]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/tcg-op-gvec.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20180316' into staging
[mirror_qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "tcg.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 /* Verify vector size and alignment rules. OFS should be the OR of all
30 of the operand offsets so that we can check them all at once. */
31 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
32 {
33 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
34 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
35 tcg_debug_assert(oprsz > 0);
36 tcg_debug_assert(oprsz <= maxsz);
37 tcg_debug_assert((oprsz & opr_align) == 0);
38 tcg_debug_assert((maxsz & max_align) == 0);
39 tcg_debug_assert((ofs & max_align) == 0);
40 }
41
42 /* Verify vector overlap rules for two operands. */
43 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
44 {
45 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
46 }
47
48 /* Verify vector overlap rules for three operands. */
49 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
50 {
51 check_overlap_2(d, a, s);
52 check_overlap_2(d, b, s);
53 check_overlap_2(a, b, s);
54 }
55
56 /* Verify vector overlap rules for four operands. */
57 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
58 uint32_t c, uint32_t s)
59 {
60 check_overlap_2(d, a, s);
61 check_overlap_2(d, b, s);
62 check_overlap_2(d, c, s);
63 check_overlap_2(a, b, s);
64 check_overlap_2(a, c, s);
65 check_overlap_2(b, c, s);
66 }
67
68 /* Create a descriptor from components. */
69 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
70 {
71 uint32_t desc = 0;
72
73 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
74 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
75 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
76
77 oprsz = (oprsz / 8) - 1;
78 maxsz = (maxsz / 8) - 1;
79 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
80 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
81 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
82
83 return desc;
84 }
85
86 /* Generate a call to a gvec-style helper with two vector operands. */
87 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
88 uint32_t oprsz, uint32_t maxsz, int32_t data,
89 gen_helper_gvec_2 *fn)
90 {
91 TCGv_ptr a0, a1;
92 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
93
94 a0 = tcg_temp_new_ptr();
95 a1 = tcg_temp_new_ptr();
96
97 tcg_gen_addi_ptr(a0, cpu_env, dofs);
98 tcg_gen_addi_ptr(a1, cpu_env, aofs);
99
100 fn(a0, a1, desc);
101
102 tcg_temp_free_ptr(a0);
103 tcg_temp_free_ptr(a1);
104 tcg_temp_free_i32(desc);
105 }
106
107 /* Generate a call to a gvec-style helper with two vector operands
108 and one scalar operand. */
109 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
110 uint32_t oprsz, uint32_t maxsz, int32_t data,
111 gen_helper_gvec_2i *fn)
112 {
113 TCGv_ptr a0, a1;
114 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
115
116 a0 = tcg_temp_new_ptr();
117 a1 = tcg_temp_new_ptr();
118
119 tcg_gen_addi_ptr(a0, cpu_env, dofs);
120 tcg_gen_addi_ptr(a1, cpu_env, aofs);
121
122 fn(a0, a1, c, desc);
123
124 tcg_temp_free_ptr(a0);
125 tcg_temp_free_ptr(a1);
126 tcg_temp_free_i32(desc);
127 }
128
129 /* Generate a call to a gvec-style helper with three vector operands. */
130 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
131 uint32_t oprsz, uint32_t maxsz, int32_t data,
132 gen_helper_gvec_3 *fn)
133 {
134 TCGv_ptr a0, a1, a2;
135 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
136
137 a0 = tcg_temp_new_ptr();
138 a1 = tcg_temp_new_ptr();
139 a2 = tcg_temp_new_ptr();
140
141 tcg_gen_addi_ptr(a0, cpu_env, dofs);
142 tcg_gen_addi_ptr(a1, cpu_env, aofs);
143 tcg_gen_addi_ptr(a2, cpu_env, bofs);
144
145 fn(a0, a1, a2, desc);
146
147 tcg_temp_free_ptr(a0);
148 tcg_temp_free_ptr(a1);
149 tcg_temp_free_ptr(a2);
150 tcg_temp_free_i32(desc);
151 }
152
153 /* Generate a call to a gvec-style helper with four vector operands. */
154 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
156 int32_t data, gen_helper_gvec_4 *fn)
157 {
158 TCGv_ptr a0, a1, a2, a3;
159 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
160
161 a0 = tcg_temp_new_ptr();
162 a1 = tcg_temp_new_ptr();
163 a2 = tcg_temp_new_ptr();
164 a3 = tcg_temp_new_ptr();
165
166 tcg_gen_addi_ptr(a0, cpu_env, dofs);
167 tcg_gen_addi_ptr(a1, cpu_env, aofs);
168 tcg_gen_addi_ptr(a2, cpu_env, bofs);
169 tcg_gen_addi_ptr(a3, cpu_env, cofs);
170
171 fn(a0, a1, a2, a3, desc);
172
173 tcg_temp_free_ptr(a0);
174 tcg_temp_free_ptr(a1);
175 tcg_temp_free_ptr(a2);
176 tcg_temp_free_ptr(a3);
177 tcg_temp_free_i32(desc);
178 }
179
180 /* Generate a call to a gvec-style helper with five vector operands. */
181 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
182 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
183 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
184 {
185 TCGv_ptr a0, a1, a2, a3, a4;
186 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
187
188 a0 = tcg_temp_new_ptr();
189 a1 = tcg_temp_new_ptr();
190 a2 = tcg_temp_new_ptr();
191 a3 = tcg_temp_new_ptr();
192 a4 = tcg_temp_new_ptr();
193
194 tcg_gen_addi_ptr(a0, cpu_env, dofs);
195 tcg_gen_addi_ptr(a1, cpu_env, aofs);
196 tcg_gen_addi_ptr(a2, cpu_env, bofs);
197 tcg_gen_addi_ptr(a3, cpu_env, cofs);
198 tcg_gen_addi_ptr(a4, cpu_env, xofs);
199
200 fn(a0, a1, a2, a3, a4, desc);
201
202 tcg_temp_free_ptr(a0);
203 tcg_temp_free_ptr(a1);
204 tcg_temp_free_ptr(a2);
205 tcg_temp_free_ptr(a3);
206 tcg_temp_free_ptr(a4);
207 tcg_temp_free_i32(desc);
208 }
209
210 /* Generate a call to a gvec-style helper with three vector operands
211 and an extra pointer operand. */
212 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
213 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
214 int32_t data, gen_helper_gvec_2_ptr *fn)
215 {
216 TCGv_ptr a0, a1;
217 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
218
219 a0 = tcg_temp_new_ptr();
220 a1 = tcg_temp_new_ptr();
221
222 tcg_gen_addi_ptr(a0, cpu_env, dofs);
223 tcg_gen_addi_ptr(a1, cpu_env, aofs);
224
225 fn(a0, a1, ptr, desc);
226
227 tcg_temp_free_ptr(a0);
228 tcg_temp_free_ptr(a1);
229 tcg_temp_free_i32(desc);
230 }
231
232 /* Generate a call to a gvec-style helper with three vector operands
233 and an extra pointer operand. */
234 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
235 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
236 int32_t data, gen_helper_gvec_3_ptr *fn)
237 {
238 TCGv_ptr a0, a1, a2;
239 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
240
241 a0 = tcg_temp_new_ptr();
242 a1 = tcg_temp_new_ptr();
243 a2 = tcg_temp_new_ptr();
244
245 tcg_gen_addi_ptr(a0, cpu_env, dofs);
246 tcg_gen_addi_ptr(a1, cpu_env, aofs);
247 tcg_gen_addi_ptr(a2, cpu_env, bofs);
248
249 fn(a0, a1, a2, ptr, desc);
250
251 tcg_temp_free_ptr(a0);
252 tcg_temp_free_ptr(a1);
253 tcg_temp_free_ptr(a2);
254 tcg_temp_free_i32(desc);
255 }
256
257 /* Generate a call to a gvec-style helper with four vector operands
258 and an extra pointer operand. */
259 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
260 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
261 uint32_t maxsz, int32_t data,
262 gen_helper_gvec_4_ptr *fn)
263 {
264 TCGv_ptr a0, a1, a2, a3;
265 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
266
267 a0 = tcg_temp_new_ptr();
268 a1 = tcg_temp_new_ptr();
269 a2 = tcg_temp_new_ptr();
270 a3 = tcg_temp_new_ptr();
271
272 tcg_gen_addi_ptr(a0, cpu_env, dofs);
273 tcg_gen_addi_ptr(a1, cpu_env, aofs);
274 tcg_gen_addi_ptr(a2, cpu_env, bofs);
275 tcg_gen_addi_ptr(a3, cpu_env, cofs);
276
277 fn(a0, a1, a2, a3, ptr, desc);
278
279 tcg_temp_free_ptr(a0);
280 tcg_temp_free_ptr(a1);
281 tcg_temp_free_ptr(a2);
282 tcg_temp_free_ptr(a3);
283 tcg_temp_free_i32(desc);
284 }
285
286 /* Return true if we want to implement something of OPRSZ bytes
287 in units of LNSZ. This limits the expansion of inline code. */
288 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
289 {
290 uint32_t lnct = oprsz / lnsz;
291 return lnct >= 1 && lnct <= MAX_UNROLL;
292 }
293
294 static void expand_clr(uint32_t dofs, uint32_t maxsz);
295
296 /* Duplicate C as per VECE. */
297 uint64_t (dup_const)(unsigned vece, uint64_t c)
298 {
299 switch (vece) {
300 case MO_8:
301 return 0x0101010101010101ull * (uint8_t)c;
302 case MO_16:
303 return 0x0001000100010001ull * (uint16_t)c;
304 case MO_32:
305 return 0x0000000100000001ull * (uint32_t)c;
306 case MO_64:
307 return c;
308 default:
309 g_assert_not_reached();
310 }
311 }
312
313 /* Duplicate IN into OUT as per VECE. */
314 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
315 {
316 switch (vece) {
317 case MO_8:
318 tcg_gen_ext8u_i32(out, in);
319 tcg_gen_muli_i32(out, out, 0x01010101);
320 break;
321 case MO_16:
322 tcg_gen_deposit_i32(out, in, in, 16, 16);
323 break;
324 case MO_32:
325 tcg_gen_mov_i32(out, in);
326 break;
327 default:
328 g_assert_not_reached();
329 }
330 }
331
332 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
333 {
334 switch (vece) {
335 case MO_8:
336 tcg_gen_ext8u_i64(out, in);
337 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
338 break;
339 case MO_16:
340 tcg_gen_ext16u_i64(out, in);
341 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
342 break;
343 case MO_32:
344 tcg_gen_deposit_i64(out, in, in, 32, 32);
345 break;
346 case MO_64:
347 tcg_gen_mov_i64(out, in);
348 break;
349 default:
350 g_assert_not_reached();
351 }
352 }
353
354 /* Select a supported vector type for implementing an operation on SIZE
355 * bytes. If OP is 0, assume that the real operation to be performed is
356 * required by all backends. Otherwise, make sure than OP can be performed
357 * on elements of size VECE in the selected type. Do not select V64 if
358 * PREFER_I64 is true. Return 0 if no vector type is selected.
359 */
360 static TCGType choose_vector_type(TCGOpcode op, unsigned vece, uint32_t size,
361 bool prefer_i64)
362 {
363 if (TCG_TARGET_HAS_v256 && check_size_impl(size, 32)) {
364 if (op == 0) {
365 return TCG_TYPE_V256;
366 }
367 /* Recall that ARM SVE allows vector sizes that are not a
368 * power of 2, but always a multiple of 16. The intent is
369 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
370 * It is hard to imagine a case in which v256 is supported
371 * but v128 is not, but check anyway.
372 */
373 if (tcg_can_emit_vec_op(op, TCG_TYPE_V256, vece)
374 && (size % 32 == 0
375 || tcg_can_emit_vec_op(op, TCG_TYPE_V128, vece))) {
376 return TCG_TYPE_V256;
377 }
378 }
379 if (TCG_TARGET_HAS_v128 && check_size_impl(size, 16)
380 && (op == 0 || tcg_can_emit_vec_op(op, TCG_TYPE_V128, vece))) {
381 return TCG_TYPE_V128;
382 }
383 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
384 && (op == 0 || tcg_can_emit_vec_op(op, TCG_TYPE_V64, vece))) {
385 return TCG_TYPE_V64;
386 }
387 return 0;
388 }
389
390 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
391 * Only one of IN_32 or IN_64 may be set;
392 * IN_C is used if IN_32 and IN_64 are unset.
393 */
394 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
395 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
396 uint64_t in_c)
397 {
398 TCGType type;
399 TCGv_i64 t_64;
400 TCGv_i32 t_32, t_desc;
401 TCGv_ptr t_ptr;
402 uint32_t i;
403
404 assert(vece <= (in_32 ? MO_32 : MO_64));
405 assert(in_32 == NULL || in_64 == NULL);
406
407 /* If we're storing 0, expand oprsz to maxsz. */
408 if (in_32 == NULL && in_64 == NULL) {
409 in_c = dup_const(vece, in_c);
410 if (in_c == 0) {
411 oprsz = maxsz;
412 }
413 }
414
415 /* Implement inline with a vector type, if possible.
416 * Prefer integer when 64-bit host and no variable dup.
417 */
418 type = choose_vector_type(0, vece, oprsz,
419 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
420 && (in_64 == NULL || vece == MO_64)));
421 if (type != 0) {
422 TCGv_vec t_vec = tcg_temp_new_vec(type);
423
424 if (in_32) {
425 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
426 } else if (in_64) {
427 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
428 } else {
429 switch (vece) {
430 case MO_8:
431 tcg_gen_dup8i_vec(t_vec, in_c);
432 break;
433 case MO_16:
434 tcg_gen_dup16i_vec(t_vec, in_c);
435 break;
436 case MO_32:
437 tcg_gen_dup32i_vec(t_vec, in_c);
438 break;
439 default:
440 tcg_gen_dup64i_vec(t_vec, in_c);
441 break;
442 }
443 }
444
445 i = 0;
446 switch (type) {
447 case TCG_TYPE_V256:
448 /* Recall that ARM SVE allows vector sizes that are not a
449 * power of 2, but always a multiple of 16. The intent is
450 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
451 */
452 for (; i + 32 <= oprsz; i += 32) {
453 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
454 }
455 /* fallthru */
456 case TCG_TYPE_V128:
457 for (; i + 16 <= oprsz; i += 16) {
458 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
459 }
460 break;
461 case TCG_TYPE_V64:
462 for (; i < oprsz; i += 8) {
463 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
464 }
465 break;
466 default:
467 g_assert_not_reached();
468 }
469
470 tcg_temp_free_vec(t_vec);
471 goto done;
472 }
473
474 /* Otherwise, inline with an integer type, unless "large". */
475 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
476 t_64 = NULL;
477 t_32 = NULL;
478
479 if (in_32) {
480 /* We are given a 32-bit variable input. For a 64-bit host,
481 use a 64-bit operation unless the 32-bit operation would
482 be simple enough. */
483 if (TCG_TARGET_REG_BITS == 64
484 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
485 t_64 = tcg_temp_new_i64();
486 tcg_gen_extu_i32_i64(t_64, in_32);
487 gen_dup_i64(vece, t_64, t_64);
488 } else {
489 t_32 = tcg_temp_new_i32();
490 gen_dup_i32(vece, t_32, in_32);
491 }
492 } else if (in_64) {
493 /* We are given a 64-bit variable input. */
494 t_64 = tcg_temp_new_i64();
495 gen_dup_i64(vece, t_64, in_64);
496 } else {
497 /* We are given a constant input. */
498 /* For 64-bit hosts, use 64-bit constants for "simple" constants
499 or when we'd need too many 32-bit stores, or when a 64-bit
500 constant is really required. */
501 if (vece == MO_64
502 || (TCG_TARGET_REG_BITS == 64
503 && (in_c == 0 || in_c == -1
504 || !check_size_impl(oprsz, 4)))) {
505 t_64 = tcg_const_i64(in_c);
506 } else {
507 t_32 = tcg_const_i32(in_c);
508 }
509 }
510
511 /* Implement inline if we picked an implementation size above. */
512 if (t_32) {
513 for (i = 0; i < oprsz; i += 4) {
514 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
515 }
516 tcg_temp_free_i32(t_32);
517 goto done;
518 }
519 if (t_64) {
520 for (i = 0; i < oprsz; i += 8) {
521 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
522 }
523 tcg_temp_free_i64(t_64);
524 goto done;
525 }
526 }
527
528 /* Otherwise implement out of line. */
529 t_ptr = tcg_temp_new_ptr();
530 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
531 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
532
533 if (vece == MO_64) {
534 if (in_64) {
535 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
536 } else {
537 t_64 = tcg_const_i64(in_c);
538 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
539 tcg_temp_free_i64(t_64);
540 }
541 } else {
542 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
543 static dup_fn * const fns[3] = {
544 gen_helper_gvec_dup8,
545 gen_helper_gvec_dup16,
546 gen_helper_gvec_dup32
547 };
548
549 if (in_32) {
550 fns[vece](t_ptr, t_desc, in_32);
551 } else {
552 t_32 = tcg_temp_new_i32();
553 if (in_64) {
554 tcg_gen_extrl_i64_i32(t_32, in_64);
555 } else if (vece == MO_8) {
556 tcg_gen_movi_i32(t_32, in_c & 0xff);
557 } else if (vece == MO_16) {
558 tcg_gen_movi_i32(t_32, in_c & 0xffff);
559 } else {
560 tcg_gen_movi_i32(t_32, in_c);
561 }
562 fns[vece](t_ptr, t_desc, t_32);
563 tcg_temp_free_i32(t_32);
564 }
565 }
566
567 tcg_temp_free_ptr(t_ptr);
568 tcg_temp_free_i32(t_desc);
569 return;
570
571 done:
572 if (oprsz < maxsz) {
573 expand_clr(dofs + oprsz, maxsz - oprsz);
574 }
575 }
576
577 /* Likewise, but with zero. */
578 static void expand_clr(uint32_t dofs, uint32_t maxsz)
579 {
580 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
581 }
582
583 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
584 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
585 void (*fni)(TCGv_i32, TCGv_i32))
586 {
587 TCGv_i32 t0 = tcg_temp_new_i32();
588 uint32_t i;
589
590 for (i = 0; i < oprsz; i += 4) {
591 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
592 fni(t0, t0);
593 tcg_gen_st_i32(t0, cpu_env, dofs + i);
594 }
595 tcg_temp_free_i32(t0);
596 }
597
598 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
599 int32_t c, bool load_dest,
600 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
601 {
602 TCGv_i32 t0 = tcg_temp_new_i32();
603 TCGv_i32 t1 = tcg_temp_new_i32();
604 uint32_t i;
605
606 for (i = 0; i < oprsz; i += 4) {
607 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
608 if (load_dest) {
609 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
610 }
611 fni(t1, t0, c);
612 tcg_gen_st_i32(t1, cpu_env, dofs + i);
613 }
614 tcg_temp_free_i32(t0);
615 tcg_temp_free_i32(t1);
616 }
617
618 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
619 TCGv_i32 c, bool scalar_first,
620 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
621 {
622 TCGv_i32 t0 = tcg_temp_new_i32();
623 TCGv_i32 t1 = tcg_temp_new_i32();
624 uint32_t i;
625
626 for (i = 0; i < oprsz; i += 4) {
627 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
628 if (scalar_first) {
629 fni(t1, c, t0);
630 } else {
631 fni(t1, t0, c);
632 }
633 tcg_gen_st_i32(t1, cpu_env, dofs + i);
634 }
635 tcg_temp_free_i32(t0);
636 tcg_temp_free_i32(t1);
637 }
638
639 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
640 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
641 uint32_t bofs, uint32_t oprsz, bool load_dest,
642 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
643 {
644 TCGv_i32 t0 = tcg_temp_new_i32();
645 TCGv_i32 t1 = tcg_temp_new_i32();
646 TCGv_i32 t2 = tcg_temp_new_i32();
647 uint32_t i;
648
649 for (i = 0; i < oprsz; i += 4) {
650 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
651 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
652 if (load_dest) {
653 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
654 }
655 fni(t2, t0, t1);
656 tcg_gen_st_i32(t2, cpu_env, dofs + i);
657 }
658 tcg_temp_free_i32(t2);
659 tcg_temp_free_i32(t1);
660 tcg_temp_free_i32(t0);
661 }
662
663 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
664 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
665 uint32_t cofs, uint32_t oprsz,
666 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
667 {
668 TCGv_i32 t0 = tcg_temp_new_i32();
669 TCGv_i32 t1 = tcg_temp_new_i32();
670 TCGv_i32 t2 = tcg_temp_new_i32();
671 TCGv_i32 t3 = tcg_temp_new_i32();
672 uint32_t i;
673
674 for (i = 0; i < oprsz; i += 4) {
675 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
676 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
677 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
678 fni(t0, t1, t2, t3);
679 tcg_gen_st_i32(t0, cpu_env, dofs + i);
680 }
681 tcg_temp_free_i32(t3);
682 tcg_temp_free_i32(t2);
683 tcg_temp_free_i32(t1);
684 tcg_temp_free_i32(t0);
685 }
686
687 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
688 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
689 void (*fni)(TCGv_i64, TCGv_i64))
690 {
691 TCGv_i64 t0 = tcg_temp_new_i64();
692 uint32_t i;
693
694 for (i = 0; i < oprsz; i += 8) {
695 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
696 fni(t0, t0);
697 tcg_gen_st_i64(t0, cpu_env, dofs + i);
698 }
699 tcg_temp_free_i64(t0);
700 }
701
702 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
703 int64_t c, bool load_dest,
704 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
705 {
706 TCGv_i64 t0 = tcg_temp_new_i64();
707 TCGv_i64 t1 = tcg_temp_new_i64();
708 uint32_t i;
709
710 for (i = 0; i < oprsz; i += 8) {
711 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
712 if (load_dest) {
713 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
714 }
715 fni(t1, t0, c);
716 tcg_gen_st_i64(t1, cpu_env, dofs + i);
717 }
718 tcg_temp_free_i64(t0);
719 tcg_temp_free_i64(t1);
720 }
721
722 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
723 TCGv_i64 c, bool scalar_first,
724 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
725 {
726 TCGv_i64 t0 = tcg_temp_new_i64();
727 TCGv_i64 t1 = tcg_temp_new_i64();
728 uint32_t i;
729
730 for (i = 0; i < oprsz; i += 8) {
731 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
732 if (scalar_first) {
733 fni(t1, c, t0);
734 } else {
735 fni(t1, t0, c);
736 }
737 tcg_gen_st_i64(t1, cpu_env, dofs + i);
738 }
739 tcg_temp_free_i64(t0);
740 tcg_temp_free_i64(t1);
741 }
742
743 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
744 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
745 uint32_t bofs, uint32_t oprsz, bool load_dest,
746 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
747 {
748 TCGv_i64 t0 = tcg_temp_new_i64();
749 TCGv_i64 t1 = tcg_temp_new_i64();
750 TCGv_i64 t2 = tcg_temp_new_i64();
751 uint32_t i;
752
753 for (i = 0; i < oprsz; i += 8) {
754 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
755 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
756 if (load_dest) {
757 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
758 }
759 fni(t2, t0, t1);
760 tcg_gen_st_i64(t2, cpu_env, dofs + i);
761 }
762 tcg_temp_free_i64(t2);
763 tcg_temp_free_i64(t1);
764 tcg_temp_free_i64(t0);
765 }
766
767 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
768 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
769 uint32_t cofs, uint32_t oprsz,
770 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
771 {
772 TCGv_i64 t0 = tcg_temp_new_i64();
773 TCGv_i64 t1 = tcg_temp_new_i64();
774 TCGv_i64 t2 = tcg_temp_new_i64();
775 TCGv_i64 t3 = tcg_temp_new_i64();
776 uint32_t i;
777
778 for (i = 0; i < oprsz; i += 8) {
779 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
780 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
781 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
782 fni(t0, t1, t2, t3);
783 tcg_gen_st_i64(t0, cpu_env, dofs + i);
784 }
785 tcg_temp_free_i64(t3);
786 tcg_temp_free_i64(t2);
787 tcg_temp_free_i64(t1);
788 tcg_temp_free_i64(t0);
789 }
790
791 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
792 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
793 uint32_t oprsz, uint32_t tysz, TCGType type,
794 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
795 {
796 TCGv_vec t0 = tcg_temp_new_vec(type);
797 uint32_t i;
798
799 for (i = 0; i < oprsz; i += tysz) {
800 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
801 fni(vece, t0, t0);
802 tcg_gen_st_vec(t0, cpu_env, dofs + i);
803 }
804 tcg_temp_free_vec(t0);
805 }
806
807 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
808 using host vectors. */
809 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
810 uint32_t oprsz, uint32_t tysz, TCGType type,
811 int64_t c, bool load_dest,
812 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
813 {
814 TCGv_vec t0 = tcg_temp_new_vec(type);
815 TCGv_vec t1 = tcg_temp_new_vec(type);
816 uint32_t i;
817
818 for (i = 0; i < oprsz; i += tysz) {
819 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
820 if (load_dest) {
821 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
822 }
823 fni(vece, t1, t0, c);
824 tcg_gen_st_vec(t1, cpu_env, dofs + i);
825 }
826 tcg_temp_free_vec(t0);
827 tcg_temp_free_vec(t1);
828 }
829
830 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
831 uint32_t oprsz, uint32_t tysz, TCGType type,
832 TCGv_vec c, bool scalar_first,
833 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
834 {
835 TCGv_vec t0 = tcg_temp_new_vec(type);
836 TCGv_vec t1 = tcg_temp_new_vec(type);
837 uint32_t i;
838
839 for (i = 0; i < oprsz; i += tysz) {
840 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
841 if (scalar_first) {
842 fni(vece, t1, c, t0);
843 } else {
844 fni(vece, t1, t0, c);
845 }
846 tcg_gen_st_vec(t1, cpu_env, dofs + i);
847 }
848 tcg_temp_free_vec(t0);
849 tcg_temp_free_vec(t1);
850 }
851
852 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
853 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
854 uint32_t bofs, uint32_t oprsz,
855 uint32_t tysz, TCGType type, bool load_dest,
856 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
857 {
858 TCGv_vec t0 = tcg_temp_new_vec(type);
859 TCGv_vec t1 = tcg_temp_new_vec(type);
860 TCGv_vec t2 = tcg_temp_new_vec(type);
861 uint32_t i;
862
863 for (i = 0; i < oprsz; i += tysz) {
864 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
865 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
866 if (load_dest) {
867 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
868 }
869 fni(vece, t2, t0, t1);
870 tcg_gen_st_vec(t2, cpu_env, dofs + i);
871 }
872 tcg_temp_free_vec(t2);
873 tcg_temp_free_vec(t1);
874 tcg_temp_free_vec(t0);
875 }
876
877 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
878 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
879 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
880 uint32_t tysz, TCGType type,
881 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
882 TCGv_vec, TCGv_vec))
883 {
884 TCGv_vec t0 = tcg_temp_new_vec(type);
885 TCGv_vec t1 = tcg_temp_new_vec(type);
886 TCGv_vec t2 = tcg_temp_new_vec(type);
887 TCGv_vec t3 = tcg_temp_new_vec(type);
888 uint32_t i;
889
890 for (i = 0; i < oprsz; i += tysz) {
891 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
892 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
893 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
894 fni(vece, t0, t1, t2, t3);
895 tcg_gen_st_vec(t0, cpu_env, dofs + i);
896 }
897 tcg_temp_free_vec(t3);
898 tcg_temp_free_vec(t2);
899 tcg_temp_free_vec(t1);
900 tcg_temp_free_vec(t0);
901 }
902
903 /* Expand a vector two-operand operation. */
904 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
905 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
906 {
907 TCGType type;
908 uint32_t some;
909
910 check_size_align(oprsz, maxsz, dofs | aofs);
911 check_overlap_2(dofs, aofs, maxsz);
912
913 type = 0;
914 if (g->fniv) {
915 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
916 }
917 switch (type) {
918 case TCG_TYPE_V256:
919 /* Recall that ARM SVE allows vector sizes that are not a
920 * power of 2, but always a multiple of 16. The intent is
921 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
922 */
923 some = QEMU_ALIGN_DOWN(oprsz, 32);
924 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
925 if (some == oprsz) {
926 break;
927 }
928 dofs += some;
929 aofs += some;
930 oprsz -= some;
931 maxsz -= some;
932 /* fallthru */
933 case TCG_TYPE_V128:
934 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
935 break;
936 case TCG_TYPE_V64:
937 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
938 break;
939
940 case 0:
941 if (g->fni8 && check_size_impl(oprsz, 8)) {
942 expand_2_i64(dofs, aofs, oprsz, g->fni8);
943 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
944 expand_2_i32(dofs, aofs, oprsz, g->fni4);
945 } else {
946 assert(g->fno != NULL);
947 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
948 return;
949 }
950 break;
951
952 default:
953 g_assert_not_reached();
954 }
955
956 if (oprsz < maxsz) {
957 expand_clr(dofs + oprsz, maxsz - oprsz);
958 }
959 }
960
961 /* Expand a vector operation with two vectors and an immediate. */
962 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
963 uint32_t maxsz, int64_t c, const GVecGen2i *g)
964 {
965 TCGType type;
966 uint32_t some;
967
968 check_size_align(oprsz, maxsz, dofs | aofs);
969 check_overlap_2(dofs, aofs, maxsz);
970
971 type = 0;
972 if (g->fniv) {
973 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
974 }
975 switch (type) {
976 case TCG_TYPE_V256:
977 /* Recall that ARM SVE allows vector sizes that are not a
978 * power of 2, but always a multiple of 16. The intent is
979 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
980 */
981 some = QEMU_ALIGN_DOWN(oprsz, 32);
982 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
983 c, g->load_dest, g->fniv);
984 if (some == oprsz) {
985 break;
986 }
987 dofs += some;
988 aofs += some;
989 oprsz -= some;
990 maxsz -= some;
991 /* fallthru */
992 case TCG_TYPE_V128:
993 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
994 c, g->load_dest, g->fniv);
995 break;
996 case TCG_TYPE_V64:
997 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
998 c, g->load_dest, g->fniv);
999 break;
1000
1001 case 0:
1002 if (g->fni8 && check_size_impl(oprsz, 8)) {
1003 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1004 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1005 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1006 } else {
1007 if (g->fno) {
1008 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1009 } else {
1010 TCGv_i64 tcg_c = tcg_const_i64(c);
1011 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1012 maxsz, c, g->fnoi);
1013 tcg_temp_free_i64(tcg_c);
1014 }
1015 return;
1016 }
1017 break;
1018
1019 default:
1020 g_assert_not_reached();
1021 }
1022
1023 if (oprsz < maxsz) {
1024 expand_clr(dofs + oprsz, maxsz - oprsz);
1025 }
1026 }
1027
1028 /* Expand a vector operation with two vectors and a scalar. */
1029 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1030 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1031 {
1032 TCGType type;
1033
1034 check_size_align(oprsz, maxsz, dofs | aofs);
1035 check_overlap_2(dofs, aofs, maxsz);
1036
1037 type = 0;
1038 if (g->fniv) {
1039 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
1040 }
1041 if (type != 0) {
1042 TCGv_vec t_vec = tcg_temp_new_vec(type);
1043 uint32_t some;
1044
1045 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1046
1047 switch (type) {
1048 case TCG_TYPE_V256:
1049 /* Recall that ARM SVE allows vector sizes that are not a
1050 * power of 2, but always a multiple of 16. The intent is
1051 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1052 */
1053 some = QEMU_ALIGN_DOWN(oprsz, 32);
1054 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1055 t_vec, g->scalar_first, g->fniv);
1056 if (some == oprsz) {
1057 break;
1058 }
1059 dofs += some;
1060 aofs += some;
1061 oprsz -= some;
1062 maxsz -= some;
1063 /* fallthru */
1064
1065 case TCG_TYPE_V128:
1066 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1067 t_vec, g->scalar_first, g->fniv);
1068 break;
1069
1070 case TCG_TYPE_V64:
1071 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1072 t_vec, g->scalar_first, g->fniv);
1073 break;
1074
1075 default:
1076 g_assert_not_reached();
1077 }
1078 tcg_temp_free_vec(t_vec);
1079 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1080 TCGv_i64 t64 = tcg_temp_new_i64();
1081
1082 gen_dup_i64(g->vece, t64, c);
1083 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1084 tcg_temp_free_i64(t64);
1085 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1086 TCGv_i32 t32 = tcg_temp_new_i32();
1087
1088 tcg_gen_extrl_i64_i32(t32, c);
1089 gen_dup_i32(g->vece, t32, t32);
1090 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1091 tcg_temp_free_i32(t32);
1092 } else {
1093 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1094 return;
1095 }
1096
1097 if (oprsz < maxsz) {
1098 expand_clr(dofs + oprsz, maxsz - oprsz);
1099 }
1100 }
1101
1102 /* Expand a vector three-operand operation. */
1103 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1104 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1105 {
1106 TCGType type;
1107 uint32_t some;
1108
1109 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1110 check_overlap_3(dofs, aofs, bofs, maxsz);
1111
1112 type = 0;
1113 if (g->fniv) {
1114 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
1115 }
1116 switch (type) {
1117 case TCG_TYPE_V256:
1118 /* Recall that ARM SVE allows vector sizes that are not a
1119 * power of 2, but always a multiple of 16. The intent is
1120 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1121 */
1122 some = QEMU_ALIGN_DOWN(oprsz, 32);
1123 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1124 g->load_dest, g->fniv);
1125 if (some == oprsz) {
1126 break;
1127 }
1128 dofs += some;
1129 aofs += some;
1130 bofs += some;
1131 oprsz -= some;
1132 maxsz -= some;
1133 /* fallthru */
1134 case TCG_TYPE_V128:
1135 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1136 g->load_dest, g->fniv);
1137 break;
1138 case TCG_TYPE_V64:
1139 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1140 g->load_dest, g->fniv);
1141 break;
1142
1143 case 0:
1144 if (g->fni8 && check_size_impl(oprsz, 8)) {
1145 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1146 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1147 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1148 } else {
1149 assert(g->fno != NULL);
1150 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1151 maxsz, g->data, g->fno);
1152 return;
1153 }
1154 break;
1155
1156 default:
1157 g_assert_not_reached();
1158 }
1159
1160 if (oprsz < maxsz) {
1161 expand_clr(dofs + oprsz, maxsz - oprsz);
1162 }
1163 }
1164
1165 /* Expand a vector four-operand operation. */
1166 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1167 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1168 {
1169 TCGType type;
1170 uint32_t some;
1171
1172 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1173 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1174
1175 type = 0;
1176 if (g->fniv) {
1177 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
1178 }
1179 switch (type) {
1180 case TCG_TYPE_V256:
1181 /* Recall that ARM SVE allows vector sizes that are not a
1182 * power of 2, but always a multiple of 16. The intent is
1183 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1184 */
1185 some = QEMU_ALIGN_DOWN(oprsz, 32);
1186 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1187 32, TCG_TYPE_V256, g->fniv);
1188 if (some == oprsz) {
1189 break;
1190 }
1191 dofs += some;
1192 aofs += some;
1193 bofs += some;
1194 cofs += some;
1195 oprsz -= some;
1196 maxsz -= some;
1197 /* fallthru */
1198 case TCG_TYPE_V128:
1199 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1200 16, TCG_TYPE_V128, g->fniv);
1201 break;
1202 case TCG_TYPE_V64:
1203 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1204 8, TCG_TYPE_V64, g->fniv);
1205 break;
1206
1207 case 0:
1208 if (g->fni8 && check_size_impl(oprsz, 8)) {
1209 expand_4_i64(dofs, aofs, bofs, cofs, oprsz, g->fni8);
1210 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1211 expand_4_i32(dofs, aofs, bofs, cofs, oprsz, g->fni4);
1212 } else {
1213 assert(g->fno != NULL);
1214 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1215 oprsz, maxsz, g->data, g->fno);
1216 return;
1217 }
1218 break;
1219
1220 default:
1221 g_assert_not_reached();
1222 }
1223
1224 if (oprsz < maxsz) {
1225 expand_clr(dofs + oprsz, maxsz - oprsz);
1226 }
1227 }
1228
1229 /*
1230 * Expand specific vector operations.
1231 */
1232
1233 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1234 {
1235 tcg_gen_mov_vec(a, b);
1236 }
1237
1238 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1239 uint32_t oprsz, uint32_t maxsz)
1240 {
1241 static const GVecGen2 g = {
1242 .fni8 = tcg_gen_mov_i64,
1243 .fniv = vec_mov2,
1244 .fno = gen_helper_gvec_mov,
1245 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1246 };
1247 if (dofs != aofs) {
1248 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1249 } else {
1250 check_size_align(oprsz, maxsz, dofs);
1251 if (oprsz < maxsz) {
1252 expand_clr(dofs + oprsz, maxsz - oprsz);
1253 }
1254 }
1255 }
1256
1257 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1258 uint32_t maxsz, TCGv_i32 in)
1259 {
1260 check_size_align(oprsz, maxsz, dofs);
1261 tcg_debug_assert(vece <= MO_32);
1262 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1263 }
1264
1265 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1266 uint32_t maxsz, TCGv_i64 in)
1267 {
1268 check_size_align(oprsz, maxsz, dofs);
1269 tcg_debug_assert(vece <= MO_64);
1270 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1271 }
1272
1273 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1274 uint32_t oprsz, uint32_t maxsz)
1275 {
1276 if (vece <= MO_32) {
1277 TCGv_i32 in = tcg_temp_new_i32();
1278 switch (vece) {
1279 case MO_8:
1280 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1281 break;
1282 case MO_16:
1283 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1284 break;
1285 case MO_32:
1286 tcg_gen_ld_i32(in, cpu_env, aofs);
1287 break;
1288 }
1289 tcg_gen_gvec_dup_i32(vece, dofs, oprsz, maxsz, in);
1290 tcg_temp_free_i32(in);
1291 } else if (vece == MO_64) {
1292 TCGv_i64 in = tcg_temp_new_i64();
1293 tcg_gen_ld_i64(in, cpu_env, aofs);
1294 tcg_gen_gvec_dup_i64(MO_64, dofs, oprsz, maxsz, in);
1295 tcg_temp_free_i64(in);
1296 } else {
1297 /* 128-bit duplicate. */
1298 /* ??? Dup to 256-bit vector. */
1299 int i;
1300
1301 tcg_debug_assert(vece == 4);
1302 tcg_debug_assert(oprsz >= 16);
1303 if (TCG_TARGET_HAS_v128) {
1304 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1305
1306 tcg_gen_ld_vec(in, cpu_env, aofs);
1307 for (i = 0; i < oprsz; i += 16) {
1308 tcg_gen_st_vec(in, cpu_env, dofs + i);
1309 }
1310 tcg_temp_free_vec(in);
1311 } else {
1312 TCGv_i64 in0 = tcg_temp_new_i64();
1313 TCGv_i64 in1 = tcg_temp_new_i64();
1314
1315 tcg_gen_ld_i64(in0, cpu_env, aofs);
1316 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1317 for (i = 0; i < oprsz; i += 16) {
1318 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1319 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1320 }
1321 tcg_temp_free_i64(in0);
1322 tcg_temp_free_i64(in1);
1323 }
1324 }
1325 }
1326
1327 void tcg_gen_gvec_dup64i(uint32_t dofs, uint32_t oprsz,
1328 uint32_t maxsz, uint64_t x)
1329 {
1330 check_size_align(oprsz, maxsz, dofs);
1331 do_dup(MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
1332 }
1333
1334 void tcg_gen_gvec_dup32i(uint32_t dofs, uint32_t oprsz,
1335 uint32_t maxsz, uint32_t x)
1336 {
1337 check_size_align(oprsz, maxsz, dofs);
1338 do_dup(MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
1339 }
1340
1341 void tcg_gen_gvec_dup16i(uint32_t dofs, uint32_t oprsz,
1342 uint32_t maxsz, uint16_t x)
1343 {
1344 check_size_align(oprsz, maxsz, dofs);
1345 do_dup(MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
1346 }
1347
1348 void tcg_gen_gvec_dup8i(uint32_t dofs, uint32_t oprsz,
1349 uint32_t maxsz, uint8_t x)
1350 {
1351 check_size_align(oprsz, maxsz, dofs);
1352 do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
1353 }
1354
1355 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1356 uint32_t oprsz, uint32_t maxsz)
1357 {
1358 static const GVecGen2 g = {
1359 .fni8 = tcg_gen_not_i64,
1360 .fniv = tcg_gen_not_vec,
1361 .fno = gen_helper_gvec_not,
1362 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1363 };
1364 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1365 }
1366
1367 /* Perform a vector addition using normal addition and a mask. The mask
1368 should be the sign bit of each lane. This 6-operation form is more
1369 efficient than separate additions when there are 4 or more lanes in
1370 the 64-bit operation. */
1371 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1372 {
1373 TCGv_i64 t1 = tcg_temp_new_i64();
1374 TCGv_i64 t2 = tcg_temp_new_i64();
1375 TCGv_i64 t3 = tcg_temp_new_i64();
1376
1377 tcg_gen_andc_i64(t1, a, m);
1378 tcg_gen_andc_i64(t2, b, m);
1379 tcg_gen_xor_i64(t3, a, b);
1380 tcg_gen_add_i64(d, t1, t2);
1381 tcg_gen_and_i64(t3, t3, m);
1382 tcg_gen_xor_i64(d, d, t3);
1383
1384 tcg_temp_free_i64(t1);
1385 tcg_temp_free_i64(t2);
1386 tcg_temp_free_i64(t3);
1387 }
1388
1389 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1390 {
1391 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1392 gen_addv_mask(d, a, b, m);
1393 tcg_temp_free_i64(m);
1394 }
1395
1396 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1397 {
1398 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1399 gen_addv_mask(d, a, b, m);
1400 tcg_temp_free_i64(m);
1401 }
1402
1403 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1404 {
1405 TCGv_i64 t1 = tcg_temp_new_i64();
1406 TCGv_i64 t2 = tcg_temp_new_i64();
1407
1408 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1409 tcg_gen_add_i64(t2, a, b);
1410 tcg_gen_add_i64(t1, t1, b);
1411 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1412
1413 tcg_temp_free_i64(t1);
1414 tcg_temp_free_i64(t2);
1415 }
1416
1417 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1418 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1419 {
1420 static const GVecGen3 g[4] = {
1421 { .fni8 = tcg_gen_vec_add8_i64,
1422 .fniv = tcg_gen_add_vec,
1423 .fno = gen_helper_gvec_add8,
1424 .opc = INDEX_op_add_vec,
1425 .vece = MO_8 },
1426 { .fni8 = tcg_gen_vec_add16_i64,
1427 .fniv = tcg_gen_add_vec,
1428 .fno = gen_helper_gvec_add16,
1429 .opc = INDEX_op_add_vec,
1430 .vece = MO_16 },
1431 { .fni4 = tcg_gen_add_i32,
1432 .fniv = tcg_gen_add_vec,
1433 .fno = gen_helper_gvec_add32,
1434 .opc = INDEX_op_add_vec,
1435 .vece = MO_32 },
1436 { .fni8 = tcg_gen_add_i64,
1437 .fniv = tcg_gen_add_vec,
1438 .fno = gen_helper_gvec_add64,
1439 .opc = INDEX_op_add_vec,
1440 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1441 .vece = MO_64 },
1442 };
1443
1444 tcg_debug_assert(vece <= MO_64);
1445 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1446 }
1447
1448 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1449 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1450 {
1451 static const GVecGen2s g[4] = {
1452 { .fni8 = tcg_gen_vec_add8_i64,
1453 .fniv = tcg_gen_add_vec,
1454 .fno = gen_helper_gvec_adds8,
1455 .opc = INDEX_op_add_vec,
1456 .vece = MO_8 },
1457 { .fni8 = tcg_gen_vec_add16_i64,
1458 .fniv = tcg_gen_add_vec,
1459 .fno = gen_helper_gvec_adds16,
1460 .opc = INDEX_op_add_vec,
1461 .vece = MO_16 },
1462 { .fni4 = tcg_gen_add_i32,
1463 .fniv = tcg_gen_add_vec,
1464 .fno = gen_helper_gvec_adds32,
1465 .opc = INDEX_op_add_vec,
1466 .vece = MO_32 },
1467 { .fni8 = tcg_gen_add_i64,
1468 .fniv = tcg_gen_add_vec,
1469 .fno = gen_helper_gvec_adds64,
1470 .opc = INDEX_op_add_vec,
1471 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1472 .vece = MO_64 },
1473 };
1474
1475 tcg_debug_assert(vece <= MO_64);
1476 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1477 }
1478
1479 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1480 int64_t c, uint32_t oprsz, uint32_t maxsz)
1481 {
1482 TCGv_i64 tmp = tcg_const_i64(c);
1483 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1484 tcg_temp_free_i64(tmp);
1485 }
1486
1487 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1488 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1489 {
1490 static const GVecGen2s g[4] = {
1491 { .fni8 = tcg_gen_vec_sub8_i64,
1492 .fniv = tcg_gen_sub_vec,
1493 .fno = gen_helper_gvec_subs8,
1494 .opc = INDEX_op_sub_vec,
1495 .vece = MO_8 },
1496 { .fni8 = tcg_gen_vec_sub16_i64,
1497 .fniv = tcg_gen_sub_vec,
1498 .fno = gen_helper_gvec_subs16,
1499 .opc = INDEX_op_sub_vec,
1500 .vece = MO_16 },
1501 { .fni4 = tcg_gen_sub_i32,
1502 .fniv = tcg_gen_sub_vec,
1503 .fno = gen_helper_gvec_subs32,
1504 .opc = INDEX_op_sub_vec,
1505 .vece = MO_32 },
1506 { .fni8 = tcg_gen_sub_i64,
1507 .fniv = tcg_gen_sub_vec,
1508 .fno = gen_helper_gvec_subs64,
1509 .opc = INDEX_op_sub_vec,
1510 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1511 .vece = MO_64 },
1512 };
1513
1514 tcg_debug_assert(vece <= MO_64);
1515 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1516 }
1517
1518 /* Perform a vector subtraction using normal subtraction and a mask.
1519 Compare gen_addv_mask above. */
1520 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1521 {
1522 TCGv_i64 t1 = tcg_temp_new_i64();
1523 TCGv_i64 t2 = tcg_temp_new_i64();
1524 TCGv_i64 t3 = tcg_temp_new_i64();
1525
1526 tcg_gen_or_i64(t1, a, m);
1527 tcg_gen_andc_i64(t2, b, m);
1528 tcg_gen_eqv_i64(t3, a, b);
1529 tcg_gen_sub_i64(d, t1, t2);
1530 tcg_gen_and_i64(t3, t3, m);
1531 tcg_gen_xor_i64(d, d, t3);
1532
1533 tcg_temp_free_i64(t1);
1534 tcg_temp_free_i64(t2);
1535 tcg_temp_free_i64(t3);
1536 }
1537
1538 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1539 {
1540 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1541 gen_subv_mask(d, a, b, m);
1542 tcg_temp_free_i64(m);
1543 }
1544
1545 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1546 {
1547 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1548 gen_subv_mask(d, a, b, m);
1549 tcg_temp_free_i64(m);
1550 }
1551
1552 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1553 {
1554 TCGv_i64 t1 = tcg_temp_new_i64();
1555 TCGv_i64 t2 = tcg_temp_new_i64();
1556
1557 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1558 tcg_gen_sub_i64(t2, a, b);
1559 tcg_gen_sub_i64(t1, a, t1);
1560 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1561
1562 tcg_temp_free_i64(t1);
1563 tcg_temp_free_i64(t2);
1564 }
1565
1566 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1567 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1568 {
1569 static const GVecGen3 g[4] = {
1570 { .fni8 = tcg_gen_vec_sub8_i64,
1571 .fniv = tcg_gen_sub_vec,
1572 .fno = gen_helper_gvec_sub8,
1573 .opc = INDEX_op_sub_vec,
1574 .vece = MO_8 },
1575 { .fni8 = tcg_gen_vec_sub16_i64,
1576 .fniv = tcg_gen_sub_vec,
1577 .fno = gen_helper_gvec_sub16,
1578 .opc = INDEX_op_sub_vec,
1579 .vece = MO_16 },
1580 { .fni4 = tcg_gen_sub_i32,
1581 .fniv = tcg_gen_sub_vec,
1582 .fno = gen_helper_gvec_sub32,
1583 .opc = INDEX_op_sub_vec,
1584 .vece = MO_32 },
1585 { .fni8 = tcg_gen_sub_i64,
1586 .fniv = tcg_gen_sub_vec,
1587 .fno = gen_helper_gvec_sub64,
1588 .opc = INDEX_op_sub_vec,
1589 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1590 .vece = MO_64 },
1591 };
1592
1593 tcg_debug_assert(vece <= MO_64);
1594 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1595 }
1596
1597 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1598 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1599 {
1600 static const GVecGen3 g[4] = {
1601 { .fniv = tcg_gen_mul_vec,
1602 .fno = gen_helper_gvec_mul8,
1603 .opc = INDEX_op_mul_vec,
1604 .vece = MO_8 },
1605 { .fniv = tcg_gen_mul_vec,
1606 .fno = gen_helper_gvec_mul16,
1607 .opc = INDEX_op_mul_vec,
1608 .vece = MO_16 },
1609 { .fni4 = tcg_gen_mul_i32,
1610 .fniv = tcg_gen_mul_vec,
1611 .fno = gen_helper_gvec_mul32,
1612 .opc = INDEX_op_mul_vec,
1613 .vece = MO_32 },
1614 { .fni8 = tcg_gen_mul_i64,
1615 .fniv = tcg_gen_mul_vec,
1616 .fno = gen_helper_gvec_mul64,
1617 .opc = INDEX_op_mul_vec,
1618 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1619 .vece = MO_64 },
1620 };
1621
1622 tcg_debug_assert(vece <= MO_64);
1623 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1624 }
1625
1626 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1627 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1628 {
1629 static const GVecGen2s g[4] = {
1630 { .fniv = tcg_gen_mul_vec,
1631 .fno = gen_helper_gvec_muls8,
1632 .opc = INDEX_op_mul_vec,
1633 .vece = MO_8 },
1634 { .fniv = tcg_gen_mul_vec,
1635 .fno = gen_helper_gvec_muls16,
1636 .opc = INDEX_op_mul_vec,
1637 .vece = MO_16 },
1638 { .fni4 = tcg_gen_mul_i32,
1639 .fniv = tcg_gen_mul_vec,
1640 .fno = gen_helper_gvec_muls32,
1641 .opc = INDEX_op_mul_vec,
1642 .vece = MO_32 },
1643 { .fni8 = tcg_gen_mul_i64,
1644 .fniv = tcg_gen_mul_vec,
1645 .fno = gen_helper_gvec_muls64,
1646 .opc = INDEX_op_mul_vec,
1647 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1648 .vece = MO_64 },
1649 };
1650
1651 tcg_debug_assert(vece <= MO_64);
1652 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1653 }
1654
1655 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1656 int64_t c, uint32_t oprsz, uint32_t maxsz)
1657 {
1658 TCGv_i64 tmp = tcg_const_i64(c);
1659 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1660 tcg_temp_free_i64(tmp);
1661 }
1662
1663 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1664 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1665 {
1666 static const GVecGen3 g[4] = {
1667 { .fno = gen_helper_gvec_ssadd8, .vece = MO_8 },
1668 { .fno = gen_helper_gvec_ssadd16, .vece = MO_16 },
1669 { .fno = gen_helper_gvec_ssadd32, .vece = MO_32 },
1670 { .fno = gen_helper_gvec_ssadd64, .vece = MO_64 }
1671 };
1672 tcg_debug_assert(vece <= MO_64);
1673 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1674 }
1675
1676 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1677 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1678 {
1679 static const GVecGen3 g[4] = {
1680 { .fno = gen_helper_gvec_sssub8, .vece = MO_8 },
1681 { .fno = gen_helper_gvec_sssub16, .vece = MO_16 },
1682 { .fno = gen_helper_gvec_sssub32, .vece = MO_32 },
1683 { .fno = gen_helper_gvec_sssub64, .vece = MO_64 }
1684 };
1685 tcg_debug_assert(vece <= MO_64);
1686 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1687 }
1688
1689 static void tcg_gen_vec_usadd32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1690 {
1691 TCGv_i32 max = tcg_const_i32(-1);
1692 tcg_gen_add_i32(d, a, b);
1693 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1694 tcg_temp_free_i32(max);
1695 }
1696
1697 static void tcg_gen_vec_usadd32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1698 {
1699 TCGv_i64 max = tcg_const_i64(-1);
1700 tcg_gen_add_i64(d, a, b);
1701 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1702 tcg_temp_free_i64(max);
1703 }
1704
1705 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1706 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1707 {
1708 static const GVecGen3 g[4] = {
1709 { .fno = gen_helper_gvec_usadd8, .vece = MO_8 },
1710 { .fno = gen_helper_gvec_usadd16, .vece = MO_16 },
1711 { .fni4 = tcg_gen_vec_usadd32_i32,
1712 .fno = gen_helper_gvec_usadd32,
1713 .vece = MO_32 },
1714 { .fni8 = tcg_gen_vec_usadd32_i64,
1715 .fno = gen_helper_gvec_usadd64,
1716 .vece = MO_64 }
1717 };
1718 tcg_debug_assert(vece <= MO_64);
1719 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1720 }
1721
1722 static void tcg_gen_vec_ussub32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1723 {
1724 TCGv_i32 min = tcg_const_i32(0);
1725 tcg_gen_sub_i32(d, a, b);
1726 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
1727 tcg_temp_free_i32(min);
1728 }
1729
1730 static void tcg_gen_vec_ussub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1731 {
1732 TCGv_i64 min = tcg_const_i64(0);
1733 tcg_gen_sub_i64(d, a, b);
1734 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
1735 tcg_temp_free_i64(min);
1736 }
1737
1738 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
1739 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1740 {
1741 static const GVecGen3 g[4] = {
1742 { .fno = gen_helper_gvec_ussub8, .vece = MO_8 },
1743 { .fno = gen_helper_gvec_ussub16, .vece = MO_16 },
1744 { .fni4 = tcg_gen_vec_ussub32_i32,
1745 .fno = gen_helper_gvec_ussub32,
1746 .vece = MO_32 },
1747 { .fni8 = tcg_gen_vec_ussub32_i64,
1748 .fno = gen_helper_gvec_ussub64,
1749 .vece = MO_64 }
1750 };
1751 tcg_debug_assert(vece <= MO_64);
1752 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1753 }
1754
1755 /* Perform a vector negation using normal negation and a mask.
1756 Compare gen_subv_mask above. */
1757 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
1758 {
1759 TCGv_i64 t2 = tcg_temp_new_i64();
1760 TCGv_i64 t3 = tcg_temp_new_i64();
1761
1762 tcg_gen_andc_i64(t3, m, b);
1763 tcg_gen_andc_i64(t2, b, m);
1764 tcg_gen_sub_i64(d, m, t2);
1765 tcg_gen_xor_i64(d, d, t3);
1766
1767 tcg_temp_free_i64(t2);
1768 tcg_temp_free_i64(t3);
1769 }
1770
1771 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
1772 {
1773 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1774 gen_negv_mask(d, b, m);
1775 tcg_temp_free_i64(m);
1776 }
1777
1778 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
1779 {
1780 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1781 gen_negv_mask(d, b, m);
1782 tcg_temp_free_i64(m);
1783 }
1784
1785 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
1786 {
1787 TCGv_i64 t1 = tcg_temp_new_i64();
1788 TCGv_i64 t2 = tcg_temp_new_i64();
1789
1790 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1791 tcg_gen_neg_i64(t2, b);
1792 tcg_gen_neg_i64(t1, t1);
1793 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1794
1795 tcg_temp_free_i64(t1);
1796 tcg_temp_free_i64(t2);
1797 }
1798
1799 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
1800 uint32_t oprsz, uint32_t maxsz)
1801 {
1802 static const GVecGen2 g[4] = {
1803 { .fni8 = tcg_gen_vec_neg8_i64,
1804 .fniv = tcg_gen_neg_vec,
1805 .fno = gen_helper_gvec_neg8,
1806 .opc = INDEX_op_neg_vec,
1807 .vece = MO_8 },
1808 { .fni8 = tcg_gen_vec_neg16_i64,
1809 .fniv = tcg_gen_neg_vec,
1810 .fno = gen_helper_gvec_neg16,
1811 .opc = INDEX_op_neg_vec,
1812 .vece = MO_16 },
1813 { .fni4 = tcg_gen_neg_i32,
1814 .fniv = tcg_gen_neg_vec,
1815 .fno = gen_helper_gvec_neg32,
1816 .opc = INDEX_op_neg_vec,
1817 .vece = MO_32 },
1818 { .fni8 = tcg_gen_neg_i64,
1819 .fniv = tcg_gen_neg_vec,
1820 .fno = gen_helper_gvec_neg64,
1821 .opc = INDEX_op_neg_vec,
1822 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1823 .vece = MO_64 },
1824 };
1825
1826 tcg_debug_assert(vece <= MO_64);
1827 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
1828 }
1829
1830 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
1831 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1832 {
1833 static const GVecGen3 g = {
1834 .fni8 = tcg_gen_and_i64,
1835 .fniv = tcg_gen_and_vec,
1836 .fno = gen_helper_gvec_and,
1837 .opc = INDEX_op_and_vec,
1838 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1839 };
1840 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1841 }
1842
1843 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
1844 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1845 {
1846 static const GVecGen3 g = {
1847 .fni8 = tcg_gen_or_i64,
1848 .fniv = tcg_gen_or_vec,
1849 .fno = gen_helper_gvec_or,
1850 .opc = INDEX_op_or_vec,
1851 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1852 };
1853 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1854 }
1855
1856 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
1857 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1858 {
1859 static const GVecGen3 g = {
1860 .fni8 = tcg_gen_xor_i64,
1861 .fniv = tcg_gen_xor_vec,
1862 .fno = gen_helper_gvec_xor,
1863 .opc = INDEX_op_xor_vec,
1864 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1865 };
1866 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1867 }
1868
1869 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
1870 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1871 {
1872 static const GVecGen3 g = {
1873 .fni8 = tcg_gen_andc_i64,
1874 .fniv = tcg_gen_andc_vec,
1875 .fno = gen_helper_gvec_andc,
1876 .opc = INDEX_op_andc_vec,
1877 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1878 };
1879 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1880 }
1881
1882 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
1883 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1884 {
1885 static const GVecGen3 g = {
1886 .fni8 = tcg_gen_orc_i64,
1887 .fniv = tcg_gen_orc_vec,
1888 .fno = gen_helper_gvec_orc,
1889 .opc = INDEX_op_orc_vec,
1890 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1891 };
1892 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
1893 }
1894
1895 static const GVecGen2s gop_ands = {
1896 .fni8 = tcg_gen_and_i64,
1897 .fniv = tcg_gen_and_vec,
1898 .fno = gen_helper_gvec_ands,
1899 .opc = INDEX_op_and_vec,
1900 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1901 .vece = MO_64
1902 };
1903
1904 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
1905 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1906 {
1907 TCGv_i64 tmp = tcg_temp_new_i64();
1908 gen_dup_i64(vece, tmp, c);
1909 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
1910 tcg_temp_free_i64(tmp);
1911 }
1912
1913 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
1914 int64_t c, uint32_t oprsz, uint32_t maxsz)
1915 {
1916 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
1917 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
1918 tcg_temp_free_i64(tmp);
1919 }
1920
1921 static const GVecGen2s gop_xors = {
1922 .fni8 = tcg_gen_xor_i64,
1923 .fniv = tcg_gen_xor_vec,
1924 .fno = gen_helper_gvec_xors,
1925 .opc = INDEX_op_xor_vec,
1926 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1927 .vece = MO_64
1928 };
1929
1930 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
1931 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1932 {
1933 TCGv_i64 tmp = tcg_temp_new_i64();
1934 gen_dup_i64(vece, tmp, c);
1935 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
1936 tcg_temp_free_i64(tmp);
1937 }
1938
1939 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
1940 int64_t c, uint32_t oprsz, uint32_t maxsz)
1941 {
1942 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
1943 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
1944 tcg_temp_free_i64(tmp);
1945 }
1946
1947 static const GVecGen2s gop_ors = {
1948 .fni8 = tcg_gen_or_i64,
1949 .fniv = tcg_gen_or_vec,
1950 .fno = gen_helper_gvec_ors,
1951 .opc = INDEX_op_or_vec,
1952 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1953 .vece = MO_64
1954 };
1955
1956 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
1957 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1958 {
1959 TCGv_i64 tmp = tcg_temp_new_i64();
1960 gen_dup_i64(vece, tmp, c);
1961 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
1962 tcg_temp_free_i64(tmp);
1963 }
1964
1965 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
1966 int64_t c, uint32_t oprsz, uint32_t maxsz)
1967 {
1968 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
1969 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
1970 tcg_temp_free_i64(tmp);
1971 }
1972
1973 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
1974 {
1975 uint64_t mask = dup_const(MO_8, 0xff << c);
1976 tcg_gen_shli_i64(d, a, c);
1977 tcg_gen_andi_i64(d, d, mask);
1978 }
1979
1980 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
1981 {
1982 uint64_t mask = dup_const(MO_16, 0xffff << c);
1983 tcg_gen_shli_i64(d, a, c);
1984 tcg_gen_andi_i64(d, d, mask);
1985 }
1986
1987 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
1988 int64_t shift, uint32_t oprsz, uint32_t maxsz)
1989 {
1990 static const GVecGen2i g[4] = {
1991 { .fni8 = tcg_gen_vec_shl8i_i64,
1992 .fniv = tcg_gen_shli_vec,
1993 .fno = gen_helper_gvec_shl8i,
1994 .opc = INDEX_op_shli_vec,
1995 .vece = MO_8 },
1996 { .fni8 = tcg_gen_vec_shl16i_i64,
1997 .fniv = tcg_gen_shli_vec,
1998 .fno = gen_helper_gvec_shl16i,
1999 .opc = INDEX_op_shli_vec,
2000 .vece = MO_16 },
2001 { .fni4 = tcg_gen_shli_i32,
2002 .fniv = tcg_gen_shli_vec,
2003 .fno = gen_helper_gvec_shl32i,
2004 .opc = INDEX_op_shli_vec,
2005 .vece = MO_32 },
2006 { .fni8 = tcg_gen_shli_i64,
2007 .fniv = tcg_gen_shli_vec,
2008 .fno = gen_helper_gvec_shl64i,
2009 .opc = INDEX_op_shli_vec,
2010 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2011 .vece = MO_64 },
2012 };
2013
2014 tcg_debug_assert(vece <= MO_64);
2015 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2016 if (shift == 0) {
2017 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2018 } else {
2019 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2020 }
2021 }
2022
2023 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2024 {
2025 uint64_t mask = dup_const(MO_8, 0xff >> c);
2026 tcg_gen_shri_i64(d, a, c);
2027 tcg_gen_andi_i64(d, d, mask);
2028 }
2029
2030 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2031 {
2032 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2033 tcg_gen_shri_i64(d, a, c);
2034 tcg_gen_andi_i64(d, d, mask);
2035 }
2036
2037 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2038 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2039 {
2040 static const GVecGen2i g[4] = {
2041 { .fni8 = tcg_gen_vec_shr8i_i64,
2042 .fniv = tcg_gen_shri_vec,
2043 .fno = gen_helper_gvec_shr8i,
2044 .opc = INDEX_op_shri_vec,
2045 .vece = MO_8 },
2046 { .fni8 = tcg_gen_vec_shr16i_i64,
2047 .fniv = tcg_gen_shri_vec,
2048 .fno = gen_helper_gvec_shr16i,
2049 .opc = INDEX_op_shri_vec,
2050 .vece = MO_16 },
2051 { .fni4 = tcg_gen_shri_i32,
2052 .fniv = tcg_gen_shri_vec,
2053 .fno = gen_helper_gvec_shr32i,
2054 .opc = INDEX_op_shri_vec,
2055 .vece = MO_32 },
2056 { .fni8 = tcg_gen_shri_i64,
2057 .fniv = tcg_gen_shri_vec,
2058 .fno = gen_helper_gvec_shr64i,
2059 .opc = INDEX_op_shri_vec,
2060 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2061 .vece = MO_64 },
2062 };
2063
2064 tcg_debug_assert(vece <= MO_64);
2065 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2066 if (shift == 0) {
2067 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2068 } else {
2069 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2070 }
2071 }
2072
2073 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2074 {
2075 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2076 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2077 TCGv_i64 s = tcg_temp_new_i64();
2078
2079 tcg_gen_shri_i64(d, a, c);
2080 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2081 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2082 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2083 tcg_gen_or_i64(d, d, s); /* include sign extension */
2084 tcg_temp_free_i64(s);
2085 }
2086
2087 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2088 {
2089 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2090 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2091 TCGv_i64 s = tcg_temp_new_i64();
2092
2093 tcg_gen_shri_i64(d, a, c);
2094 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2095 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2096 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2097 tcg_gen_or_i64(d, d, s); /* include sign extension */
2098 tcg_temp_free_i64(s);
2099 }
2100
2101 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2102 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2103 {
2104 static const GVecGen2i g[4] = {
2105 { .fni8 = tcg_gen_vec_sar8i_i64,
2106 .fniv = tcg_gen_sari_vec,
2107 .fno = gen_helper_gvec_sar8i,
2108 .opc = INDEX_op_sari_vec,
2109 .vece = MO_8 },
2110 { .fni8 = tcg_gen_vec_sar16i_i64,
2111 .fniv = tcg_gen_sari_vec,
2112 .fno = gen_helper_gvec_sar16i,
2113 .opc = INDEX_op_sari_vec,
2114 .vece = MO_16 },
2115 { .fni4 = tcg_gen_sari_i32,
2116 .fniv = tcg_gen_sari_vec,
2117 .fno = gen_helper_gvec_sar32i,
2118 .opc = INDEX_op_sari_vec,
2119 .vece = MO_32 },
2120 { .fni8 = tcg_gen_sari_i64,
2121 .fniv = tcg_gen_sari_vec,
2122 .fno = gen_helper_gvec_sar64i,
2123 .opc = INDEX_op_sari_vec,
2124 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2125 .vece = MO_64 },
2126 };
2127
2128 tcg_debug_assert(vece <= MO_64);
2129 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2130 if (shift == 0) {
2131 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2132 } else {
2133 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2134 }
2135 }
2136
2137 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
2138 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
2139 uint32_t oprsz, TCGCond cond)
2140 {
2141 TCGv_i32 t0 = tcg_temp_new_i32();
2142 TCGv_i32 t1 = tcg_temp_new_i32();
2143 uint32_t i;
2144
2145 for (i = 0; i < oprsz; i += 4) {
2146 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
2147 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
2148 tcg_gen_setcond_i32(cond, t0, t0, t1);
2149 tcg_gen_neg_i32(t0, t0);
2150 tcg_gen_st_i32(t0, cpu_env, dofs + i);
2151 }
2152 tcg_temp_free_i32(t1);
2153 tcg_temp_free_i32(t0);
2154 }
2155
2156 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
2157 uint32_t oprsz, TCGCond cond)
2158 {
2159 TCGv_i64 t0 = tcg_temp_new_i64();
2160 TCGv_i64 t1 = tcg_temp_new_i64();
2161 uint32_t i;
2162
2163 for (i = 0; i < oprsz; i += 8) {
2164 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
2165 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
2166 tcg_gen_setcond_i64(cond, t0, t0, t1);
2167 tcg_gen_neg_i64(t0, t0);
2168 tcg_gen_st_i64(t0, cpu_env, dofs + i);
2169 }
2170 tcg_temp_free_i64(t1);
2171 tcg_temp_free_i64(t0);
2172 }
2173
2174 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2175 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
2176 TCGType type, TCGCond cond)
2177 {
2178 TCGv_vec t0 = tcg_temp_new_vec(type);
2179 TCGv_vec t1 = tcg_temp_new_vec(type);
2180 uint32_t i;
2181
2182 for (i = 0; i < oprsz; i += tysz) {
2183 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2184 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
2185 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
2186 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2187 }
2188 tcg_temp_free_vec(t1);
2189 tcg_temp_free_vec(t0);
2190 }
2191
2192 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
2193 uint32_t aofs, uint32_t bofs,
2194 uint32_t oprsz, uint32_t maxsz)
2195 {
2196 static gen_helper_gvec_3 * const eq_fn[4] = {
2197 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
2198 gen_helper_gvec_eq32, gen_helper_gvec_eq64
2199 };
2200 static gen_helper_gvec_3 * const ne_fn[4] = {
2201 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
2202 gen_helper_gvec_ne32, gen_helper_gvec_ne64
2203 };
2204 static gen_helper_gvec_3 * const lt_fn[4] = {
2205 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
2206 gen_helper_gvec_lt32, gen_helper_gvec_lt64
2207 };
2208 static gen_helper_gvec_3 * const le_fn[4] = {
2209 gen_helper_gvec_le8, gen_helper_gvec_le16,
2210 gen_helper_gvec_le32, gen_helper_gvec_le64
2211 };
2212 static gen_helper_gvec_3 * const ltu_fn[4] = {
2213 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
2214 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
2215 };
2216 static gen_helper_gvec_3 * const leu_fn[4] = {
2217 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
2218 gen_helper_gvec_leu32, gen_helper_gvec_leu64
2219 };
2220 static gen_helper_gvec_3 * const * const fns[16] = {
2221 [TCG_COND_EQ] = eq_fn,
2222 [TCG_COND_NE] = ne_fn,
2223 [TCG_COND_LT] = lt_fn,
2224 [TCG_COND_LE] = le_fn,
2225 [TCG_COND_LTU] = ltu_fn,
2226 [TCG_COND_LEU] = leu_fn,
2227 };
2228 TCGType type;
2229 uint32_t some;
2230
2231 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
2232 check_overlap_3(dofs, aofs, bofs, maxsz);
2233
2234 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
2235 do_dup(MO_8, dofs, oprsz, maxsz,
2236 NULL, NULL, -(cond == TCG_COND_ALWAYS));
2237 return;
2238 }
2239
2240 /* Implement inline with a vector type, if possible.
2241 * Prefer integer when 64-bit host and 64-bit comparison.
2242 */
2243 type = choose_vector_type(INDEX_op_cmp_vec, vece, oprsz,
2244 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
2245 switch (type) {
2246 case TCG_TYPE_V256:
2247 /* Recall that ARM SVE allows vector sizes that are not a
2248 * power of 2, but always a multiple of 16. The intent is
2249 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
2250 */
2251 some = QEMU_ALIGN_DOWN(oprsz, 32);
2252 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
2253 if (some == oprsz) {
2254 break;
2255 }
2256 dofs += some;
2257 aofs += some;
2258 bofs += some;
2259 oprsz -= some;
2260 maxsz -= some;
2261 /* fallthru */
2262 case TCG_TYPE_V128:
2263 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
2264 break;
2265 case TCG_TYPE_V64:
2266 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
2267 break;
2268
2269 case 0:
2270 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2271 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
2272 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2273 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
2274 } else {
2275 gen_helper_gvec_3 * const *fn = fns[cond];
2276
2277 if (fn == NULL) {
2278 uint32_t tmp;
2279 tmp = aofs, aofs = bofs, bofs = tmp;
2280 cond = tcg_swap_cond(cond);
2281 fn = fns[cond];
2282 assert(fn != NULL);
2283 }
2284 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
2285 return;
2286 }
2287 break;
2288
2289 default:
2290 g_assert_not_reached();
2291 }
2292
2293 if (oprsz < maxsz) {
2294 expand_clr(dofs + oprsz, maxsz - oprsz);
2295 }
2296 }