]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/tcg-op-gvec.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20190128' into staging
[mirror_qemu.git] / tcg / tcg-op-gvec.c
1 /*
2 * Generic vector operation expansion
3 *
4 * Copyright (c) 2018 Linaro
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "tcg.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "tcg-gvec-desc.h"
26
27 #define MAX_UNROLL 4
28
29 /* Verify vector size and alignment rules. OFS should be the OR of all
30 of the operand offsets so that we can check them all at once. */
31 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
32 {
33 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
34 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
35 tcg_debug_assert(oprsz > 0);
36 tcg_debug_assert(oprsz <= maxsz);
37 tcg_debug_assert((oprsz & opr_align) == 0);
38 tcg_debug_assert((maxsz & max_align) == 0);
39 tcg_debug_assert((ofs & max_align) == 0);
40 }
41
42 /* Verify vector overlap rules for two operands. */
43 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
44 {
45 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
46 }
47
48 /* Verify vector overlap rules for three operands. */
49 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
50 {
51 check_overlap_2(d, a, s);
52 check_overlap_2(d, b, s);
53 check_overlap_2(a, b, s);
54 }
55
56 /* Verify vector overlap rules for four operands. */
57 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
58 uint32_t c, uint32_t s)
59 {
60 check_overlap_2(d, a, s);
61 check_overlap_2(d, b, s);
62 check_overlap_2(d, c, s);
63 check_overlap_2(a, b, s);
64 check_overlap_2(a, c, s);
65 check_overlap_2(b, c, s);
66 }
67
68 /* Create a descriptor from components. */
69 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
70 {
71 uint32_t desc = 0;
72
73 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
74 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
75 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
76
77 oprsz = (oprsz / 8) - 1;
78 maxsz = (maxsz / 8) - 1;
79 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
80 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
81 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
82
83 return desc;
84 }
85
86 /* Generate a call to a gvec-style helper with two vector operands. */
87 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
88 uint32_t oprsz, uint32_t maxsz, int32_t data,
89 gen_helper_gvec_2 *fn)
90 {
91 TCGv_ptr a0, a1;
92 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
93
94 a0 = tcg_temp_new_ptr();
95 a1 = tcg_temp_new_ptr();
96
97 tcg_gen_addi_ptr(a0, cpu_env, dofs);
98 tcg_gen_addi_ptr(a1, cpu_env, aofs);
99
100 fn(a0, a1, desc);
101
102 tcg_temp_free_ptr(a0);
103 tcg_temp_free_ptr(a1);
104 tcg_temp_free_i32(desc);
105 }
106
107 /* Generate a call to a gvec-style helper with two vector operands
108 and one scalar operand. */
109 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
110 uint32_t oprsz, uint32_t maxsz, int32_t data,
111 gen_helper_gvec_2i *fn)
112 {
113 TCGv_ptr a0, a1;
114 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
115
116 a0 = tcg_temp_new_ptr();
117 a1 = tcg_temp_new_ptr();
118
119 tcg_gen_addi_ptr(a0, cpu_env, dofs);
120 tcg_gen_addi_ptr(a1, cpu_env, aofs);
121
122 fn(a0, a1, c, desc);
123
124 tcg_temp_free_ptr(a0);
125 tcg_temp_free_ptr(a1);
126 tcg_temp_free_i32(desc);
127 }
128
129 /* Generate a call to a gvec-style helper with three vector operands. */
130 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
131 uint32_t oprsz, uint32_t maxsz, int32_t data,
132 gen_helper_gvec_3 *fn)
133 {
134 TCGv_ptr a0, a1, a2;
135 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
136
137 a0 = tcg_temp_new_ptr();
138 a1 = tcg_temp_new_ptr();
139 a2 = tcg_temp_new_ptr();
140
141 tcg_gen_addi_ptr(a0, cpu_env, dofs);
142 tcg_gen_addi_ptr(a1, cpu_env, aofs);
143 tcg_gen_addi_ptr(a2, cpu_env, bofs);
144
145 fn(a0, a1, a2, desc);
146
147 tcg_temp_free_ptr(a0);
148 tcg_temp_free_ptr(a1);
149 tcg_temp_free_ptr(a2);
150 tcg_temp_free_i32(desc);
151 }
152
153 /* Generate a call to a gvec-style helper with four vector operands. */
154 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
156 int32_t data, gen_helper_gvec_4 *fn)
157 {
158 TCGv_ptr a0, a1, a2, a3;
159 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
160
161 a0 = tcg_temp_new_ptr();
162 a1 = tcg_temp_new_ptr();
163 a2 = tcg_temp_new_ptr();
164 a3 = tcg_temp_new_ptr();
165
166 tcg_gen_addi_ptr(a0, cpu_env, dofs);
167 tcg_gen_addi_ptr(a1, cpu_env, aofs);
168 tcg_gen_addi_ptr(a2, cpu_env, bofs);
169 tcg_gen_addi_ptr(a3, cpu_env, cofs);
170
171 fn(a0, a1, a2, a3, desc);
172
173 tcg_temp_free_ptr(a0);
174 tcg_temp_free_ptr(a1);
175 tcg_temp_free_ptr(a2);
176 tcg_temp_free_ptr(a3);
177 tcg_temp_free_i32(desc);
178 }
179
180 /* Generate a call to a gvec-style helper with five vector operands. */
181 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
182 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
183 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
184 {
185 TCGv_ptr a0, a1, a2, a3, a4;
186 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
187
188 a0 = tcg_temp_new_ptr();
189 a1 = tcg_temp_new_ptr();
190 a2 = tcg_temp_new_ptr();
191 a3 = tcg_temp_new_ptr();
192 a4 = tcg_temp_new_ptr();
193
194 tcg_gen_addi_ptr(a0, cpu_env, dofs);
195 tcg_gen_addi_ptr(a1, cpu_env, aofs);
196 tcg_gen_addi_ptr(a2, cpu_env, bofs);
197 tcg_gen_addi_ptr(a3, cpu_env, cofs);
198 tcg_gen_addi_ptr(a4, cpu_env, xofs);
199
200 fn(a0, a1, a2, a3, a4, desc);
201
202 tcg_temp_free_ptr(a0);
203 tcg_temp_free_ptr(a1);
204 tcg_temp_free_ptr(a2);
205 tcg_temp_free_ptr(a3);
206 tcg_temp_free_ptr(a4);
207 tcg_temp_free_i32(desc);
208 }
209
210 /* Generate a call to a gvec-style helper with three vector operands
211 and an extra pointer operand. */
212 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
213 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
214 int32_t data, gen_helper_gvec_2_ptr *fn)
215 {
216 TCGv_ptr a0, a1;
217 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
218
219 a0 = tcg_temp_new_ptr();
220 a1 = tcg_temp_new_ptr();
221
222 tcg_gen_addi_ptr(a0, cpu_env, dofs);
223 tcg_gen_addi_ptr(a1, cpu_env, aofs);
224
225 fn(a0, a1, ptr, desc);
226
227 tcg_temp_free_ptr(a0);
228 tcg_temp_free_ptr(a1);
229 tcg_temp_free_i32(desc);
230 }
231
232 /* Generate a call to a gvec-style helper with three vector operands
233 and an extra pointer operand. */
234 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
235 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
236 int32_t data, gen_helper_gvec_3_ptr *fn)
237 {
238 TCGv_ptr a0, a1, a2;
239 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
240
241 a0 = tcg_temp_new_ptr();
242 a1 = tcg_temp_new_ptr();
243 a2 = tcg_temp_new_ptr();
244
245 tcg_gen_addi_ptr(a0, cpu_env, dofs);
246 tcg_gen_addi_ptr(a1, cpu_env, aofs);
247 tcg_gen_addi_ptr(a2, cpu_env, bofs);
248
249 fn(a0, a1, a2, ptr, desc);
250
251 tcg_temp_free_ptr(a0);
252 tcg_temp_free_ptr(a1);
253 tcg_temp_free_ptr(a2);
254 tcg_temp_free_i32(desc);
255 }
256
257 /* Generate a call to a gvec-style helper with four vector operands
258 and an extra pointer operand. */
259 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
260 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
261 uint32_t maxsz, int32_t data,
262 gen_helper_gvec_4_ptr *fn)
263 {
264 TCGv_ptr a0, a1, a2, a3;
265 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
266
267 a0 = tcg_temp_new_ptr();
268 a1 = tcg_temp_new_ptr();
269 a2 = tcg_temp_new_ptr();
270 a3 = tcg_temp_new_ptr();
271
272 tcg_gen_addi_ptr(a0, cpu_env, dofs);
273 tcg_gen_addi_ptr(a1, cpu_env, aofs);
274 tcg_gen_addi_ptr(a2, cpu_env, bofs);
275 tcg_gen_addi_ptr(a3, cpu_env, cofs);
276
277 fn(a0, a1, a2, a3, ptr, desc);
278
279 tcg_temp_free_ptr(a0);
280 tcg_temp_free_ptr(a1);
281 tcg_temp_free_ptr(a2);
282 tcg_temp_free_ptr(a3);
283 tcg_temp_free_i32(desc);
284 }
285
286 /* Return true if we want to implement something of OPRSZ bytes
287 in units of LNSZ. This limits the expansion of inline code. */
288 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
289 {
290 if (oprsz % lnsz == 0) {
291 uint32_t lnct = oprsz / lnsz;
292 return lnct >= 1 && lnct <= MAX_UNROLL;
293 }
294 return false;
295 }
296
297 static void expand_clr(uint32_t dofs, uint32_t maxsz);
298
299 /* Duplicate C as per VECE. */
300 uint64_t (dup_const)(unsigned vece, uint64_t c)
301 {
302 switch (vece) {
303 case MO_8:
304 return 0x0101010101010101ull * (uint8_t)c;
305 case MO_16:
306 return 0x0001000100010001ull * (uint16_t)c;
307 case MO_32:
308 return 0x0000000100000001ull * (uint32_t)c;
309 case MO_64:
310 return c;
311 default:
312 g_assert_not_reached();
313 }
314 }
315
316 /* Duplicate IN into OUT as per VECE. */
317 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
318 {
319 switch (vece) {
320 case MO_8:
321 tcg_gen_ext8u_i32(out, in);
322 tcg_gen_muli_i32(out, out, 0x01010101);
323 break;
324 case MO_16:
325 tcg_gen_deposit_i32(out, in, in, 16, 16);
326 break;
327 case MO_32:
328 tcg_gen_mov_i32(out, in);
329 break;
330 default:
331 g_assert_not_reached();
332 }
333 }
334
335 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
336 {
337 switch (vece) {
338 case MO_8:
339 tcg_gen_ext8u_i64(out, in);
340 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
341 break;
342 case MO_16:
343 tcg_gen_ext16u_i64(out, in);
344 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
345 break;
346 case MO_32:
347 tcg_gen_deposit_i64(out, in, in, 32, 32);
348 break;
349 case MO_64:
350 tcg_gen_mov_i64(out, in);
351 break;
352 default:
353 g_assert_not_reached();
354 }
355 }
356
357 /* Select a supported vector type for implementing an operation on SIZE
358 * bytes. If OP is 0, assume that the real operation to be performed is
359 * required by all backends. Otherwise, make sure than OP can be performed
360 * on elements of size VECE in the selected type. Do not select V64 if
361 * PREFER_I64 is true. Return 0 if no vector type is selected.
362 */
363 static TCGType choose_vector_type(TCGOpcode op, unsigned vece, uint32_t size,
364 bool prefer_i64)
365 {
366 if (TCG_TARGET_HAS_v256 && check_size_impl(size, 32)) {
367 if (op == 0) {
368 return TCG_TYPE_V256;
369 }
370 /* Recall that ARM SVE allows vector sizes that are not a
371 * power of 2, but always a multiple of 16. The intent is
372 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
373 * It is hard to imagine a case in which v256 is supported
374 * but v128 is not, but check anyway.
375 */
376 if (tcg_can_emit_vec_op(op, TCG_TYPE_V256, vece)
377 && (size % 32 == 0
378 || tcg_can_emit_vec_op(op, TCG_TYPE_V128, vece))) {
379 return TCG_TYPE_V256;
380 }
381 }
382 if (TCG_TARGET_HAS_v128 && check_size_impl(size, 16)
383 && (op == 0 || tcg_can_emit_vec_op(op, TCG_TYPE_V128, vece))) {
384 return TCG_TYPE_V128;
385 }
386 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
387 && (op == 0 || tcg_can_emit_vec_op(op, TCG_TYPE_V64, vece))) {
388 return TCG_TYPE_V64;
389 }
390 return 0;
391 }
392
393 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
394 * Only one of IN_32 or IN_64 may be set;
395 * IN_C is used if IN_32 and IN_64 are unset.
396 */
397 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
398 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
399 uint64_t in_c)
400 {
401 TCGType type;
402 TCGv_i64 t_64;
403 TCGv_i32 t_32, t_desc;
404 TCGv_ptr t_ptr;
405 uint32_t i;
406
407 assert(vece <= (in_32 ? MO_32 : MO_64));
408 assert(in_32 == NULL || in_64 == NULL);
409
410 /* If we're storing 0, expand oprsz to maxsz. */
411 if (in_32 == NULL && in_64 == NULL) {
412 in_c = dup_const(vece, in_c);
413 if (in_c == 0) {
414 oprsz = maxsz;
415 }
416 }
417
418 /* Implement inline with a vector type, if possible.
419 * Prefer integer when 64-bit host and no variable dup.
420 */
421 type = choose_vector_type(0, vece, oprsz,
422 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
423 && (in_64 == NULL || vece == MO_64)));
424 if (type != 0) {
425 TCGv_vec t_vec = tcg_temp_new_vec(type);
426
427 if (in_32) {
428 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
429 } else if (in_64) {
430 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
431 } else {
432 switch (vece) {
433 case MO_8:
434 tcg_gen_dup8i_vec(t_vec, in_c);
435 break;
436 case MO_16:
437 tcg_gen_dup16i_vec(t_vec, in_c);
438 break;
439 case MO_32:
440 tcg_gen_dup32i_vec(t_vec, in_c);
441 break;
442 default:
443 tcg_gen_dup64i_vec(t_vec, in_c);
444 break;
445 }
446 }
447
448 i = 0;
449 switch (type) {
450 case TCG_TYPE_V256:
451 /* Recall that ARM SVE allows vector sizes that are not a
452 * power of 2, but always a multiple of 16. The intent is
453 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
454 */
455 for (; i + 32 <= oprsz; i += 32) {
456 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
457 }
458 /* fallthru */
459 case TCG_TYPE_V128:
460 for (; i + 16 <= oprsz; i += 16) {
461 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
462 }
463 break;
464 case TCG_TYPE_V64:
465 for (; i < oprsz; i += 8) {
466 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
467 }
468 break;
469 default:
470 g_assert_not_reached();
471 }
472
473 tcg_temp_free_vec(t_vec);
474 goto done;
475 }
476
477 /* Otherwise, inline with an integer type, unless "large". */
478 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
479 t_64 = NULL;
480 t_32 = NULL;
481
482 if (in_32) {
483 /* We are given a 32-bit variable input. For a 64-bit host,
484 use a 64-bit operation unless the 32-bit operation would
485 be simple enough. */
486 if (TCG_TARGET_REG_BITS == 64
487 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
488 t_64 = tcg_temp_new_i64();
489 tcg_gen_extu_i32_i64(t_64, in_32);
490 gen_dup_i64(vece, t_64, t_64);
491 } else {
492 t_32 = tcg_temp_new_i32();
493 gen_dup_i32(vece, t_32, in_32);
494 }
495 } else if (in_64) {
496 /* We are given a 64-bit variable input. */
497 t_64 = tcg_temp_new_i64();
498 gen_dup_i64(vece, t_64, in_64);
499 } else {
500 /* We are given a constant input. */
501 /* For 64-bit hosts, use 64-bit constants for "simple" constants
502 or when we'd need too many 32-bit stores, or when a 64-bit
503 constant is really required. */
504 if (vece == MO_64
505 || (TCG_TARGET_REG_BITS == 64
506 && (in_c == 0 || in_c == -1
507 || !check_size_impl(oprsz, 4)))) {
508 t_64 = tcg_const_i64(in_c);
509 } else {
510 t_32 = tcg_const_i32(in_c);
511 }
512 }
513
514 /* Implement inline if we picked an implementation size above. */
515 if (t_32) {
516 for (i = 0; i < oprsz; i += 4) {
517 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
518 }
519 tcg_temp_free_i32(t_32);
520 goto done;
521 }
522 if (t_64) {
523 for (i = 0; i < oprsz; i += 8) {
524 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
525 }
526 tcg_temp_free_i64(t_64);
527 goto done;
528 }
529 }
530
531 /* Otherwise implement out of line. */
532 t_ptr = tcg_temp_new_ptr();
533 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
534 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
535
536 if (vece == MO_64) {
537 if (in_64) {
538 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
539 } else {
540 t_64 = tcg_const_i64(in_c);
541 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
542 tcg_temp_free_i64(t_64);
543 }
544 } else {
545 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
546 static dup_fn * const fns[3] = {
547 gen_helper_gvec_dup8,
548 gen_helper_gvec_dup16,
549 gen_helper_gvec_dup32
550 };
551
552 if (in_32) {
553 fns[vece](t_ptr, t_desc, in_32);
554 } else {
555 t_32 = tcg_temp_new_i32();
556 if (in_64) {
557 tcg_gen_extrl_i64_i32(t_32, in_64);
558 } else if (vece == MO_8) {
559 tcg_gen_movi_i32(t_32, in_c & 0xff);
560 } else if (vece == MO_16) {
561 tcg_gen_movi_i32(t_32, in_c & 0xffff);
562 } else {
563 tcg_gen_movi_i32(t_32, in_c);
564 }
565 fns[vece](t_ptr, t_desc, t_32);
566 tcg_temp_free_i32(t_32);
567 }
568 }
569
570 tcg_temp_free_ptr(t_ptr);
571 tcg_temp_free_i32(t_desc);
572 return;
573
574 done:
575 if (oprsz < maxsz) {
576 expand_clr(dofs + oprsz, maxsz - oprsz);
577 }
578 }
579
580 /* Likewise, but with zero. */
581 static void expand_clr(uint32_t dofs, uint32_t maxsz)
582 {
583 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
584 }
585
586 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
587 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
588 void (*fni)(TCGv_i32, TCGv_i32))
589 {
590 TCGv_i32 t0 = tcg_temp_new_i32();
591 uint32_t i;
592
593 for (i = 0; i < oprsz; i += 4) {
594 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
595 fni(t0, t0);
596 tcg_gen_st_i32(t0, cpu_env, dofs + i);
597 }
598 tcg_temp_free_i32(t0);
599 }
600
601 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
602 int32_t c, bool load_dest,
603 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
604 {
605 TCGv_i32 t0 = tcg_temp_new_i32();
606 TCGv_i32 t1 = tcg_temp_new_i32();
607 uint32_t i;
608
609 for (i = 0; i < oprsz; i += 4) {
610 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
611 if (load_dest) {
612 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
613 }
614 fni(t1, t0, c);
615 tcg_gen_st_i32(t1, cpu_env, dofs + i);
616 }
617 tcg_temp_free_i32(t0);
618 tcg_temp_free_i32(t1);
619 }
620
621 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
622 TCGv_i32 c, bool scalar_first,
623 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
624 {
625 TCGv_i32 t0 = tcg_temp_new_i32();
626 TCGv_i32 t1 = tcg_temp_new_i32();
627 uint32_t i;
628
629 for (i = 0; i < oprsz; i += 4) {
630 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
631 if (scalar_first) {
632 fni(t1, c, t0);
633 } else {
634 fni(t1, t0, c);
635 }
636 tcg_gen_st_i32(t1, cpu_env, dofs + i);
637 }
638 tcg_temp_free_i32(t0);
639 tcg_temp_free_i32(t1);
640 }
641
642 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
643 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
644 uint32_t bofs, uint32_t oprsz, bool load_dest,
645 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
646 {
647 TCGv_i32 t0 = tcg_temp_new_i32();
648 TCGv_i32 t1 = tcg_temp_new_i32();
649 TCGv_i32 t2 = tcg_temp_new_i32();
650 uint32_t i;
651
652 for (i = 0; i < oprsz; i += 4) {
653 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
654 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
655 if (load_dest) {
656 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
657 }
658 fni(t2, t0, t1);
659 tcg_gen_st_i32(t2, cpu_env, dofs + i);
660 }
661 tcg_temp_free_i32(t2);
662 tcg_temp_free_i32(t1);
663 tcg_temp_free_i32(t0);
664 }
665
666 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
667 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
668 uint32_t cofs, uint32_t oprsz, bool write_aofs,
669 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
670 {
671 TCGv_i32 t0 = tcg_temp_new_i32();
672 TCGv_i32 t1 = tcg_temp_new_i32();
673 TCGv_i32 t2 = tcg_temp_new_i32();
674 TCGv_i32 t3 = tcg_temp_new_i32();
675 uint32_t i;
676
677 for (i = 0; i < oprsz; i += 4) {
678 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
679 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
680 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
681 fni(t0, t1, t2, t3);
682 tcg_gen_st_i32(t0, cpu_env, dofs + i);
683 if (write_aofs) {
684 tcg_gen_st_i32(t1, cpu_env, aofs + i);
685 }
686 }
687 tcg_temp_free_i32(t3);
688 tcg_temp_free_i32(t2);
689 tcg_temp_free_i32(t1);
690 tcg_temp_free_i32(t0);
691 }
692
693 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
694 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
695 void (*fni)(TCGv_i64, TCGv_i64))
696 {
697 TCGv_i64 t0 = tcg_temp_new_i64();
698 uint32_t i;
699
700 for (i = 0; i < oprsz; i += 8) {
701 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
702 fni(t0, t0);
703 tcg_gen_st_i64(t0, cpu_env, dofs + i);
704 }
705 tcg_temp_free_i64(t0);
706 }
707
708 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
709 int64_t c, bool load_dest,
710 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
711 {
712 TCGv_i64 t0 = tcg_temp_new_i64();
713 TCGv_i64 t1 = tcg_temp_new_i64();
714 uint32_t i;
715
716 for (i = 0; i < oprsz; i += 8) {
717 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
718 if (load_dest) {
719 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
720 }
721 fni(t1, t0, c);
722 tcg_gen_st_i64(t1, cpu_env, dofs + i);
723 }
724 tcg_temp_free_i64(t0);
725 tcg_temp_free_i64(t1);
726 }
727
728 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
729 TCGv_i64 c, bool scalar_first,
730 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
731 {
732 TCGv_i64 t0 = tcg_temp_new_i64();
733 TCGv_i64 t1 = tcg_temp_new_i64();
734 uint32_t i;
735
736 for (i = 0; i < oprsz; i += 8) {
737 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
738 if (scalar_first) {
739 fni(t1, c, t0);
740 } else {
741 fni(t1, t0, c);
742 }
743 tcg_gen_st_i64(t1, cpu_env, dofs + i);
744 }
745 tcg_temp_free_i64(t0);
746 tcg_temp_free_i64(t1);
747 }
748
749 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
750 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
751 uint32_t bofs, uint32_t oprsz, bool load_dest,
752 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
753 {
754 TCGv_i64 t0 = tcg_temp_new_i64();
755 TCGv_i64 t1 = tcg_temp_new_i64();
756 TCGv_i64 t2 = tcg_temp_new_i64();
757 uint32_t i;
758
759 for (i = 0; i < oprsz; i += 8) {
760 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
761 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
762 if (load_dest) {
763 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
764 }
765 fni(t2, t0, t1);
766 tcg_gen_st_i64(t2, cpu_env, dofs + i);
767 }
768 tcg_temp_free_i64(t2);
769 tcg_temp_free_i64(t1);
770 tcg_temp_free_i64(t0);
771 }
772
773 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
774 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
775 uint32_t cofs, uint32_t oprsz, bool write_aofs,
776 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
777 {
778 TCGv_i64 t0 = tcg_temp_new_i64();
779 TCGv_i64 t1 = tcg_temp_new_i64();
780 TCGv_i64 t2 = tcg_temp_new_i64();
781 TCGv_i64 t3 = tcg_temp_new_i64();
782 uint32_t i;
783
784 for (i = 0; i < oprsz; i += 8) {
785 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
786 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
787 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
788 fni(t0, t1, t2, t3);
789 tcg_gen_st_i64(t0, cpu_env, dofs + i);
790 if (write_aofs) {
791 tcg_gen_st_i64(t1, cpu_env, aofs + i);
792 }
793 }
794 tcg_temp_free_i64(t3);
795 tcg_temp_free_i64(t2);
796 tcg_temp_free_i64(t1);
797 tcg_temp_free_i64(t0);
798 }
799
800 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
801 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
802 uint32_t oprsz, uint32_t tysz, TCGType type,
803 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
804 {
805 TCGv_vec t0 = tcg_temp_new_vec(type);
806 uint32_t i;
807
808 for (i = 0; i < oprsz; i += tysz) {
809 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
810 fni(vece, t0, t0);
811 tcg_gen_st_vec(t0, cpu_env, dofs + i);
812 }
813 tcg_temp_free_vec(t0);
814 }
815
816 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
817 using host vectors. */
818 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
819 uint32_t oprsz, uint32_t tysz, TCGType type,
820 int64_t c, bool load_dest,
821 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
822 {
823 TCGv_vec t0 = tcg_temp_new_vec(type);
824 TCGv_vec t1 = tcg_temp_new_vec(type);
825 uint32_t i;
826
827 for (i = 0; i < oprsz; i += tysz) {
828 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
829 if (load_dest) {
830 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
831 }
832 fni(vece, t1, t0, c);
833 tcg_gen_st_vec(t1, cpu_env, dofs + i);
834 }
835 tcg_temp_free_vec(t0);
836 tcg_temp_free_vec(t1);
837 }
838
839 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
840 uint32_t oprsz, uint32_t tysz, TCGType type,
841 TCGv_vec c, bool scalar_first,
842 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
843 {
844 TCGv_vec t0 = tcg_temp_new_vec(type);
845 TCGv_vec t1 = tcg_temp_new_vec(type);
846 uint32_t i;
847
848 for (i = 0; i < oprsz; i += tysz) {
849 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
850 if (scalar_first) {
851 fni(vece, t1, c, t0);
852 } else {
853 fni(vece, t1, t0, c);
854 }
855 tcg_gen_st_vec(t1, cpu_env, dofs + i);
856 }
857 tcg_temp_free_vec(t0);
858 tcg_temp_free_vec(t1);
859 }
860
861 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
862 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
863 uint32_t bofs, uint32_t oprsz,
864 uint32_t tysz, TCGType type, bool load_dest,
865 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
866 {
867 TCGv_vec t0 = tcg_temp_new_vec(type);
868 TCGv_vec t1 = tcg_temp_new_vec(type);
869 TCGv_vec t2 = tcg_temp_new_vec(type);
870 uint32_t i;
871
872 for (i = 0; i < oprsz; i += tysz) {
873 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
874 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
875 if (load_dest) {
876 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
877 }
878 fni(vece, t2, t0, t1);
879 tcg_gen_st_vec(t2, cpu_env, dofs + i);
880 }
881 tcg_temp_free_vec(t2);
882 tcg_temp_free_vec(t1);
883 tcg_temp_free_vec(t0);
884 }
885
886 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
887 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
888 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
889 uint32_t tysz, TCGType type, bool write_aofs,
890 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
891 TCGv_vec, TCGv_vec))
892 {
893 TCGv_vec t0 = tcg_temp_new_vec(type);
894 TCGv_vec t1 = tcg_temp_new_vec(type);
895 TCGv_vec t2 = tcg_temp_new_vec(type);
896 TCGv_vec t3 = tcg_temp_new_vec(type);
897 uint32_t i;
898
899 for (i = 0; i < oprsz; i += tysz) {
900 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
901 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
902 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
903 fni(vece, t0, t1, t2, t3);
904 tcg_gen_st_vec(t0, cpu_env, dofs + i);
905 if (write_aofs) {
906 tcg_gen_st_vec(t1, cpu_env, aofs + i);
907 }
908 }
909 tcg_temp_free_vec(t3);
910 tcg_temp_free_vec(t2);
911 tcg_temp_free_vec(t1);
912 tcg_temp_free_vec(t0);
913 }
914
915 /* Expand a vector two-operand operation. */
916 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
917 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
918 {
919 TCGType type;
920 uint32_t some;
921
922 check_size_align(oprsz, maxsz, dofs | aofs);
923 check_overlap_2(dofs, aofs, maxsz);
924
925 type = 0;
926 if (g->fniv) {
927 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
928 }
929 switch (type) {
930 case TCG_TYPE_V256:
931 /* Recall that ARM SVE allows vector sizes that are not a
932 * power of 2, but always a multiple of 16. The intent is
933 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
934 */
935 some = QEMU_ALIGN_DOWN(oprsz, 32);
936 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
937 if (some == oprsz) {
938 break;
939 }
940 dofs += some;
941 aofs += some;
942 oprsz -= some;
943 maxsz -= some;
944 /* fallthru */
945 case TCG_TYPE_V128:
946 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
947 break;
948 case TCG_TYPE_V64:
949 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
950 break;
951
952 case 0:
953 if (g->fni8 && check_size_impl(oprsz, 8)) {
954 expand_2_i64(dofs, aofs, oprsz, g->fni8);
955 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
956 expand_2_i32(dofs, aofs, oprsz, g->fni4);
957 } else {
958 assert(g->fno != NULL);
959 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
960 return;
961 }
962 break;
963
964 default:
965 g_assert_not_reached();
966 }
967
968 if (oprsz < maxsz) {
969 expand_clr(dofs + oprsz, maxsz - oprsz);
970 }
971 }
972
973 /* Expand a vector operation with two vectors and an immediate. */
974 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
975 uint32_t maxsz, int64_t c, const GVecGen2i *g)
976 {
977 TCGType type;
978 uint32_t some;
979
980 check_size_align(oprsz, maxsz, dofs | aofs);
981 check_overlap_2(dofs, aofs, maxsz);
982
983 type = 0;
984 if (g->fniv) {
985 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
986 }
987 switch (type) {
988 case TCG_TYPE_V256:
989 /* Recall that ARM SVE allows vector sizes that are not a
990 * power of 2, but always a multiple of 16. The intent is
991 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
992 */
993 some = QEMU_ALIGN_DOWN(oprsz, 32);
994 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
995 c, g->load_dest, g->fniv);
996 if (some == oprsz) {
997 break;
998 }
999 dofs += some;
1000 aofs += some;
1001 oprsz -= some;
1002 maxsz -= some;
1003 /* fallthru */
1004 case TCG_TYPE_V128:
1005 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1006 c, g->load_dest, g->fniv);
1007 break;
1008 case TCG_TYPE_V64:
1009 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1010 c, g->load_dest, g->fniv);
1011 break;
1012
1013 case 0:
1014 if (g->fni8 && check_size_impl(oprsz, 8)) {
1015 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1016 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1017 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1018 } else {
1019 if (g->fno) {
1020 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1021 } else {
1022 TCGv_i64 tcg_c = tcg_const_i64(c);
1023 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1024 maxsz, c, g->fnoi);
1025 tcg_temp_free_i64(tcg_c);
1026 }
1027 return;
1028 }
1029 break;
1030
1031 default:
1032 g_assert_not_reached();
1033 }
1034
1035 if (oprsz < maxsz) {
1036 expand_clr(dofs + oprsz, maxsz - oprsz);
1037 }
1038 }
1039
1040 /* Expand a vector operation with two vectors and a scalar. */
1041 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1042 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1043 {
1044 TCGType type;
1045
1046 check_size_align(oprsz, maxsz, dofs | aofs);
1047 check_overlap_2(dofs, aofs, maxsz);
1048
1049 type = 0;
1050 if (g->fniv) {
1051 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
1052 }
1053 if (type != 0) {
1054 TCGv_vec t_vec = tcg_temp_new_vec(type);
1055 uint32_t some;
1056
1057 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1058
1059 switch (type) {
1060 case TCG_TYPE_V256:
1061 /* Recall that ARM SVE allows vector sizes that are not a
1062 * power of 2, but always a multiple of 16. The intent is
1063 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1064 */
1065 some = QEMU_ALIGN_DOWN(oprsz, 32);
1066 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1067 t_vec, g->scalar_first, g->fniv);
1068 if (some == oprsz) {
1069 break;
1070 }
1071 dofs += some;
1072 aofs += some;
1073 oprsz -= some;
1074 maxsz -= some;
1075 /* fallthru */
1076
1077 case TCG_TYPE_V128:
1078 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1079 t_vec, g->scalar_first, g->fniv);
1080 break;
1081
1082 case TCG_TYPE_V64:
1083 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1084 t_vec, g->scalar_first, g->fniv);
1085 break;
1086
1087 default:
1088 g_assert_not_reached();
1089 }
1090 tcg_temp_free_vec(t_vec);
1091 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1092 TCGv_i64 t64 = tcg_temp_new_i64();
1093
1094 gen_dup_i64(g->vece, t64, c);
1095 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1096 tcg_temp_free_i64(t64);
1097 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1098 TCGv_i32 t32 = tcg_temp_new_i32();
1099
1100 tcg_gen_extrl_i64_i32(t32, c);
1101 gen_dup_i32(g->vece, t32, t32);
1102 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1103 tcg_temp_free_i32(t32);
1104 } else {
1105 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1106 return;
1107 }
1108
1109 if (oprsz < maxsz) {
1110 expand_clr(dofs + oprsz, maxsz - oprsz);
1111 }
1112 }
1113
1114 /* Expand a vector three-operand operation. */
1115 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1116 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1117 {
1118 TCGType type;
1119 uint32_t some;
1120
1121 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1122 check_overlap_3(dofs, aofs, bofs, maxsz);
1123
1124 type = 0;
1125 if (g->fniv) {
1126 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
1127 }
1128 switch (type) {
1129 case TCG_TYPE_V256:
1130 /* Recall that ARM SVE allows vector sizes that are not a
1131 * power of 2, but always a multiple of 16. The intent is
1132 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1133 */
1134 some = QEMU_ALIGN_DOWN(oprsz, 32);
1135 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1136 g->load_dest, g->fniv);
1137 if (some == oprsz) {
1138 break;
1139 }
1140 dofs += some;
1141 aofs += some;
1142 bofs += some;
1143 oprsz -= some;
1144 maxsz -= some;
1145 /* fallthru */
1146 case TCG_TYPE_V128:
1147 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1148 g->load_dest, g->fniv);
1149 break;
1150 case TCG_TYPE_V64:
1151 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1152 g->load_dest, g->fniv);
1153 break;
1154
1155 case 0:
1156 if (g->fni8 && check_size_impl(oprsz, 8)) {
1157 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1158 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1159 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1160 } else {
1161 assert(g->fno != NULL);
1162 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1163 maxsz, g->data, g->fno);
1164 return;
1165 }
1166 break;
1167
1168 default:
1169 g_assert_not_reached();
1170 }
1171
1172 if (oprsz < maxsz) {
1173 expand_clr(dofs + oprsz, maxsz - oprsz);
1174 }
1175 }
1176
1177 /* Expand a vector four-operand operation. */
1178 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1179 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1180 {
1181 TCGType type;
1182 uint32_t some;
1183
1184 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1185 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1186
1187 type = 0;
1188 if (g->fniv) {
1189 type = choose_vector_type(g->opc, g->vece, oprsz, g->prefer_i64);
1190 }
1191 switch (type) {
1192 case TCG_TYPE_V256:
1193 /* Recall that ARM SVE allows vector sizes that are not a
1194 * power of 2, but always a multiple of 16. The intent is
1195 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1196 */
1197 some = QEMU_ALIGN_DOWN(oprsz, 32);
1198 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1199 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1200 if (some == oprsz) {
1201 break;
1202 }
1203 dofs += some;
1204 aofs += some;
1205 bofs += some;
1206 cofs += some;
1207 oprsz -= some;
1208 maxsz -= some;
1209 /* fallthru */
1210 case TCG_TYPE_V128:
1211 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1212 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1213 break;
1214 case TCG_TYPE_V64:
1215 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1216 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1217 break;
1218
1219 case 0:
1220 if (g->fni8 && check_size_impl(oprsz, 8)) {
1221 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1222 g->write_aofs, g->fni8);
1223 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1224 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1225 g->write_aofs, g->fni4);
1226 } else {
1227 assert(g->fno != NULL);
1228 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1229 oprsz, maxsz, g->data, g->fno);
1230 return;
1231 }
1232 break;
1233
1234 default:
1235 g_assert_not_reached();
1236 }
1237
1238 if (oprsz < maxsz) {
1239 expand_clr(dofs + oprsz, maxsz - oprsz);
1240 }
1241 }
1242
1243 /*
1244 * Expand specific vector operations.
1245 */
1246
1247 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1248 {
1249 tcg_gen_mov_vec(a, b);
1250 }
1251
1252 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1253 uint32_t oprsz, uint32_t maxsz)
1254 {
1255 static const GVecGen2 g = {
1256 .fni8 = tcg_gen_mov_i64,
1257 .fniv = vec_mov2,
1258 .fno = gen_helper_gvec_mov,
1259 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1260 };
1261 if (dofs != aofs) {
1262 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1263 } else {
1264 check_size_align(oprsz, maxsz, dofs);
1265 if (oprsz < maxsz) {
1266 expand_clr(dofs + oprsz, maxsz - oprsz);
1267 }
1268 }
1269 }
1270
1271 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1272 uint32_t maxsz, TCGv_i32 in)
1273 {
1274 check_size_align(oprsz, maxsz, dofs);
1275 tcg_debug_assert(vece <= MO_32);
1276 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1277 }
1278
1279 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1280 uint32_t maxsz, TCGv_i64 in)
1281 {
1282 check_size_align(oprsz, maxsz, dofs);
1283 tcg_debug_assert(vece <= MO_64);
1284 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1285 }
1286
1287 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1288 uint32_t oprsz, uint32_t maxsz)
1289 {
1290 if (vece <= MO_32) {
1291 TCGv_i32 in = tcg_temp_new_i32();
1292 switch (vece) {
1293 case MO_8:
1294 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1295 break;
1296 case MO_16:
1297 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1298 break;
1299 case MO_32:
1300 tcg_gen_ld_i32(in, cpu_env, aofs);
1301 break;
1302 }
1303 tcg_gen_gvec_dup_i32(vece, dofs, oprsz, maxsz, in);
1304 tcg_temp_free_i32(in);
1305 } else if (vece == MO_64) {
1306 TCGv_i64 in = tcg_temp_new_i64();
1307 tcg_gen_ld_i64(in, cpu_env, aofs);
1308 tcg_gen_gvec_dup_i64(MO_64, dofs, oprsz, maxsz, in);
1309 tcg_temp_free_i64(in);
1310 } else {
1311 /* 128-bit duplicate. */
1312 /* ??? Dup to 256-bit vector. */
1313 int i;
1314
1315 tcg_debug_assert(vece == 4);
1316 tcg_debug_assert(oprsz >= 16);
1317 if (TCG_TARGET_HAS_v128) {
1318 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1319
1320 tcg_gen_ld_vec(in, cpu_env, aofs);
1321 for (i = 0; i < oprsz; i += 16) {
1322 tcg_gen_st_vec(in, cpu_env, dofs + i);
1323 }
1324 tcg_temp_free_vec(in);
1325 } else {
1326 TCGv_i64 in0 = tcg_temp_new_i64();
1327 TCGv_i64 in1 = tcg_temp_new_i64();
1328
1329 tcg_gen_ld_i64(in0, cpu_env, aofs);
1330 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1331 for (i = 0; i < oprsz; i += 16) {
1332 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1333 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1334 }
1335 tcg_temp_free_i64(in0);
1336 tcg_temp_free_i64(in1);
1337 }
1338 }
1339 }
1340
1341 void tcg_gen_gvec_dup64i(uint32_t dofs, uint32_t oprsz,
1342 uint32_t maxsz, uint64_t x)
1343 {
1344 check_size_align(oprsz, maxsz, dofs);
1345 do_dup(MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
1346 }
1347
1348 void tcg_gen_gvec_dup32i(uint32_t dofs, uint32_t oprsz,
1349 uint32_t maxsz, uint32_t x)
1350 {
1351 check_size_align(oprsz, maxsz, dofs);
1352 do_dup(MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
1353 }
1354
1355 void tcg_gen_gvec_dup16i(uint32_t dofs, uint32_t oprsz,
1356 uint32_t maxsz, uint16_t x)
1357 {
1358 check_size_align(oprsz, maxsz, dofs);
1359 do_dup(MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
1360 }
1361
1362 void tcg_gen_gvec_dup8i(uint32_t dofs, uint32_t oprsz,
1363 uint32_t maxsz, uint8_t x)
1364 {
1365 check_size_align(oprsz, maxsz, dofs);
1366 do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
1367 }
1368
1369 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1370 uint32_t oprsz, uint32_t maxsz)
1371 {
1372 static const GVecGen2 g = {
1373 .fni8 = tcg_gen_not_i64,
1374 .fniv = tcg_gen_not_vec,
1375 .fno = gen_helper_gvec_not,
1376 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1377 };
1378 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1379 }
1380
1381 /* Perform a vector addition using normal addition and a mask. The mask
1382 should be the sign bit of each lane. This 6-operation form is more
1383 efficient than separate additions when there are 4 or more lanes in
1384 the 64-bit operation. */
1385 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1386 {
1387 TCGv_i64 t1 = tcg_temp_new_i64();
1388 TCGv_i64 t2 = tcg_temp_new_i64();
1389 TCGv_i64 t3 = tcg_temp_new_i64();
1390
1391 tcg_gen_andc_i64(t1, a, m);
1392 tcg_gen_andc_i64(t2, b, m);
1393 tcg_gen_xor_i64(t3, a, b);
1394 tcg_gen_add_i64(d, t1, t2);
1395 tcg_gen_and_i64(t3, t3, m);
1396 tcg_gen_xor_i64(d, d, t3);
1397
1398 tcg_temp_free_i64(t1);
1399 tcg_temp_free_i64(t2);
1400 tcg_temp_free_i64(t3);
1401 }
1402
1403 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1404 {
1405 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1406 gen_addv_mask(d, a, b, m);
1407 tcg_temp_free_i64(m);
1408 }
1409
1410 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1411 {
1412 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1413 gen_addv_mask(d, a, b, m);
1414 tcg_temp_free_i64(m);
1415 }
1416
1417 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1418 {
1419 TCGv_i64 t1 = tcg_temp_new_i64();
1420 TCGv_i64 t2 = tcg_temp_new_i64();
1421
1422 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1423 tcg_gen_add_i64(t2, a, b);
1424 tcg_gen_add_i64(t1, t1, b);
1425 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1426
1427 tcg_temp_free_i64(t1);
1428 tcg_temp_free_i64(t2);
1429 }
1430
1431 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1432 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1433 {
1434 static const GVecGen3 g[4] = {
1435 { .fni8 = tcg_gen_vec_add8_i64,
1436 .fniv = tcg_gen_add_vec,
1437 .fno = gen_helper_gvec_add8,
1438 .opc = INDEX_op_add_vec,
1439 .vece = MO_8 },
1440 { .fni8 = tcg_gen_vec_add16_i64,
1441 .fniv = tcg_gen_add_vec,
1442 .fno = gen_helper_gvec_add16,
1443 .opc = INDEX_op_add_vec,
1444 .vece = MO_16 },
1445 { .fni4 = tcg_gen_add_i32,
1446 .fniv = tcg_gen_add_vec,
1447 .fno = gen_helper_gvec_add32,
1448 .opc = INDEX_op_add_vec,
1449 .vece = MO_32 },
1450 { .fni8 = tcg_gen_add_i64,
1451 .fniv = tcg_gen_add_vec,
1452 .fno = gen_helper_gvec_add64,
1453 .opc = INDEX_op_add_vec,
1454 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1455 .vece = MO_64 },
1456 };
1457
1458 tcg_debug_assert(vece <= MO_64);
1459 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1460 }
1461
1462 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1463 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1464 {
1465 static const GVecGen2s g[4] = {
1466 { .fni8 = tcg_gen_vec_add8_i64,
1467 .fniv = tcg_gen_add_vec,
1468 .fno = gen_helper_gvec_adds8,
1469 .opc = INDEX_op_add_vec,
1470 .vece = MO_8 },
1471 { .fni8 = tcg_gen_vec_add16_i64,
1472 .fniv = tcg_gen_add_vec,
1473 .fno = gen_helper_gvec_adds16,
1474 .opc = INDEX_op_add_vec,
1475 .vece = MO_16 },
1476 { .fni4 = tcg_gen_add_i32,
1477 .fniv = tcg_gen_add_vec,
1478 .fno = gen_helper_gvec_adds32,
1479 .opc = INDEX_op_add_vec,
1480 .vece = MO_32 },
1481 { .fni8 = tcg_gen_add_i64,
1482 .fniv = tcg_gen_add_vec,
1483 .fno = gen_helper_gvec_adds64,
1484 .opc = INDEX_op_add_vec,
1485 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1486 .vece = MO_64 },
1487 };
1488
1489 tcg_debug_assert(vece <= MO_64);
1490 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1491 }
1492
1493 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1494 int64_t c, uint32_t oprsz, uint32_t maxsz)
1495 {
1496 TCGv_i64 tmp = tcg_const_i64(c);
1497 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1498 tcg_temp_free_i64(tmp);
1499 }
1500
1501 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1502 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1503 {
1504 static const GVecGen2s g[4] = {
1505 { .fni8 = tcg_gen_vec_sub8_i64,
1506 .fniv = tcg_gen_sub_vec,
1507 .fno = gen_helper_gvec_subs8,
1508 .opc = INDEX_op_sub_vec,
1509 .vece = MO_8 },
1510 { .fni8 = tcg_gen_vec_sub16_i64,
1511 .fniv = tcg_gen_sub_vec,
1512 .fno = gen_helper_gvec_subs16,
1513 .opc = INDEX_op_sub_vec,
1514 .vece = MO_16 },
1515 { .fni4 = tcg_gen_sub_i32,
1516 .fniv = tcg_gen_sub_vec,
1517 .fno = gen_helper_gvec_subs32,
1518 .opc = INDEX_op_sub_vec,
1519 .vece = MO_32 },
1520 { .fni8 = tcg_gen_sub_i64,
1521 .fniv = tcg_gen_sub_vec,
1522 .fno = gen_helper_gvec_subs64,
1523 .opc = INDEX_op_sub_vec,
1524 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1525 .vece = MO_64 },
1526 };
1527
1528 tcg_debug_assert(vece <= MO_64);
1529 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1530 }
1531
1532 /* Perform a vector subtraction using normal subtraction and a mask.
1533 Compare gen_addv_mask above. */
1534 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1535 {
1536 TCGv_i64 t1 = tcg_temp_new_i64();
1537 TCGv_i64 t2 = tcg_temp_new_i64();
1538 TCGv_i64 t3 = tcg_temp_new_i64();
1539
1540 tcg_gen_or_i64(t1, a, m);
1541 tcg_gen_andc_i64(t2, b, m);
1542 tcg_gen_eqv_i64(t3, a, b);
1543 tcg_gen_sub_i64(d, t1, t2);
1544 tcg_gen_and_i64(t3, t3, m);
1545 tcg_gen_xor_i64(d, d, t3);
1546
1547 tcg_temp_free_i64(t1);
1548 tcg_temp_free_i64(t2);
1549 tcg_temp_free_i64(t3);
1550 }
1551
1552 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1553 {
1554 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1555 gen_subv_mask(d, a, b, m);
1556 tcg_temp_free_i64(m);
1557 }
1558
1559 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1560 {
1561 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1562 gen_subv_mask(d, a, b, m);
1563 tcg_temp_free_i64(m);
1564 }
1565
1566 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1567 {
1568 TCGv_i64 t1 = tcg_temp_new_i64();
1569 TCGv_i64 t2 = tcg_temp_new_i64();
1570
1571 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1572 tcg_gen_sub_i64(t2, a, b);
1573 tcg_gen_sub_i64(t1, a, t1);
1574 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1575
1576 tcg_temp_free_i64(t1);
1577 tcg_temp_free_i64(t2);
1578 }
1579
1580 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1581 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1582 {
1583 static const GVecGen3 g[4] = {
1584 { .fni8 = tcg_gen_vec_sub8_i64,
1585 .fniv = tcg_gen_sub_vec,
1586 .fno = gen_helper_gvec_sub8,
1587 .opc = INDEX_op_sub_vec,
1588 .vece = MO_8 },
1589 { .fni8 = tcg_gen_vec_sub16_i64,
1590 .fniv = tcg_gen_sub_vec,
1591 .fno = gen_helper_gvec_sub16,
1592 .opc = INDEX_op_sub_vec,
1593 .vece = MO_16 },
1594 { .fni4 = tcg_gen_sub_i32,
1595 .fniv = tcg_gen_sub_vec,
1596 .fno = gen_helper_gvec_sub32,
1597 .opc = INDEX_op_sub_vec,
1598 .vece = MO_32 },
1599 { .fni8 = tcg_gen_sub_i64,
1600 .fniv = tcg_gen_sub_vec,
1601 .fno = gen_helper_gvec_sub64,
1602 .opc = INDEX_op_sub_vec,
1603 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1604 .vece = MO_64 },
1605 };
1606
1607 tcg_debug_assert(vece <= MO_64);
1608 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1609 }
1610
1611 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1612 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1613 {
1614 static const GVecGen3 g[4] = {
1615 { .fniv = tcg_gen_mul_vec,
1616 .fno = gen_helper_gvec_mul8,
1617 .opc = INDEX_op_mul_vec,
1618 .vece = MO_8 },
1619 { .fniv = tcg_gen_mul_vec,
1620 .fno = gen_helper_gvec_mul16,
1621 .opc = INDEX_op_mul_vec,
1622 .vece = MO_16 },
1623 { .fni4 = tcg_gen_mul_i32,
1624 .fniv = tcg_gen_mul_vec,
1625 .fno = gen_helper_gvec_mul32,
1626 .opc = INDEX_op_mul_vec,
1627 .vece = MO_32 },
1628 { .fni8 = tcg_gen_mul_i64,
1629 .fniv = tcg_gen_mul_vec,
1630 .fno = gen_helper_gvec_mul64,
1631 .opc = INDEX_op_mul_vec,
1632 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1633 .vece = MO_64 },
1634 };
1635
1636 tcg_debug_assert(vece <= MO_64);
1637 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1638 }
1639
1640 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1641 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1642 {
1643 static const GVecGen2s g[4] = {
1644 { .fniv = tcg_gen_mul_vec,
1645 .fno = gen_helper_gvec_muls8,
1646 .opc = INDEX_op_mul_vec,
1647 .vece = MO_8 },
1648 { .fniv = tcg_gen_mul_vec,
1649 .fno = gen_helper_gvec_muls16,
1650 .opc = INDEX_op_mul_vec,
1651 .vece = MO_16 },
1652 { .fni4 = tcg_gen_mul_i32,
1653 .fniv = tcg_gen_mul_vec,
1654 .fno = gen_helper_gvec_muls32,
1655 .opc = INDEX_op_mul_vec,
1656 .vece = MO_32 },
1657 { .fni8 = tcg_gen_mul_i64,
1658 .fniv = tcg_gen_mul_vec,
1659 .fno = gen_helper_gvec_muls64,
1660 .opc = INDEX_op_mul_vec,
1661 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1662 .vece = MO_64 },
1663 };
1664
1665 tcg_debug_assert(vece <= MO_64);
1666 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1667 }
1668
1669 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1670 int64_t c, uint32_t oprsz, uint32_t maxsz)
1671 {
1672 TCGv_i64 tmp = tcg_const_i64(c);
1673 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1674 tcg_temp_free_i64(tmp);
1675 }
1676
1677 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1678 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1679 {
1680 static const GVecGen3 g[4] = {
1681 { .fniv = tcg_gen_ssadd_vec,
1682 .fno = gen_helper_gvec_ssadd8,
1683 .opc = INDEX_op_ssadd_vec,
1684 .vece = MO_8 },
1685 { .fniv = tcg_gen_ssadd_vec,
1686 .fno = gen_helper_gvec_ssadd16,
1687 .opc = INDEX_op_ssadd_vec,
1688 .vece = MO_16 },
1689 { .fniv = tcg_gen_ssadd_vec,
1690 .fno = gen_helper_gvec_ssadd32,
1691 .opc = INDEX_op_ssadd_vec,
1692 .vece = MO_32 },
1693 { .fniv = tcg_gen_ssadd_vec,
1694 .fno = gen_helper_gvec_ssadd64,
1695 .opc = INDEX_op_ssadd_vec,
1696 .vece = MO_64 },
1697 };
1698 tcg_debug_assert(vece <= MO_64);
1699 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1700 }
1701
1702 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1703 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1704 {
1705 static const GVecGen3 g[4] = {
1706 { .fniv = tcg_gen_sssub_vec,
1707 .fno = gen_helper_gvec_sssub8,
1708 .opc = INDEX_op_sssub_vec,
1709 .vece = MO_8 },
1710 { .fniv = tcg_gen_sssub_vec,
1711 .fno = gen_helper_gvec_sssub16,
1712 .opc = INDEX_op_sssub_vec,
1713 .vece = MO_16 },
1714 { .fniv = tcg_gen_sssub_vec,
1715 .fno = gen_helper_gvec_sssub32,
1716 .opc = INDEX_op_sssub_vec,
1717 .vece = MO_32 },
1718 { .fniv = tcg_gen_sssub_vec,
1719 .fno = gen_helper_gvec_sssub64,
1720 .opc = INDEX_op_sssub_vec,
1721 .vece = MO_64 },
1722 };
1723 tcg_debug_assert(vece <= MO_64);
1724 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1725 }
1726
1727 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1728 {
1729 TCGv_i32 max = tcg_const_i32(-1);
1730 tcg_gen_add_i32(d, a, b);
1731 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1732 tcg_temp_free_i32(max);
1733 }
1734
1735 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1736 {
1737 TCGv_i64 max = tcg_const_i64(-1);
1738 tcg_gen_add_i64(d, a, b);
1739 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1740 tcg_temp_free_i64(max);
1741 }
1742
1743 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1744 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1745 {
1746 static const GVecGen3 g[4] = {
1747 { .fniv = tcg_gen_usadd_vec,
1748 .fno = gen_helper_gvec_usadd8,
1749 .opc = INDEX_op_usadd_vec,
1750 .vece = MO_8 },
1751 { .fniv = tcg_gen_usadd_vec,
1752 .fno = gen_helper_gvec_usadd16,
1753 .opc = INDEX_op_usadd_vec,
1754 .vece = MO_16 },
1755 { .fni4 = tcg_gen_usadd_i32,
1756 .fniv = tcg_gen_usadd_vec,
1757 .fno = gen_helper_gvec_usadd32,
1758 .opc = INDEX_op_usadd_vec,
1759 .vece = MO_32 },
1760 { .fni8 = tcg_gen_usadd_i64,
1761 .fniv = tcg_gen_usadd_vec,
1762 .fno = gen_helper_gvec_usadd64,
1763 .opc = INDEX_op_usadd_vec,
1764 .vece = MO_64 }
1765 };
1766 tcg_debug_assert(vece <= MO_64);
1767 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1768 }
1769
1770 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1771 {
1772 TCGv_i32 min = tcg_const_i32(0);
1773 tcg_gen_sub_i32(d, a, b);
1774 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
1775 tcg_temp_free_i32(min);
1776 }
1777
1778 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1779 {
1780 TCGv_i64 min = tcg_const_i64(0);
1781 tcg_gen_sub_i64(d, a, b);
1782 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
1783 tcg_temp_free_i64(min);
1784 }
1785
1786 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
1787 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1788 {
1789 static const GVecGen3 g[4] = {
1790 { .fniv = tcg_gen_ussub_vec,
1791 .fno = gen_helper_gvec_ussub8,
1792 .opc = INDEX_op_ussub_vec,
1793 .vece = MO_8 },
1794 { .fniv = tcg_gen_ussub_vec,
1795 .fno = gen_helper_gvec_ussub16,
1796 .opc = INDEX_op_ussub_vec,
1797 .vece = MO_16 },
1798 { .fni4 = tcg_gen_ussub_i32,
1799 .fniv = tcg_gen_ussub_vec,
1800 .fno = gen_helper_gvec_ussub32,
1801 .opc = INDEX_op_ussub_vec,
1802 .vece = MO_32 },
1803 { .fni8 = tcg_gen_ussub_i64,
1804 .fniv = tcg_gen_ussub_vec,
1805 .fno = gen_helper_gvec_ussub64,
1806 .opc = INDEX_op_ussub_vec,
1807 .vece = MO_64 }
1808 };
1809 tcg_debug_assert(vece <= MO_64);
1810 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1811 }
1812
1813 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
1814 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1815 {
1816 static const GVecGen3 g[4] = {
1817 { .fniv = tcg_gen_smin_vec,
1818 .fno = gen_helper_gvec_smin8,
1819 .opc = INDEX_op_smin_vec,
1820 .vece = MO_8 },
1821 { .fniv = tcg_gen_smin_vec,
1822 .fno = gen_helper_gvec_smin16,
1823 .opc = INDEX_op_smin_vec,
1824 .vece = MO_16 },
1825 { .fni4 = tcg_gen_smin_i32,
1826 .fniv = tcg_gen_smin_vec,
1827 .fno = gen_helper_gvec_smin32,
1828 .opc = INDEX_op_smin_vec,
1829 .vece = MO_32 },
1830 { .fni8 = tcg_gen_smin_i64,
1831 .fniv = tcg_gen_smin_vec,
1832 .fno = gen_helper_gvec_smin64,
1833 .opc = INDEX_op_smin_vec,
1834 .vece = MO_64 }
1835 };
1836 tcg_debug_assert(vece <= MO_64);
1837 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1838 }
1839
1840 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
1841 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1842 {
1843 static const GVecGen3 g[4] = {
1844 { .fniv = tcg_gen_umin_vec,
1845 .fno = gen_helper_gvec_umin8,
1846 .opc = INDEX_op_umin_vec,
1847 .vece = MO_8 },
1848 { .fniv = tcg_gen_umin_vec,
1849 .fno = gen_helper_gvec_umin16,
1850 .opc = INDEX_op_umin_vec,
1851 .vece = MO_16 },
1852 { .fni4 = tcg_gen_umin_i32,
1853 .fniv = tcg_gen_umin_vec,
1854 .fno = gen_helper_gvec_umin32,
1855 .opc = INDEX_op_umin_vec,
1856 .vece = MO_32 },
1857 { .fni8 = tcg_gen_umin_i64,
1858 .fniv = tcg_gen_umin_vec,
1859 .fno = gen_helper_gvec_umin64,
1860 .opc = INDEX_op_umin_vec,
1861 .vece = MO_64 }
1862 };
1863 tcg_debug_assert(vece <= MO_64);
1864 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1865 }
1866
1867 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
1868 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1869 {
1870 static const GVecGen3 g[4] = {
1871 { .fniv = tcg_gen_smax_vec,
1872 .fno = gen_helper_gvec_smax8,
1873 .opc = INDEX_op_smax_vec,
1874 .vece = MO_8 },
1875 { .fniv = tcg_gen_smax_vec,
1876 .fno = gen_helper_gvec_smax16,
1877 .opc = INDEX_op_smax_vec,
1878 .vece = MO_16 },
1879 { .fni4 = tcg_gen_smax_i32,
1880 .fniv = tcg_gen_smax_vec,
1881 .fno = gen_helper_gvec_smax32,
1882 .opc = INDEX_op_smax_vec,
1883 .vece = MO_32 },
1884 { .fni8 = tcg_gen_smax_i64,
1885 .fniv = tcg_gen_smax_vec,
1886 .fno = gen_helper_gvec_smax64,
1887 .opc = INDEX_op_smax_vec,
1888 .vece = MO_64 }
1889 };
1890 tcg_debug_assert(vece <= MO_64);
1891 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1892 }
1893
1894 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
1895 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1896 {
1897 static const GVecGen3 g[4] = {
1898 { .fniv = tcg_gen_umax_vec,
1899 .fno = gen_helper_gvec_umax8,
1900 .opc = INDEX_op_umax_vec,
1901 .vece = MO_8 },
1902 { .fniv = tcg_gen_umax_vec,
1903 .fno = gen_helper_gvec_umax16,
1904 .opc = INDEX_op_umax_vec,
1905 .vece = MO_16 },
1906 { .fni4 = tcg_gen_umax_i32,
1907 .fniv = tcg_gen_umax_vec,
1908 .fno = gen_helper_gvec_umax32,
1909 .opc = INDEX_op_umax_vec,
1910 .vece = MO_32 },
1911 { .fni8 = tcg_gen_umax_i64,
1912 .fniv = tcg_gen_umax_vec,
1913 .fno = gen_helper_gvec_umax64,
1914 .opc = INDEX_op_umax_vec,
1915 .vece = MO_64 }
1916 };
1917 tcg_debug_assert(vece <= MO_64);
1918 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1919 }
1920
1921 /* Perform a vector negation using normal negation and a mask.
1922 Compare gen_subv_mask above. */
1923 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
1924 {
1925 TCGv_i64 t2 = tcg_temp_new_i64();
1926 TCGv_i64 t3 = tcg_temp_new_i64();
1927
1928 tcg_gen_andc_i64(t3, m, b);
1929 tcg_gen_andc_i64(t2, b, m);
1930 tcg_gen_sub_i64(d, m, t2);
1931 tcg_gen_xor_i64(d, d, t3);
1932
1933 tcg_temp_free_i64(t2);
1934 tcg_temp_free_i64(t3);
1935 }
1936
1937 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
1938 {
1939 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1940 gen_negv_mask(d, b, m);
1941 tcg_temp_free_i64(m);
1942 }
1943
1944 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
1945 {
1946 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1947 gen_negv_mask(d, b, m);
1948 tcg_temp_free_i64(m);
1949 }
1950
1951 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
1952 {
1953 TCGv_i64 t1 = tcg_temp_new_i64();
1954 TCGv_i64 t2 = tcg_temp_new_i64();
1955
1956 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1957 tcg_gen_neg_i64(t2, b);
1958 tcg_gen_neg_i64(t1, t1);
1959 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1960
1961 tcg_temp_free_i64(t1);
1962 tcg_temp_free_i64(t2);
1963 }
1964
1965 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
1966 uint32_t oprsz, uint32_t maxsz)
1967 {
1968 static const GVecGen2 g[4] = {
1969 { .fni8 = tcg_gen_vec_neg8_i64,
1970 .fniv = tcg_gen_neg_vec,
1971 .fno = gen_helper_gvec_neg8,
1972 .opc = INDEX_op_neg_vec,
1973 .vece = MO_8 },
1974 { .fni8 = tcg_gen_vec_neg16_i64,
1975 .fniv = tcg_gen_neg_vec,
1976 .fno = gen_helper_gvec_neg16,
1977 .opc = INDEX_op_neg_vec,
1978 .vece = MO_16 },
1979 { .fni4 = tcg_gen_neg_i32,
1980 .fniv = tcg_gen_neg_vec,
1981 .fno = gen_helper_gvec_neg32,
1982 .opc = INDEX_op_neg_vec,
1983 .vece = MO_32 },
1984 { .fni8 = tcg_gen_neg_i64,
1985 .fniv = tcg_gen_neg_vec,
1986 .fno = gen_helper_gvec_neg64,
1987 .opc = INDEX_op_neg_vec,
1988 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1989 .vece = MO_64 },
1990 };
1991
1992 tcg_debug_assert(vece <= MO_64);
1993 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
1994 }
1995
1996 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
1997 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1998 {
1999 static const GVecGen3 g = {
2000 .fni8 = tcg_gen_and_i64,
2001 .fniv = tcg_gen_and_vec,
2002 .fno = gen_helper_gvec_and,
2003 .opc = INDEX_op_and_vec,
2004 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2005 };
2006
2007 if (aofs == bofs) {
2008 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2009 } else {
2010 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2011 }
2012 }
2013
2014 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2015 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2016 {
2017 static const GVecGen3 g = {
2018 .fni8 = tcg_gen_or_i64,
2019 .fniv = tcg_gen_or_vec,
2020 .fno = gen_helper_gvec_or,
2021 .opc = INDEX_op_or_vec,
2022 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2023 };
2024
2025 if (aofs == bofs) {
2026 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2027 } else {
2028 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2029 }
2030 }
2031
2032 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2033 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2034 {
2035 static const GVecGen3 g = {
2036 .fni8 = tcg_gen_xor_i64,
2037 .fniv = tcg_gen_xor_vec,
2038 .fno = gen_helper_gvec_xor,
2039 .opc = INDEX_op_xor_vec,
2040 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2041 };
2042
2043 if (aofs == bofs) {
2044 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2045 } else {
2046 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2047 }
2048 }
2049
2050 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2051 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2052 {
2053 static const GVecGen3 g = {
2054 .fni8 = tcg_gen_andc_i64,
2055 .fniv = tcg_gen_andc_vec,
2056 .fno = gen_helper_gvec_andc,
2057 .opc = INDEX_op_andc_vec,
2058 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2059 };
2060
2061 if (aofs == bofs) {
2062 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2063 } else {
2064 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2065 }
2066 }
2067
2068 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2069 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2070 {
2071 static const GVecGen3 g = {
2072 .fni8 = tcg_gen_orc_i64,
2073 .fniv = tcg_gen_orc_vec,
2074 .fno = gen_helper_gvec_orc,
2075 .opc = INDEX_op_orc_vec,
2076 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2077 };
2078
2079 if (aofs == bofs) {
2080 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2081 } else {
2082 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2083 }
2084 }
2085
2086 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2087 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2088 {
2089 static const GVecGen3 g = {
2090 .fni8 = tcg_gen_nand_i64,
2091 .fniv = tcg_gen_nand_vec,
2092 .fno = gen_helper_gvec_nand,
2093 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2094 };
2095
2096 if (aofs == bofs) {
2097 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2098 } else {
2099 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2100 }
2101 }
2102
2103 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2104 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2105 {
2106 static const GVecGen3 g = {
2107 .fni8 = tcg_gen_nor_i64,
2108 .fniv = tcg_gen_nor_vec,
2109 .fno = gen_helper_gvec_nor,
2110 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2111 };
2112
2113 if (aofs == bofs) {
2114 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2115 } else {
2116 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2117 }
2118 }
2119
2120 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2121 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2122 {
2123 static const GVecGen3 g = {
2124 .fni8 = tcg_gen_eqv_i64,
2125 .fniv = tcg_gen_eqv_vec,
2126 .fno = gen_helper_gvec_eqv,
2127 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2128 };
2129
2130 if (aofs == bofs) {
2131 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2132 } else {
2133 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2134 }
2135 }
2136
2137 static const GVecGen2s gop_ands = {
2138 .fni8 = tcg_gen_and_i64,
2139 .fniv = tcg_gen_and_vec,
2140 .fno = gen_helper_gvec_ands,
2141 .opc = INDEX_op_and_vec,
2142 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2143 .vece = MO_64
2144 };
2145
2146 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2147 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2148 {
2149 TCGv_i64 tmp = tcg_temp_new_i64();
2150 gen_dup_i64(vece, tmp, c);
2151 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2152 tcg_temp_free_i64(tmp);
2153 }
2154
2155 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2156 int64_t c, uint32_t oprsz, uint32_t maxsz)
2157 {
2158 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2159 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2160 tcg_temp_free_i64(tmp);
2161 }
2162
2163 static const GVecGen2s gop_xors = {
2164 .fni8 = tcg_gen_xor_i64,
2165 .fniv = tcg_gen_xor_vec,
2166 .fno = gen_helper_gvec_xors,
2167 .opc = INDEX_op_xor_vec,
2168 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2169 .vece = MO_64
2170 };
2171
2172 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2173 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2174 {
2175 TCGv_i64 tmp = tcg_temp_new_i64();
2176 gen_dup_i64(vece, tmp, c);
2177 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2178 tcg_temp_free_i64(tmp);
2179 }
2180
2181 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2182 int64_t c, uint32_t oprsz, uint32_t maxsz)
2183 {
2184 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2185 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2186 tcg_temp_free_i64(tmp);
2187 }
2188
2189 static const GVecGen2s gop_ors = {
2190 .fni8 = tcg_gen_or_i64,
2191 .fniv = tcg_gen_or_vec,
2192 .fno = gen_helper_gvec_ors,
2193 .opc = INDEX_op_or_vec,
2194 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2195 .vece = MO_64
2196 };
2197
2198 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2199 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2200 {
2201 TCGv_i64 tmp = tcg_temp_new_i64();
2202 gen_dup_i64(vece, tmp, c);
2203 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2204 tcg_temp_free_i64(tmp);
2205 }
2206
2207 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2208 int64_t c, uint32_t oprsz, uint32_t maxsz)
2209 {
2210 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2211 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2212 tcg_temp_free_i64(tmp);
2213 }
2214
2215 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2216 {
2217 uint64_t mask = dup_const(MO_8, 0xff << c);
2218 tcg_gen_shli_i64(d, a, c);
2219 tcg_gen_andi_i64(d, d, mask);
2220 }
2221
2222 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2223 {
2224 uint64_t mask = dup_const(MO_16, 0xffff << c);
2225 tcg_gen_shli_i64(d, a, c);
2226 tcg_gen_andi_i64(d, d, mask);
2227 }
2228
2229 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2230 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2231 {
2232 static const GVecGen2i g[4] = {
2233 { .fni8 = tcg_gen_vec_shl8i_i64,
2234 .fniv = tcg_gen_shli_vec,
2235 .fno = gen_helper_gvec_shl8i,
2236 .opc = INDEX_op_shli_vec,
2237 .vece = MO_8 },
2238 { .fni8 = tcg_gen_vec_shl16i_i64,
2239 .fniv = tcg_gen_shli_vec,
2240 .fno = gen_helper_gvec_shl16i,
2241 .opc = INDEX_op_shli_vec,
2242 .vece = MO_16 },
2243 { .fni4 = tcg_gen_shli_i32,
2244 .fniv = tcg_gen_shli_vec,
2245 .fno = gen_helper_gvec_shl32i,
2246 .opc = INDEX_op_shli_vec,
2247 .vece = MO_32 },
2248 { .fni8 = tcg_gen_shli_i64,
2249 .fniv = tcg_gen_shli_vec,
2250 .fno = gen_helper_gvec_shl64i,
2251 .opc = INDEX_op_shli_vec,
2252 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2253 .vece = MO_64 },
2254 };
2255
2256 tcg_debug_assert(vece <= MO_64);
2257 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2258 if (shift == 0) {
2259 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2260 } else {
2261 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2262 }
2263 }
2264
2265 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2266 {
2267 uint64_t mask = dup_const(MO_8, 0xff >> c);
2268 tcg_gen_shri_i64(d, a, c);
2269 tcg_gen_andi_i64(d, d, mask);
2270 }
2271
2272 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2273 {
2274 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2275 tcg_gen_shri_i64(d, a, c);
2276 tcg_gen_andi_i64(d, d, mask);
2277 }
2278
2279 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2280 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2281 {
2282 static const GVecGen2i g[4] = {
2283 { .fni8 = tcg_gen_vec_shr8i_i64,
2284 .fniv = tcg_gen_shri_vec,
2285 .fno = gen_helper_gvec_shr8i,
2286 .opc = INDEX_op_shri_vec,
2287 .vece = MO_8 },
2288 { .fni8 = tcg_gen_vec_shr16i_i64,
2289 .fniv = tcg_gen_shri_vec,
2290 .fno = gen_helper_gvec_shr16i,
2291 .opc = INDEX_op_shri_vec,
2292 .vece = MO_16 },
2293 { .fni4 = tcg_gen_shri_i32,
2294 .fniv = tcg_gen_shri_vec,
2295 .fno = gen_helper_gvec_shr32i,
2296 .opc = INDEX_op_shri_vec,
2297 .vece = MO_32 },
2298 { .fni8 = tcg_gen_shri_i64,
2299 .fniv = tcg_gen_shri_vec,
2300 .fno = gen_helper_gvec_shr64i,
2301 .opc = INDEX_op_shri_vec,
2302 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2303 .vece = MO_64 },
2304 };
2305
2306 tcg_debug_assert(vece <= MO_64);
2307 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2308 if (shift == 0) {
2309 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2310 } else {
2311 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2312 }
2313 }
2314
2315 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2316 {
2317 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2318 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2319 TCGv_i64 s = tcg_temp_new_i64();
2320
2321 tcg_gen_shri_i64(d, a, c);
2322 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2323 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2324 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2325 tcg_gen_or_i64(d, d, s); /* include sign extension */
2326 tcg_temp_free_i64(s);
2327 }
2328
2329 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2330 {
2331 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2332 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2333 TCGv_i64 s = tcg_temp_new_i64();
2334
2335 tcg_gen_shri_i64(d, a, c);
2336 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2337 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2338 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2339 tcg_gen_or_i64(d, d, s); /* include sign extension */
2340 tcg_temp_free_i64(s);
2341 }
2342
2343 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2344 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2345 {
2346 static const GVecGen2i g[4] = {
2347 { .fni8 = tcg_gen_vec_sar8i_i64,
2348 .fniv = tcg_gen_sari_vec,
2349 .fno = gen_helper_gvec_sar8i,
2350 .opc = INDEX_op_sari_vec,
2351 .vece = MO_8 },
2352 { .fni8 = tcg_gen_vec_sar16i_i64,
2353 .fniv = tcg_gen_sari_vec,
2354 .fno = gen_helper_gvec_sar16i,
2355 .opc = INDEX_op_sari_vec,
2356 .vece = MO_16 },
2357 { .fni4 = tcg_gen_sari_i32,
2358 .fniv = tcg_gen_sari_vec,
2359 .fno = gen_helper_gvec_sar32i,
2360 .opc = INDEX_op_sari_vec,
2361 .vece = MO_32 },
2362 { .fni8 = tcg_gen_sari_i64,
2363 .fniv = tcg_gen_sari_vec,
2364 .fno = gen_helper_gvec_sar64i,
2365 .opc = INDEX_op_sari_vec,
2366 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2367 .vece = MO_64 },
2368 };
2369
2370 tcg_debug_assert(vece <= MO_64);
2371 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2372 if (shift == 0) {
2373 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2374 } else {
2375 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2376 }
2377 }
2378
2379 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
2380 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
2381 uint32_t oprsz, TCGCond cond)
2382 {
2383 TCGv_i32 t0 = tcg_temp_new_i32();
2384 TCGv_i32 t1 = tcg_temp_new_i32();
2385 uint32_t i;
2386
2387 for (i = 0; i < oprsz; i += 4) {
2388 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
2389 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
2390 tcg_gen_setcond_i32(cond, t0, t0, t1);
2391 tcg_gen_neg_i32(t0, t0);
2392 tcg_gen_st_i32(t0, cpu_env, dofs + i);
2393 }
2394 tcg_temp_free_i32(t1);
2395 tcg_temp_free_i32(t0);
2396 }
2397
2398 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
2399 uint32_t oprsz, TCGCond cond)
2400 {
2401 TCGv_i64 t0 = tcg_temp_new_i64();
2402 TCGv_i64 t1 = tcg_temp_new_i64();
2403 uint32_t i;
2404
2405 for (i = 0; i < oprsz; i += 8) {
2406 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
2407 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
2408 tcg_gen_setcond_i64(cond, t0, t0, t1);
2409 tcg_gen_neg_i64(t0, t0);
2410 tcg_gen_st_i64(t0, cpu_env, dofs + i);
2411 }
2412 tcg_temp_free_i64(t1);
2413 tcg_temp_free_i64(t0);
2414 }
2415
2416 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2417 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
2418 TCGType type, TCGCond cond)
2419 {
2420 TCGv_vec t0 = tcg_temp_new_vec(type);
2421 TCGv_vec t1 = tcg_temp_new_vec(type);
2422 uint32_t i;
2423
2424 for (i = 0; i < oprsz; i += tysz) {
2425 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2426 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
2427 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
2428 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2429 }
2430 tcg_temp_free_vec(t1);
2431 tcg_temp_free_vec(t0);
2432 }
2433
2434 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
2435 uint32_t aofs, uint32_t bofs,
2436 uint32_t oprsz, uint32_t maxsz)
2437 {
2438 static gen_helper_gvec_3 * const eq_fn[4] = {
2439 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
2440 gen_helper_gvec_eq32, gen_helper_gvec_eq64
2441 };
2442 static gen_helper_gvec_3 * const ne_fn[4] = {
2443 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
2444 gen_helper_gvec_ne32, gen_helper_gvec_ne64
2445 };
2446 static gen_helper_gvec_3 * const lt_fn[4] = {
2447 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
2448 gen_helper_gvec_lt32, gen_helper_gvec_lt64
2449 };
2450 static gen_helper_gvec_3 * const le_fn[4] = {
2451 gen_helper_gvec_le8, gen_helper_gvec_le16,
2452 gen_helper_gvec_le32, gen_helper_gvec_le64
2453 };
2454 static gen_helper_gvec_3 * const ltu_fn[4] = {
2455 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
2456 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
2457 };
2458 static gen_helper_gvec_3 * const leu_fn[4] = {
2459 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
2460 gen_helper_gvec_leu32, gen_helper_gvec_leu64
2461 };
2462 static gen_helper_gvec_3 * const * const fns[16] = {
2463 [TCG_COND_EQ] = eq_fn,
2464 [TCG_COND_NE] = ne_fn,
2465 [TCG_COND_LT] = lt_fn,
2466 [TCG_COND_LE] = le_fn,
2467 [TCG_COND_LTU] = ltu_fn,
2468 [TCG_COND_LEU] = leu_fn,
2469 };
2470 TCGType type;
2471 uint32_t some;
2472
2473 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
2474 check_overlap_3(dofs, aofs, bofs, maxsz);
2475
2476 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
2477 do_dup(MO_8, dofs, oprsz, maxsz,
2478 NULL, NULL, -(cond == TCG_COND_ALWAYS));
2479 return;
2480 }
2481
2482 /* Implement inline with a vector type, if possible.
2483 * Prefer integer when 64-bit host and 64-bit comparison.
2484 */
2485 type = choose_vector_type(INDEX_op_cmp_vec, vece, oprsz,
2486 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
2487 switch (type) {
2488 case TCG_TYPE_V256:
2489 /* Recall that ARM SVE allows vector sizes that are not a
2490 * power of 2, but always a multiple of 16. The intent is
2491 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
2492 */
2493 some = QEMU_ALIGN_DOWN(oprsz, 32);
2494 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
2495 if (some == oprsz) {
2496 break;
2497 }
2498 dofs += some;
2499 aofs += some;
2500 bofs += some;
2501 oprsz -= some;
2502 maxsz -= some;
2503 /* fallthru */
2504 case TCG_TYPE_V128:
2505 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
2506 break;
2507 case TCG_TYPE_V64:
2508 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
2509 break;
2510
2511 case 0:
2512 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2513 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
2514 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2515 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
2516 } else {
2517 gen_helper_gvec_3 * const *fn = fns[cond];
2518
2519 if (fn == NULL) {
2520 uint32_t tmp;
2521 tmp = aofs, aofs = bofs, bofs = tmp;
2522 cond = tcg_swap_cond(cond);
2523 fn = fns[cond];
2524 assert(fn != NULL);
2525 }
2526 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
2527 return;
2528 }
2529 break;
2530
2531 default:
2532 g_assert_not_reached();
2533 }
2534
2535 if (oprsz < maxsz) {
2536 expand_clr(dofs + oprsz, maxsz - oprsz);
2537 }
2538 }