0000hghe */
914 tcg_out_rlw(s, RLWIMI, t0, src, 24, 0, 7);
915 /* t0 = dep(t0, rol32(src, 24), 0x0000ff00) = 0000hgfe */
916 tcg_out_rlw(s, RLWIMI, t0, src, 24, 16, 23);
917
918 /* t0 = rol64(t0, 32) = hgfe0000 */
919 tcg_out_rld(s, RLDICL, t0, t0, 32, 0);
920 /* t1 = rol64(src, 32) = efghabcd */
921 tcg_out_rld(s, RLDICL, t1, src, 32, 0);
922
923 /* t0 = dep(t0, rol32(t1, 24), 0xffffffff) = hgfebcda */
924 tcg_out_rlw(s, RLWIMI, t0, t1, 8, 0, 31);
925 /* t0 = dep(t0, rol32(t1, 24), 0xff000000) = hgfedcda */
926 tcg_out_rlw(s, RLWIMI, t0, t1, 24, 0, 7);
927 /* t0 = dep(t0, rol32(t1, 24), 0x0000ff00) = hgfedcba */
928 tcg_out_rlw(s, RLWIMI, t0, t1, 24, 16, 23);
929
930 tcg_out_mov(s, TCG_TYPE_REG, dst, t0);
931 }
932
933 /* Emit a move into ret of arg, if it can be done in one insn. */
934 static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
935 {
936 if (arg == (int16_t)arg) {
937 tcg_out32(s, ADDI | TAI(ret, 0, arg));
938 return true;
939 }
940 if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
941 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
942 return true;
943 }
944 return false;
945 }
946
947 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
948 tcg_target_long arg, bool in_prologue)
949 {
950 intptr_t tb_diff;
951 tcg_target_long tmp;
952 int shift;
953
954 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
955
956 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
957 arg = (int32_t)arg;
958 }
959
960 /* Load 16-bit immediates with one insn. */
961 if (tcg_out_movi_one(s, ret, arg)) {
962 return;
963 }
964
965 /* Load addresses within the TB with one insn. */
966 tb_diff = tcg_tbrel_diff(s, (void *)arg);
967 if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) {
968 tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff));
969 return;
970 }
971
972 /* Load 32-bit immediates with two insns. Note that we've already
973 eliminated bare ADDIS, so we know both insns are required. */
974 if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) {
975 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
976 tcg_out32(s, ORI | SAI(ret, ret, arg));
977 return;
978 }
979 if (arg == (uint32_t)arg && !(arg & 0x8000)) {
980 tcg_out32(s, ADDI | TAI(ret, 0, arg));
981 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
982 return;
983 }
984
985 /* Load masked 16-bit value. */
986 if (arg > 0 && (arg & 0x8000)) {
987 tmp = arg | 0x7fff;
988 if ((tmp & (tmp + 1)) == 0) {
989 int mb = clz64(tmp + 1) + 1;
990 tcg_out32(s, ADDI | TAI(ret, 0, arg));
991 tcg_out_rld(s, RLDICL, ret, ret, 0, mb);
992 return;
993 }
994 }
995
996 /* Load common masks with 2 insns. */
997 shift = ctz64(arg);
998 tmp = arg >> shift;
999 if (tmp == (int16_t)tmp) {
1000 tcg_out32(s, ADDI | TAI(ret, 0, tmp));
1001 tcg_out_shli64(s, ret, ret, shift);
1002 return;
1003 }
1004 shift = clz64(arg);
1005 if (tcg_out_movi_one(s, ret, arg << shift)) {
1006 tcg_out_shri64(s, ret, ret, shift);
1007 return;
1008 }
1009
1010 /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */
1011 if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) {
1012 tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff);
1013 return;
1014 }
1015
1016 /* Use the constant pool, if possible. */
1017 if (!in_prologue && USE_REG_TB) {
1018 new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr,
1019 tcg_tbrel_diff(s, NULL));
1020 tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0));
1021 return;
1022 }
1023
1024 tmp = arg >> 31 >> 1;
1025 tcg_out_movi(s, TCG_TYPE_I32, ret, tmp);
1026 if (tmp) {
1027 tcg_out_shli64(s, ret, ret, 32);
1028 }
1029 if (arg & 0xffff0000) {
1030 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
1031 }
1032 if (arg & 0xffff) {
1033 tcg_out32(s, ORI | SAI(ret, ret, arg));
1034 }
1035 }
1036
1037 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1038 TCGReg ret, int64_t val)
1039 {
1040 uint32_t load_insn;
1041 int rel, low;
1042 intptr_t add;
1043
1044 switch (vece) {
1045 case MO_8:
1046 low = (int8_t)val;
1047 if (low >= -16 && low < 16) {
1048 tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16));
1049 return;
1050 }
1051 if (have_isa_3_00) {
1052 tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11));
1053 return;
1054 }
1055 break;
1056
1057 case MO_16:
1058 low = (int16_t)val;
1059 if (low >= -16 && low < 16) {
1060 tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16));
1061 return;
1062 }
1063 break;
1064
1065 case MO_32:
1066 low = (int32_t)val;
1067 if (low >= -16 && low < 16) {
1068 tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16));
1069 return;
1070 }
1071 break;
1072 }
1073
1074 /*
1075 * Otherwise we must load the value from the constant pool.
1076 */
1077 if (USE_REG_TB) {
1078 rel = R_PPC_ADDR16;
1079 add = tcg_tbrel_diff(s, NULL);
1080 } else {
1081 rel = R_PPC_ADDR32;
1082 add = 0;
1083 }
1084
1085 if (have_vsx) {
1086 load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX;
1087 load_insn |= VRT(ret) | RB(TCG_REG_TMP1);
1088 if (TCG_TARGET_REG_BITS == 64) {
1089 new_pool_label(s, val, rel, s->code_ptr, add);
1090 } else {
1091 new_pool_l2(s, rel, s->code_ptr, add, val >> 32, val);
1092 }
1093 } else {
1094 load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1);
1095 if (TCG_TARGET_REG_BITS == 64) {
1096 new_pool_l2(s, rel, s->code_ptr, add, val, val);
1097 } else {
1098 new_pool_l4(s, rel, s->code_ptr, add,
1099 val >> 32, val, val >> 32, val);
1100 }
1101 }
1102
1103 if (USE_REG_TB) {
1104 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0));
1105 load_insn |= RA(TCG_REG_TB);
1106 } else {
1107 tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0));
1108 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0));
1109 }
1110 tcg_out32(s, load_insn);
1111 }
1112
1113 static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
1114 tcg_target_long arg)
1115 {
1116 switch (type) {
1117 case TCG_TYPE_I32:
1118 case TCG_TYPE_I64:
1119 tcg_debug_assert(ret < TCG_REG_V0);
1120 tcg_out_movi_int(s, type, ret, arg, false);
1121 break;
1122
1123 default:
1124 g_assert_not_reached();
1125 }
1126 }
1127
1128 static bool mask_operand(uint32_t c, int *mb, int *me)
1129 {
1130 uint32_t lsb, test;
1131
1132 /* Accept a bit pattern like:
1133 0....01....1
1134 1....10....0
1135 0..01..10..0
1136 Keep track of the transitions. */
1137 if (c == 0 || c == -1) {
1138 return false;
1139 }
1140 test = c;
1141 lsb = test & -test;
1142 test += lsb;
1143 if (test & (test - 1)) {
1144 return false;
1145 }
1146
1147 *me = clz32(lsb);
1148 *mb = test ? clz32(test & -test) + 1 : 0;
1149 return true;
1150 }
1151
1152 static bool mask64_operand(uint64_t c, int *mb, int *me)
1153 {
1154 uint64_t lsb;
1155
1156 if (c == 0) {
1157 return false;
1158 }
1159
1160 lsb = c & -c;
1161 /* Accept 1..10..0. */
1162 if (c == -lsb) {
1163 *mb = 0;
1164 *me = clz64(lsb);
1165 return true;
1166 }
1167 /* Accept 0..01..1. */
1168 if (lsb == 1 && (c & (c + 1)) == 0) {
1169 *mb = clz64(c + 1) + 1;
1170 *me = 63;
1171 return true;
1172 }
1173 return false;
1174 }
1175
1176 static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1177 {
1178 int mb, me;
1179
1180 if (mask_operand(c, &mb, &me)) {
1181 tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
1182 } else if ((c & 0xffff) == c) {
1183 tcg_out32(s, ANDI | SAI(src, dst, c));
1184 return;
1185 } else if ((c & 0xffff0000) == c) {
1186 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1187 return;
1188 } else {
1189 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c);
1190 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1191 }
1192 }
1193
1194 static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
1195 {
1196 int mb, me;
1197
1198 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1199 if (mask64_operand(c, &mb, &me)) {
1200 if (mb == 0) {
1201 tcg_out_rld(s, RLDICR, dst, src, 0, me);
1202 } else {
1203 tcg_out_rld(s, RLDICL, dst, src, 0, mb);
1204 }
1205 } else if ((c & 0xffff) == c) {
1206 tcg_out32(s, ANDI | SAI(src, dst, c));
1207 return;
1208 } else if ((c & 0xffff0000) == c) {
1209 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
1210 return;
1211 } else {
1212 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c);
1213 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
1214 }
1215 }
1216
1217 static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
1218 int op_lo, int op_hi)
1219 {
1220 if (c >> 16) {
1221 tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
1222 src = dst;
1223 }
1224 if (c & 0xffff) {
1225 tcg_out32(s, op_lo | SAI(src, dst, c));
1226 src = dst;
1227 }
1228 }
1229
1230 static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1231 {
1232 tcg_out_zori32(s, dst, src, c, ORI, ORIS);
1233 }
1234
1235 static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
1236 {
1237 tcg_out_zori32(s, dst, src, c, XORI, XORIS);
1238 }
1239
1240 static void tcg_out_b(TCGContext *s, int mask, const tcg_insn_unit *target)
1241 {
1242 ptrdiff_t disp = tcg_pcrel_diff(s, target);
1243 if (in_range_b(disp)) {
1244 tcg_out32(s, B | (disp & 0x3fffffc) | mask);
1245 } else {
1246 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target);
1247 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR);
1248 tcg_out32(s, BCCTR | BO_ALWAYS | mask);
1249 }
1250 }
1251
1252 static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
1253 TCGReg base, tcg_target_long offset)
1254 {
1255 tcg_target_long orig = offset, l0, l1, extra = 0, align = 0;
1256 bool is_int_store = false;
1257 TCGReg rs = TCG_REG_TMP1;
1258
1259 switch (opi) {
1260 case LD: case LWA:
1261 align = 3;
1262 /* FALLTHRU */
1263 default:
1264 if (rt > TCG_REG_R0 && rt < TCG_REG_V0) {
1265 rs = rt;
1266 break;
1267 }
1268 break;
1269 case LXSD:
1270 case STXSD:
1271 align = 3;
1272 break;
1273 case LXV:
1274 case STXV:
1275 align = 15;
1276 break;
1277 case STD:
1278 align = 3;
1279 /* FALLTHRU */
1280 case STB: case STH: case STW:
1281 is_int_store = true;
1282 break;
1283 }
1284
1285 /* For unaligned, or very large offsets, use the indexed form. */
1286 if (offset & align || offset != (int32_t)offset || opi == 0) {
1287 if (rs == base) {
1288 rs = TCG_REG_R0;
1289 }
1290 tcg_debug_assert(!is_int_store || rs != rt);
1291 tcg_out_movi(s, TCG_TYPE_PTR, rs, orig);
1292 tcg_out32(s, opx | TAB(rt & 31, base, rs));
1293 return;
1294 }
1295
1296 l0 = (int16_t)offset;
1297 offset = (offset - l0) >> 16;
1298 l1 = (int16_t)offset;
1299
1300 if (l1 < 0 && orig >= 0) {
1301 extra = 0x4000;
1302 l1 = (int16_t)(offset - 0x4000);
1303 }
1304 if (l1) {
1305 tcg_out32(s, ADDIS | TAI(rs, base, l1));
1306 base = rs;
1307 }
1308 if (extra) {
1309 tcg_out32(s, ADDIS | TAI(rs, base, extra));
1310 base = rs;
1311 }
1312 if (opi != ADDI || base != rt || l0 != 0) {
1313 tcg_out32(s, opi | TAI(rt & 31, base, l0));
1314 }
1315 }
1316
1317 static void tcg_out_vsldoi(TCGContext *s, TCGReg ret,
1318 TCGReg va, TCGReg vb, int shb)
1319 {
1320 tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6));
1321 }
1322
1323 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1324 TCGReg base, intptr_t offset)
1325 {
1326 int shift;
1327
1328 switch (type) {
1329 case TCG_TYPE_I32:
1330 if (ret < TCG_REG_V0) {
1331 tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset);
1332 break;
1333 }
1334 if (have_isa_2_07 && have_vsx) {
1335 tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset);
1336 break;
1337 }
1338 tcg_debug_assert((offset & 3) == 0);
1339 tcg_out_mem_long(s, 0, LVEWX, ret, base, offset);
1340 shift = (offset - 4) & 0xc;
1341 if (shift) {
1342 tcg_out_vsldoi(s, ret, ret, ret, shift);
1343 }
1344 break;
1345 case TCG_TYPE_I64:
1346 if (ret < TCG_REG_V0) {
1347 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1348 tcg_out_mem_long(s, LD, LDX, ret, base, offset);
1349 break;
1350 }
1351 /* fallthru */
1352 case TCG_TYPE_V64:
1353 tcg_debug_assert(ret >= TCG_REG_V0);
1354 if (have_vsx) {
1355 tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX,
1356 ret, base, offset);
1357 break;
1358 }
1359 tcg_debug_assert((offset & 7) == 0);
1360 tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16);
1361 if (offset & 8) {
1362 tcg_out_vsldoi(s, ret, ret, ret, 8);
1363 }
1364 break;
1365 case TCG_TYPE_V128:
1366 tcg_debug_assert(ret >= TCG_REG_V0);
1367 tcg_debug_assert((offset & 15) == 0);
1368 tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0,
1369 LVX, ret, base, offset);
1370 break;
1371 default:
1372 g_assert_not_reached();
1373 }
1374 }
1375
1376 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1377 TCGReg base, intptr_t offset)
1378 {
1379 int shift;
1380
1381 switch (type) {
1382 case TCG_TYPE_I32:
1383 if (arg < TCG_REG_V0) {
1384 tcg_out_mem_long(s, STW, STWX, arg, base, offset);
1385 break;
1386 }
1387 if (have_isa_2_07 && have_vsx) {
1388 tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset);
1389 break;
1390 }
1391 assert((offset & 3) == 0);
1392 tcg_debug_assert((offset & 3) == 0);
1393 shift = (offset - 4) & 0xc;
1394 if (shift) {
1395 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift);
1396 arg = TCG_VEC_TMP1;
1397 }
1398 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1399 break;
1400 case TCG_TYPE_I64:
1401 if (arg < TCG_REG_V0) {
1402 tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1403 tcg_out_mem_long(s, STD, STDX, arg, base, offset);
1404 break;
1405 }
1406 /* fallthru */
1407 case TCG_TYPE_V64:
1408 tcg_debug_assert(arg >= TCG_REG_V0);
1409 if (have_vsx) {
1410 tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0,
1411 STXSDX, arg, base, offset);
1412 break;
1413 }
1414 tcg_debug_assert((offset & 7) == 0);
1415 if (offset & 8) {
1416 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8);
1417 arg = TCG_VEC_TMP1;
1418 }
1419 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
1420 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4);
1421 break;
1422 case TCG_TYPE_V128:
1423 tcg_debug_assert(arg >= TCG_REG_V0);
1424 tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0,
1425 STVX, arg, base, offset);
1426 break;
1427 default:
1428 g_assert_not_reached();
1429 }
1430 }
1431
1432 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1433 TCGReg base, intptr_t ofs)
1434 {
1435 return false;
1436 }
1437
1438 static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
1439 int const_arg2, int cr, TCGType type)
1440 {
1441 int imm;
1442 uint32_t op;
1443
1444 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1445
1446 /* Simplify the comparisons below wrt CMPI. */
1447 if (type == TCG_TYPE_I32) {
1448 arg2 = (int32_t)arg2;
1449 }
1450
1451 switch (cond) {
1452 case TCG_COND_EQ:
1453 case TCG_COND_NE:
1454 if (const_arg2) {
1455 if ((int16_t) arg2 == arg2) {
1456 op = CMPI;
1457 imm = 1;
1458 break;
1459 } else if ((uint16_t) arg2 == arg2) {
1460 op = CMPLI;
1461 imm = 1;
1462 break;
1463 }
1464 }
1465 op = CMPL;
1466 imm = 0;
1467 break;
1468
1469 case TCG_COND_LT:
1470 case TCG_COND_GE:
1471 case TCG_COND_LE:
1472 case TCG_COND_GT:
1473 if (const_arg2) {
1474 if ((int16_t) arg2 == arg2) {
1475 op = CMPI;
1476 imm = 1;
1477 break;
1478 }
1479 }
1480 op = CMP;
1481 imm = 0;
1482 break;
1483
1484 case TCG_COND_LTU:
1485 case TCG_COND_GEU:
1486 case TCG_COND_LEU:
1487 case TCG_COND_GTU:
1488 if (const_arg2) {
1489 if ((uint16_t) arg2 == arg2) {
1490 op = CMPLI;
1491 imm = 1;
1492 break;
1493 }
1494 }
1495 op = CMPL;
1496 imm = 0;
1497 break;
1498
1499 default:
1500 tcg_abort();
1501 }
1502 op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
1503
1504 if (imm) {
1505 tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
1506 } else {
1507 if (const_arg2) {
1508 tcg_out_movi(s, type, TCG_REG_R0, arg2);
1509 arg2 = TCG_REG_R0;
1510 }
1511 tcg_out32(s, op | RA(arg1) | RB(arg2));
1512 }
1513 }
1514
1515 static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
1516 TCGReg dst, TCGReg src)
1517 {
1518 if (type == TCG_TYPE_I32) {
1519 tcg_out32(s, CNTLZW | RS(src) | RA(dst));
1520 tcg_out_shri32(s, dst, dst, 5);
1521 } else {
1522 tcg_out32(s, CNTLZD | RS(src) | RA(dst));
1523 tcg_out_shri64(s, dst, dst, 6);
1524 }
1525 }
1526
1527 static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
1528 {
1529 /* X != 0 implies X + -1 generates a carry. Extra addition
1530 trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
1531 if (dst != src) {
1532 tcg_out32(s, ADDIC | TAI(dst, src, -1));
1533 tcg_out32(s, SUBFE | TAB(dst, dst, src));
1534 } else {
1535 tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1));
1536 tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src));
1537 }
1538 }
1539
1540 static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
1541 bool const_arg2)
1542 {
1543 if (const_arg2) {
1544 if ((uint32_t)arg2 == arg2) {
1545 tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
1546 } else {
1547 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
1548 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
1549 }
1550 } else {
1551 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
1552 }
1553 return TCG_REG_R0;
1554 }
1555
1556 static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
1557 TCGArg arg0, TCGArg arg1, TCGArg arg2,
1558 int const_arg2)
1559 {
1560 int crop, sh;
1561
1562 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
1563
1564 /* Ignore high bits of a potential constant arg2. */
1565 if (type == TCG_TYPE_I32) {
1566 arg2 = (uint32_t)arg2;
1567 }
1568
1569 /* Handle common and trivial cases before handling anything else. */
1570 if (arg2 == 0) {
1571 switch (cond) {
1572 case TCG_COND_EQ:
1573 tcg_out_setcond_eq0(s, type, arg0, arg1);
1574 return;
1575 case TCG_COND_NE:
1576 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1577 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1578 arg1 = TCG_REG_R0;
1579 }
1580 tcg_out_setcond_ne0(s, arg0, arg1);
1581 return;
1582 case TCG_COND_GE:
1583 tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
1584 arg1 = arg0;
1585 /* FALLTHRU */
1586 case TCG_COND_LT:
1587 /* Extract the sign bit. */
1588 if (type == TCG_TYPE_I32) {
1589 tcg_out_shri32(s, arg0, arg1, 31);
1590 } else {
1591 tcg_out_shri64(s, arg0, arg1, 63);
1592 }
1593 return;
1594 default:
1595 break;
1596 }
1597 }
1598
1599 /* If we have ISEL, we can implement everything with 3 or 4 insns.
1600 All other cases below are also at least 3 insns, so speed up the
1601 code generator by not considering them and always using ISEL. */
1602 if (have_isel) {
1603 int isel, tab;
1604
1605 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1606
1607 isel = tcg_to_isel[cond];
1608
1609 tcg_out_movi(s, type, arg0, 1);
1610 if (isel & 1) {
1611 /* arg0 = (bc ? 0 : 1) */
1612 tab = TAB(arg0, 0, arg0);
1613 isel &= ~1;
1614 } else {
1615 /* arg0 = (bc ? 1 : 0) */
1616 tcg_out_movi(s, type, TCG_REG_R0, 0);
1617 tab = TAB(arg0, arg0, TCG_REG_R0);
1618 }
1619 tcg_out32(s, isel | tab);
1620 return;
1621 }
1622
1623 switch (cond) {
1624 case TCG_COND_EQ:
1625 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1626 tcg_out_setcond_eq0(s, type, arg0, arg1);
1627 return;
1628
1629 case TCG_COND_NE:
1630 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
1631 /* Discard the high bits only once, rather than both inputs. */
1632 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
1633 tcg_out_ext32u(s, TCG_REG_R0, arg1);
1634 arg1 = TCG_REG_R0;
1635 }
1636 tcg_out_setcond_ne0(s, arg0, arg1);
1637 return;
1638
1639 case TCG_COND_GT:
1640 case TCG_COND_GTU:
1641 sh = 30;
1642 crop = 0;
1643 goto crtest;
1644
1645 case TCG_COND_LT:
1646 case TCG_COND_LTU:
1647 sh = 29;
1648 crop = 0;
1649 goto crtest;
1650
1651 case TCG_COND_GE:
1652 case TCG_COND_GEU:
1653 sh = 31;
1654 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT);
1655 goto crtest;
1656
1657 case TCG_COND_LE:
1658 case TCG_COND_LEU:
1659 sh = 31;
1660 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT);
1661 crtest:
1662 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1663 if (crop) {
1664 tcg_out32(s, crop);
1665 }
1666 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1667 tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
1668 break;
1669
1670 default:
1671 tcg_abort();
1672 }
1673 }
1674
1675 static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l)
1676 {
1677 if (l->has_value) {
1678 bc |= reloc_pc14_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr);
1679 } else {
1680 tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0);
1681 }
1682 tcg_out32(s, bc);
1683 }
1684
1685 static void tcg_out_brcond(TCGContext *s, TCGCond cond,
1686 TCGArg arg1, TCGArg arg2, int const_arg2,
1687 TCGLabel *l, TCGType type)
1688 {
1689 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
1690 tcg_out_bc(s, tcg_to_bc[cond], l);
1691 }
1692
1693 static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
1694 TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
1695 TCGArg v2, bool const_c2)
1696 {
1697 /* If for some reason both inputs are zero, don't produce bad code. */
1698 if (v1 == 0 && v2 == 0) {
1699 tcg_out_movi(s, type, dest, 0);
1700 return;
1701 }
1702
1703 tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
1704
1705 if (have_isel) {
1706 int isel = tcg_to_isel[cond];
1707
1708 /* Swap the V operands if the operation indicates inversion. */
1709 if (isel & 1) {
1710 int t = v1;
1711 v1 = v2;
1712 v2 = t;
1713 isel &= ~1;
1714 }
1715 /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
1716 if (v2 == 0) {
1717 tcg_out_movi(s, type, TCG_REG_R0, 0);
1718 }
1719 tcg_out32(s, isel | TAB(dest, v1, v2));
1720 } else {
1721 if (dest == v2) {
1722 cond = tcg_invert_cond(cond);
1723 v2 = v1;
1724 } else if (dest != v1) {
1725 if (v1 == 0) {
1726 tcg_out_movi(s, type, dest, 0);
1727 } else {
1728 tcg_out_mov(s, type, dest, v1);
1729 }
1730 }
1731 /* Branch forward over one insn */
1732 tcg_out32(s, tcg_to_bc[cond] | 8);
1733 if (v2 == 0) {
1734 tcg_out_movi(s, type, dest, 0);
1735 } else {
1736 tcg_out_mov(s, type, dest, v2);
1737 }
1738 }
1739 }
1740
1741 static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc,
1742 TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2)
1743 {
1744 if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) {
1745 tcg_out32(s, opc | RA(a0) | RS(a1));
1746 } else {
1747 tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type);
1748 /* Note that the only other valid constant for a2 is 0. */
1749 if (have_isel) {
1750 tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1));
1751 tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0));
1752 } else if (!const_a2 && a0 == a2) {
1753 tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8);
1754 tcg_out32(s, opc | RA(a0) | RS(a1));
1755 } else {
1756 tcg_out32(s, opc | RA(a0) | RS(a1));
1757 tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8);
1758 if (const_a2) {
1759 tcg_out_movi(s, type, a0, 0);
1760 } else {
1761 tcg_out_mov(s, type, a0, a2);
1762 }
1763 }
1764 }
1765 }
1766
1767 static void tcg_out_cmp2(TCGContext *s, const TCGArg *args,
1768 const int *const_args)
1769 {
1770 static const struct { uint8_t bit1, bit2; } bits[] = {
1771 [TCG_COND_LT ] = { CR_LT, CR_LT },
1772 [TCG_COND_LE ] = { CR_LT, CR_GT },
1773 [TCG_COND_GT ] = { CR_GT, CR_GT },
1774 [TCG_COND_GE ] = { CR_GT, CR_LT },
1775 [TCG_COND_LTU] = { CR_LT, CR_LT },
1776 [TCG_COND_LEU] = { CR_LT, CR_GT },
1777 [TCG_COND_GTU] = { CR_GT, CR_GT },
1778 [TCG_COND_GEU] = { CR_GT, CR_LT },
1779 };
1780
1781 TCGCond cond = args[4], cond2;
1782 TCGArg al, ah, bl, bh;
1783 int blconst, bhconst;
1784 int op, bit1, bit2;
1785
1786 al = args[0];
1787 ah = args[1];
1788 bl = args[2];
1789 bh = args[3];
1790 blconst = const_args[2];
1791 bhconst = const_args[3];
1792
1793 switch (cond) {
1794 case TCG_COND_EQ:
1795 op = CRAND;
1796 goto do_equality;
1797 case TCG_COND_NE:
1798 op = CRNAND;
1799 do_equality:
1800 tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32);
1801 tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32);
1802 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
1803 break;
1804
1805 case TCG_COND_LT:
1806 case TCG_COND_LE:
1807 case TCG_COND_GT:
1808 case TCG_COND_GE:
1809 case TCG_COND_LTU:
1810 case TCG_COND_LEU:
1811 case TCG_COND_GTU:
1812 case TCG_COND_GEU:
1813 bit1 = bits[cond].bit1;
1814 bit2 = bits[cond].bit2;
1815 op = (bit1 != bit2 ? CRANDC : CRAND);
1816 cond2 = tcg_unsigned_cond(cond);
1817
1818 tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32);
1819 tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32);
1820 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2));
1821 tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ));
1822 break;
1823
1824 default:
1825 tcg_abort();
1826 }
1827 }
1828
1829 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1830 const int *const_args)
1831 {
1832 tcg_out_cmp2(s, args + 1, const_args + 1);
1833 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
1834 tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31);
1835 }
1836
1837 static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
1838 const int *const_args)
1839 {
1840 tcg_out_cmp2(s, args, const_args);
1841 tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5]));
1842 }
1843
1844 static void tcg_out_mb(TCGContext *s, TCGArg a0)
1845 {
1846 uint32_t insn;
1847
1848 if (a0 & TCG_MO_ST_LD) {
1849 insn = HWSYNC;
1850 } else {
1851 insn = LWSYNC;
1852 }
1853
1854 tcg_out32(s, insn);
1855 }
1856
1857 static inline uint64_t make_pair(tcg_insn_unit i1, tcg_insn_unit i2)
1858 {
1859 if (HOST_BIG_ENDIAN) {
1860 return (uint64_t)i1 << 32 | i2;
1861 }
1862 return (uint64_t)i2 << 32 | i1;
1863 }
1864
1865 static inline void ppc64_replace2(uintptr_t rx, uintptr_t rw,
1866 tcg_insn_unit i0, tcg_insn_unit i1)
1867 {
1868 #if TCG_TARGET_REG_BITS == 64
1869 qatomic_set((uint64_t *)rw, make_pair(i0, i1));
1870 flush_idcache_range(rx, rw, 8);
1871 #else
1872 qemu_build_not_reached();
1873 #endif
1874 }
1875
1876 static inline void ppc64_replace4(uintptr_t rx, uintptr_t rw,
1877 tcg_insn_unit i0, tcg_insn_unit i1,
1878 tcg_insn_unit i2, tcg_insn_unit i3)
1879 {
1880 uint64_t p[2];
1881
1882 p[!HOST_BIG_ENDIAN] = make_pair(i0, i1);
1883 p[HOST_BIG_ENDIAN] = make_pair(i2, i3);
1884
1885 /*
1886 * There's no convenient way to get the compiler to allocate a pair
1887 * of registers at an even index, so copy into r6/r7 and clobber.
1888 */
1889 asm("mr %%r6, %1\n\t"
1890 "mr %%r7, %2\n\t"
1891 "stq %%r6, %0"
1892 : "=Q"(*(__int128 *)rw) : "r"(p[0]), "r"(p[1]) : "r6", "r7");
1893 flush_idcache_range(rx, rw, 16);
1894 }
1895
1896 void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
1897 uintptr_t jmp_rw, uintptr_t addr)
1898 {
1899 tcg_insn_unit i0, i1, i2, i3;
1900 intptr_t tb_diff = addr - tc_ptr;
1901 intptr_t br_diff = addr - (jmp_rx + 4);
1902 intptr_t lo, hi;
1903
1904 if (TCG_TARGET_REG_BITS == 32) {
1905 intptr_t diff = addr - jmp_rx;
1906 tcg_debug_assert(in_range_b(diff));
1907 qatomic_set((uint32_t *)jmp_rw, B | (diff & 0x3fffffc));
1908 flush_idcache_range(jmp_rx, jmp_rw, 4);
1909 return;
1910 }
1911
1912 /*
1913 * For 16-bit displacements, we can use a single add + branch.
1914 * This happens quite often.
1915 */
1916 if (tb_diff == (int16_t)tb_diff) {
1917 i0 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, tb_diff);
1918 i1 = B | (br_diff & 0x3fffffc);
1919 ppc64_replace2(jmp_rx, jmp_rw, i0, i1);
1920 return;
1921 }
1922
1923 lo = (int16_t)tb_diff;
1924 hi = (int32_t)(tb_diff - lo);
1925 assert(tb_diff == hi + lo);
1926 i0 = ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, hi >> 16);
1927 i1 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, lo);
1928
1929 /*
1930 * Without stq from 2.07, we can only update two insns,
1931 * and those must be the ones that load the target address.
1932 */
1933 if (!have_isa_2_07) {
1934 ppc64_replace2(jmp_rx, jmp_rw, i0, i1);
1935 return;
1936 }
1937
1938 /*
1939 * For 26-bit displacements, we can use a direct branch.
1940 * Otherwise we still need the indirect branch, which we
1941 * must restore after a potential direct branch write.
1942 */
1943 br_diff -= 4;
1944 if (in_range_b(br_diff)) {
1945 i2 = B | (br_diff & 0x3fffffc);
1946 i3 = NOP;
1947 } else {
1948 i2 = MTSPR | RS(TCG_REG_TB) | CTR;
1949 i3 = BCCTR | BO_ALWAYS;
1950 }
1951 ppc64_replace4(jmp_rx, jmp_rw, i0, i1, i2, i3);
1952 }
1953
1954 static void tcg_out_call_int(TCGContext *s, int lk,
1955 const tcg_insn_unit *target)
1956 {
1957 #ifdef _CALL_AIX
1958 /* Look through the descriptor. If the branch is in range, and we
1959 don't have to spend too much effort on building the toc. */
1960 const void *tgt = ((const void * const *)target)[0];
1961 uintptr_t toc = ((const uintptr_t *)target)[1];
1962 intptr_t diff = tcg_pcrel_diff(s, tgt);
1963
1964 if (in_range_b(diff) && toc == (uint32_t)toc) {
1965 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc);
1966 tcg_out_b(s, lk, tgt);
1967 } else {
1968 /* Fold the low bits of the constant into the addresses below. */
1969 intptr_t arg = (intptr_t)target;
1970 int ofs = (int16_t)arg;
1971
1972 if (ofs + 8 < 0x8000) {
1973 arg -= ofs;
1974 } else {
1975 ofs = 0;
1976 }
1977 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg);
1978 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs);
1979 tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR);
1980 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP);
1981 tcg_out32(s, BCCTR | BO_ALWAYS | lk);
1982 }
1983 #elif defined(_CALL_ELF) && _CALL_ELF == 2
1984 intptr_t diff;
1985
1986 /* In the ELFv2 ABI, we have to set up r12 to contain the destination
1987 address, which the callee uses to compute its TOC address. */
1988 /* FIXME: when the branch is in range, we could avoid r12 load if we
1989 knew that the destination uses the same TOC, and what its local
1990 entry point offset is. */
1991 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target);
1992
1993 diff = tcg_pcrel_diff(s, target);
1994 if (in_range_b(diff)) {
1995 tcg_out_b(s, lk, target);
1996 } else {
1997 tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR);
1998 tcg_out32(s, BCCTR | BO_ALWAYS | lk);
1999 }
2000 #else
2001 tcg_out_b(s, lk, target);
2002 #endif
2003 }
2004
2005 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target,
2006 const TCGHelperInfo *info)
2007 {
2008 tcg_out_call_int(s, LK, target);
2009 }
2010
2011 static const uint32_t qemu_ldx_opc[(MO_SSIZE + MO_BSWAP) + 1] = {
2012 [MO_UB] = LBZX,
2013 [MO_UW] = LHZX,
2014 [MO_UL] = LWZX,
2015 [MO_UQ] = LDX,
2016 [MO_SW] = LHAX,
2017 [MO_SL] = LWAX,
2018 [MO_BSWAP | MO_UB] = LBZX,
2019 [MO_BSWAP | MO_UW] = LHBRX,
2020 [MO_BSWAP | MO_UL] = LWBRX,
2021 [MO_BSWAP | MO_UQ] = LDBRX,
2022 };
2023
2024 static const uint32_t qemu_stx_opc[(MO_SIZE + MO_BSWAP) + 1] = {
2025 [MO_UB] = STBX,
2026 [MO_UW] = STHX,
2027 [MO_UL] = STWX,
2028 [MO_UQ] = STDX,
2029 [MO_BSWAP | MO_UB] = STBX,
2030 [MO_BSWAP | MO_UW] = STHBRX,
2031 [MO_BSWAP | MO_UL] = STWBRX,
2032 [MO_BSWAP | MO_UQ] = STDBRX,
2033 };
2034
2035 static const uint32_t qemu_exts_opc[4] = {
2036 EXTSB, EXTSH, EXTSW, 0
2037 };
2038
2039 #if defined (CONFIG_SOFTMMU)
2040 /* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr,
2041 * int mmu_idx, uintptr_t ra)
2042 */
2043 static void * const qemu_ld_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
2044 [MO_UB] = helper_ret_ldub_mmu,
2045 [MO_LEUW] = helper_le_lduw_mmu,
2046 [MO_LEUL] = helper_le_ldul_mmu,
2047 [MO_LEUQ] = helper_le_ldq_mmu,
2048 [MO_BEUW] = helper_be_lduw_mmu,
2049 [MO_BEUL] = helper_be_ldul_mmu,
2050 [MO_BEUQ] = helper_be_ldq_mmu,
2051 };
2052
2053 /* helper signature: helper_st_mmu(CPUState *env, target_ulong addr,
2054 * uintxx_t val, int mmu_idx, uintptr_t ra)
2055 */
2056 static void * const qemu_st_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
2057 [MO_UB] = helper_ret_stb_mmu,
2058 [MO_LEUW] = helper_le_stw_mmu,
2059 [MO_LEUL] = helper_le_stl_mmu,
2060 [MO_LEUQ] = helper_le_stq_mmu,
2061 [MO_BEUW] = helper_be_stw_mmu,
2062 [MO_BEUL] = helper_be_stl_mmu,
2063 [MO_BEUQ] = helper_be_stq_mmu,
2064 };
2065
2066 /* We expect to use a 16-bit negative offset from ENV. */
2067 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
2068 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -32768);
2069
2070 /* Perform the TLB load and compare. Places the result of the comparison
2071 in CR7, loads the addend of the TLB into R3, and returns the register
2072 containing the guest address (zero-extended into R4). Clobbers R0 and R2. */
2073
2074 static TCGReg tcg_out_tlb_read(TCGContext *s, MemOp opc,
2075 TCGReg addrlo, TCGReg addrhi,
2076 int mem_index, bool is_read)
2077 {
2078 int cmp_off
2079 = (is_read
2080 ? offsetof(CPUTLBEntry, addr_read)
2081 : offsetof(CPUTLBEntry, addr_write));
2082 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
2083 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
2084 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
2085 unsigned s_bits = opc & MO_SIZE;
2086 unsigned a_bits = get_alignment_bits(opc);
2087
2088 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
2089 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_AREG0, mask_off);
2090 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R4, TCG_AREG0, table_off);
2091
2092 /* Extract the page index, shifted into place for tlb index. */
2093 if (TCG_TARGET_REG_BITS == 32) {
2094 tcg_out_shri32(s, TCG_REG_TMP1, addrlo,
2095 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
2096 } else {
2097 tcg_out_shri64(s, TCG_REG_TMP1, addrlo,
2098 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
2099 }
2100 tcg_out32(s, AND | SAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_TMP1));
2101
2102 /* Load the TLB comparator. */
2103 if (cmp_off == 0 && TCG_TARGET_REG_BITS >= TARGET_LONG_BITS) {
2104 uint32_t lxu = (TCG_TARGET_REG_BITS == 32 || TARGET_LONG_BITS == 32
2105 ? LWZUX : LDUX);
2106 tcg_out32(s, lxu | TAB(TCG_REG_TMP1, TCG_REG_R3, TCG_REG_R4));
2107 } else {
2108 tcg_out32(s, ADD | TAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_R4));
2109 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2110 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP1, TCG_REG_R3, cmp_off + 4);
2111 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_R4, TCG_REG_R3, cmp_off);
2112 } else {
2113 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_TMP1, TCG_REG_R3, cmp_off);
2114 }
2115 }
2116
2117 /* Load the TLB addend for use on the fast path. Do this asap
2118 to minimize any load use delay. */
2119 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_REG_R3,
2120 offsetof(CPUTLBEntry, addend));
2121
2122 /* Clear the non-page, non-alignment bits from the address */
2123 if (TCG_TARGET_REG_BITS == 32) {
2124 /* We don't support unaligned accesses on 32-bits.
2125 * Preserve the bottom bits and thus trigger a comparison
2126 * failure on unaligned accesses.
2127 */
2128 if (a_bits < s_bits) {
2129 a_bits = s_bits;
2130 }
2131 tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0,
2132 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
2133 } else {
2134 TCGReg t = addrlo;
2135
2136 /* If the access is unaligned, we need to make sure we fail if we
2137 * cross a page boundary. The trick is to add the access size-1
2138 * to the address before masking the low bits. That will make the
2139 * address overflow to the next page if we cross a page boundary,
2140 * which will then force a mismatch of the TLB compare.
2141 */
2142 if (a_bits < s_bits) {
2143 unsigned a_mask = (1 << a_bits) - 1;
2144 unsigned s_mask = (1 << s_bits) - 1;
2145 tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask));
2146 t = TCG_REG_R0;
2147 }
2148
2149 /* Mask the address for the requested alignment. */
2150 if (TARGET_LONG_BITS == 32) {
2151 tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0,
2152 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS);
2153 /* Zero-extend the address for use in the final address. */
2154 tcg_out_ext32u(s, TCG_REG_R4, addrlo);
2155 addrlo = TCG_REG_R4;
2156 } else if (a_bits == 0) {
2157 tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - TARGET_PAGE_BITS);
2158 } else {
2159 tcg_out_rld(s, RLDICL, TCG_REG_R0, t,
2160 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - a_bits);
2161 tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, TARGET_PAGE_BITS, 0);
2162 }
2163 }
2164
2165 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2166 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
2167 0, 7, TCG_TYPE_I32);
2168 tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_R4, 0, 6, TCG_TYPE_I32);
2169 tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
2170 } else {
2171 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1,
2172 0, 7, TCG_TYPE_TL);
2173 }
2174
2175 return addrlo;
2176 }
2177
2178 /* Record the context of a call to the out of line helper code for the slow
2179 path for a load or store, so that we can later generate the correct
2180 helper code. */
2181 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, MemOpIdx oi,
2182 TCGReg datalo_reg, TCGReg datahi_reg,
2183 TCGReg addrlo_reg, TCGReg addrhi_reg,
2184 tcg_insn_unit *raddr, tcg_insn_unit *lptr)
2185 {
2186 TCGLabelQemuLdst *label = new_ldst_label(s);
2187
2188 label->is_ld = is_ld;
2189 label->oi = oi;
2190 label->datalo_reg = datalo_reg;
2191 label->datahi_reg = datahi_reg;
2192 label->addrlo_reg = addrlo_reg;
2193 label->addrhi_reg = addrhi_reg;
2194 label->raddr = tcg_splitwx_to_rx(raddr);
2195 label->label_ptr[0] = lptr;
2196 }
2197
2198 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2199 {
2200 MemOpIdx oi = lb->oi;
2201 MemOp opc = get_memop(oi);
2202 TCGReg hi, lo, arg = TCG_REG_R3;
2203
2204 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2205 return false;
2206 }
2207
2208 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2209
2210 lo = lb->addrlo_reg;
2211 hi = lb->addrhi_reg;
2212 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2213 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2214 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2215 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2216 } else {
2217 /* If the address needed to be zero-extended, we'll have already
2218 placed it in R4. The only remaining case is 64-bit guest. */
2219 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2220 }
2221
2222 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2223 tcg_out32(s, MFSPR | RT(arg) | LR);
2224
2225 tcg_out_call_int(s, LK, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2226
2227 lo = lb->datalo_reg;
2228 hi = lb->datahi_reg;
2229 if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
2230 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_REG_R4);
2231 tcg_out_mov(s, TCG_TYPE_I32, hi, TCG_REG_R3);
2232 } else if (opc & MO_SIGN) {
2233 uint32_t insn = qemu_exts_opc[opc & MO_SIZE];
2234 tcg_out32(s, insn | RA(lo) | RS(TCG_REG_R3));
2235 } else {
2236 tcg_out_mov(s, TCG_TYPE_REG, lo, TCG_REG_R3);
2237 }
2238
2239 tcg_out_b(s, 0, lb->raddr);
2240 return true;
2241 }
2242
2243 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
2244 {
2245 MemOpIdx oi = lb->oi;
2246 MemOp opc = get_memop(oi);
2247 MemOp s_bits = opc & MO_SIZE;
2248 TCGReg hi, lo, arg = TCG_REG_R3;
2249
2250 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2251 return false;
2252 }
2253
2254 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0);
2255
2256 lo = lb->addrlo_reg;
2257 hi = lb->addrhi_reg;
2258 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2259 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2260 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2261 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2262 } else {
2263 /* If the address needed to be zero-extended, we'll have already
2264 placed it in R4. The only remaining case is 64-bit guest. */
2265 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo);
2266 }
2267
2268 lo = lb->datalo_reg;
2269 hi = lb->datahi_reg;
2270 if (TCG_TARGET_REG_BITS == 32) {
2271 switch (s_bits) {
2272 case MO_64:
2273 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2274 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi);
2275 /* FALLTHRU */
2276 case MO_32:
2277 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo);
2278 break;
2279 default:
2280 tcg_out_rlw(s, RLWINM, arg++, lo, 0, 32 - (8 << s_bits), 31);
2281 break;
2282 }
2283 } else {
2284 if (s_bits == MO_64) {
2285 tcg_out_mov(s, TCG_TYPE_I64, arg++, lo);
2286 } else {
2287 tcg_out_rld(s, RLDICL, arg++, lo, 0, 64 - (8 << s_bits));
2288 }
2289 }
2290
2291 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi);
2292 tcg_out32(s, MFSPR | RT(arg) | LR);
2293
2294 tcg_out_call_int(s, LK, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2295
2296 tcg_out_b(s, 0, lb->raddr);
2297 return true;
2298 }
2299 #else
2300
2301 static void tcg_out_test_alignment(TCGContext *s, bool is_ld, TCGReg addrlo,
2302 TCGReg addrhi, unsigned a_bits)
2303 {
2304 unsigned a_mask = (1 << a_bits) - 1;
2305 TCGLabelQemuLdst *label = new_ldst_label(s);
2306
2307 label->is_ld = is_ld;
2308 label->addrlo_reg = addrlo;
2309 label->addrhi_reg = addrhi;
2310
2311 /* We are expecting a_bits to max out at 7, much lower than ANDI. */
2312 tcg_debug_assert(a_bits < 16);
2313 tcg_out32(s, ANDI | SAI(addrlo, TCG_REG_R0, a_mask));
2314
2315 label->label_ptr[0] = s->code_ptr;
2316 tcg_out32(s, BC | BI(0, CR_EQ) | BO_COND_FALSE | LK);
2317
2318 label->raddr = tcg_splitwx_to_rx(s->code_ptr);
2319 }
2320
2321 static bool tcg_out_fail_alignment(TCGContext *s, TCGLabelQemuLdst *l)
2322 {
2323 if (!reloc_pc14(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
2324 return false;
2325 }
2326
2327 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) {
2328 TCGReg arg = TCG_REG_R4;
2329
2330 arg |= (TCG_TARGET_CALL_ARG_I64 == TCG_CALL_ARG_EVEN);
2331 if (l->addrlo_reg != arg) {
2332 tcg_out_mov(s, TCG_TYPE_I32, arg, l->addrhi_reg);
2333 tcg_out_mov(s, TCG_TYPE_I32, arg + 1, l->addrlo_reg);
2334 } else if (l->addrhi_reg != arg + 1) {
2335 tcg_out_mov(s, TCG_TYPE_I32, arg + 1, l->addrlo_reg);
2336 tcg_out_mov(s, TCG_TYPE_I32, arg, l->addrhi_reg);
2337 } else {
2338 tcg_out_mov(s, TCG_TYPE_I32, TCG_REG_R0, arg);
2339 tcg_out_mov(s, TCG_TYPE_I32, arg, arg + 1);
2340 tcg_out_mov(s, TCG_TYPE_I32, arg + 1, TCG_REG_R0);
2341 }
2342 } else {
2343 tcg_out_mov(s, TCG_TYPE_TL, TCG_REG_R4, l->addrlo_reg);
2344 }
2345 tcg_out_mov(s, TCG_TYPE_TL, TCG_REG_R3, TCG_AREG0);
2346
2347 /* "Tail call" to the helper, with the return address back inline. */
2348 tcg_out_call_int(s, 0, (const void *)(l->is_ld ? helper_unaligned_ld
2349 : helper_unaligned_st));
2350 return true;
2351 }
2352
2353 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2354 {
2355 return tcg_out_fail_alignment(s, l);
2356 }
2357
2358 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2359 {
2360 return tcg_out_fail_alignment(s, l);
2361 }
2362
2363 #endif /* SOFTMMU */
2364
2365 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64)
2366 {
2367 TCGReg datalo, datahi, addrlo, rbase;
2368 TCGReg addrhi __attribute__((unused));
2369 MemOpIdx oi;
2370 MemOp opc, s_bits;
2371 #ifdef CONFIG_SOFTMMU
2372 int mem_index;
2373 tcg_insn_unit *label_ptr;
2374 #else
2375 unsigned a_bits;
2376 #endif
2377
2378 datalo = *args++;
2379 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2380 addrlo = *args++;
2381 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2382 oi = *args++;
2383 opc = get_memop(oi);
2384 s_bits = opc & MO_SIZE;
2385
2386 #ifdef CONFIG_SOFTMMU
2387 mem_index = get_mmuidx(oi);
2388 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, true);
2389
2390 /* Load a pointer into the current opcode w/conditional branch-link. */
2391 label_ptr = s->code_ptr;
2392 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2393
2394 rbase = TCG_REG_R3;
2395 #else /* !CONFIG_SOFTMMU */
2396 a_bits = get_alignment_bits(opc);
2397 if (a_bits) {
2398 tcg_out_test_alignment(s, true, addrlo, addrhi, a_bits);
2399 }
2400 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2401 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2402 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2403 addrlo = TCG_REG_TMP1;
2404 }
2405 #endif
2406
2407 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2408 if (opc & MO_BSWAP) {
2409 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2410 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2411 tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0));
2412 } else if (rbase != 0) {
2413 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2414 tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo));
2415 tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0));
2416 } else if (addrlo == datahi) {
2417 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2418 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2419 } else {
2420 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0));
2421 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4));
2422 }
2423 } else {
2424 uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)];
2425 if (!have_isa_2_06 && insn == LDBRX) {
2426 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2427 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo));
2428 tcg_out32(s, LWBRX | TAB(TCG_REG_R0, rbase, TCG_REG_R0));
2429 tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0);
2430 } else if (insn) {
2431 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2432 } else {
2433 insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)];
2434 tcg_out32(s, insn | TAB(datalo, rbase, addrlo));
2435 insn = qemu_exts_opc[s_bits];
2436 tcg_out32(s, insn | RA(datalo) | RS(datalo));
2437 }
2438 }
2439
2440 #ifdef CONFIG_SOFTMMU
2441 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
2442 s->code_ptr, label_ptr);
2443 #endif
2444 }
2445
2446 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64)
2447 {
2448 TCGReg datalo, datahi, addrlo, rbase;
2449 TCGReg addrhi __attribute__((unused));
2450 MemOpIdx oi;
2451 MemOp opc, s_bits;
2452 #ifdef CONFIG_SOFTMMU
2453 int mem_index;
2454 tcg_insn_unit *label_ptr;
2455 #else
2456 unsigned a_bits;
2457 #endif
2458
2459 datalo = *args++;
2460 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0);
2461 addrlo = *args++;
2462 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0);
2463 oi = *args++;
2464 opc = get_memop(oi);
2465 s_bits = opc & MO_SIZE;
2466
2467 #ifdef CONFIG_SOFTMMU
2468 mem_index = get_mmuidx(oi);
2469 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, false);
2470
2471 /* Load a pointer into the current opcode w/conditional branch-link. */
2472 label_ptr = s->code_ptr;
2473 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
2474
2475 rbase = TCG_REG_R3;
2476 #else /* !CONFIG_SOFTMMU */
2477 a_bits = get_alignment_bits(opc);
2478 if (a_bits) {
2479 tcg_out_test_alignment(s, false, addrlo, addrhi, a_bits);
2480 }
2481 rbase = guest_base ? TCG_GUEST_BASE_REG : 0;
2482 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
2483 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo);
2484 addrlo = TCG_REG_TMP1;
2485 }
2486 #endif
2487
2488 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) {
2489 if (opc & MO_BSWAP) {
2490 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2491 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2492 tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0));
2493 } else if (rbase != 0) {
2494 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4));
2495 tcg_out32(s, STWX | SAB(datahi, rbase, addrlo));
2496 tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0));
2497 } else {
2498 tcg_out32(s, STW | TAI(datahi, addrlo, 0));
2499 tcg_out32(s, STW | TAI(datalo, addrlo, 4));
2500 }
2501 } else {
2502 uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)];
2503 if (!have_isa_2_06 && insn == STDBRX) {
2504 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo));
2505 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, addrlo, 4));
2506 tcg_out_shri64(s, TCG_REG_R0, datalo, 32);
2507 tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, TCG_REG_TMP1));
2508 } else {
2509 tcg_out32(s, insn | SAB(datalo, rbase, addrlo));
2510 }
2511 }
2512
2513 #ifdef CONFIG_SOFTMMU
2514 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi,
2515 s->code_ptr, label_ptr);
2516 #endif
2517 }
2518
2519 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
2520 {
2521 int i;
2522 for (i = 0; i < count; ++i) {
2523 p[i] = NOP;
2524 }
2525 }
2526
2527 /* Parameters for function call generation, used in tcg.c. */
2528 #define TCG_TARGET_STACK_ALIGN 16
2529
2530 #ifdef _CALL_AIX
2531 # define LINK_AREA_SIZE (6 * SZR)
2532 # define LR_OFFSET (1 * SZR)
2533 # define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR)
2534 #elif defined(_CALL_DARWIN)
2535 # define LINK_AREA_SIZE (6 * SZR)
2536 # define LR_OFFSET (2 * SZR)
2537 #elif TCG_TARGET_REG_BITS == 64
2538 # if defined(_CALL_ELF) && _CALL_ELF == 2
2539 # define LINK_AREA_SIZE (4 * SZR)
2540 # define LR_OFFSET (1 * SZR)
2541 # endif
2542 #else /* TCG_TARGET_REG_BITS == 32 */
2543 # if defined(_CALL_SYSV)
2544 # define LINK_AREA_SIZE (2 * SZR)
2545 # define LR_OFFSET (1 * SZR)
2546 # endif
2547 #endif
2548 #ifndef LR_OFFSET
2549 # error "Unhandled abi"
2550 #endif
2551 #ifndef TCG_TARGET_CALL_STACK_OFFSET
2552 # define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE
2553 #endif
2554
2555 #define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
2556 #define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR)
2557
2558 #define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \
2559 + TCG_STATIC_CALL_ARGS_SIZE \
2560 + CPU_TEMP_BUF_SIZE \
2561 + REG_SAVE_SIZE \
2562 + TCG_TARGET_STACK_ALIGN - 1) \
2563 & -TCG_TARGET_STACK_ALIGN)
2564
2565 #define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE)
2566
2567 static void tcg_target_qemu_prologue(TCGContext *s)
2568 {
2569 int i;
2570
2571 #ifdef _CALL_AIX
2572 const void **desc = (const void **)s->code_ptr;
2573 desc[0] = tcg_splitwx_to_rx(desc + 2); /* entry point */
2574 desc[1] = 0; /* environment pointer */
2575 s->code_ptr = (void *)(desc + 2); /* skip over descriptor */
2576 #endif
2577
2578 tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE,
2579 CPU_TEMP_BUF_SIZE);
2580
2581 /* Prologue */
2582 tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR);
2583 tcg_out32(s, (SZR == 8 ? STDU : STWU)
2584 | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE));
2585
2586 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2587 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2588 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2589 }
2590 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2591
2592 #ifndef CONFIG_SOFTMMU
2593 if (guest_base) {
2594 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
2595 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
2596 }
2597 #endif
2598
2599 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
2600 tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR);
2601 if (USE_REG_TB) {
2602 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
2603 }
2604 tcg_out32(s, BCCTR | BO_ALWAYS);
2605
2606 /* Epilogue */
2607 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
2608
2609 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
2610 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
2611 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
2612 TCG_REG_R1, REG_SAVE_BOT + i * SZR);
2613 }
2614 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR);
2615 tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE));
2616 tcg_out32(s, BCLR | BO_ALWAYS);
2617 }
2618
2619 static void tcg_out_exit_tb(TCGContext *s, uintptr_t arg)
2620 {
2621 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, arg);
2622 tcg_out_b(s, 0, tcg_code_gen_epilogue);
2623 }
2624
2625 static void tcg_out_op(TCGContext *s, TCGOpcode opc,
2626 const TCGArg args[TCG_MAX_OP_ARGS],
2627 const int const_args[TCG_MAX_OP_ARGS])
2628 {
2629 TCGArg a0, a1, a2;
2630
2631 switch (opc) {
2632 case INDEX_op_goto_tb:
2633 if (s->tb_jmp_insn_offset) {
2634 /* Direct jump. */
2635 if (TCG_TARGET_REG_BITS == 64) {
2636 /* Ensure the next insns are 8 or 16-byte aligned. */
2637 while ((uintptr_t)s->code_ptr & (have_isa_2_07 ? 15 : 7)) {
2638 tcg_out32(s, NOP);
2639 }
2640 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2641 tcg_out32(s, ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2642 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, 0));
2643 } else {
2644 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s);
2645 tcg_out32(s, B);
2646 s->tb_jmp_reset_offset[args[0]] = tcg_current_code_size(s);
2647 break;
2648 }
2649 } else {
2650 /* Indirect jump. */
2651 tcg_debug_assert(s->tb_jmp_insn_offset == NULL);
2652 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TB, 0,
2653 (intptr_t)(s->tb_jmp_insn_offset + args[0]));
2654 }
2655 tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR);
2656 tcg_out32(s, BCCTR | BO_ALWAYS);
2657 set_jmp_reset_offset(s, args[0]);
2658 if (USE_REG_TB) {
2659 /* For the unlinked case, need to reset TCG_REG_TB. */
2660 tcg_out_mem_long(s, ADDI, ADD, TCG_REG_TB, TCG_REG_TB,
2661 -tcg_current_code_size(s));
2662 }
2663 break;
2664 case INDEX_op_goto_ptr:
2665 tcg_out32(s, MTSPR | RS(args[0]) | CTR);
2666 if (USE_REG_TB) {
2667 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]);
2668 }
2669 tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0));
2670 tcg_out32(s, BCCTR | BO_ALWAYS);
2671 break;
2672 case INDEX_op_br:
2673 {
2674 TCGLabel *l = arg_label(args[0]);
2675 uint32_t insn = B;
2676
2677 if (l->has_value) {
2678 insn |= reloc_pc24_val(tcg_splitwx_to_rx(s->code_ptr),
2679 l->u.value_ptr);
2680 } else {
2681 tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0);
2682 }
2683 tcg_out32(s, insn);
2684 }
2685 break;
2686 case INDEX_op_ld8u_i32:
2687 case INDEX_op_ld8u_i64:
2688 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2689 break;
2690 case INDEX_op_ld8s_i32:
2691 case INDEX_op_ld8s_i64:
2692 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
2693 tcg_out_ext8s(s, args[0], args[0]);
2694 break;
2695 case INDEX_op_ld16u_i32:
2696 case INDEX_op_ld16u_i64:
2697 tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]);
2698 break;
2699 case INDEX_op_ld16s_i32:
2700 case INDEX_op_ld16s_i64:
2701 tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]);
2702 break;
2703 case INDEX_op_ld_i32:
2704 case INDEX_op_ld32u_i64:
2705 tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]);
2706 break;
2707 case INDEX_op_ld32s_i64:
2708 tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]);
2709 break;
2710 case INDEX_op_ld_i64:
2711 tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]);
2712 break;
2713 case INDEX_op_st8_i32:
2714 case INDEX_op_st8_i64:
2715 tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]);
2716 break;
2717 case INDEX_op_st16_i32:
2718 case INDEX_op_st16_i64:
2719 tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]);
2720 break;
2721 case INDEX_op_st_i32:
2722 case INDEX_op_st32_i64:
2723 tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]);
2724 break;
2725 case INDEX_op_st_i64:
2726 tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]);
2727 break;
2728
2729 case INDEX_op_add_i32:
2730 a0 = args[0], a1 = args[1], a2 = args[2];
2731 if (const_args[2]) {
2732 do_addi_32:
2733 tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2);
2734 } else {
2735 tcg_out32(s, ADD | TAB(a0, a1, a2));
2736 }
2737 break;
2738 case INDEX_op_sub_i32:
2739 a0 = args[0], a1 = args[1], a2 = args[2];
2740 if (const_args[1]) {
2741 if (const_args[2]) {
2742 tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
2743 } else {
2744 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2745 }
2746 } else if (const_args[2]) {
2747 a2 = -a2;
2748 goto do_addi_32;
2749 } else {
2750 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2751 }
2752 break;
2753
2754 case INDEX_op_and_i32:
2755 a0 = args[0], a1 = args[1], a2 = args[2];
2756 if (const_args[2]) {
2757 tcg_out_andi32(s, a0, a1, a2);
2758 } else {
2759 tcg_out32(s, AND | SAB(a1, a0, a2));
2760 }
2761 break;
2762 case INDEX_op_and_i64:
2763 a0 = args[0], a1 = args[1], a2 = args[2];
2764 if (const_args[2]) {
2765 tcg_out_andi64(s, a0, a1, a2);
2766 } else {
2767 tcg_out32(s, AND | SAB(a1, a0, a2));
2768 }
2769 break;
2770 case INDEX_op_or_i64:
2771 case INDEX_op_or_i32:
2772 a0 = args[0], a1 = args[1], a2 = args[2];
2773 if (const_args[2]) {
2774 tcg_out_ori32(s, a0, a1, a2);
2775 } else {
2776 tcg_out32(s, OR | SAB(a1, a0, a2));
2777 }
2778 break;
2779 case INDEX_op_xor_i64:
2780 case INDEX_op_xor_i32:
2781 a0 = args[0], a1 = args[1], a2 = args[2];
2782 if (const_args[2]) {
2783 tcg_out_xori32(s, a0, a1, a2);
2784 } else {
2785 tcg_out32(s, XOR | SAB(a1, a0, a2));
2786 }
2787 break;
2788 case INDEX_op_andc_i32:
2789 a0 = args[0], a1 = args[1], a2 = args[2];
2790 if (const_args[2]) {
2791 tcg_out_andi32(s, a0, a1, ~a2);
2792 } else {
2793 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2794 }
2795 break;
2796 case INDEX_op_andc_i64:
2797 a0 = args[0], a1 = args[1], a2 = args[2];
2798 if (const_args[2]) {
2799 tcg_out_andi64(s, a0, a1, ~a2);
2800 } else {
2801 tcg_out32(s, ANDC | SAB(a1, a0, a2));
2802 }
2803 break;
2804 case INDEX_op_orc_i32:
2805 if (const_args[2]) {
2806 tcg_out_ori32(s, args[0], args[1], ~args[2]);
2807 break;
2808 }
2809 /* FALLTHRU */
2810 case INDEX_op_orc_i64:
2811 tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
2812 break;
2813 case INDEX_op_eqv_i32:
2814 if (const_args[2]) {
2815 tcg_out_xori32(s, args[0], args[1], ~args[2]);
2816 break;
2817 }
2818 /* FALLTHRU */
2819 case INDEX_op_eqv_i64:
2820 tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
2821 break;
2822 case INDEX_op_nand_i32:
2823 case INDEX_op_nand_i64:
2824 tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
2825 break;
2826 case INDEX_op_nor_i32:
2827 case INDEX_op_nor_i64:
2828 tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
2829 break;
2830
2831 case INDEX_op_clz_i32:
2832 tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1],
2833 args[2], const_args[2]);
2834 break;
2835 case INDEX_op_ctz_i32:
2836 tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1],
2837 args[2], const_args[2]);
2838 break;
2839 case INDEX_op_ctpop_i32:
2840 tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0));
2841 break;
2842
2843 case INDEX_op_clz_i64:
2844 tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1],
2845 args[2], const_args[2]);
2846 break;
2847 case INDEX_op_ctz_i64:
2848 tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1],
2849 args[2], const_args[2]);
2850 break;
2851 case INDEX_op_ctpop_i64:
2852 tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0));
2853 break;
2854
2855 case INDEX_op_mul_i32:
2856 a0 = args[0], a1 = args[1], a2 = args[2];
2857 if (const_args[2]) {
2858 tcg_out32(s, MULLI | TAI(a0, a1, a2));
2859 } else {
2860 tcg_out32(s, MULLW | TAB(a0, a1, a2));
2861 }
2862 break;
2863
2864 case INDEX_op_div_i32:
2865 tcg_out32(s, DIVW | TAB(args[0], args[1], args[2]));
2866 break;
2867
2868 case INDEX_op_divu_i32:
2869 tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2]));
2870 break;
2871
2872 case INDEX_op_rem_i32:
2873 tcg_out32(s, MODSW | TAB(args[0], args[1], args[2]));
2874 break;
2875
2876 case INDEX_op_remu_i32:
2877 tcg_out32(s, MODUW | TAB(args[0], args[1], args[2]));
2878 break;
2879
2880 case INDEX_op_shl_i32:
2881 if (const_args[2]) {
2882 /* Limit immediate shift count lest we create an illegal insn. */
2883 tcg_out_shli32(s, args[0], args[1], args[2] & 31);
2884 } else {
2885 tcg_out32(s, SLW | SAB(args[1], args[0], args[2]));
2886 }
2887 break;
2888 case INDEX_op_shr_i32:
2889 if (const_args[2]) {
2890 /* Limit immediate shift count lest we create an illegal insn. */
2891 tcg_out_shri32(s, args[0], args[1], args[2] & 31);
2892 } else {
2893 tcg_out32(s, SRW | SAB(args[1], args[0], args[2]));
2894 }
2895 break;
2896 case INDEX_op_sar_i32:
2897 if (const_args[2]) {
2898 tcg_out_sari32(s, args[0], args[1], args[2]);
2899 } else {
2900 tcg_out32(s, SRAW | SAB(args[1], args[0], args[2]));
2901 }
2902 break;
2903 case INDEX_op_rotl_i32:
2904 if (const_args[2]) {
2905 tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
2906 } else {
2907 tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
2908 | MB(0) | ME(31));
2909 }
2910 break;
2911 case INDEX_op_rotr_i32:
2912 if (const_args[2]) {
2913 tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
2914 } else {
2915 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32));
2916 tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0)
2917 | MB(0) | ME(31));
2918 }
2919 break;
2920
2921 case INDEX_op_brcond_i32:
2922 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2923 arg_label(args[3]), TCG_TYPE_I32);
2924 break;
2925 case INDEX_op_brcond_i64:
2926 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
2927 arg_label(args[3]), TCG_TYPE_I64);
2928 break;
2929 case INDEX_op_brcond2_i32:
2930 tcg_out_brcond2(s, args, const_args);
2931 break;
2932
2933 case INDEX_op_neg_i32:
2934 case INDEX_op_neg_i64:
2935 tcg_out32(s, NEG | RT(args[0]) | RA(args[1]));
2936 break;
2937
2938 case INDEX_op_not_i32:
2939 case INDEX_op_not_i64:
2940 tcg_out32(s, NOR | SAB(args[1], args[0], args[1]));
2941 break;
2942
2943 case INDEX_op_add_i64:
2944 a0 = args[0], a1 = args[1], a2 = args[2];
2945 if (const_args[2]) {
2946 do_addi_64:
2947 tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2);
2948 } else {
2949 tcg_out32(s, ADD | TAB(a0, a1, a2));
2950 }
2951 break;
2952 case INDEX_op_sub_i64:
2953 a0 = args[0], a1 = args[1], a2 = args[2];
2954 if (const_args[1]) {
2955 if (const_args[2]) {
2956 tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
2957 } else {
2958 tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
2959 }
2960 } else if (const_args[2]) {
2961 a2 = -a2;
2962 goto do_addi_64;
2963 } else {
2964 tcg_out32(s, SUBF | TAB(a0, a2, a1));
2965 }
2966 break;
2967
2968 case INDEX_op_shl_i64:
2969 if (const_args[2]) {
2970 /* Limit immediate shift count lest we create an illegal insn. */
2971 tcg_out_shli64(s, args[0], args[1], args[2] & 63);
2972 } else {
2973 tcg_out32(s, SLD | SAB(args[1], args[0], args[2]));
2974 }
2975 break;
2976 case INDEX_op_shr_i64:
2977 if (const_args[2]) {
2978 /* Limit immediate shift count lest we create an illegal insn. */
2979 tcg_out_shri64(s, args[0], args[1], args[2] & 63);
2980 } else {
2981 tcg_out32(s, SRD | SAB(args[1], args[0], args[2]));
2982 }
2983 break;
2984 case INDEX_op_sar_i64:
2985 if (const_args[2]) {
2986 tcg_out_sari64(s, args[0], args[1], args[2]);
2987 } else {
2988 tcg_out32(s, SRAD | SAB(args[1], args[0], args[2]));
2989 }
2990 break;
2991 case INDEX_op_rotl_i64:
2992 if (const_args[2]) {
2993 tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
2994 } else {
2995 tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
2996 }
2997 break;
2998 case INDEX_op_rotr_i64:
2999 if (const_args[2]) {
3000 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
3001 } else {
3002 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64));
3003 tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0));
3004 }
3005 break;
3006
3007 case INDEX_op_mul_i64:
3008 a0 = args[0], a1 = args[1], a2 = args[2];
3009 if (const_args[2]) {
3010 tcg_out32(s, MULLI | TAI(a0, a1, a2));
3011 } else {
3012 tcg_out32(s, MULLD | TAB(a0, a1, a2));
3013 }
3014 break;
3015 case INDEX_op_div_i64:
3016 tcg_out32(s, DIVD | TAB(args[0], args[1], args[2]));
3017 break;
3018 case INDEX_op_divu_i64:
3019 tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2]));
3020 break;
3021 case INDEX_op_rem_i64:
3022 tcg_out32(s, MODSD | TAB(args[0], args[1], args[2]));
3023 break;
3024 case INDEX_op_remu_i64:
3025 tcg_out32(s, MODUD | TAB(args[0], args[1], args[2]));
3026 break;
3027
3028 case INDEX_op_qemu_ld_i32:
3029 tcg_out_qemu_ld(s, args, false);
3030 break;
3031 case INDEX_op_qemu_ld_i64:
3032 tcg_out_qemu_ld(s, args, true);
3033 break;
3034 case INDEX_op_qemu_st_i32:
3035 tcg_out_qemu_st(s, args, false);
3036 break;
3037 case INDEX_op_qemu_st_i64:
3038 tcg_out_qemu_st(s, args, true);
3039 break;
3040
3041 case INDEX_op_ext8s_i32:
3042 case INDEX_op_ext8s_i64:
3043 tcg_out_ext8s(s, args[0], args[1]);
3044 break;
3045 case INDEX_op_ext16s_i32:
3046 case INDEX_op_ext16s_i64:
3047 tcg_out_ext16s(s, args[0], args[1]);
3048 break;
3049 case INDEX_op_ext_i32_i64:
3050 case INDEX_op_ext32s_i64:
3051 tcg_out_ext32s(s, args[0], args[1]);
3052 break;
3053 case INDEX_op_extu_i32_i64:
3054 tcg_out_ext32u(s, args[0], args[1]);
3055 break;
3056
3057 case INDEX_op_setcond_i32:
3058 tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
3059 const_args[2]);
3060 break;
3061 case INDEX_op_setcond_i64:
3062 tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
3063 const_args[2]);
3064 break;
3065 case INDEX_op_setcond2_i32:
3066 tcg_out_setcond2(s, args, const_args);
3067 break;
3068
3069 case INDEX_op_bswap16_i32:
3070 case INDEX_op_bswap16_i64:
3071 tcg_out_bswap16(s, args[0], args[1], args[2]);
3072 break;
3073 case INDEX_op_bswap32_i32:
3074 tcg_out_bswap32(s, args[0], args[1], 0);
3075 break;
3076 case INDEX_op_bswap32_i64:
3077 tcg_out_bswap32(s, args[0], args[1], args[2]);
3078 break;
3079 case INDEX_op_bswap64_i64:
3080 tcg_out_bswap64(s, args[0], args[1]);
3081 break;
3082
3083 case INDEX_op_deposit_i32:
3084 if (const_args[2]) {
3085 uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
3086 tcg_out_andi32(s, args[0], args[0], ~mask);
3087 } else {
3088 tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
3089 32 - args[3] - args[4], 31 - args[3]);
3090 }
3091 break;
3092 case INDEX_op_deposit_i64:
3093 if (const_args[2]) {
3094 uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
3095 tcg_out_andi64(s, args[0], args[0], ~mask);
3096 } else {
3097 tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
3098 64 - args[3] - args[4]);
3099 }
3100 break;
3101
3102 case INDEX_op_extract_i32:
3103 tcg_out_rlw(s, RLWINM, args[0], args[1],
3104 32 - args[2], 32 - args[3], 31);
3105 break;
3106 case INDEX_op_extract_i64:
3107 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]);
3108 break;
3109
3110 case INDEX_op_movcond_i32:
3111 tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
3112 args[3], args[4], const_args[2]);
3113 break;
3114 case INDEX_op_movcond_i64:
3115 tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
3116 args[3], args[4], const_args[2]);
3117 break;
3118
3119 #if TCG_TARGET_REG_BITS == 64
3120 case INDEX_op_add2_i64:
3121 #else
3122 case INDEX_op_add2_i32:
3123 #endif
3124 /* Note that the CA bit is defined based on the word size of the
3125 environment. So in 64-bit mode it's always carry-out of bit 63.
3126 The fallback code using deposit works just as well for 32-bit. */
3127 a0 = args[0], a1 = args[1];
3128 if (a0 == args[3] || (!const_args[5] && a0 == args[5])) {
3129 a0 = TCG_REG_R0;
3130 }
3131 if (const_args[4]) {
3132 tcg_out32(s, ADDIC | TAI(a0, args[2], args[4]));
3133 } else {
3134 tcg_out32(s, ADDC | TAB(a0, args[2], args[4]));
3135 }
3136 if (const_args[5]) {
3137 tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3]));
3138 } else {
3139 tcg_out32(s, ADDE | TAB(a1, args[3], args[5]));
3140 }
3141 if (a0 != args[0]) {
3142 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
3143 }
3144 break;
3145
3146 #if TCG_TARGET_REG_BITS == 64
3147 case INDEX_op_sub2_i64:
3148 #else
3149 case INDEX_op_sub2_i32:
3150 #endif
3151 a0 = args[0], a1 = args[1];
3152 if (a0 == args[5] || (!const_args[3] && a0 == args[3])) {
3153 a0 = TCG_REG_R0;
3154 }
3155 if (const_args[2]) {
3156 tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2]));
3157 } else {
3158 tcg_out32(s, SUBFC | TAB(a0, args[4], args[2]));
3159 }
3160 if (const_args[3]) {
3161 tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
3162 } else {
3163 tcg_out32(s, SUBFE | TAB(a1, args[5], args[3]));
3164 }
3165 if (a0 != args[0]) {
3166 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
3167 }
3168 break;
3169
3170 case INDEX_op_muluh_i32:
3171 tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2]));
3172 break;
3173 case INDEX_op_mulsh_i32:
3174 tcg_out32(s, MULHW | TAB(args[0], args[1], args[2]));
3175 break;
3176 case INDEX_op_muluh_i64:
3177 tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2]));
3178 break;
3179 case INDEX_op_mulsh_i64:
3180 tcg_out32(s, MULHD | TAB(args[0], args[1], args[2]));
3181 break;
3182
3183 case INDEX_op_mb:
3184 tcg_out_mb(s, args[0]);
3185 break;
3186
3187 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
3188 case INDEX_op_mov_i64:
3189 case INDEX_op_call: /* Always emitted via tcg_out_call. */
3190 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
3191 default:
3192 tcg_abort();
3193 }
3194 }
3195
3196 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3197 {
3198 switch (opc) {
3199 case INDEX_op_and_vec:
3200 case INDEX_op_or_vec:
3201 case INDEX_op_xor_vec:
3202 case INDEX_op_andc_vec:
3203 case INDEX_op_not_vec:
3204 case INDEX_op_nor_vec:
3205 case INDEX_op_eqv_vec:
3206 case INDEX_op_nand_vec:
3207 return 1;
3208 case INDEX_op_orc_vec:
3209 return have_isa_2_07;
3210 case INDEX_op_add_vec:
3211 case INDEX_op_sub_vec:
3212 case INDEX_op_smax_vec:
3213 case INDEX_op_smin_vec:
3214 case INDEX_op_umax_vec:
3215 case INDEX_op_umin_vec:
3216 case INDEX_op_shlv_vec:
3217 case INDEX_op_shrv_vec:
3218 case INDEX_op_sarv_vec:
3219 case INDEX_op_rotlv_vec:
3220 return vece <= MO_32 || have_isa_2_07;
3221 case INDEX_op_ssadd_vec:
3222 case INDEX_op_sssub_vec:
3223 case INDEX_op_usadd_vec:
3224 case INDEX_op_ussub_vec:
3225 return vece <= MO_32;
3226 case INDEX_op_cmp_vec:
3227 case INDEX_op_shli_vec:
3228 case INDEX_op_shri_vec:
3229 case INDEX_op_sari_vec:
3230 case INDEX_op_rotli_vec:
3231 return vece <= MO_32 || have_isa_2_07 ? -1 : 0;
3232 case INDEX_op_neg_vec:
3233 return vece >= MO_32 && have_isa_3_00;
3234 case INDEX_op_mul_vec:
3235 switch (vece) {
3236 case MO_8:
3237 case MO_16:
3238 return -1;
3239 case MO_32:
3240 return have_isa_2_07 ? 1 : -1;
3241 case MO_64:
3242 return have_isa_3_10;
3243 }
3244 return 0;
3245 case INDEX_op_bitsel_vec:
3246 return have_vsx;
3247 case INDEX_op_rotrv_vec:
3248 return -1;
3249 default:
3250 return 0;
3251 }
3252 }
3253
3254 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
3255 TCGReg dst, TCGReg src)
3256 {
3257 tcg_debug_assert(dst >= TCG_REG_V0);
3258
3259 /* Splat from integer reg allowed via constraints for v3.00. */
3260 if (src < TCG_REG_V0) {
3261 tcg_debug_assert(have_isa_3_00);
3262 switch (vece) {
3263 case MO_64:
3264 tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src));
3265 return true;
3266 case MO_32:
3267 tcg_out32(s, MTVSRWS | VRT(dst) | RA(src));
3268 return true;
3269 default:
3270 /* Fail, so that we fall back on either dupm or mov+dup. */
3271 return false;
3272 }
3273 }
3274
3275 /*
3276 * Recall we use (or emulate) VSX integer loads, so the integer is
3277 * right justified within the left (zero-index) double-word.
3278 */
3279 switch (vece) {
3280 case MO_8:
3281 tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16));
3282 break;
3283 case MO_16:
3284 tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16));
3285 break;
3286 case MO_32:
3287 tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16));
3288 break;
3289 case MO_64:
3290 if (have_vsx) {
3291 tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src));
3292 break;
3293 }
3294 tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8);
3295 tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8);
3296 break;
3297 default:
3298 g_assert_not_reached();
3299 }
3300 return true;
3301 }
3302
3303 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
3304 TCGReg out, TCGReg base, intptr_t offset)
3305 {
3306 int elt;
3307
3308 tcg_debug_assert(out >= TCG_REG_V0);
3309 switch (vece) {
3310 case MO_8:
3311 if (have_isa_3_00) {
3312 tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16);
3313 } else {
3314 tcg_out_mem_long(s, 0, LVEBX, out, base, offset);
3315 }
3316 elt = extract32(offset, 0, 4);
3317 #if !HOST_BIG_ENDIAN
3318 elt ^= 15;
3319 #endif
3320 tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16));
3321 break;
3322 case MO_16:
3323 tcg_debug_assert((offset & 1) == 0);
3324 if (have_isa_3_00) {
3325 tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16);
3326 } else {
3327 tcg_out_mem_long(s, 0, LVEHX, out, base, offset);
3328 }
3329 elt = extract32(offset, 1, 3);
3330 #if !HOST_BIG_ENDIAN
3331 elt ^= 7;
3332 #endif
3333 tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16));
3334 break;
3335 case MO_32:
3336 if (have_isa_3_00) {
3337 tcg_out_mem_long(s, 0, LXVWSX, out, base, offset);
3338 break;
3339 }
3340 tcg_debug_assert((offset & 3) == 0);
3341 tcg_out_mem_long(s, 0, LVEWX, out, base, offset);
3342 elt = extract32(offset, 2, 2);
3343 #if !HOST_BIG_ENDIAN
3344 elt ^= 3;
3345 #endif
3346 tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16));
3347 break;
3348 case MO_64:
3349 if (have_vsx) {
3350 tcg_out_mem_long(s, 0, LXVDSX, out, base, offset);
3351 break;
3352 }
3353 tcg_debug_assert((offset & 7) == 0);
3354 tcg_out_mem_long(s, 0, LVX, out, base, offset & -16);
3355 tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8);
3356 elt = extract32(offset, 3, 1);
3357 #if !HOST_BIG_ENDIAN
3358 elt = !elt;
3359 #endif
3360 if (elt) {
3361 tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8);
3362 } else {
3363 tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8);
3364 }
3365 break;
3366 default:
3367 g_assert_not_reached();
3368 }
3369 return true;
3370 }
3371
3372 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3373 unsigned vecl, unsigned vece,
3374 const TCGArg args[TCG_MAX_OP_ARGS],
3375 const int const_args[TCG_MAX_OP_ARGS])
3376 {
3377 static const uint32_t
3378 add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM },
3379 sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM },
3380 mul_op[4] = { 0, 0, VMULUWM, VMULLD },
3381 neg_op[4] = { 0, 0, VNEGW, VNEGD },
3382 eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD },
3383 ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 },
3384 gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD },
3385 gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD },
3386 ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 },
3387 usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 },
3388 sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 },
3389 ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 },
3390 umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD },
3391 smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD },
3392 umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD },
3393 smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD },
3394 shlv_op[4] = { VSLB, VSLH, VSLW, VSLD },
3395 shrv_op[4] = { VSRB, VSRH, VSRW, VSRD },
3396 sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD },
3397 mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 },
3398 mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 },
3399 muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 },
3400 mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 },
3401 pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 },
3402 rotl_op[4] = { VRLB, VRLH, VRLW, VRLD };
3403
3404 TCGType type = vecl + TCG_TYPE_V64;
3405 TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
3406 uint32_t insn;
3407
3408 switch (opc) {
3409 case INDEX_op_ld_vec:
3410 tcg_out_ld(s, type, a0, a1, a2);
3411 return;
3412 case INDEX_op_st_vec:
3413 tcg_out_st(s, type, a0, a1, a2);
3414 return;
3415 case INDEX_op_dupm_vec:
3416 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3417 return;
3418
3419 case INDEX_op_add_vec:
3420 insn = add_op[vece];
3421 break;
3422 case INDEX_op_sub_vec:
3423 insn = sub_op[vece];
3424 break;
3425 case INDEX_op_neg_vec:
3426 insn = neg_op[vece];
3427 a2 = a1;
3428 a1 = 0;
3429 break;
3430 case INDEX_op_mul_vec:
3431 insn = mul_op[vece];
3432 break;
3433 case INDEX_op_ssadd_vec:
3434 insn = ssadd_op[vece];
3435 break;
3436 case INDEX_op_sssub_vec:
3437 insn = sssub_op[vece];
3438 break;
3439 case INDEX_op_usadd_vec:
3440 insn = usadd_op[vece];
3441 break;
3442 case INDEX_op_ussub_vec:
3443 insn = ussub_op[vece];
3444 break;
3445 case INDEX_op_smin_vec:
3446 insn = smin_op[vece];
3447 break;
3448 case INDEX_op_umin_vec:
3449 insn = umin_op[vece];
3450 break;
3451 case INDEX_op_smax_vec:
3452 insn = smax_op[vece];
3453 break;
3454 case INDEX_op_umax_vec:
3455 insn = umax_op[vece];
3456 break;
3457 case INDEX_op_shlv_vec:
3458 insn = shlv_op[vece];
3459 break;
3460 case INDEX_op_shrv_vec:
3461 insn = shrv_op[vece];
3462 break;
3463 case INDEX_op_sarv_vec:
3464 insn = sarv_op[vece];
3465 break;
3466 case INDEX_op_and_vec:
3467 insn = VAND;
3468 break;
3469 case INDEX_op_or_vec:
3470 insn = VOR;
3471 break;
3472 case INDEX_op_xor_vec:
3473 insn = VXOR;
3474 break;
3475 case INDEX_op_andc_vec:
3476 insn = VANDC;
3477 break;
3478 case INDEX_op_not_vec:
3479 insn = VNOR;
3480 a2 = a1;
3481 break;
3482 case INDEX_op_orc_vec:
3483 insn = VORC;
3484 break;
3485 case INDEX_op_nand_vec:
3486 insn = VNAND;
3487 break;
3488 case INDEX_op_nor_vec:
3489 insn = VNOR;
3490 break;
3491 case INDEX_op_eqv_vec:
3492 insn = VEQV;
3493 break;
3494
3495 case INDEX_op_cmp_vec:
3496 switch (args[3]) {
3497 case TCG_COND_EQ:
3498 insn = eq_op[vece];
3499 break;
3500 case TCG_COND_NE:
3501 insn = ne_op[vece];
3502 break;
3503 case TCG_COND_GT:
3504 insn = gts_op[vece];
3505 break;
3506 case TCG_COND_GTU:
3507 insn = gtu_op[vece];
3508 break;
3509 default:
3510 g_assert_not_reached();
3511 }
3512 break;
3513
3514 case INDEX_op_bitsel_vec:
3515 tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3]));
3516 return;
3517
3518 case INDEX_op_dup2_vec:
3519 assert(TCG_TARGET_REG_BITS == 32);
3520 /* With inputs a1 = xLxx, a2 = xHxx */
3521 tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */
3522 tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */
3523 tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */
3524 return;
3525
3526 case INDEX_op_ppc_mrgh_vec:
3527 insn = mrgh_op[vece];
3528 break;
3529 case INDEX_op_ppc_mrgl_vec:
3530 insn = mrgl_op[vece];
3531 break;
3532 case INDEX_op_ppc_muleu_vec:
3533 insn = muleu_op[vece];
3534 break;
3535 case INDEX_op_ppc_mulou_vec:
3536 insn = mulou_op[vece];
3537 break;
3538 case INDEX_op_ppc_pkum_vec:
3539 insn = pkum_op[vece];
3540 break;
3541 case INDEX_op_rotlv_vec:
3542 insn = rotl_op[vece];
3543 break;
3544 case INDEX_op_ppc_msum_vec:
3545 tcg_debug_assert(vece == MO_16);
3546 tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3]));
3547 return;
3548
3549 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
3550 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
3551 default:
3552 g_assert_not_reached();
3553 }
3554
3555 tcg_debug_assert(insn != 0);
3556 tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2));
3557 }
3558
3559 static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0,
3560 TCGv_vec v1, TCGArg imm, TCGOpcode opci)
3561 {
3562 TCGv_vec t1;
3563
3564 if (vece == MO_32) {
3565 /*
3566 * Only 5 bits are significant, and VSPLTISB can represent -16..15.
3567 * So using negative numbers gets us the 4th bit easily.
3568 */
3569 imm = sextract32(imm, 0, 5);
3570 } else {
3571 imm &= (8 << vece) - 1;
3572 }
3573
3574 /* Splat w/bytes for xxspltib when 2.07 allows MO_64. */
3575 t1 = tcg_constant_vec(type, MO_8, imm);
3576 vec_gen_3(opci, type, vece, tcgv_vec_arg(v0),
3577 tcgv_vec_arg(v1), tcgv_vec_arg(t1));
3578 }
3579
3580 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3581 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3582 {
3583 bool need_swap = false, need_inv = false;
3584
3585 tcg_debug_assert(vece <= MO_32 || have_isa_2_07);
3586
3587 switch (cond) {
3588 case TCG_COND_EQ:
3589 case TCG_COND_GT:
3590 case TCG_COND_GTU:
3591 break;
3592 case TCG_COND_NE:
3593 if (have_isa_3_00 && vece <= MO_32) {
3594 break;
3595 }
3596 /* fall through */
3597 case TCG_COND_LE:
3598 case TCG_COND_LEU:
3599 need_inv = true;
3600 break;
3601 case TCG_COND_LT:
3602 case TCG_COND_LTU:
3603 need_swap = true;
3604 break;
3605 case TCG_COND_GE:
3606 case TCG_COND_GEU:
3607 need_swap = need_inv = true;
3608 break;
3609 default:
3610 g_assert_not_reached();
3611 }
3612
3613 if (need_inv) {
3614 cond = tcg_invert_cond(cond);
3615 }
3616 if (need_swap) {
3617 TCGv_vec t1;
3618 t1 = v1, v1 = v2, v2 = t1;
3619 cond = tcg_swap_cond(cond);
3620 }
3621
3622 vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
3623 tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3624
3625 if (need_inv) {
3626 tcg_gen_not_vec(vece, v0, v0);
3627 }
3628 }
3629
3630 static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0,
3631 TCGv_vec v1, TCGv_vec v2)
3632 {
3633 TCGv_vec t1 = tcg_temp_new_vec(type);
3634 TCGv_vec t2 = tcg_temp_new_vec(type);
3635 TCGv_vec c0, c16;
3636
3637 switch (vece) {
3638 case MO_8:
3639 case MO_16:
3640 vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1),
3641 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3642 vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2),
3643 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3644 vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0),
3645 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3646 vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1),
3647 tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3648 vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0),
3649 tcgv_vec_arg(v0), tcgv_vec_arg(t1));
3650 break;
3651
3652 case MO_32:
3653 tcg_debug_assert(!have_isa_2_07);
3654 /*
3655 * Only 5 bits are significant, and VSPLTISB can represent -16..15.
3656 * So using -16 is a quick way to represent 16.
3657 */
3658 c16 = tcg_constant_vec(type, MO_8, -16);
3659 c0 = tcg_constant_vec(type, MO_8, 0);
3660
3661 vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1),
3662 tcgv_vec_arg(v2), tcgv_vec_arg(c16));
3663 vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2),
3664 tcgv_vec_arg(v1), tcgv_vec_arg(v2));
3665 vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t1),
3666 tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(c0));
3667 vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t1),
3668 tcgv_vec_arg(t1), tcgv_vec_arg(c16));
3669 tcg_gen_add_vec(MO_32, v0, t1, t2);
3670 break;
3671
3672 default:
3673 g_assert_not_reached();
3674 }
3675 tcg_temp_free_vec(t1);
3676 tcg_temp_free_vec(t2);
3677 }
3678
3679 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3680 TCGArg a0, ...)
3681 {
3682 va_list va;
3683 TCGv_vec v0, v1, v2, t0;
3684 TCGArg a2;
3685
3686 va_start(va, a0);
3687 v0 = temp_tcgv_vec(arg_temp(a0));
3688 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3689 a2 = va_arg(va, TCGArg);
3690
3691 switch (opc) {
3692 case INDEX_op_shli_vec:
3693 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec);
3694 break;
3695 case INDEX_op_shri_vec:
3696 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec);
3697 break;
3698 case INDEX_op_sari_vec:
3699 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec);
3700 break;
3701 case INDEX_op_rotli_vec:
3702 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec);
3703 break;
3704 case INDEX_op_cmp_vec:
3705 v2 = temp_tcgv_vec(arg_temp(a2));
3706 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3707 break;
3708 case INDEX_op_mul_vec:
3709 v2 = temp_tcgv_vec(arg_temp(a2));
3710 expand_vec_mul(type, vece, v0, v1, v2);
3711 break;
3712 case INDEX_op_rotlv_vec:
3713 v2 = temp_tcgv_vec(arg_temp(a2));
3714 t0 = tcg_temp_new_vec(type);
3715 tcg_gen_neg_vec(vece, t0, v2);
3716 tcg_gen_rotlv_vec(vece, v0, v1, t0);
3717 tcg_temp_free_vec(t0);
3718 break;
3719 default:
3720 g_assert_not_reached();
3721 }
3722 va_end(va);
3723 }
3724
3725 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
3726 {
3727 switch (op) {
3728 case INDEX_op_goto_ptr:
3729 return C_O0_I1(r);
3730
3731 case INDEX_op_ld8u_i32:
3732 case INDEX_op_ld8s_i32:
3733 case INDEX_op_ld16u_i32:
3734 case INDEX_op_ld16s_i32:
3735 case INDEX_op_ld_i32:
3736 case INDEX_op_ctpop_i32:
3737 case INDEX_op_neg_i32:
3738 case INDEX_op_not_i32:
3739 case INDEX_op_ext8s_i32:
3740 case INDEX_op_ext16s_i32:
3741 case INDEX_op_bswap16_i32:
3742 case INDEX_op_bswap32_i32:
3743 case INDEX_op_extract_i32:
3744 case INDEX_op_ld8u_i64:
3745 case INDEX_op_ld8s_i64:
3746 case INDEX_op_ld16u_i64:
3747 case INDEX_op_ld16s_i64:
3748 case INDEX_op_ld32u_i64:
3749 case INDEX_op_ld32s_i64:
3750 case INDEX_op_ld_i64:
3751 case INDEX_op_ctpop_i64:
3752 case INDEX_op_neg_i64:
3753 case INDEX_op_not_i64:
3754 case INDEX_op_ext8s_i64:
3755 case INDEX_op_ext16s_i64:
3756 case INDEX_op_ext32s_i64:
3757 case INDEX_op_ext_i32_i64:
3758 case INDEX_op_extu_i32_i64:
3759 case INDEX_op_bswap16_i64:
3760 case INDEX_op_bswap32_i64:
3761 case INDEX_op_bswap64_i64:
3762 case INDEX_op_extract_i64:
3763 return C_O1_I1(r, r);
3764
3765 case INDEX_op_st8_i32:
3766 case INDEX_op_st16_i32:
3767 case INDEX_op_st_i32:
3768 case INDEX_op_st8_i64:
3769 case INDEX_op_st16_i64:
3770 case INDEX_op_st32_i64:
3771 case INDEX_op_st_i64:
3772 return C_O0_I2(r, r);
3773
3774 case INDEX_op_add_i32:
3775 case INDEX_op_and_i32:
3776 case INDEX_op_or_i32:
3777 case INDEX_op_xor_i32:
3778 case INDEX_op_andc_i32:
3779 case INDEX_op_orc_i32:
3780 case INDEX_op_eqv_i32:
3781 case INDEX_op_shl_i32:
3782 case INDEX_op_shr_i32:
3783 case INDEX_op_sar_i32:
3784 case INDEX_op_rotl_i32:
3785 case INDEX_op_rotr_i32:
3786 case INDEX_op_setcond_i32:
3787 case INDEX_op_and_i64:
3788 case INDEX_op_andc_i64:
3789 case INDEX_op_shl_i64:
3790 case INDEX_op_shr_i64:
3791 case INDEX_op_sar_i64:
3792 case INDEX_op_rotl_i64:
3793 case INDEX_op_rotr_i64:
3794 case INDEX_op_setcond_i64:
3795 return C_O1_I2(r, r, ri);
3796
3797 case INDEX_op_mul_i32:
3798 case INDEX_op_mul_i64:
3799 return C_O1_I2(r, r, rI);
3800
3801 case INDEX_op_div_i32:
3802 case INDEX_op_divu_i32:
3803 case INDEX_op_rem_i32:
3804 case INDEX_op_remu_i32:
3805 case INDEX_op_nand_i32:
3806 case INDEX_op_nor_i32:
3807 case INDEX_op_muluh_i32:
3808 case INDEX_op_mulsh_i32:
3809 case INDEX_op_orc_i64:
3810 case INDEX_op_eqv_i64:
3811 case INDEX_op_nand_i64:
3812 case INDEX_op_nor_i64:
3813 case INDEX_op_div_i64:
3814 case INDEX_op_divu_i64:
3815 case INDEX_op_rem_i64:
3816 case INDEX_op_remu_i64:
3817 case INDEX_op_mulsh_i64:
3818 case INDEX_op_muluh_i64:
3819 return C_O1_I2(r, r, r);
3820
3821 case INDEX_op_sub_i32:
3822 return C_O1_I2(r, rI, ri);
3823 case INDEX_op_add_i64:
3824 return C_O1_I2(r, r, rT);
3825 case INDEX_op_or_i64:
3826 case INDEX_op_xor_i64:
3827 return C_O1_I2(r, r, rU);
3828 case INDEX_op_sub_i64:
3829 return C_O1_I2(r, rI, rT);
3830 case INDEX_op_clz_i32:
3831 case INDEX_op_ctz_i32:
3832 case INDEX_op_clz_i64:
3833 case INDEX_op_ctz_i64:
3834 return C_O1_I2(r, r, rZW);
3835
3836 case INDEX_op_brcond_i32:
3837 case INDEX_op_brcond_i64:
3838 return C_O0_I2(r, ri);
3839
3840 case INDEX_op_movcond_i32:
3841 case INDEX_op_movcond_i64:
3842 return C_O1_I4(r, r, ri, rZ, rZ);
3843 case INDEX_op_deposit_i32:
3844 case INDEX_op_deposit_i64:
3845 return C_O1_I2(r, 0, rZ);
3846 case INDEX_op_brcond2_i32:
3847 return C_O0_I4(r, r, ri, ri);
3848 case INDEX_op_setcond2_i32:
3849 return C_O1_I4(r, r, r, ri, ri);
3850 case INDEX_op_add2_i64:
3851 case INDEX_op_add2_i32:
3852 return C_O2_I4(r, r, r, r, rI, rZM);
3853 case INDEX_op_sub2_i64:
3854 case INDEX_op_sub2_i32:
3855 return C_O2_I4(r, r, rI, rZM, r, r);
3856
3857 case INDEX_op_qemu_ld_i32:
3858 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3859 ? C_O1_I1(r, L)
3860 : C_O1_I2(r, L, L));
3861
3862 case INDEX_op_qemu_st_i32:
3863 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32
3864 ? C_O0_I2(S, S)
3865 : C_O0_I3(S, S, S));
3866
3867 case INDEX_op_qemu_ld_i64:
3868 return (TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L)
3869 : TARGET_LONG_BITS == 32 ? C_O2_I1(L, L, L)
3870 : C_O2_I2(L, L, L, L));
3871
3872 case INDEX_op_qemu_st_i64:
3873 return (TCG_TARGET_REG_BITS == 64 ? C_O0_I2(S, S)
3874 : TARGET_LONG_BITS == 32 ? C_O0_I3(S, S, S)
3875 : C_O0_I4(S, S, S, S));
3876
3877 case INDEX_op_add_vec:
3878 case INDEX_op_sub_vec:
3879 case INDEX_op_mul_vec:
3880 case INDEX_op_and_vec:
3881 case INDEX_op_or_vec:
3882 case INDEX_op_xor_vec:
3883 case INDEX_op_andc_vec:
3884 case INDEX_op_orc_vec:
3885 case INDEX_op_nor_vec:
3886 case INDEX_op_eqv_vec:
3887 case INDEX_op_nand_vec:
3888 case INDEX_op_cmp_vec:
3889 case INDEX_op_ssadd_vec:
3890 case INDEX_op_sssub_vec:
3891 case INDEX_op_usadd_vec:
3892 case INDEX_op_ussub_vec:
3893 case INDEX_op_smax_vec:
3894 case INDEX_op_smin_vec:
3895 case INDEX_op_umax_vec:
3896 case INDEX_op_umin_vec:
3897 case INDEX_op_shlv_vec:
3898 case INDEX_op_shrv_vec:
3899 case INDEX_op_sarv_vec:
3900 case INDEX_op_rotlv_vec:
3901 case INDEX_op_rotrv_vec:
3902 case INDEX_op_ppc_mrgh_vec:
3903 case INDEX_op_ppc_mrgl_vec:
3904 case INDEX_op_ppc_muleu_vec:
3905 case INDEX_op_ppc_mulou_vec:
3906 case INDEX_op_ppc_pkum_vec:
3907 case INDEX_op_dup2_vec:
3908 return C_O1_I2(v, v, v);
3909
3910 case INDEX_op_not_vec:
3911 case INDEX_op_neg_vec:
3912 return C_O1_I1(v, v);
3913
3914 case INDEX_op_dup_vec:
3915 return have_isa_3_00 ? C_O1_I1(v, vr) : C_O1_I1(v, v);
3916
3917 case INDEX_op_ld_vec:
3918 case INDEX_op_dupm_vec:
3919 return C_O1_I1(v, r);
3920
3921 case INDEX_op_st_vec:
3922 return C_O0_I2(v, r);
3923
3924 case INDEX_op_bitsel_vec:
3925 case INDEX_op_ppc_msum_vec:
3926 return C_O1_I3(v, v, v, v);
3927
3928 default:
3929 g_assert_not_reached();
3930 }
3931 }
3932
3933 static void tcg_target_init(TCGContext *s)
3934 {
3935 unsigned long hwcap = qemu_getauxval(AT_HWCAP);
3936 unsigned long hwcap2 = qemu_getauxval(AT_HWCAP2);
3937
3938 have_isa = tcg_isa_base;
3939 if (hwcap & PPC_FEATURE_ARCH_2_06) {
3940 have_isa = tcg_isa_2_06;
3941 }
3942 #ifdef PPC_FEATURE2_ARCH_2_07
3943 if (hwcap2 & PPC_FEATURE2_ARCH_2_07) {
3944 have_isa = tcg_isa_2_07;
3945 }
3946 #endif
3947 #ifdef PPC_FEATURE2_ARCH_3_00
3948 if (hwcap2 & PPC_FEATURE2_ARCH_3_00) {
3949 have_isa = tcg_isa_3_00;
3950 }
3951 #endif
3952 #ifdef PPC_FEATURE2_ARCH_3_10
3953 if (hwcap2 & PPC_FEATURE2_ARCH_3_10) {
3954 have_isa = tcg_isa_3_10;
3955 }
3956 #endif
3957
3958 #ifdef PPC_FEATURE2_HAS_ISEL
3959 /* Prefer explicit instruction from the kernel. */
3960 have_isel = (hwcap2 & PPC_FEATURE2_HAS_ISEL) != 0;
3961 #else
3962 /* Fall back to knowing Power7 (2.06) has ISEL. */
3963 have_isel = have_isa_2_06;
3964 #endif
3965
3966 if (hwcap & PPC_FEATURE_HAS_ALTIVEC) {
3967 have_altivec = true;
3968 /* We only care about the portion of VSX that overlaps Altivec. */
3969 if (hwcap & PPC_FEATURE_HAS_VSX) {
3970 have_vsx = true;
3971 }
3972 }
3973
3974 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
3975 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff;
3976 if (have_altivec) {
3977 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
3978 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
3979 }
3980
3981 tcg_target_call_clobber_regs = 0;
3982 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
3983 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
3984 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
3985 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
3986 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
3987 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
3988 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7);
3989 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
3990 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
3991 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
3992 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
3993 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12);
3994
3995 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
3996 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
3997 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
3998 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
3999 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
4000 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
4001 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
4002 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
4003 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8);
4004 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9);
4005 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10);
4006 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11);
4007 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12);
4008 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13);
4009 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14);
4010 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15);
4011 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
4012 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
4013 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
4014 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
4015
4016 s->reserved_regs = 0;
4017 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */
4018 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */
4019 #if defined(_CALL_SYSV)
4020 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */
4021 #endif
4022 #if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64
4023 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */
4024 #endif
4025 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); /* mem temp */
4026 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1);
4027 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2);
4028 if (USE_REG_TB) {
4029 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */
4030 }
4031 }
4032
4033 #ifdef __ELF__
4034 typedef struct {
4035 DebugFrameCIE cie;
4036 DebugFrameFDEHeader fde;
4037 uint8_t fde_def_cfa[4];
4038 uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3];
4039 } DebugFrame;
4040
4041 /* We're expecting a 2 byte uleb128 encoded value. */
4042 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4043
4044 #if TCG_TARGET_REG_BITS == 64
4045 # define ELF_HOST_MACHINE EM_PPC64
4046 #else
4047 # define ELF_HOST_MACHINE EM_PPC
4048 #endif
4049
4050 static DebugFrame debug_frame = {
4051 .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4052 .cie.id = -1,
4053 .cie.version = 1,
4054 .cie.code_align = 1,
4055 .cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */
4056 .cie.return_column = 65,
4057
4058 /* Total FDE size does not include the "len" member. */
4059 .fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset),
4060
4061 .fde_def_cfa = {
4062 12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */
4063 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
4064 (FRAME_SIZE >> 7)
4065 },
4066 .fde_reg_ofs = {
4067 /* DW_CFA_offset_extended_sf, lr, LR_OFFSET */
4068 0x11, 65, (LR_OFFSET / -SZR) & 0x7f,
4069 }
4070 };
4071
4072 void tcg_register_jit(const void *buf, size_t buf_size)
4073 {
4074 uint8_t *p = &debug_frame.fde_reg_ofs[3];
4075 int i;
4076
4077 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) {
4078 p[0] = 0x80 + tcg_target_callee_save_regs[i];
4079 p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR;
4080 }
4081
4082 debug_frame.fde.func_start = (uintptr_t)buf;
4083 debug_frame.fde.func_len = buf_size;
4084
4085 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4086 }
4087 #endif /* __ELF__ */
4088 #undef VMULEUB
4089 #undef VMULEUH
4090 #undef VMULEUW
4091 #undef VMULOUB
4092 #undef VMULOUH
4093 #undef VMULOUW
4094 #undef VMSUMUHM