]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/sparc64/tcg-target.c.inc
Merge tag 'pull-riscv-to-apply-20230106' of https://github.com/alistair23/qemu into...
[mirror_qemu.git] / tcg / sparc64 / tcg-target.c.inc
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* We only support generating code for 64-bit mode. */
26 #ifndef __arch64__
27 #error "unsupported code generation mode"
28 #endif
29
30 #include "../tcg-pool.c.inc"
31
32 #ifdef CONFIG_DEBUG_TCG
33 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
34 "%g0",
35 "%g1",
36 "%g2",
37 "%g3",
38 "%g4",
39 "%g5",
40 "%g6",
41 "%g7",
42 "%o0",
43 "%o1",
44 "%o2",
45 "%o3",
46 "%o4",
47 "%o5",
48 "%o6",
49 "%o7",
50 "%l0",
51 "%l1",
52 "%l2",
53 "%l3",
54 "%l4",
55 "%l5",
56 "%l6",
57 "%l7",
58 "%i0",
59 "%i1",
60 "%i2",
61 "%i3",
62 "%i4",
63 "%i5",
64 "%i6",
65 "%i7",
66 };
67 #endif
68
69 #define TCG_CT_CONST_S11 0x100
70 #define TCG_CT_CONST_S13 0x200
71 #define TCG_CT_CONST_ZERO 0x400
72
73 /*
74 * For softmmu, we need to avoid conflicts with the first 3
75 * argument registers to perform the tlb lookup, and to call
76 * the helper function.
77 */
78 #ifdef CONFIG_SOFTMMU
79 #define SOFTMMU_RESERVE_REGS MAKE_64BIT_MASK(TCG_REG_O0, 3)
80 #else
81 #define SOFTMMU_RESERVE_REGS 0
82 #endif
83 #define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 32)
84 #define ALL_QLDST_REGS (ALL_GENERAL_REGS & ~SOFTMMU_RESERVE_REGS)
85
86 /* Define some temporary registers. T2 is used for constant generation. */
87 #define TCG_REG_T1 TCG_REG_G1
88 #define TCG_REG_T2 TCG_REG_O7
89
90 #ifndef CONFIG_SOFTMMU
91 # define TCG_GUEST_BASE_REG TCG_REG_I5
92 #endif
93
94 #define TCG_REG_TB TCG_REG_I1
95 #define USE_REG_TB (sizeof(void *) > 4)
96
97 static const int tcg_target_reg_alloc_order[] = {
98 TCG_REG_L0,
99 TCG_REG_L1,
100 TCG_REG_L2,
101 TCG_REG_L3,
102 TCG_REG_L4,
103 TCG_REG_L5,
104 TCG_REG_L6,
105 TCG_REG_L7,
106
107 TCG_REG_I0,
108 TCG_REG_I1,
109 TCG_REG_I2,
110 TCG_REG_I3,
111 TCG_REG_I4,
112 TCG_REG_I5,
113
114 TCG_REG_G2,
115 TCG_REG_G3,
116 TCG_REG_G4,
117 TCG_REG_G5,
118
119 TCG_REG_O0,
120 TCG_REG_O1,
121 TCG_REG_O2,
122 TCG_REG_O3,
123 TCG_REG_O4,
124 TCG_REG_O5,
125 };
126
127 static const int tcg_target_call_iarg_regs[6] = {
128 TCG_REG_O0,
129 TCG_REG_O1,
130 TCG_REG_O2,
131 TCG_REG_O3,
132 TCG_REG_O4,
133 TCG_REG_O5,
134 };
135
136 static const int tcg_target_call_oarg_regs[] = {
137 TCG_REG_O0,
138 TCG_REG_O1,
139 TCG_REG_O2,
140 TCG_REG_O3,
141 };
142
143 #define INSN_OP(x) ((x) << 30)
144 #define INSN_OP2(x) ((x) << 22)
145 #define INSN_OP3(x) ((x) << 19)
146 #define INSN_OPF(x) ((x) << 5)
147 #define INSN_RD(x) ((x) << 25)
148 #define INSN_RS1(x) ((x) << 14)
149 #define INSN_RS2(x) (x)
150 #define INSN_ASI(x) ((x) << 5)
151
152 #define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff))
153 #define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff))
154 #define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff))
155 #define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20))
156 #define INSN_OFF19(x) (((x) >> 2) & 0x07ffff)
157 #define INSN_COND(x) ((x) << 25)
158
159 #define COND_N 0x0
160 #define COND_E 0x1
161 #define COND_LE 0x2
162 #define COND_L 0x3
163 #define COND_LEU 0x4
164 #define COND_CS 0x5
165 #define COND_NEG 0x6
166 #define COND_VS 0x7
167 #define COND_A 0x8
168 #define COND_NE 0x9
169 #define COND_G 0xa
170 #define COND_GE 0xb
171 #define COND_GU 0xc
172 #define COND_CC 0xd
173 #define COND_POS 0xe
174 #define COND_VC 0xf
175 #define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2))
176
177 #define RCOND_Z 1
178 #define RCOND_LEZ 2
179 #define RCOND_LZ 3
180 #define RCOND_NZ 5
181 #define RCOND_GZ 6
182 #define RCOND_GEZ 7
183
184 #define MOVCC_ICC (1 << 18)
185 #define MOVCC_XCC (1 << 18 | 1 << 12)
186
187 #define BPCC_ICC 0
188 #define BPCC_XCC (2 << 20)
189 #define BPCC_PT (1 << 19)
190 #define BPCC_PN 0
191 #define BPCC_A (1 << 29)
192
193 #define BPR_PT BPCC_PT
194
195 #define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00))
196 #define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10))
197 #define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01))
198 #define ARITH_ANDCC (INSN_OP(2) | INSN_OP3(0x11))
199 #define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05))
200 #define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02))
201 #define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12))
202 #define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06))
203 #define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03))
204 #define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04))
205 #define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14))
206 #define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08))
207 #define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c))
208 #define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a))
209 #define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b))
210 #define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e))
211 #define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f))
212 #define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09))
213 #define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d))
214 #define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d))
215 #define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c))
216 #define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f))
217
218 #define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11))
219 #define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16))
220
221 #define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25))
222 #define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26))
223 #define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27))
224
225 #define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12))
226 #define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12))
227 #define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12))
228
229 #define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0))
230 #define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0))
231 #define JMPL (INSN_OP(2) | INSN_OP3(0x38))
232 #define RETURN (INSN_OP(2) | INSN_OP3(0x39))
233 #define SAVE (INSN_OP(2) | INSN_OP3(0x3c))
234 #define RESTORE (INSN_OP(2) | INSN_OP3(0x3d))
235 #define SETHI (INSN_OP(0) | INSN_OP2(0x4))
236 #define CALL INSN_OP(1)
237 #define LDUB (INSN_OP(3) | INSN_OP3(0x01))
238 #define LDSB (INSN_OP(3) | INSN_OP3(0x09))
239 #define LDUH (INSN_OP(3) | INSN_OP3(0x02))
240 #define LDSH (INSN_OP(3) | INSN_OP3(0x0a))
241 #define LDUW (INSN_OP(3) | INSN_OP3(0x00))
242 #define LDSW (INSN_OP(3) | INSN_OP3(0x08))
243 #define LDX (INSN_OP(3) | INSN_OP3(0x0b))
244 #define STB (INSN_OP(3) | INSN_OP3(0x05))
245 #define STH (INSN_OP(3) | INSN_OP3(0x06))
246 #define STW (INSN_OP(3) | INSN_OP3(0x04))
247 #define STX (INSN_OP(3) | INSN_OP3(0x0e))
248 #define LDUBA (INSN_OP(3) | INSN_OP3(0x11))
249 #define LDSBA (INSN_OP(3) | INSN_OP3(0x19))
250 #define LDUHA (INSN_OP(3) | INSN_OP3(0x12))
251 #define LDSHA (INSN_OP(3) | INSN_OP3(0x1a))
252 #define LDUWA (INSN_OP(3) | INSN_OP3(0x10))
253 #define LDSWA (INSN_OP(3) | INSN_OP3(0x18))
254 #define LDXA (INSN_OP(3) | INSN_OP3(0x1b))
255 #define STBA (INSN_OP(3) | INSN_OP3(0x15))
256 #define STHA (INSN_OP(3) | INSN_OP3(0x16))
257 #define STWA (INSN_OP(3) | INSN_OP3(0x14))
258 #define STXA (INSN_OP(3) | INSN_OP3(0x1e))
259
260 #define MEMBAR (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13))
261
262 #define NOP (SETHI | INSN_RD(TCG_REG_G0) | 0)
263
264 #ifndef ASI_PRIMARY_LITTLE
265 #define ASI_PRIMARY_LITTLE 0x88
266 #endif
267
268 #define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE))
269 #define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE))
270 #define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE))
271 #define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE))
272 #define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE))
273
274 #define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE))
275 #define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE))
276 #define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE))
277
278 #ifndef use_vis3_instructions
279 bool use_vis3_instructions;
280 #endif
281
282 static bool check_fit_i64(int64_t val, unsigned int bits)
283 {
284 return val == sextract64(val, 0, bits);
285 }
286
287 static bool check_fit_i32(int32_t val, unsigned int bits)
288 {
289 return val == sextract32(val, 0, bits);
290 }
291
292 #define check_fit_tl check_fit_i64
293 #define check_fit_ptr check_fit_i64
294
295 static bool patch_reloc(tcg_insn_unit *src_rw, int type,
296 intptr_t value, intptr_t addend)
297 {
298 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
299 uint32_t insn = *src_rw;
300 intptr_t pcrel;
301
302 value += addend;
303 pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, src_rx);
304
305 switch (type) {
306 case R_SPARC_WDISP16:
307 if (!check_fit_ptr(pcrel >> 2, 16)) {
308 return false;
309 }
310 insn &= ~INSN_OFF16(-1);
311 insn |= INSN_OFF16(pcrel);
312 break;
313 case R_SPARC_WDISP19:
314 if (!check_fit_ptr(pcrel >> 2, 19)) {
315 return false;
316 }
317 insn &= ~INSN_OFF19(-1);
318 insn |= INSN_OFF19(pcrel);
319 break;
320 case R_SPARC_13:
321 if (!check_fit_ptr(value, 13)) {
322 return false;
323 }
324 insn &= ~INSN_IMM13(-1);
325 insn |= INSN_IMM13(value);
326 break;
327 default:
328 g_assert_not_reached();
329 }
330
331 *src_rw = insn;
332 return true;
333 }
334
335 /* test if a constant matches the constraint */
336 static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
337 {
338 if (ct & TCG_CT_CONST) {
339 return 1;
340 }
341
342 if (type == TCG_TYPE_I32) {
343 val = (int32_t)val;
344 }
345
346 if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
347 return 1;
348 } else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) {
349 return 1;
350 } else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) {
351 return 1;
352 } else {
353 return 0;
354 }
355 }
356
357 static void tcg_out_nop(TCGContext *s)
358 {
359 tcg_out32(s, NOP);
360 }
361
362 static void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1,
363 TCGReg rs2, int op)
364 {
365 tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2));
366 }
367
368 static void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1,
369 int32_t offset, int op)
370 {
371 tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset));
372 }
373
374 static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1,
375 int32_t val2, int val2const, int op)
376 {
377 tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1)
378 | (val2const ? INSN_IMM13(val2) : INSN_RS2(val2)));
379 }
380
381 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
382 {
383 if (ret != arg) {
384 tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
385 }
386 return true;
387 }
388
389 static void tcg_out_mov_delay(TCGContext *s, TCGReg ret, TCGReg arg)
390 {
391 if (ret != arg) {
392 tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
393 } else {
394 tcg_out_nop(s);
395 }
396 }
397
398 static void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg)
399 {
400 tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10));
401 }
402
403 static void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg)
404 {
405 tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR);
406 }
407
408 static void tcg_out_movi_imm32(TCGContext *s, TCGReg ret, int32_t arg)
409 {
410 if (check_fit_i32(arg, 13)) {
411 /* A 13-bit constant sign-extended to 64-bits. */
412 tcg_out_movi_imm13(s, ret, arg);
413 } else {
414 /* A 32-bit constant zero-extended to 64 bits. */
415 tcg_out_sethi(s, ret, arg);
416 if (arg & 0x3ff) {
417 tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR);
418 }
419 }
420 }
421
422 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
423 tcg_target_long arg, bool in_prologue,
424 TCGReg scratch)
425 {
426 tcg_target_long hi, lo = (int32_t)arg;
427 tcg_target_long test, lsb;
428
429 /* A 32-bit constant, or 32-bit zero-extended to 64-bits. */
430 if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) {
431 tcg_out_movi_imm32(s, ret, arg);
432 return;
433 }
434
435 /* A 13-bit constant sign-extended to 64-bits. */
436 if (check_fit_tl(arg, 13)) {
437 tcg_out_movi_imm13(s, ret, arg);
438 return;
439 }
440
441 /* A 13-bit constant relative to the TB. */
442 if (!in_prologue && USE_REG_TB) {
443 test = tcg_tbrel_diff(s, (void *)arg);
444 if (check_fit_ptr(test, 13)) {
445 tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD);
446 return;
447 }
448 }
449
450 /* A 32-bit constant sign-extended to 64-bits. */
451 if (arg == lo) {
452 tcg_out_sethi(s, ret, ~arg);
453 tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR);
454 return;
455 }
456
457 /* A 32-bit constant, shifted. */
458 lsb = ctz64(arg);
459 test = (tcg_target_long)arg >> lsb;
460 if (lsb > 10 && test == extract64(test, 0, 21)) {
461 tcg_out_sethi(s, ret, test << 10);
462 tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX);
463 return;
464 } else if (test == (uint32_t)test || test == (int32_t)test) {
465 tcg_out_movi_int(s, TCG_TYPE_I64, ret, test, in_prologue, scratch);
466 tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX);
467 return;
468 }
469
470 /* Use the constant pool, if possible. */
471 if (!in_prologue && USE_REG_TB) {
472 new_pool_label(s, arg, R_SPARC_13, s->code_ptr,
473 tcg_tbrel_diff(s, NULL));
474 tcg_out32(s, LDX | INSN_RD(ret) | INSN_RS1(TCG_REG_TB));
475 return;
476 }
477
478 /* A 64-bit constant decomposed into 2 32-bit pieces. */
479 if (check_fit_i32(lo, 13)) {
480 hi = (arg - lo) >> 32;
481 tcg_out_movi_imm32(s, ret, hi);
482 tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
483 tcg_out_arithi(s, ret, ret, lo, ARITH_ADD);
484 } else {
485 hi = arg >> 32;
486 tcg_out_movi_imm32(s, ret, hi);
487 tcg_out_movi_imm32(s, scratch, lo);
488 tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
489 tcg_out_arith(s, ret, ret, scratch, ARITH_OR);
490 }
491 }
492
493 static void tcg_out_movi(TCGContext *s, TCGType type,
494 TCGReg ret, tcg_target_long arg)
495 {
496 tcg_debug_assert(ret != TCG_REG_T2);
497 tcg_out_movi_int(s, type, ret, arg, false, TCG_REG_T2);
498 }
499
500 static void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1,
501 TCGReg a2, int op)
502 {
503 tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2));
504 }
505
506 static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr,
507 intptr_t offset, int op)
508 {
509 if (check_fit_ptr(offset, 13)) {
510 tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
511 INSN_IMM13(offset));
512 } else {
513 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset);
514 tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op);
515 }
516 }
517
518 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
519 TCGReg arg1, intptr_t arg2)
520 {
521 tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX));
522 }
523
524 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
525 TCGReg arg1, intptr_t arg2)
526 {
527 tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX));
528 }
529
530 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
531 TCGReg base, intptr_t ofs)
532 {
533 if (val == 0) {
534 tcg_out_st(s, type, TCG_REG_G0, base, ofs);
535 return true;
536 }
537 return false;
538 }
539
540 static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, const void *arg)
541 {
542 intptr_t diff = tcg_tbrel_diff(s, arg);
543 if (USE_REG_TB && check_fit_ptr(diff, 13)) {
544 tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff);
545 return;
546 }
547 tcg_out_movi(s, TCG_TYPE_PTR, ret, (uintptr_t)arg & ~0x3ff);
548 tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, (uintptr_t)arg & 0x3ff);
549 }
550
551 static void tcg_out_sety(TCGContext *s, TCGReg rs)
552 {
553 tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs));
554 }
555
556 static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1,
557 int32_t val2, int val2const, int uns)
558 {
559 /* Load Y with the sign/zero extension of RS1 to 64-bits. */
560 if (uns) {
561 tcg_out_sety(s, TCG_REG_G0);
562 } else {
563 tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA);
564 tcg_out_sety(s, TCG_REG_T1);
565 }
566
567 tcg_out_arithc(s, rd, rs1, val2, val2const,
568 uns ? ARITH_UDIV : ARITH_SDIV);
569 }
570
571 static const uint8_t tcg_cond_to_bcond[] = {
572 [TCG_COND_EQ] = COND_E,
573 [TCG_COND_NE] = COND_NE,
574 [TCG_COND_LT] = COND_L,
575 [TCG_COND_GE] = COND_GE,
576 [TCG_COND_LE] = COND_LE,
577 [TCG_COND_GT] = COND_G,
578 [TCG_COND_LTU] = COND_CS,
579 [TCG_COND_GEU] = COND_CC,
580 [TCG_COND_LEU] = COND_LEU,
581 [TCG_COND_GTU] = COND_GU,
582 };
583
584 static const uint8_t tcg_cond_to_rcond[] = {
585 [TCG_COND_EQ] = RCOND_Z,
586 [TCG_COND_NE] = RCOND_NZ,
587 [TCG_COND_LT] = RCOND_LZ,
588 [TCG_COND_GT] = RCOND_GZ,
589 [TCG_COND_LE] = RCOND_LEZ,
590 [TCG_COND_GE] = RCOND_GEZ
591 };
592
593 static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19)
594 {
595 tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19);
596 }
597
598 static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l)
599 {
600 int off19 = 0;
601
602 if (l->has_value) {
603 off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr));
604 } else {
605 tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0);
606 }
607 tcg_out_bpcc0(s, scond, flags, off19);
608 }
609
610 static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const)
611 {
612 tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC);
613 }
614
615 static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1,
616 int32_t arg2, int const_arg2, TCGLabel *l)
617 {
618 tcg_out_cmp(s, arg1, arg2, const_arg2);
619 tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l);
620 tcg_out_nop(s);
621 }
622
623 static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret,
624 int32_t v1, int v1const)
625 {
626 tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret)
627 | INSN_RS1(tcg_cond_to_bcond[cond])
628 | (v1const ? INSN_IMM11(v1) : INSN_RS2(v1)));
629 }
630
631 static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
632 TCGReg c1, int32_t c2, int c2const,
633 int32_t v1, int v1const)
634 {
635 tcg_out_cmp(s, c1, c2, c2const);
636 tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const);
637 }
638
639 static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1,
640 int32_t arg2, int const_arg2, TCGLabel *l)
641 {
642 /* For 64-bit signed comparisons vs zero, we can avoid the compare. */
643 if (arg2 == 0 && !is_unsigned_cond(cond)) {
644 int off16 = 0;
645
646 if (l->has_value) {
647 off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr));
648 } else {
649 tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0);
650 }
651 tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1)
652 | INSN_COND(tcg_cond_to_rcond[cond]) | off16);
653 } else {
654 tcg_out_cmp(s, arg1, arg2, const_arg2);
655 tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l);
656 }
657 tcg_out_nop(s);
658 }
659
660 static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1,
661 int32_t v1, int v1const)
662 {
663 tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1)
664 | (tcg_cond_to_rcond[cond] << 10)
665 | (v1const ? INSN_IMM10(v1) : INSN_RS2(v1)));
666 }
667
668 static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
669 TCGReg c1, int32_t c2, int c2const,
670 int32_t v1, int v1const)
671 {
672 /* For 64-bit signed comparisons vs zero, we can avoid the compare.
673 Note that the immediate range is one bit smaller, so we must check
674 for that as well. */
675 if (c2 == 0 && !is_unsigned_cond(cond)
676 && (!v1const || check_fit_i32(v1, 10))) {
677 tcg_out_movr(s, cond, ret, c1, v1, v1const);
678 } else {
679 tcg_out_cmp(s, c1, c2, c2const);
680 tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const);
681 }
682 }
683
684 static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
685 TCGReg c1, int32_t c2, int c2const)
686 {
687 /* For 32-bit comparisons, we can play games with ADDC/SUBC. */
688 switch (cond) {
689 case TCG_COND_LTU:
690 case TCG_COND_GEU:
691 /* The result of the comparison is in the carry bit. */
692 break;
693
694 case TCG_COND_EQ:
695 case TCG_COND_NE:
696 /* For equality, we can transform to inequality vs zero. */
697 if (c2 != 0) {
698 tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR);
699 c2 = TCG_REG_T1;
700 } else {
701 c2 = c1;
702 }
703 c1 = TCG_REG_G0, c2const = 0;
704 cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU);
705 break;
706
707 case TCG_COND_GTU:
708 case TCG_COND_LEU:
709 /* If we don't need to load a constant into a register, we can
710 swap the operands on GTU/LEU. There's no benefit to loading
711 the constant into a temporary register. */
712 if (!c2const || c2 == 0) {
713 TCGReg t = c1;
714 c1 = c2;
715 c2 = t;
716 c2const = 0;
717 cond = tcg_swap_cond(cond);
718 break;
719 }
720 /* FALLTHRU */
721
722 default:
723 tcg_out_cmp(s, c1, c2, c2const);
724 tcg_out_movi_imm13(s, ret, 0);
725 tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1);
726 return;
727 }
728
729 tcg_out_cmp(s, c1, c2, c2const);
730 if (cond == TCG_COND_LTU) {
731 tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC);
732 } else {
733 tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC);
734 }
735 }
736
737 static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
738 TCGReg c1, int32_t c2, int c2const)
739 {
740 if (use_vis3_instructions) {
741 switch (cond) {
742 case TCG_COND_NE:
743 if (c2 != 0) {
744 break;
745 }
746 c2 = c1, c2const = 0, c1 = TCG_REG_G0;
747 /* FALLTHRU */
748 case TCG_COND_LTU:
749 tcg_out_cmp(s, c1, c2, c2const);
750 tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC);
751 return;
752 default:
753 break;
754 }
755 }
756
757 /* For 64-bit signed comparisons vs zero, we can avoid the compare
758 if the input does not overlap the output. */
759 if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) {
760 tcg_out_movi_imm13(s, ret, 0);
761 tcg_out_movr(s, cond, ret, c1, 1, 1);
762 } else {
763 tcg_out_cmp(s, c1, c2, c2const);
764 tcg_out_movi_imm13(s, ret, 0);
765 tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1);
766 }
767 }
768
769 static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh,
770 TCGReg al, TCGReg ah, int32_t bl, int blconst,
771 int32_t bh, int bhconst, int opl, int oph)
772 {
773 TCGReg tmp = TCG_REG_T1;
774
775 /* Note that the low parts are fully consumed before tmp is set. */
776 if (rl != ah && (bhconst || rl != bh)) {
777 tmp = rl;
778 }
779
780 tcg_out_arithc(s, tmp, al, bl, blconst, opl);
781 tcg_out_arithc(s, rh, ah, bh, bhconst, oph);
782 tcg_out_mov(s, TCG_TYPE_I32, rl, tmp);
783 }
784
785 static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh,
786 TCGReg al, TCGReg ah, int32_t bl, int blconst,
787 int32_t bh, int bhconst, bool is_sub)
788 {
789 TCGReg tmp = TCG_REG_T1;
790
791 /* Note that the low parts are fully consumed before tmp is set. */
792 if (rl != ah && (bhconst || rl != bh)) {
793 tmp = rl;
794 }
795
796 tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC);
797
798 if (use_vis3_instructions && !is_sub) {
799 /* Note that ADDXC doesn't accept immediates. */
800 if (bhconst && bh != 0) {
801 tcg_out_movi_imm13(s, TCG_REG_T2, bh);
802 bh = TCG_REG_T2;
803 }
804 tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC);
805 } else if (bh == TCG_REG_G0) {
806 /* If we have a zero, we can perform the operation in two insns,
807 with the arithmetic first, and a conditional move into place. */
808 if (rh == ah) {
809 tcg_out_arithi(s, TCG_REG_T2, ah, 1,
810 is_sub ? ARITH_SUB : ARITH_ADD);
811 tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0);
812 } else {
813 tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD);
814 tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0);
815 }
816 } else {
817 /*
818 * Otherwise adjust BH as if there is carry into T2.
819 * Note that constant BH is constrained to 11 bits for the MOVCC,
820 * so the adjustment fits 12 bits.
821 */
822 if (bhconst) {
823 tcg_out_movi_imm13(s, TCG_REG_T2, bh + (is_sub ? -1 : 1));
824 } else {
825 tcg_out_arithi(s, TCG_REG_T2, bh, 1,
826 is_sub ? ARITH_SUB : ARITH_ADD);
827 }
828 /* ... smoosh T2 back to original BH if carry is clear ... */
829 tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst);
830 /* ... and finally perform the arithmetic with the new operand. */
831 tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD);
832 }
833
834 tcg_out_mov(s, TCG_TYPE_I64, rl, tmp);
835 }
836
837 static void tcg_out_jmpl_const(TCGContext *s, const tcg_insn_unit *dest,
838 bool in_prologue, bool tail_call)
839 {
840 uintptr_t desti = (uintptr_t)dest;
841
842 /* Be careful not to clobber %o7 for a tail call. */
843 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1,
844 desti & ~0xfff, in_prologue,
845 tail_call ? TCG_REG_G2 : TCG_REG_O7);
846 tcg_out_arithi(s, tail_call ? TCG_REG_G0 : TCG_REG_O7,
847 TCG_REG_T1, desti & 0xfff, JMPL);
848 }
849
850 static void tcg_out_call_nodelay(TCGContext *s, const tcg_insn_unit *dest,
851 bool in_prologue)
852 {
853 ptrdiff_t disp = tcg_pcrel_diff(s, dest);
854
855 if (disp == (int32_t)disp) {
856 tcg_out32(s, CALL | (uint32_t)disp >> 2);
857 } else {
858 tcg_out_jmpl_const(s, dest, in_prologue, false);
859 }
860 }
861
862 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
863 const TCGHelperInfo *info)
864 {
865 tcg_out_call_nodelay(s, dest, false);
866 tcg_out_nop(s);
867 }
868
869 static void tcg_out_mb(TCGContext *s, TCGArg a0)
870 {
871 /* Note that the TCG memory order constants mirror the Sparc MEMBAR. */
872 tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL));
873 }
874
875 #ifdef CONFIG_SOFTMMU
876 static const tcg_insn_unit *qemu_ld_trampoline[(MO_SSIZE | MO_BSWAP) + 1];
877 static const tcg_insn_unit *qemu_st_trampoline[(MO_SIZE | MO_BSWAP) + 1];
878
879 static void emit_extend(TCGContext *s, TCGReg r, int op)
880 {
881 /* Emit zero extend of 8, 16 or 32 bit data as
882 * required by the MO_* value op; do nothing for 64 bit.
883 */
884 switch (op & MO_SIZE) {
885 case MO_8:
886 tcg_out_arithi(s, r, r, 0xff, ARITH_AND);
887 break;
888 case MO_16:
889 tcg_out_arithi(s, r, r, 16, SHIFT_SLL);
890 tcg_out_arithi(s, r, r, 16, SHIFT_SRL);
891 break;
892 case MO_32:
893 tcg_out_arith(s, r, r, 0, SHIFT_SRL);
894 break;
895 case MO_64:
896 break;
897 }
898 }
899
900 static void build_trampolines(TCGContext *s)
901 {
902 static void * const qemu_ld_helpers[] = {
903 [MO_UB] = helper_ret_ldub_mmu,
904 [MO_SB] = helper_ret_ldsb_mmu,
905 [MO_LEUW] = helper_le_lduw_mmu,
906 [MO_LESW] = helper_le_ldsw_mmu,
907 [MO_LEUL] = helper_le_ldul_mmu,
908 [MO_LEUQ] = helper_le_ldq_mmu,
909 [MO_BEUW] = helper_be_lduw_mmu,
910 [MO_BESW] = helper_be_ldsw_mmu,
911 [MO_BEUL] = helper_be_ldul_mmu,
912 [MO_BEUQ] = helper_be_ldq_mmu,
913 };
914 static void * const qemu_st_helpers[] = {
915 [MO_UB] = helper_ret_stb_mmu,
916 [MO_LEUW] = helper_le_stw_mmu,
917 [MO_LEUL] = helper_le_stl_mmu,
918 [MO_LEUQ] = helper_le_stq_mmu,
919 [MO_BEUW] = helper_be_stw_mmu,
920 [MO_BEUL] = helper_be_stl_mmu,
921 [MO_BEUQ] = helper_be_stq_mmu,
922 };
923
924 int i;
925
926 for (i = 0; i < ARRAY_SIZE(qemu_ld_helpers); ++i) {
927 if (qemu_ld_helpers[i] == NULL) {
928 continue;
929 }
930
931 /* May as well align the trampoline. */
932 while ((uintptr_t)s->code_ptr & 15) {
933 tcg_out_nop(s);
934 }
935 qemu_ld_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr);
936
937 /* Set the retaddr operand. */
938 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O3, TCG_REG_O7);
939 /* Tail call. */
940 tcg_out_jmpl_const(s, qemu_ld_helpers[i], true, true);
941 /* delay slot -- set the env argument */
942 tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
943 }
944
945 for (i = 0; i < ARRAY_SIZE(qemu_st_helpers); ++i) {
946 if (qemu_st_helpers[i] == NULL) {
947 continue;
948 }
949
950 /* May as well align the trampoline. */
951 while ((uintptr_t)s->code_ptr & 15) {
952 tcg_out_nop(s);
953 }
954 qemu_st_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr);
955
956 emit_extend(s, TCG_REG_O2, i);
957
958 /* Set the retaddr operand. */
959 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O4, TCG_REG_O7);
960
961 /* Tail call. */
962 tcg_out_jmpl_const(s, qemu_st_helpers[i], true, true);
963 /* delay slot -- set the env argument */
964 tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
965 }
966 }
967 #else
968 static const tcg_insn_unit *qemu_unalign_ld_trampoline;
969 static const tcg_insn_unit *qemu_unalign_st_trampoline;
970
971 static void build_trampolines(TCGContext *s)
972 {
973 for (int ld = 0; ld < 2; ++ld) {
974 void *helper;
975
976 while ((uintptr_t)s->code_ptr & 15) {
977 tcg_out_nop(s);
978 }
979
980 if (ld) {
981 helper = helper_unaligned_ld;
982 qemu_unalign_ld_trampoline = tcg_splitwx_to_rx(s->code_ptr);
983 } else {
984 helper = helper_unaligned_st;
985 qemu_unalign_st_trampoline = tcg_splitwx_to_rx(s->code_ptr);
986 }
987
988 /* Tail call. */
989 tcg_out_jmpl_const(s, helper, true, true);
990 /* delay slot -- set the env argument */
991 tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
992 }
993 }
994 #endif
995
996 /* Generate global QEMU prologue and epilogue code */
997 static void tcg_target_qemu_prologue(TCGContext *s)
998 {
999 int tmp_buf_size, frame_size;
1000
1001 /*
1002 * The TCG temp buffer is at the top of the frame, immediately
1003 * below the frame pointer. Use the logical (aligned) offset here;
1004 * the stack bias is applied in temp_allocate_frame().
1005 */
1006 tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long);
1007 tcg_set_frame(s, TCG_REG_I6, -tmp_buf_size, tmp_buf_size);
1008
1009 /*
1010 * TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is
1011 * otherwise the minimal frame usable by callees.
1012 */
1013 frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS;
1014 frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size;
1015 frame_size += TCG_TARGET_STACK_ALIGN - 1;
1016 frame_size &= -TCG_TARGET_STACK_ALIGN;
1017 tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) |
1018 INSN_IMM13(-frame_size));
1019
1020 #ifndef CONFIG_SOFTMMU
1021 if (guest_base != 0) {
1022 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG,
1023 guest_base, true, TCG_REG_T1);
1024 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
1025 }
1026 #endif
1027
1028 /* We choose TCG_REG_TB such that no move is required. */
1029 if (USE_REG_TB) {
1030 QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1);
1031 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB);
1032 }
1033
1034 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL);
1035 /* delay slot */
1036 tcg_out_nop(s);
1037
1038 /* Epilogue for goto_ptr. */
1039 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
1040 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1041 /* delay slot */
1042 tcg_out_movi_imm13(s, TCG_REG_O0, 0);
1043
1044 build_trampolines(s);
1045 }
1046
1047 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
1048 {
1049 int i;
1050 for (i = 0; i < count; ++i) {
1051 p[i] = NOP;
1052 }
1053 }
1054
1055 #if defined(CONFIG_SOFTMMU)
1056
1057 /* We expect to use a 13-bit negative offset from ENV. */
1058 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1059 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12));
1060
1061 /* Perform the TLB load and compare.
1062
1063 Inputs:
1064 ADDRLO and ADDRHI contain the possible two parts of the address.
1065
1066 MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1067
1068 WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1069 This should be offsetof addr_read or addr_write.
1070
1071 The result of the TLB comparison is in %[ix]cc. The sanitized address
1072 is in the returned register, maybe %o0. The TLB addend is in %o1. */
1073
1074 static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index,
1075 MemOp opc, int which)
1076 {
1077 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1078 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1079 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1080 const TCGReg r0 = TCG_REG_O0;
1081 const TCGReg r1 = TCG_REG_O1;
1082 const TCGReg r2 = TCG_REG_O2;
1083 unsigned s_bits = opc & MO_SIZE;
1084 unsigned a_bits = get_alignment_bits(opc);
1085 tcg_target_long compare_mask;
1086
1087 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
1088 tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off);
1089 tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off);
1090
1091 /* Extract the page index, shifted into place for tlb index. */
1092 tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS,
1093 SHIFT_SRL);
1094 tcg_out_arith(s, r2, r2, r0, ARITH_AND);
1095
1096 /* Add the tlb_table pointer, creating the CPUTLBEntry address into R2. */
1097 tcg_out_arith(s, r2, r2, r1, ARITH_ADD);
1098
1099 /* Load the tlb comparator and the addend. */
1100 tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which);
1101 tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend));
1102
1103 /* Mask out the page offset, except for the required alignment.
1104 We don't support unaligned accesses. */
1105 if (a_bits < s_bits) {
1106 a_bits = s_bits;
1107 }
1108 compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1);
1109 if (check_fit_tl(compare_mask, 13)) {
1110 tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND);
1111 } else {
1112 tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask);
1113 tcg_out_arith(s, r2, addr, r2, ARITH_AND);
1114 }
1115 tcg_out_cmp(s, r0, r2, 0);
1116
1117 /* If the guest address must be zero-extended, do so now. */
1118 if (TARGET_LONG_BITS == 32) {
1119 tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL);
1120 return r0;
1121 }
1122 return addr;
1123 }
1124 #endif /* CONFIG_SOFTMMU */
1125
1126 static const int qemu_ld_opc[(MO_SSIZE | MO_BSWAP) + 1] = {
1127 [MO_UB] = LDUB,
1128 [MO_SB] = LDSB,
1129 [MO_UB | MO_LE] = LDUB,
1130 [MO_SB | MO_LE] = LDSB,
1131
1132 [MO_BEUW] = LDUH,
1133 [MO_BESW] = LDSH,
1134 [MO_BEUL] = LDUW,
1135 [MO_BESL] = LDSW,
1136 [MO_BEUQ] = LDX,
1137 [MO_BESQ] = LDX,
1138
1139 [MO_LEUW] = LDUH_LE,
1140 [MO_LESW] = LDSH_LE,
1141 [MO_LEUL] = LDUW_LE,
1142 [MO_LESL] = LDSW_LE,
1143 [MO_LEUQ] = LDX_LE,
1144 [MO_LESQ] = LDX_LE,
1145 };
1146
1147 static const int qemu_st_opc[(MO_SIZE | MO_BSWAP) + 1] = {
1148 [MO_UB] = STB,
1149
1150 [MO_BEUW] = STH,
1151 [MO_BEUL] = STW,
1152 [MO_BEUQ] = STX,
1153
1154 [MO_LEUW] = STH_LE,
1155 [MO_LEUL] = STW_LE,
1156 [MO_LEUQ] = STX_LE,
1157 };
1158
1159 static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr,
1160 MemOpIdx oi, bool is_64)
1161 {
1162 MemOp memop = get_memop(oi);
1163 tcg_insn_unit *label_ptr;
1164
1165 #ifdef CONFIG_SOFTMMU
1166 unsigned memi = get_mmuidx(oi);
1167 TCGReg addrz;
1168 const tcg_insn_unit *func;
1169
1170 addrz = tcg_out_tlb_load(s, addr, memi, memop,
1171 offsetof(CPUTLBEntry, addr_read));
1172
1173 /* The fast path is exactly one insn. Thus we can perform the
1174 entire TLB Hit in the (annulled) delay slot of the branch
1175 over the TLB Miss case. */
1176
1177 /* beq,a,pt %[xi]cc, label0 */
1178 label_ptr = s->code_ptr;
1179 tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
1180 | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
1181 /* delay slot */
1182 tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
1183 qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1184
1185 /* TLB Miss. */
1186
1187 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O1, addrz);
1188
1189 /* We use the helpers to extend SB and SW data, leaving the case
1190 of SL needing explicit extending below. */
1191 if ((memop & MO_SSIZE) == MO_SL) {
1192 func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)];
1193 } else {
1194 func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)];
1195 }
1196 tcg_debug_assert(func != NULL);
1197 tcg_out_call_nodelay(s, func, false);
1198 /* delay slot */
1199 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_O2, oi);
1200
1201 /* We let the helper sign-extend SB and SW, but leave SL for here. */
1202 if (is_64 && (memop & MO_SSIZE) == MO_SL) {
1203 tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA);
1204 } else {
1205 tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0);
1206 }
1207
1208 *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1209 #else
1210 TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0);
1211 unsigned a_bits = get_alignment_bits(memop);
1212 unsigned s_bits = memop & MO_SIZE;
1213 unsigned t_bits;
1214
1215 if (TARGET_LONG_BITS == 32) {
1216 tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
1217 addr = TCG_REG_T1;
1218 }
1219
1220 /*
1221 * Normal case: alignment equal to access size.
1222 */
1223 if (a_bits == s_bits) {
1224 tcg_out_ldst_rr(s, data, addr, index,
1225 qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1226 return;
1227 }
1228
1229 /*
1230 * Test for at least natural alignment, and assume most accesses
1231 * will be aligned -- perform a straight load in the delay slot.
1232 * This is required to preserve atomicity for aligned accesses.
1233 */
1234 t_bits = MAX(a_bits, s_bits);
1235 tcg_debug_assert(t_bits < 13);
1236 tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC);
1237
1238 /* beq,a,pt %icc, label */
1239 label_ptr = s->code_ptr;
1240 tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0);
1241 /* delay slot */
1242 tcg_out_ldst_rr(s, data, addr, index,
1243 qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1244
1245 if (a_bits >= s_bits) {
1246 /*
1247 * Overalignment: A successful alignment test will perform the memory
1248 * operation in the delay slot, and failure need only invoke the
1249 * handler for SIGBUS.
1250 */
1251 tcg_out_call_nodelay(s, qemu_unalign_ld_trampoline, false);
1252 /* delay slot -- move to low part of argument reg */
1253 tcg_out_mov_delay(s, TCG_REG_O1, addr);
1254 } else {
1255 /* Underalignment: load by pieces of minimum alignment. */
1256 int ld_opc, a_size, s_size, i;
1257
1258 /*
1259 * Force full address into T1 early; avoids problems with
1260 * overlap between @addr and @data.
1261 */
1262 tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD);
1263
1264 a_size = 1 << a_bits;
1265 s_size = 1 << s_bits;
1266 if ((memop & MO_BSWAP) == MO_BE) {
1267 ld_opc = qemu_ld_opc[a_bits | MO_BE | (memop & MO_SIGN)];
1268 tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc);
1269 ld_opc = qemu_ld_opc[a_bits | MO_BE];
1270 for (i = a_size; i < s_size; i += a_size) {
1271 tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc);
1272 tcg_out_arithi(s, data, data, a_size, SHIFT_SLLX);
1273 tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
1274 }
1275 } else if (a_bits == 0) {
1276 ld_opc = LDUB;
1277 tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc);
1278 for (i = a_size; i < s_size; i += a_size) {
1279 if ((memop & MO_SIGN) && i == s_size - a_size) {
1280 ld_opc = LDSB;
1281 }
1282 tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc);
1283 tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX);
1284 tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
1285 }
1286 } else {
1287 ld_opc = qemu_ld_opc[a_bits | MO_LE];
1288 tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, ld_opc);
1289 for (i = a_size; i < s_size; i += a_size) {
1290 tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD);
1291 if ((memop & MO_SIGN) && i == s_size - a_size) {
1292 ld_opc = qemu_ld_opc[a_bits | MO_LE | MO_SIGN];
1293 }
1294 tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, ld_opc);
1295 tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX);
1296 tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
1297 }
1298 }
1299 }
1300
1301 *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1302 #endif /* CONFIG_SOFTMMU */
1303 }
1304
1305 static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr,
1306 MemOpIdx oi)
1307 {
1308 MemOp memop = get_memop(oi);
1309 tcg_insn_unit *label_ptr;
1310
1311 #ifdef CONFIG_SOFTMMU
1312 unsigned memi = get_mmuidx(oi);
1313 TCGReg addrz;
1314 const tcg_insn_unit *func;
1315
1316 addrz = tcg_out_tlb_load(s, addr, memi, memop,
1317 offsetof(CPUTLBEntry, addr_write));
1318
1319 /* The fast path is exactly one insn. Thus we can perform the entire
1320 TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */
1321 /* beq,a,pt %[xi]cc, label0 */
1322 label_ptr = s->code_ptr;
1323 tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
1324 | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
1325 /* delay slot */
1326 tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
1327 qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1328
1329 /* TLB Miss. */
1330
1331 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O1, addrz);
1332 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_O2, data);
1333
1334 func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)];
1335 tcg_debug_assert(func != NULL);
1336 tcg_out_call_nodelay(s, func, false);
1337 /* delay slot */
1338 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_O3, oi);
1339
1340 *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1341 #else
1342 TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0);
1343 unsigned a_bits = get_alignment_bits(memop);
1344 unsigned s_bits = memop & MO_SIZE;
1345 unsigned t_bits;
1346
1347 if (TARGET_LONG_BITS == 32) {
1348 tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
1349 addr = TCG_REG_T1;
1350 }
1351
1352 /*
1353 * Normal case: alignment equal to access size.
1354 */
1355 if (a_bits == s_bits) {
1356 tcg_out_ldst_rr(s, data, addr, index,
1357 qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1358 return;
1359 }
1360
1361 /*
1362 * Test for at least natural alignment, and assume most accesses
1363 * will be aligned -- perform a straight store in the delay slot.
1364 * This is required to preserve atomicity for aligned accesses.
1365 */
1366 t_bits = MAX(a_bits, s_bits);
1367 tcg_debug_assert(t_bits < 13);
1368 tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC);
1369
1370 /* beq,a,pt %icc, label */
1371 label_ptr = s->code_ptr;
1372 tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0);
1373 /* delay slot */
1374 tcg_out_ldst_rr(s, data, addr, index,
1375 qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1376
1377 if (a_bits >= s_bits) {
1378 /*
1379 * Overalignment: A successful alignment test will perform the memory
1380 * operation in the delay slot, and failure need only invoke the
1381 * handler for SIGBUS.
1382 */
1383 tcg_out_call_nodelay(s, qemu_unalign_st_trampoline, false);
1384 /* delay slot -- move to low part of argument reg */
1385 tcg_out_mov_delay(s, TCG_REG_O1, addr);
1386 } else {
1387 /* Underalignment: store by pieces of minimum alignment. */
1388 int st_opc, a_size, s_size, i;
1389
1390 /*
1391 * Force full address into T1 early; avoids problems with
1392 * overlap between @addr and @data.
1393 */
1394 tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD);
1395
1396 a_size = 1 << a_bits;
1397 s_size = 1 << s_bits;
1398 if ((memop & MO_BSWAP) == MO_BE) {
1399 st_opc = qemu_st_opc[a_bits | MO_BE];
1400 for (i = 0; i < s_size; i += a_size) {
1401 TCGReg d = data;
1402 int shift = (s_size - a_size - i) * 8;
1403 if (shift) {
1404 d = TCG_REG_T2;
1405 tcg_out_arithi(s, d, data, shift, SHIFT_SRLX);
1406 }
1407 tcg_out_ldst(s, d, TCG_REG_T1, i, st_opc);
1408 }
1409 } else if (a_bits == 0) {
1410 tcg_out_ldst(s, data, TCG_REG_T1, 0, STB);
1411 for (i = 1; i < s_size; i++) {
1412 tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX);
1413 tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, STB);
1414 }
1415 } else {
1416 /* Note that ST*A with immediate asi must use indexed address. */
1417 st_opc = qemu_st_opc[a_bits + MO_LE];
1418 tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, st_opc);
1419 for (i = a_size; i < s_size; i += a_size) {
1420 tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX);
1421 tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD);
1422 tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, st_opc);
1423 }
1424 }
1425 }
1426
1427 *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1428 #endif /* CONFIG_SOFTMMU */
1429 }
1430
1431 static void tcg_out_op(TCGContext *s, TCGOpcode opc,
1432 const TCGArg args[TCG_MAX_OP_ARGS],
1433 const int const_args[TCG_MAX_OP_ARGS])
1434 {
1435 TCGArg a0, a1, a2;
1436 int c, c2;
1437
1438 /* Hoist the loads of the most common arguments. */
1439 a0 = args[0];
1440 a1 = args[1];
1441 a2 = args[2];
1442 c2 = const_args[2];
1443
1444 switch (opc) {
1445 case INDEX_op_exit_tb:
1446 if (check_fit_ptr(a0, 13)) {
1447 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1448 tcg_out_movi_imm13(s, TCG_REG_O0, a0);
1449 break;
1450 } else if (USE_REG_TB) {
1451 intptr_t tb_diff = tcg_tbrel_diff(s, (void *)a0);
1452 if (check_fit_ptr(tb_diff, 13)) {
1453 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1454 /* Note that TCG_REG_TB has been unwound to O1. */
1455 tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD);
1456 break;
1457 }
1458 }
1459 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff);
1460 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1461 tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR);
1462 break;
1463 case INDEX_op_goto_tb:
1464 if (s->tb_jmp_insn_offset) {
1465 /* direct jump method */
1466 if (USE_REG_TB) {
1467 /* make sure the patch is 8-byte aligned. */
1468 if ((intptr_t)s->code_ptr & 4) {
1469 tcg_out_nop(s);
1470 }
1471 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1472 tcg_out_sethi(s, TCG_REG_T1, 0);
1473 tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR);
1474 tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL);
1475 tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD);
1476 } else {
1477 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1478 tcg_out32(s, CALL);
1479 tcg_out_nop(s);
1480 }
1481 } else {
1482 /* indirect jump method */
1483 tcg_out_ld_ptr(s, TCG_REG_TB, s->tb_jmp_target_addr + a0);
1484 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL);
1485 tcg_out_nop(s);
1486 }
1487 set_jmp_reset_offset(s, a0);
1488
1489 /* For the unlinked path of goto_tb, we need to reset
1490 TCG_REG_TB to the beginning of this TB. */
1491 if (USE_REG_TB) {
1492 c = -tcg_current_code_size(s);
1493 if (check_fit_i32(c, 13)) {
1494 tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD);
1495 } else {
1496 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c);
1497 tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB,
1498 TCG_REG_T1, ARITH_ADD);
1499 }
1500 }
1501 break;
1502 case INDEX_op_goto_ptr:
1503 tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL);
1504 if (USE_REG_TB) {
1505 tcg_out_mov_delay(s, TCG_REG_TB, a0);
1506 } else {
1507 tcg_out_nop(s);
1508 }
1509 break;
1510 case INDEX_op_br:
1511 tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0));
1512 tcg_out_nop(s);
1513 break;
1514
1515 #define OP_32_64(x) \
1516 glue(glue(case INDEX_op_, x), _i32): \
1517 glue(glue(case INDEX_op_, x), _i64)
1518
1519 OP_32_64(ld8u):
1520 tcg_out_ldst(s, a0, a1, a2, LDUB);
1521 break;
1522 OP_32_64(ld8s):
1523 tcg_out_ldst(s, a0, a1, a2, LDSB);
1524 break;
1525 OP_32_64(ld16u):
1526 tcg_out_ldst(s, a0, a1, a2, LDUH);
1527 break;
1528 OP_32_64(ld16s):
1529 tcg_out_ldst(s, a0, a1, a2, LDSH);
1530 break;
1531 case INDEX_op_ld_i32:
1532 case INDEX_op_ld32u_i64:
1533 tcg_out_ldst(s, a0, a1, a2, LDUW);
1534 break;
1535 OP_32_64(st8):
1536 tcg_out_ldst(s, a0, a1, a2, STB);
1537 break;
1538 OP_32_64(st16):
1539 tcg_out_ldst(s, a0, a1, a2, STH);
1540 break;
1541 case INDEX_op_st_i32:
1542 case INDEX_op_st32_i64:
1543 tcg_out_ldst(s, a0, a1, a2, STW);
1544 break;
1545 OP_32_64(add):
1546 c = ARITH_ADD;
1547 goto gen_arith;
1548 OP_32_64(sub):
1549 c = ARITH_SUB;
1550 goto gen_arith;
1551 OP_32_64(and):
1552 c = ARITH_AND;
1553 goto gen_arith;
1554 OP_32_64(andc):
1555 c = ARITH_ANDN;
1556 goto gen_arith;
1557 OP_32_64(or):
1558 c = ARITH_OR;
1559 goto gen_arith;
1560 OP_32_64(orc):
1561 c = ARITH_ORN;
1562 goto gen_arith;
1563 OP_32_64(xor):
1564 c = ARITH_XOR;
1565 goto gen_arith;
1566 case INDEX_op_shl_i32:
1567 c = SHIFT_SLL;
1568 do_shift32:
1569 /* Limit immediate shift count lest we create an illegal insn. */
1570 tcg_out_arithc(s, a0, a1, a2 & 31, c2, c);
1571 break;
1572 case INDEX_op_shr_i32:
1573 c = SHIFT_SRL;
1574 goto do_shift32;
1575 case INDEX_op_sar_i32:
1576 c = SHIFT_SRA;
1577 goto do_shift32;
1578 case INDEX_op_mul_i32:
1579 c = ARITH_UMUL;
1580 goto gen_arith;
1581
1582 OP_32_64(neg):
1583 c = ARITH_SUB;
1584 goto gen_arith1;
1585 OP_32_64(not):
1586 c = ARITH_ORN;
1587 goto gen_arith1;
1588
1589 case INDEX_op_div_i32:
1590 tcg_out_div32(s, a0, a1, a2, c2, 0);
1591 break;
1592 case INDEX_op_divu_i32:
1593 tcg_out_div32(s, a0, a1, a2, c2, 1);
1594 break;
1595
1596 case INDEX_op_brcond_i32:
1597 tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3]));
1598 break;
1599 case INDEX_op_setcond_i32:
1600 tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2);
1601 break;
1602 case INDEX_op_movcond_i32:
1603 tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
1604 break;
1605
1606 case INDEX_op_add2_i32:
1607 tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
1608 args[4], const_args[4], args[5], const_args[5],
1609 ARITH_ADDCC, ARITH_ADDC);
1610 break;
1611 case INDEX_op_sub2_i32:
1612 tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
1613 args[4], const_args[4], args[5], const_args[5],
1614 ARITH_SUBCC, ARITH_SUBC);
1615 break;
1616 case INDEX_op_mulu2_i32:
1617 c = ARITH_UMUL;
1618 goto do_mul2;
1619 case INDEX_op_muls2_i32:
1620 c = ARITH_SMUL;
1621 do_mul2:
1622 /* The 32-bit multiply insns produce a full 64-bit result. */
1623 tcg_out_arithc(s, a0, a2, args[3], const_args[3], c);
1624 tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX);
1625 break;
1626
1627 case INDEX_op_qemu_ld_i32:
1628 tcg_out_qemu_ld(s, a0, a1, a2, false);
1629 break;
1630 case INDEX_op_qemu_ld_i64:
1631 tcg_out_qemu_ld(s, a0, a1, a2, true);
1632 break;
1633 case INDEX_op_qemu_st_i32:
1634 case INDEX_op_qemu_st_i64:
1635 tcg_out_qemu_st(s, a0, a1, a2);
1636 break;
1637
1638 case INDEX_op_ld32s_i64:
1639 tcg_out_ldst(s, a0, a1, a2, LDSW);
1640 break;
1641 case INDEX_op_ld_i64:
1642 tcg_out_ldst(s, a0, a1, a2, LDX);
1643 break;
1644 case INDEX_op_st_i64:
1645 tcg_out_ldst(s, a0, a1, a2, STX);
1646 break;
1647 case INDEX_op_shl_i64:
1648 c = SHIFT_SLLX;
1649 do_shift64:
1650 /* Limit immediate shift count lest we create an illegal insn. */
1651 tcg_out_arithc(s, a0, a1, a2 & 63, c2, c);
1652 break;
1653 case INDEX_op_shr_i64:
1654 c = SHIFT_SRLX;
1655 goto do_shift64;
1656 case INDEX_op_sar_i64:
1657 c = SHIFT_SRAX;
1658 goto do_shift64;
1659 case INDEX_op_mul_i64:
1660 c = ARITH_MULX;
1661 goto gen_arith;
1662 case INDEX_op_div_i64:
1663 c = ARITH_SDIVX;
1664 goto gen_arith;
1665 case INDEX_op_divu_i64:
1666 c = ARITH_UDIVX;
1667 goto gen_arith;
1668 case INDEX_op_ext_i32_i64:
1669 case INDEX_op_ext32s_i64:
1670 tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA);
1671 break;
1672 case INDEX_op_extu_i32_i64:
1673 case INDEX_op_ext32u_i64:
1674 tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL);
1675 break;
1676 case INDEX_op_extrl_i64_i32:
1677 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
1678 break;
1679 case INDEX_op_extrh_i64_i32:
1680 tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX);
1681 break;
1682
1683 case INDEX_op_brcond_i64:
1684 tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3]));
1685 break;
1686 case INDEX_op_setcond_i64:
1687 tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2);
1688 break;
1689 case INDEX_op_movcond_i64:
1690 tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
1691 break;
1692 case INDEX_op_add2_i64:
1693 tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
1694 const_args[4], args[5], const_args[5], false);
1695 break;
1696 case INDEX_op_sub2_i64:
1697 tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
1698 const_args[4], args[5], const_args[5], true);
1699 break;
1700 case INDEX_op_muluh_i64:
1701 tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI);
1702 break;
1703
1704 gen_arith:
1705 tcg_out_arithc(s, a0, a1, a2, c2, c);
1706 break;
1707
1708 gen_arith1:
1709 tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c);
1710 break;
1711
1712 case INDEX_op_mb:
1713 tcg_out_mb(s, a0);
1714 break;
1715
1716 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
1717 case INDEX_op_mov_i64:
1718 case INDEX_op_call: /* Always emitted via tcg_out_call. */
1719 default:
1720 tcg_abort();
1721 }
1722 }
1723
1724 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
1725 {
1726 switch (op) {
1727 case INDEX_op_goto_ptr:
1728 return C_O0_I1(r);
1729
1730 case INDEX_op_ld8u_i32:
1731 case INDEX_op_ld8u_i64:
1732 case INDEX_op_ld8s_i32:
1733 case INDEX_op_ld8s_i64:
1734 case INDEX_op_ld16u_i32:
1735 case INDEX_op_ld16u_i64:
1736 case INDEX_op_ld16s_i32:
1737 case INDEX_op_ld16s_i64:
1738 case INDEX_op_ld_i32:
1739 case INDEX_op_ld32u_i64:
1740 case INDEX_op_ld32s_i64:
1741 case INDEX_op_ld_i64:
1742 case INDEX_op_neg_i32:
1743 case INDEX_op_neg_i64:
1744 case INDEX_op_not_i32:
1745 case INDEX_op_not_i64:
1746 case INDEX_op_ext32s_i64:
1747 case INDEX_op_ext32u_i64:
1748 case INDEX_op_ext_i32_i64:
1749 case INDEX_op_extu_i32_i64:
1750 case INDEX_op_extrl_i64_i32:
1751 case INDEX_op_extrh_i64_i32:
1752 return C_O1_I1(r, r);
1753
1754 case INDEX_op_st8_i32:
1755 case INDEX_op_st8_i64:
1756 case INDEX_op_st16_i32:
1757 case INDEX_op_st16_i64:
1758 case INDEX_op_st_i32:
1759 case INDEX_op_st32_i64:
1760 case INDEX_op_st_i64:
1761 return C_O0_I2(rZ, r);
1762
1763 case INDEX_op_add_i32:
1764 case INDEX_op_add_i64:
1765 case INDEX_op_mul_i32:
1766 case INDEX_op_mul_i64:
1767 case INDEX_op_div_i32:
1768 case INDEX_op_div_i64:
1769 case INDEX_op_divu_i32:
1770 case INDEX_op_divu_i64:
1771 case INDEX_op_sub_i32:
1772 case INDEX_op_sub_i64:
1773 case INDEX_op_and_i32:
1774 case INDEX_op_and_i64:
1775 case INDEX_op_andc_i32:
1776 case INDEX_op_andc_i64:
1777 case INDEX_op_or_i32:
1778 case INDEX_op_or_i64:
1779 case INDEX_op_orc_i32:
1780 case INDEX_op_orc_i64:
1781 case INDEX_op_xor_i32:
1782 case INDEX_op_xor_i64:
1783 case INDEX_op_shl_i32:
1784 case INDEX_op_shl_i64:
1785 case INDEX_op_shr_i32:
1786 case INDEX_op_shr_i64:
1787 case INDEX_op_sar_i32:
1788 case INDEX_op_sar_i64:
1789 case INDEX_op_setcond_i32:
1790 case INDEX_op_setcond_i64:
1791 return C_O1_I2(r, rZ, rJ);
1792
1793 case INDEX_op_brcond_i32:
1794 case INDEX_op_brcond_i64:
1795 return C_O0_I2(rZ, rJ);
1796 case INDEX_op_movcond_i32:
1797 case INDEX_op_movcond_i64:
1798 return C_O1_I4(r, rZ, rJ, rI, 0);
1799 case INDEX_op_add2_i32:
1800 case INDEX_op_add2_i64:
1801 case INDEX_op_sub2_i32:
1802 case INDEX_op_sub2_i64:
1803 return C_O2_I4(r, r, rZ, rZ, rJ, rJ);
1804 case INDEX_op_mulu2_i32:
1805 case INDEX_op_muls2_i32:
1806 return C_O2_I2(r, r, rZ, rJ);
1807 case INDEX_op_muluh_i64:
1808 return C_O1_I2(r, r, r);
1809
1810 case INDEX_op_qemu_ld_i32:
1811 case INDEX_op_qemu_ld_i64:
1812 return C_O1_I1(r, s);
1813 case INDEX_op_qemu_st_i32:
1814 case INDEX_op_qemu_st_i64:
1815 return C_O0_I2(sZ, s);
1816
1817 default:
1818 g_assert_not_reached();
1819 }
1820 }
1821
1822 static void tcg_target_init(TCGContext *s)
1823 {
1824 /*
1825 * Only probe for the platform and capabilities if we haven't already
1826 * determined maximum values at compile time.
1827 */
1828 #ifndef use_vis3_instructions
1829 {
1830 unsigned long hwcap = qemu_getauxval(AT_HWCAP);
1831 use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0;
1832 }
1833 #endif
1834
1835 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
1836 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
1837
1838 tcg_target_call_clobber_regs = 0;
1839 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1);
1840 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2);
1841 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3);
1842 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4);
1843 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5);
1844 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6);
1845 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7);
1846 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0);
1847 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1);
1848 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2);
1849 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3);
1850 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4);
1851 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5);
1852 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6);
1853 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7);
1854
1855 s->reserved_regs = 0;
1856 tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */
1857 tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */
1858 tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */
1859 tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */
1860 tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */
1861 tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */
1862 tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */
1863 tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */
1864 }
1865
1866 #define ELF_HOST_MACHINE EM_SPARCV9
1867
1868 typedef struct {
1869 DebugFrameHeader h;
1870 uint8_t fde_def_cfa[4];
1871 uint8_t fde_win_save;
1872 uint8_t fde_ret_save[3];
1873 } DebugFrame;
1874
1875 static const DebugFrame debug_frame = {
1876 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
1877 .h.cie.id = -1,
1878 .h.cie.version = 1,
1879 .h.cie.code_align = 1,
1880 .h.cie.data_align = -sizeof(void *) & 0x7f,
1881 .h.cie.return_column = 15, /* o7 */
1882
1883 /* Total FDE size does not include the "len" member. */
1884 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
1885
1886 .fde_def_cfa = {
1887 12, 30, /* DW_CFA_def_cfa i6, 2047 */
1888 (2047 & 0x7f) | 0x80, (2047 >> 7)
1889 },
1890 .fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */
1891 .fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */
1892 };
1893
1894 void tcg_register_jit(const void *buf, size_t buf_size)
1895 {
1896 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
1897 }
1898
1899 void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
1900 uintptr_t jmp_rw, uintptr_t addr)
1901 {
1902 intptr_t tb_disp = addr - tc_ptr;
1903 intptr_t br_disp = addr - jmp_rx;
1904 tcg_insn_unit i1, i2;
1905
1906 /* We can reach the entire address space for ILP32.
1907 For LP64, the code_gen_buffer can't be larger than 2GB. */
1908 tcg_debug_assert(tb_disp == (int32_t)tb_disp);
1909 tcg_debug_assert(br_disp == (int32_t)br_disp);
1910
1911 if (!USE_REG_TB) {
1912 qatomic_set((uint32_t *)jmp_rw,
1913 deposit32(CALL, 0, 30, br_disp >> 2));
1914 flush_idcache_range(jmp_rx, jmp_rw, 4);
1915 return;
1916 }
1917
1918 /* This does not exercise the range of the branch, but we do
1919 still need to be able to load the new value of TCG_REG_TB.
1920 But this does still happen quite often. */
1921 if (check_fit_ptr(tb_disp, 13)) {
1922 /* ba,pt %icc, addr */
1923 i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A)
1924 | BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp));
1925 i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB)
1926 | INSN_IMM13(tb_disp));
1927 } else if (tb_disp >= 0) {
1928 i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10);
1929 i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
1930 | INSN_IMM13(tb_disp & 0x3ff));
1931 } else {
1932 i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10);
1933 i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
1934 | INSN_IMM13((tb_disp & 0x3ff) | -0x400));
1935 }
1936
1937 qatomic_set((uint64_t *)jmp_rw, deposit64(i2, 32, 32, i1));
1938 flush_idcache_range(jmp_rx, jmp_rw, 8);
1939 }