]> git.proxmox.com Git - mirror_qemu.git/blob - tcg/tcg.c
tcg: Improve TCGv_ptr support
[mirror_qemu.git] / tcg / tcg.c
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
27
28 #include "qemu/osdep.h"
29
30 /* Define to jump the ELF file used to communicate with GDB. */
31 #undef DEBUG_JIT
32
33 #include "qemu/cutils.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/timer.h"
36
37 /* Note: the long term plan is to reduce the dependencies on the QEMU
38 CPU definitions. Currently they are used for qemu_ld/st
39 instructions */
40 #define NO_CPU_IO_DEFS
41 #include "cpu.h"
42
43 #include "exec/cpu-common.h"
44 #include "exec/exec-all.h"
45
46 #include "tcg-op.h"
47
48 #if UINTPTR_MAX == UINT32_MAX
49 # define ELF_CLASS ELFCLASS32
50 #else
51 # define ELF_CLASS ELFCLASS64
52 #endif
53 #ifdef HOST_WORDS_BIGENDIAN
54 # define ELF_DATA ELFDATA2MSB
55 #else
56 # define ELF_DATA ELFDATA2LSB
57 #endif
58
59 #include "elf.h"
60 #include "exec/log.h"
61 #include "sysemu/sysemu.h"
62
63 /* Forward declarations for functions declared in tcg-target.inc.c and
64 used here. */
65 static void tcg_target_init(TCGContext *s);
66 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode);
67 static void tcg_target_qemu_prologue(TCGContext *s);
68 static void patch_reloc(tcg_insn_unit *code_ptr, int type,
69 intptr_t value, intptr_t addend);
70
71 /* The CIE and FDE header definitions will be common to all hosts. */
72 typedef struct {
73 uint32_t len __attribute__((aligned((sizeof(void *)))));
74 uint32_t id;
75 uint8_t version;
76 char augmentation[1];
77 uint8_t code_align;
78 uint8_t data_align;
79 uint8_t return_column;
80 } DebugFrameCIE;
81
82 typedef struct QEMU_PACKED {
83 uint32_t len __attribute__((aligned((sizeof(void *)))));
84 uint32_t cie_offset;
85 uintptr_t func_start;
86 uintptr_t func_len;
87 } DebugFrameFDEHeader;
88
89 typedef struct QEMU_PACKED {
90 DebugFrameCIE cie;
91 DebugFrameFDEHeader fde;
92 } DebugFrameHeader;
93
94 static void tcg_register_jit_int(void *buf, size_t size,
95 const void *debug_frame,
96 size_t debug_frame_size)
97 __attribute__((unused));
98
99 /* Forward declarations for functions declared and used in tcg-target.inc.c. */
100 static const char *target_parse_constraint(TCGArgConstraint *ct,
101 const char *ct_str, TCGType type);
102 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
103 intptr_t arg2);
104 static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
105 static void tcg_out_movi(TCGContext *s, TCGType type,
106 TCGReg ret, tcg_target_long arg);
107 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
108 const int *const_args);
109 #if TCG_TARGET_MAYBE_vec
110 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
111 unsigned vece, const TCGArg *args,
112 const int *const_args);
113 #else
114 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
115 unsigned vece, const TCGArg *args,
116 const int *const_args)
117 {
118 g_assert_not_reached();
119 }
120 #endif
121 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
122 intptr_t arg2);
123 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
124 TCGReg base, intptr_t ofs);
125 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target);
126 static int tcg_target_const_match(tcg_target_long val, TCGType type,
127 const TCGArgConstraint *arg_ct);
128 #ifdef TCG_TARGET_NEED_LDST_LABELS
129 static bool tcg_out_ldst_finalize(TCGContext *s);
130 #endif
131
132 #define TCG_HIGHWATER 1024
133
134 static TCGContext **tcg_ctxs;
135 static unsigned int n_tcg_ctxs;
136 TCGv_env cpu_env = 0;
137
138 /*
139 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
140 * dynamically allocate from as demand dictates. Given appropriate region
141 * sizing, this minimizes flushes even when some TCG threads generate a lot
142 * more code than others.
143 */
144 struct tcg_region_state {
145 QemuMutex lock;
146
147 /* fields set at init time */
148 void *start;
149 void *start_aligned;
150 void *end;
151 size_t n;
152 size_t size; /* size of one region */
153 size_t stride; /* .size + guard size */
154
155 /* fields protected by the lock */
156 size_t current; /* current region index */
157 size_t agg_size_full; /* aggregate size of full regions */
158 };
159
160 static struct tcg_region_state region;
161 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
162 static TCGRegSet tcg_target_call_clobber_regs;
163
164 #if TCG_TARGET_INSN_UNIT_SIZE == 1
165 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
166 {
167 *s->code_ptr++ = v;
168 }
169
170 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
171 uint8_t v)
172 {
173 *p = v;
174 }
175 #endif
176
177 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
178 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
179 {
180 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
181 *s->code_ptr++ = v;
182 } else {
183 tcg_insn_unit *p = s->code_ptr;
184 memcpy(p, &v, sizeof(v));
185 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
186 }
187 }
188
189 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
190 uint16_t v)
191 {
192 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
193 *p = v;
194 } else {
195 memcpy(p, &v, sizeof(v));
196 }
197 }
198 #endif
199
200 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
201 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
202 {
203 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
204 *s->code_ptr++ = v;
205 } else {
206 tcg_insn_unit *p = s->code_ptr;
207 memcpy(p, &v, sizeof(v));
208 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
209 }
210 }
211
212 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
213 uint32_t v)
214 {
215 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
216 *p = v;
217 } else {
218 memcpy(p, &v, sizeof(v));
219 }
220 }
221 #endif
222
223 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
224 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
225 {
226 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
227 *s->code_ptr++ = v;
228 } else {
229 tcg_insn_unit *p = s->code_ptr;
230 memcpy(p, &v, sizeof(v));
231 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
232 }
233 }
234
235 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
236 uint64_t v)
237 {
238 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
239 *p = v;
240 } else {
241 memcpy(p, &v, sizeof(v));
242 }
243 }
244 #endif
245
246 /* label relocation processing */
247
248 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
249 TCGLabel *l, intptr_t addend)
250 {
251 TCGRelocation *r;
252
253 if (l->has_value) {
254 /* FIXME: This may break relocations on RISC targets that
255 modify instruction fields in place. The caller may not have
256 written the initial value. */
257 patch_reloc(code_ptr, type, l->u.value, addend);
258 } else {
259 /* add a new relocation entry */
260 r = tcg_malloc(sizeof(TCGRelocation));
261 r->type = type;
262 r->ptr = code_ptr;
263 r->addend = addend;
264 r->next = l->u.first_reloc;
265 l->u.first_reloc = r;
266 }
267 }
268
269 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr)
270 {
271 intptr_t value = (intptr_t)ptr;
272 TCGRelocation *r;
273
274 tcg_debug_assert(!l->has_value);
275
276 for (r = l->u.first_reloc; r != NULL; r = r->next) {
277 patch_reloc(r->ptr, r->type, value, r->addend);
278 }
279
280 l->has_value = 1;
281 l->u.value_ptr = ptr;
282 }
283
284 TCGLabel *gen_new_label(void)
285 {
286 TCGContext *s = tcg_ctx;
287 TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
288
289 *l = (TCGLabel){
290 .id = s->nb_labels++
291 };
292
293 return l;
294 }
295
296 #include "tcg-target.inc.c"
297
298 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
299 {
300 void *start, *end;
301
302 start = region.start_aligned + curr_region * region.stride;
303 end = start + region.size;
304
305 if (curr_region == 0) {
306 start = region.start;
307 }
308 if (curr_region == region.n - 1) {
309 end = region.end;
310 }
311
312 *pstart = start;
313 *pend = end;
314 }
315
316 static void tcg_region_assign(TCGContext *s, size_t curr_region)
317 {
318 void *start, *end;
319
320 tcg_region_bounds(curr_region, &start, &end);
321
322 s->code_gen_buffer = start;
323 s->code_gen_ptr = start;
324 s->code_gen_buffer_size = end - start;
325 s->code_gen_highwater = end - TCG_HIGHWATER;
326 }
327
328 static bool tcg_region_alloc__locked(TCGContext *s)
329 {
330 if (region.current == region.n) {
331 return true;
332 }
333 tcg_region_assign(s, region.current);
334 region.current++;
335 return false;
336 }
337
338 /*
339 * Request a new region once the one in use has filled up.
340 * Returns true on error.
341 */
342 static bool tcg_region_alloc(TCGContext *s)
343 {
344 bool err;
345 /* read the region size now; alloc__locked will overwrite it on success */
346 size_t size_full = s->code_gen_buffer_size;
347
348 qemu_mutex_lock(&region.lock);
349 err = tcg_region_alloc__locked(s);
350 if (!err) {
351 region.agg_size_full += size_full - TCG_HIGHWATER;
352 }
353 qemu_mutex_unlock(&region.lock);
354 return err;
355 }
356
357 /*
358 * Perform a context's first region allocation.
359 * This function does _not_ increment region.agg_size_full.
360 */
361 static inline bool tcg_region_initial_alloc__locked(TCGContext *s)
362 {
363 return tcg_region_alloc__locked(s);
364 }
365
366 /* Call from a safe-work context */
367 void tcg_region_reset_all(void)
368 {
369 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
370 unsigned int i;
371
372 qemu_mutex_lock(&region.lock);
373 region.current = 0;
374 region.agg_size_full = 0;
375
376 for (i = 0; i < n_ctxs; i++) {
377 TCGContext *s = atomic_read(&tcg_ctxs[i]);
378 bool err = tcg_region_initial_alloc__locked(s);
379
380 g_assert(!err);
381 }
382 qemu_mutex_unlock(&region.lock);
383 }
384
385 #ifdef CONFIG_USER_ONLY
386 static size_t tcg_n_regions(void)
387 {
388 return 1;
389 }
390 #else
391 /*
392 * It is likely that some vCPUs will translate more code than others, so we
393 * first try to set more regions than max_cpus, with those regions being of
394 * reasonable size. If that's not possible we make do by evenly dividing
395 * the code_gen_buffer among the vCPUs.
396 */
397 static size_t tcg_n_regions(void)
398 {
399 size_t i;
400
401 /* Use a single region if all we have is one vCPU thread */
402 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
403 return 1;
404 }
405
406 /* Try to have more regions than max_cpus, with each region being >= 2 MB */
407 for (i = 8; i > 0; i--) {
408 size_t regions_per_thread = i;
409 size_t region_size;
410
411 region_size = tcg_init_ctx.code_gen_buffer_size;
412 region_size /= max_cpus * regions_per_thread;
413
414 if (region_size >= 2 * 1024u * 1024) {
415 return max_cpus * regions_per_thread;
416 }
417 }
418 /* If we can't, then just allocate one region per vCPU thread */
419 return max_cpus;
420 }
421 #endif
422
423 /*
424 * Initializes region partitioning.
425 *
426 * Called at init time from the parent thread (i.e. the one calling
427 * tcg_context_init), after the target's TCG globals have been set.
428 *
429 * Region partitioning works by splitting code_gen_buffer into separate regions,
430 * and then assigning regions to TCG threads so that the threads can translate
431 * code in parallel without synchronization.
432 *
433 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
434 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
435 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
436 * must have been parsed before calling this function, since it calls
437 * qemu_tcg_mttcg_enabled().
438 *
439 * In user-mode we use a single region. Having multiple regions in user-mode
440 * is not supported, because the number of vCPU threads (recall that each thread
441 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
442 * OS, and usually this number is huge (tens of thousands is not uncommon).
443 * Thus, given this large bound on the number of vCPU threads and the fact
444 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
445 * that the availability of at least one region per vCPU thread.
446 *
447 * However, this user-mode limitation is unlikely to be a significant problem
448 * in practice. Multi-threaded guests share most if not all of their translated
449 * code, which makes parallel code generation less appealing than in softmmu.
450 */
451 void tcg_region_init(void)
452 {
453 void *buf = tcg_init_ctx.code_gen_buffer;
454 void *aligned;
455 size_t size = tcg_init_ctx.code_gen_buffer_size;
456 size_t page_size = qemu_real_host_page_size;
457 size_t region_size;
458 size_t n_regions;
459 size_t i;
460
461 n_regions = tcg_n_regions();
462
463 /* The first region will be 'aligned - buf' bytes larger than the others */
464 aligned = QEMU_ALIGN_PTR_UP(buf, page_size);
465 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size);
466 /*
467 * Make region_size a multiple of page_size, using aligned as the start.
468 * As a result of this we might end up with a few extra pages at the end of
469 * the buffer; we will assign those to the last region.
470 */
471 region_size = (size - (aligned - buf)) / n_regions;
472 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
473
474 /* A region must have at least 2 pages; one code, one guard */
475 g_assert(region_size >= 2 * page_size);
476
477 /* init the region struct */
478 qemu_mutex_init(&region.lock);
479 region.n = n_regions;
480 region.size = region_size - page_size;
481 region.stride = region_size;
482 region.start = buf;
483 region.start_aligned = aligned;
484 /* page-align the end, since its last page will be a guard page */
485 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size);
486 /* account for that last guard page */
487 region.end -= page_size;
488
489 /* set guard pages */
490 for (i = 0; i < region.n; i++) {
491 void *start, *end;
492 int rc;
493
494 tcg_region_bounds(i, &start, &end);
495 rc = qemu_mprotect_none(end, page_size);
496 g_assert(!rc);
497 }
498
499 /* In user-mode we support only one ctx, so do the initial allocation now */
500 #ifdef CONFIG_USER_ONLY
501 {
502 bool err = tcg_region_initial_alloc__locked(tcg_ctx);
503
504 g_assert(!err);
505 }
506 #endif
507 }
508
509 /*
510 * All TCG threads except the parent (i.e. the one that called tcg_context_init
511 * and registered the target's TCG globals) must register with this function
512 * before initiating translation.
513 *
514 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
515 * of tcg_region_init() for the reasoning behind this.
516 *
517 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
518 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
519 * is not used anymore for translation once this function is called.
520 *
521 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
522 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
523 */
524 #ifdef CONFIG_USER_ONLY
525 void tcg_register_thread(void)
526 {
527 tcg_ctx = &tcg_init_ctx;
528 }
529 #else
530 void tcg_register_thread(void)
531 {
532 TCGContext *s = g_malloc(sizeof(*s));
533 unsigned int i, n;
534 bool err;
535
536 *s = tcg_init_ctx;
537
538 /* Relink mem_base. */
539 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
540 if (tcg_init_ctx.temps[i].mem_base) {
541 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
542 tcg_debug_assert(b >= 0 && b < n);
543 s->temps[i].mem_base = &s->temps[b];
544 }
545 }
546
547 /* Claim an entry in tcg_ctxs */
548 n = atomic_fetch_inc(&n_tcg_ctxs);
549 g_assert(n < max_cpus);
550 atomic_set(&tcg_ctxs[n], s);
551
552 tcg_ctx = s;
553 qemu_mutex_lock(&region.lock);
554 err = tcg_region_initial_alloc__locked(tcg_ctx);
555 g_assert(!err);
556 qemu_mutex_unlock(&region.lock);
557 }
558 #endif /* !CONFIG_USER_ONLY */
559
560 /*
561 * Returns the size (in bytes) of all translated code (i.e. from all regions)
562 * currently in the cache.
563 * See also: tcg_code_capacity()
564 * Do not confuse with tcg_current_code_size(); that one applies to a single
565 * TCG context.
566 */
567 size_t tcg_code_size(void)
568 {
569 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
570 unsigned int i;
571 size_t total;
572
573 qemu_mutex_lock(&region.lock);
574 total = region.agg_size_full;
575 for (i = 0; i < n_ctxs; i++) {
576 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
577 size_t size;
578
579 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
580 g_assert(size <= s->code_gen_buffer_size);
581 total += size;
582 }
583 qemu_mutex_unlock(&region.lock);
584 return total;
585 }
586
587 /*
588 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
589 * regions.
590 * See also: tcg_code_size()
591 */
592 size_t tcg_code_capacity(void)
593 {
594 size_t guard_size, capacity;
595
596 /* no need for synchronization; these variables are set at init time */
597 guard_size = region.stride - region.size;
598 capacity = region.end + guard_size - region.start;
599 capacity -= region.n * (guard_size + TCG_HIGHWATER);
600 return capacity;
601 }
602
603 /* pool based memory allocation */
604 void *tcg_malloc_internal(TCGContext *s, int size)
605 {
606 TCGPool *p;
607 int pool_size;
608
609 if (size > TCG_POOL_CHUNK_SIZE) {
610 /* big malloc: insert a new pool (XXX: could optimize) */
611 p = g_malloc(sizeof(TCGPool) + size);
612 p->size = size;
613 p->next = s->pool_first_large;
614 s->pool_first_large = p;
615 return p->data;
616 } else {
617 p = s->pool_current;
618 if (!p) {
619 p = s->pool_first;
620 if (!p)
621 goto new_pool;
622 } else {
623 if (!p->next) {
624 new_pool:
625 pool_size = TCG_POOL_CHUNK_SIZE;
626 p = g_malloc(sizeof(TCGPool) + pool_size);
627 p->size = pool_size;
628 p->next = NULL;
629 if (s->pool_current)
630 s->pool_current->next = p;
631 else
632 s->pool_first = p;
633 } else {
634 p = p->next;
635 }
636 }
637 }
638 s->pool_current = p;
639 s->pool_cur = p->data + size;
640 s->pool_end = p->data + p->size;
641 return p->data;
642 }
643
644 void tcg_pool_reset(TCGContext *s)
645 {
646 TCGPool *p, *t;
647 for (p = s->pool_first_large; p; p = t) {
648 t = p->next;
649 g_free(p);
650 }
651 s->pool_first_large = NULL;
652 s->pool_cur = s->pool_end = NULL;
653 s->pool_current = NULL;
654 }
655
656 typedef struct TCGHelperInfo {
657 void *func;
658 const char *name;
659 unsigned flags;
660 unsigned sizemask;
661 } TCGHelperInfo;
662
663 #include "exec/helper-proto.h"
664
665 static const TCGHelperInfo all_helpers[] = {
666 #include "exec/helper-tcg.h"
667 };
668 static GHashTable *helper_table;
669
670 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
671 static void process_op_defs(TCGContext *s);
672 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
673 TCGReg reg, const char *name);
674
675 void tcg_context_init(TCGContext *s)
676 {
677 int op, total_args, n, i;
678 TCGOpDef *def;
679 TCGArgConstraint *args_ct;
680 int *sorted_args;
681 TCGTemp *ts;
682
683 memset(s, 0, sizeof(*s));
684 s->nb_globals = 0;
685
686 /* Count total number of arguments and allocate the corresponding
687 space */
688 total_args = 0;
689 for(op = 0; op < NB_OPS; op++) {
690 def = &tcg_op_defs[op];
691 n = def->nb_iargs + def->nb_oargs;
692 total_args += n;
693 }
694
695 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args);
696 sorted_args = g_malloc(sizeof(int) * total_args);
697
698 for(op = 0; op < NB_OPS; op++) {
699 def = &tcg_op_defs[op];
700 def->args_ct = args_ct;
701 def->sorted_args = sorted_args;
702 n = def->nb_iargs + def->nb_oargs;
703 sorted_args += n;
704 args_ct += n;
705 }
706
707 /* Register helpers. */
708 /* Use g_direct_hash/equal for direct pointer comparisons on func. */
709 helper_table = g_hash_table_new(NULL, NULL);
710
711 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
712 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
713 (gpointer)&all_helpers[i]);
714 }
715
716 tcg_target_init(s);
717 process_op_defs(s);
718
719 /* Reverse the order of the saved registers, assuming they're all at
720 the start of tcg_target_reg_alloc_order. */
721 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
722 int r = tcg_target_reg_alloc_order[n];
723 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
724 break;
725 }
726 }
727 for (i = 0; i < n; ++i) {
728 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
729 }
730 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
731 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
732 }
733
734 tcg_ctx = s;
735 /*
736 * In user-mode we simply share the init context among threads, since we
737 * use a single region. See the documentation tcg_region_init() for the
738 * reasoning behind this.
739 * In softmmu we will have at most max_cpus TCG threads.
740 */
741 #ifdef CONFIG_USER_ONLY
742 tcg_ctxs = &tcg_ctx;
743 n_tcg_ctxs = 1;
744 #else
745 tcg_ctxs = g_new(TCGContext *, max_cpus);
746 #endif
747
748 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
749 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
750 cpu_env = temp_tcgv_ptr(ts);
751 }
752
753 /*
754 * Allocate TBs right before their corresponding translated code, making
755 * sure that TBs and code are on different cache lines.
756 */
757 TranslationBlock *tcg_tb_alloc(TCGContext *s)
758 {
759 uintptr_t align = qemu_icache_linesize;
760 TranslationBlock *tb;
761 void *next;
762
763 retry:
764 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
765 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
766
767 if (unlikely(next > s->code_gen_highwater)) {
768 if (tcg_region_alloc(s)) {
769 return NULL;
770 }
771 goto retry;
772 }
773 atomic_set(&s->code_gen_ptr, next);
774 s->data_gen_ptr = NULL;
775 return tb;
776 }
777
778 void tcg_prologue_init(TCGContext *s)
779 {
780 size_t prologue_size, total_size;
781 void *buf0, *buf1;
782
783 /* Put the prologue at the beginning of code_gen_buffer. */
784 buf0 = s->code_gen_buffer;
785 total_size = s->code_gen_buffer_size;
786 s->code_ptr = buf0;
787 s->code_buf = buf0;
788 s->data_gen_ptr = NULL;
789 s->code_gen_prologue = buf0;
790
791 /* Compute a high-water mark, at which we voluntarily flush the buffer
792 and start over. The size here is arbitrary, significantly larger
793 than we expect the code generation for any one opcode to require. */
794 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER);
795
796 #ifdef TCG_TARGET_NEED_POOL_LABELS
797 s->pool_labels = NULL;
798 #endif
799
800 /* Generate the prologue. */
801 tcg_target_qemu_prologue(s);
802
803 #ifdef TCG_TARGET_NEED_POOL_LABELS
804 /* Allow the prologue to put e.g. guest_base into a pool entry. */
805 {
806 bool ok = tcg_out_pool_finalize(s);
807 tcg_debug_assert(ok);
808 }
809 #endif
810
811 buf1 = s->code_ptr;
812 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1);
813
814 /* Deduct the prologue from the buffer. */
815 prologue_size = tcg_current_code_size(s);
816 s->code_gen_ptr = buf1;
817 s->code_gen_buffer = buf1;
818 s->code_buf = buf1;
819 total_size -= prologue_size;
820 s->code_gen_buffer_size = total_size;
821
822 tcg_register_jit(s->code_gen_buffer, total_size);
823
824 #ifdef DEBUG_DISAS
825 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
826 qemu_log_lock();
827 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
828 if (s->data_gen_ptr) {
829 size_t code_size = s->data_gen_ptr - buf0;
830 size_t data_size = prologue_size - code_size;
831 size_t i;
832
833 log_disas(buf0, code_size);
834
835 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
836 if (sizeof(tcg_target_ulong) == 8) {
837 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
838 (uintptr_t)s->data_gen_ptr + i,
839 *(uint64_t *)(s->data_gen_ptr + i));
840 } else {
841 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
842 (uintptr_t)s->data_gen_ptr + i,
843 *(uint32_t *)(s->data_gen_ptr + i));
844 }
845 }
846 } else {
847 log_disas(buf0, prologue_size);
848 }
849 qemu_log("\n");
850 qemu_log_flush();
851 qemu_log_unlock();
852 }
853 #endif
854
855 /* Assert that goto_ptr is implemented completely. */
856 if (TCG_TARGET_HAS_goto_ptr) {
857 tcg_debug_assert(s->code_gen_epilogue != NULL);
858 }
859 }
860
861 void tcg_func_start(TCGContext *s)
862 {
863 tcg_pool_reset(s);
864 s->nb_temps = s->nb_globals;
865
866 /* No temps have been previously allocated for size or locality. */
867 memset(s->free_temps, 0, sizeof(s->free_temps));
868
869 s->nb_labels = 0;
870 s->current_frame_offset = s->frame_start;
871
872 #ifdef CONFIG_DEBUG_TCG
873 s->goto_tb_issue_mask = 0;
874 #endif
875
876 QTAILQ_INIT(&s->ops);
877 QTAILQ_INIT(&s->free_ops);
878 }
879
880 static inline TCGTemp *tcg_temp_alloc(TCGContext *s)
881 {
882 int n = s->nb_temps++;
883 tcg_debug_assert(n < TCG_MAX_TEMPS);
884 return memset(&s->temps[n], 0, sizeof(TCGTemp));
885 }
886
887 static inline TCGTemp *tcg_global_alloc(TCGContext *s)
888 {
889 TCGTemp *ts;
890
891 tcg_debug_assert(s->nb_globals == s->nb_temps);
892 s->nb_globals++;
893 ts = tcg_temp_alloc(s);
894 ts->temp_global = 1;
895
896 return ts;
897 }
898
899 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
900 TCGReg reg, const char *name)
901 {
902 TCGTemp *ts;
903
904 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
905 tcg_abort();
906 }
907
908 ts = tcg_global_alloc(s);
909 ts->base_type = type;
910 ts->type = type;
911 ts->fixed_reg = 1;
912 ts->reg = reg;
913 ts->name = name;
914 tcg_regset_set_reg(s->reserved_regs, reg);
915
916 return ts;
917 }
918
919 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
920 {
921 s->frame_start = start;
922 s->frame_end = start + size;
923 s->frame_temp
924 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
925 }
926
927 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
928 intptr_t offset, const char *name)
929 {
930 TCGContext *s = tcg_ctx;
931 TCGTemp *base_ts = tcgv_ptr_temp(base);
932 TCGTemp *ts = tcg_global_alloc(s);
933 int indirect_reg = 0, bigendian = 0;
934 #ifdef HOST_WORDS_BIGENDIAN
935 bigendian = 1;
936 #endif
937
938 if (!base_ts->fixed_reg) {
939 /* We do not support double-indirect registers. */
940 tcg_debug_assert(!base_ts->indirect_reg);
941 base_ts->indirect_base = 1;
942 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
943 ? 2 : 1);
944 indirect_reg = 1;
945 }
946
947 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
948 TCGTemp *ts2 = tcg_global_alloc(s);
949 char buf[64];
950
951 ts->base_type = TCG_TYPE_I64;
952 ts->type = TCG_TYPE_I32;
953 ts->indirect_reg = indirect_reg;
954 ts->mem_allocated = 1;
955 ts->mem_base = base_ts;
956 ts->mem_offset = offset + bigendian * 4;
957 pstrcpy(buf, sizeof(buf), name);
958 pstrcat(buf, sizeof(buf), "_0");
959 ts->name = strdup(buf);
960
961 tcg_debug_assert(ts2 == ts + 1);
962 ts2->base_type = TCG_TYPE_I64;
963 ts2->type = TCG_TYPE_I32;
964 ts2->indirect_reg = indirect_reg;
965 ts2->mem_allocated = 1;
966 ts2->mem_base = base_ts;
967 ts2->mem_offset = offset + (1 - bigendian) * 4;
968 pstrcpy(buf, sizeof(buf), name);
969 pstrcat(buf, sizeof(buf), "_1");
970 ts2->name = strdup(buf);
971 } else {
972 ts->base_type = type;
973 ts->type = type;
974 ts->indirect_reg = indirect_reg;
975 ts->mem_allocated = 1;
976 ts->mem_base = base_ts;
977 ts->mem_offset = offset;
978 ts->name = name;
979 }
980 return ts;
981 }
982
983 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
984 {
985 TCGContext *s = tcg_ctx;
986 TCGTemp *ts;
987 int idx, k;
988
989 k = type + (temp_local ? TCG_TYPE_COUNT : 0);
990 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
991 if (idx < TCG_MAX_TEMPS) {
992 /* There is already an available temp with the right type. */
993 clear_bit(idx, s->free_temps[k].l);
994
995 ts = &s->temps[idx];
996 ts->temp_allocated = 1;
997 tcg_debug_assert(ts->base_type == type);
998 tcg_debug_assert(ts->temp_local == temp_local);
999 } else {
1000 ts = tcg_temp_alloc(s);
1001 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1002 TCGTemp *ts2 = tcg_temp_alloc(s);
1003
1004 ts->base_type = type;
1005 ts->type = TCG_TYPE_I32;
1006 ts->temp_allocated = 1;
1007 ts->temp_local = temp_local;
1008
1009 tcg_debug_assert(ts2 == ts + 1);
1010 ts2->base_type = TCG_TYPE_I64;
1011 ts2->type = TCG_TYPE_I32;
1012 ts2->temp_allocated = 1;
1013 ts2->temp_local = temp_local;
1014 } else {
1015 ts->base_type = type;
1016 ts->type = type;
1017 ts->temp_allocated = 1;
1018 ts->temp_local = temp_local;
1019 }
1020 }
1021
1022 #if defined(CONFIG_DEBUG_TCG)
1023 s->temps_in_use++;
1024 #endif
1025 return ts;
1026 }
1027
1028 TCGv_vec tcg_temp_new_vec(TCGType type)
1029 {
1030 TCGTemp *t;
1031
1032 #ifdef CONFIG_DEBUG_TCG
1033 switch (type) {
1034 case TCG_TYPE_V64:
1035 assert(TCG_TARGET_HAS_v64);
1036 break;
1037 case TCG_TYPE_V128:
1038 assert(TCG_TARGET_HAS_v128);
1039 break;
1040 case TCG_TYPE_V256:
1041 assert(TCG_TARGET_HAS_v256);
1042 break;
1043 default:
1044 g_assert_not_reached();
1045 }
1046 #endif
1047
1048 t = tcg_temp_new_internal(type, 0);
1049 return temp_tcgv_vec(t);
1050 }
1051
1052 /* Create a new temp of the same type as an existing temp. */
1053 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1054 {
1055 TCGTemp *t = tcgv_vec_temp(match);
1056
1057 tcg_debug_assert(t->temp_allocated != 0);
1058
1059 t = tcg_temp_new_internal(t->base_type, 0);
1060 return temp_tcgv_vec(t);
1061 }
1062
1063 void tcg_temp_free_internal(TCGTemp *ts)
1064 {
1065 TCGContext *s = tcg_ctx;
1066 int k, idx;
1067
1068 #if defined(CONFIG_DEBUG_TCG)
1069 s->temps_in_use--;
1070 if (s->temps_in_use < 0) {
1071 fprintf(stderr, "More temporaries freed than allocated!\n");
1072 }
1073 #endif
1074
1075 tcg_debug_assert(ts->temp_global == 0);
1076 tcg_debug_assert(ts->temp_allocated != 0);
1077 ts->temp_allocated = 0;
1078
1079 idx = temp_idx(ts);
1080 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0);
1081 set_bit(idx, s->free_temps[k].l);
1082 }
1083
1084 TCGv_i32 tcg_const_i32(int32_t val)
1085 {
1086 TCGv_i32 t0;
1087 t0 = tcg_temp_new_i32();
1088 tcg_gen_movi_i32(t0, val);
1089 return t0;
1090 }
1091
1092 TCGv_i64 tcg_const_i64(int64_t val)
1093 {
1094 TCGv_i64 t0;
1095 t0 = tcg_temp_new_i64();
1096 tcg_gen_movi_i64(t0, val);
1097 return t0;
1098 }
1099
1100 TCGv_i32 tcg_const_local_i32(int32_t val)
1101 {
1102 TCGv_i32 t0;
1103 t0 = tcg_temp_local_new_i32();
1104 tcg_gen_movi_i32(t0, val);
1105 return t0;
1106 }
1107
1108 TCGv_i64 tcg_const_local_i64(int64_t val)
1109 {
1110 TCGv_i64 t0;
1111 t0 = tcg_temp_local_new_i64();
1112 tcg_gen_movi_i64(t0, val);
1113 return t0;
1114 }
1115
1116 #if defined(CONFIG_DEBUG_TCG)
1117 void tcg_clear_temp_count(void)
1118 {
1119 TCGContext *s = tcg_ctx;
1120 s->temps_in_use = 0;
1121 }
1122
1123 int tcg_check_temp_count(void)
1124 {
1125 TCGContext *s = tcg_ctx;
1126 if (s->temps_in_use) {
1127 /* Clear the count so that we don't give another
1128 * warning immediately next time around.
1129 */
1130 s->temps_in_use = 0;
1131 return 1;
1132 }
1133 return 0;
1134 }
1135 #endif
1136
1137 /* Return true if OP may appear in the opcode stream.
1138 Test the runtime variable that controls each opcode. */
1139 bool tcg_op_supported(TCGOpcode op)
1140 {
1141 const bool have_vec
1142 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1143
1144 switch (op) {
1145 case INDEX_op_discard:
1146 case INDEX_op_set_label:
1147 case INDEX_op_call:
1148 case INDEX_op_br:
1149 case INDEX_op_mb:
1150 case INDEX_op_insn_start:
1151 case INDEX_op_exit_tb:
1152 case INDEX_op_goto_tb:
1153 case INDEX_op_qemu_ld_i32:
1154 case INDEX_op_qemu_st_i32:
1155 case INDEX_op_qemu_ld_i64:
1156 case INDEX_op_qemu_st_i64:
1157 return true;
1158
1159 case INDEX_op_goto_ptr:
1160 return TCG_TARGET_HAS_goto_ptr;
1161
1162 case INDEX_op_mov_i32:
1163 case INDEX_op_movi_i32:
1164 case INDEX_op_setcond_i32:
1165 case INDEX_op_brcond_i32:
1166 case INDEX_op_ld8u_i32:
1167 case INDEX_op_ld8s_i32:
1168 case INDEX_op_ld16u_i32:
1169 case INDEX_op_ld16s_i32:
1170 case INDEX_op_ld_i32:
1171 case INDEX_op_st8_i32:
1172 case INDEX_op_st16_i32:
1173 case INDEX_op_st_i32:
1174 case INDEX_op_add_i32:
1175 case INDEX_op_sub_i32:
1176 case INDEX_op_mul_i32:
1177 case INDEX_op_and_i32:
1178 case INDEX_op_or_i32:
1179 case INDEX_op_xor_i32:
1180 case INDEX_op_shl_i32:
1181 case INDEX_op_shr_i32:
1182 case INDEX_op_sar_i32:
1183 return true;
1184
1185 case INDEX_op_movcond_i32:
1186 return TCG_TARGET_HAS_movcond_i32;
1187 case INDEX_op_div_i32:
1188 case INDEX_op_divu_i32:
1189 return TCG_TARGET_HAS_div_i32;
1190 case INDEX_op_rem_i32:
1191 case INDEX_op_remu_i32:
1192 return TCG_TARGET_HAS_rem_i32;
1193 case INDEX_op_div2_i32:
1194 case INDEX_op_divu2_i32:
1195 return TCG_TARGET_HAS_div2_i32;
1196 case INDEX_op_rotl_i32:
1197 case INDEX_op_rotr_i32:
1198 return TCG_TARGET_HAS_rot_i32;
1199 case INDEX_op_deposit_i32:
1200 return TCG_TARGET_HAS_deposit_i32;
1201 case INDEX_op_extract_i32:
1202 return TCG_TARGET_HAS_extract_i32;
1203 case INDEX_op_sextract_i32:
1204 return TCG_TARGET_HAS_sextract_i32;
1205 case INDEX_op_add2_i32:
1206 return TCG_TARGET_HAS_add2_i32;
1207 case INDEX_op_sub2_i32:
1208 return TCG_TARGET_HAS_sub2_i32;
1209 case INDEX_op_mulu2_i32:
1210 return TCG_TARGET_HAS_mulu2_i32;
1211 case INDEX_op_muls2_i32:
1212 return TCG_TARGET_HAS_muls2_i32;
1213 case INDEX_op_muluh_i32:
1214 return TCG_TARGET_HAS_muluh_i32;
1215 case INDEX_op_mulsh_i32:
1216 return TCG_TARGET_HAS_mulsh_i32;
1217 case INDEX_op_ext8s_i32:
1218 return TCG_TARGET_HAS_ext8s_i32;
1219 case INDEX_op_ext16s_i32:
1220 return TCG_TARGET_HAS_ext16s_i32;
1221 case INDEX_op_ext8u_i32:
1222 return TCG_TARGET_HAS_ext8u_i32;
1223 case INDEX_op_ext16u_i32:
1224 return TCG_TARGET_HAS_ext16u_i32;
1225 case INDEX_op_bswap16_i32:
1226 return TCG_TARGET_HAS_bswap16_i32;
1227 case INDEX_op_bswap32_i32:
1228 return TCG_TARGET_HAS_bswap32_i32;
1229 case INDEX_op_not_i32:
1230 return TCG_TARGET_HAS_not_i32;
1231 case INDEX_op_neg_i32:
1232 return TCG_TARGET_HAS_neg_i32;
1233 case INDEX_op_andc_i32:
1234 return TCG_TARGET_HAS_andc_i32;
1235 case INDEX_op_orc_i32:
1236 return TCG_TARGET_HAS_orc_i32;
1237 case INDEX_op_eqv_i32:
1238 return TCG_TARGET_HAS_eqv_i32;
1239 case INDEX_op_nand_i32:
1240 return TCG_TARGET_HAS_nand_i32;
1241 case INDEX_op_nor_i32:
1242 return TCG_TARGET_HAS_nor_i32;
1243 case INDEX_op_clz_i32:
1244 return TCG_TARGET_HAS_clz_i32;
1245 case INDEX_op_ctz_i32:
1246 return TCG_TARGET_HAS_ctz_i32;
1247 case INDEX_op_ctpop_i32:
1248 return TCG_TARGET_HAS_ctpop_i32;
1249
1250 case INDEX_op_brcond2_i32:
1251 case INDEX_op_setcond2_i32:
1252 return TCG_TARGET_REG_BITS == 32;
1253
1254 case INDEX_op_mov_i64:
1255 case INDEX_op_movi_i64:
1256 case INDEX_op_setcond_i64:
1257 case INDEX_op_brcond_i64:
1258 case INDEX_op_ld8u_i64:
1259 case INDEX_op_ld8s_i64:
1260 case INDEX_op_ld16u_i64:
1261 case INDEX_op_ld16s_i64:
1262 case INDEX_op_ld32u_i64:
1263 case INDEX_op_ld32s_i64:
1264 case INDEX_op_ld_i64:
1265 case INDEX_op_st8_i64:
1266 case INDEX_op_st16_i64:
1267 case INDEX_op_st32_i64:
1268 case INDEX_op_st_i64:
1269 case INDEX_op_add_i64:
1270 case INDEX_op_sub_i64:
1271 case INDEX_op_mul_i64:
1272 case INDEX_op_and_i64:
1273 case INDEX_op_or_i64:
1274 case INDEX_op_xor_i64:
1275 case INDEX_op_shl_i64:
1276 case INDEX_op_shr_i64:
1277 case INDEX_op_sar_i64:
1278 case INDEX_op_ext_i32_i64:
1279 case INDEX_op_extu_i32_i64:
1280 return TCG_TARGET_REG_BITS == 64;
1281
1282 case INDEX_op_movcond_i64:
1283 return TCG_TARGET_HAS_movcond_i64;
1284 case INDEX_op_div_i64:
1285 case INDEX_op_divu_i64:
1286 return TCG_TARGET_HAS_div_i64;
1287 case INDEX_op_rem_i64:
1288 case INDEX_op_remu_i64:
1289 return TCG_TARGET_HAS_rem_i64;
1290 case INDEX_op_div2_i64:
1291 case INDEX_op_divu2_i64:
1292 return TCG_TARGET_HAS_div2_i64;
1293 case INDEX_op_rotl_i64:
1294 case INDEX_op_rotr_i64:
1295 return TCG_TARGET_HAS_rot_i64;
1296 case INDEX_op_deposit_i64:
1297 return TCG_TARGET_HAS_deposit_i64;
1298 case INDEX_op_extract_i64:
1299 return TCG_TARGET_HAS_extract_i64;
1300 case INDEX_op_sextract_i64:
1301 return TCG_TARGET_HAS_sextract_i64;
1302 case INDEX_op_extrl_i64_i32:
1303 return TCG_TARGET_HAS_extrl_i64_i32;
1304 case INDEX_op_extrh_i64_i32:
1305 return TCG_TARGET_HAS_extrh_i64_i32;
1306 case INDEX_op_ext8s_i64:
1307 return TCG_TARGET_HAS_ext8s_i64;
1308 case INDEX_op_ext16s_i64:
1309 return TCG_TARGET_HAS_ext16s_i64;
1310 case INDEX_op_ext32s_i64:
1311 return TCG_TARGET_HAS_ext32s_i64;
1312 case INDEX_op_ext8u_i64:
1313 return TCG_TARGET_HAS_ext8u_i64;
1314 case INDEX_op_ext16u_i64:
1315 return TCG_TARGET_HAS_ext16u_i64;
1316 case INDEX_op_ext32u_i64:
1317 return TCG_TARGET_HAS_ext32u_i64;
1318 case INDEX_op_bswap16_i64:
1319 return TCG_TARGET_HAS_bswap16_i64;
1320 case INDEX_op_bswap32_i64:
1321 return TCG_TARGET_HAS_bswap32_i64;
1322 case INDEX_op_bswap64_i64:
1323 return TCG_TARGET_HAS_bswap64_i64;
1324 case INDEX_op_not_i64:
1325 return TCG_TARGET_HAS_not_i64;
1326 case INDEX_op_neg_i64:
1327 return TCG_TARGET_HAS_neg_i64;
1328 case INDEX_op_andc_i64:
1329 return TCG_TARGET_HAS_andc_i64;
1330 case INDEX_op_orc_i64:
1331 return TCG_TARGET_HAS_orc_i64;
1332 case INDEX_op_eqv_i64:
1333 return TCG_TARGET_HAS_eqv_i64;
1334 case INDEX_op_nand_i64:
1335 return TCG_TARGET_HAS_nand_i64;
1336 case INDEX_op_nor_i64:
1337 return TCG_TARGET_HAS_nor_i64;
1338 case INDEX_op_clz_i64:
1339 return TCG_TARGET_HAS_clz_i64;
1340 case INDEX_op_ctz_i64:
1341 return TCG_TARGET_HAS_ctz_i64;
1342 case INDEX_op_ctpop_i64:
1343 return TCG_TARGET_HAS_ctpop_i64;
1344 case INDEX_op_add2_i64:
1345 return TCG_TARGET_HAS_add2_i64;
1346 case INDEX_op_sub2_i64:
1347 return TCG_TARGET_HAS_sub2_i64;
1348 case INDEX_op_mulu2_i64:
1349 return TCG_TARGET_HAS_mulu2_i64;
1350 case INDEX_op_muls2_i64:
1351 return TCG_TARGET_HAS_muls2_i64;
1352 case INDEX_op_muluh_i64:
1353 return TCG_TARGET_HAS_muluh_i64;
1354 case INDEX_op_mulsh_i64:
1355 return TCG_TARGET_HAS_mulsh_i64;
1356
1357 case INDEX_op_mov_vec:
1358 case INDEX_op_dup_vec:
1359 case INDEX_op_dupi_vec:
1360 case INDEX_op_ld_vec:
1361 case INDEX_op_st_vec:
1362 case INDEX_op_add_vec:
1363 case INDEX_op_sub_vec:
1364 case INDEX_op_and_vec:
1365 case INDEX_op_or_vec:
1366 case INDEX_op_xor_vec:
1367 case INDEX_op_cmp_vec:
1368 return have_vec;
1369 case INDEX_op_dup2_vec:
1370 return have_vec && TCG_TARGET_REG_BITS == 32;
1371 case INDEX_op_not_vec:
1372 return have_vec && TCG_TARGET_HAS_not_vec;
1373 case INDEX_op_neg_vec:
1374 return have_vec && TCG_TARGET_HAS_neg_vec;
1375 case INDEX_op_andc_vec:
1376 return have_vec && TCG_TARGET_HAS_andc_vec;
1377 case INDEX_op_orc_vec:
1378 return have_vec && TCG_TARGET_HAS_orc_vec;
1379 case INDEX_op_mul_vec:
1380 return have_vec && TCG_TARGET_HAS_mul_vec;
1381 case INDEX_op_shli_vec:
1382 case INDEX_op_shri_vec:
1383 case INDEX_op_sari_vec:
1384 return have_vec && TCG_TARGET_HAS_shi_vec;
1385 case INDEX_op_shls_vec:
1386 case INDEX_op_shrs_vec:
1387 case INDEX_op_sars_vec:
1388 return have_vec && TCG_TARGET_HAS_shs_vec;
1389 case INDEX_op_shlv_vec:
1390 case INDEX_op_shrv_vec:
1391 case INDEX_op_sarv_vec:
1392 return have_vec && TCG_TARGET_HAS_shv_vec;
1393
1394 default:
1395 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1396 return true;
1397 }
1398 }
1399
1400 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1401 and endian swap. Maybe it would be better to do the alignment
1402 and endian swap in tcg_reg_alloc_call(). */
1403 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1404 {
1405 int i, real_args, nb_rets, pi;
1406 unsigned sizemask, flags;
1407 TCGHelperInfo *info;
1408 TCGOp *op;
1409
1410 info = g_hash_table_lookup(helper_table, (gpointer)func);
1411 flags = info->flags;
1412 sizemask = info->sizemask;
1413
1414 #if defined(__sparc__) && !defined(__arch64__) \
1415 && !defined(CONFIG_TCG_INTERPRETER)
1416 /* We have 64-bit values in one register, but need to pass as two
1417 separate parameters. Split them. */
1418 int orig_sizemask = sizemask;
1419 int orig_nargs = nargs;
1420 TCGv_i64 retl, reth;
1421 TCGTemp *split_args[MAX_OPC_PARAM];
1422
1423 retl = NULL;
1424 reth = NULL;
1425 if (sizemask != 0) {
1426 for (i = real_args = 0; i < nargs; ++i) {
1427 int is_64bit = sizemask & (1 << (i+1)*2);
1428 if (is_64bit) {
1429 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1430 TCGv_i32 h = tcg_temp_new_i32();
1431 TCGv_i32 l = tcg_temp_new_i32();
1432 tcg_gen_extr_i64_i32(l, h, orig);
1433 split_args[real_args++] = tcgv_i32_temp(h);
1434 split_args[real_args++] = tcgv_i32_temp(l);
1435 } else {
1436 split_args[real_args++] = args[i];
1437 }
1438 }
1439 nargs = real_args;
1440 args = split_args;
1441 sizemask = 0;
1442 }
1443 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1444 for (i = 0; i < nargs; ++i) {
1445 int is_64bit = sizemask & (1 << (i+1)*2);
1446 int is_signed = sizemask & (2 << (i+1)*2);
1447 if (!is_64bit) {
1448 TCGv_i64 temp = tcg_temp_new_i64();
1449 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1450 if (is_signed) {
1451 tcg_gen_ext32s_i64(temp, orig);
1452 } else {
1453 tcg_gen_ext32u_i64(temp, orig);
1454 }
1455 args[i] = tcgv_i64_temp(temp);
1456 }
1457 }
1458 #endif /* TCG_TARGET_EXTEND_ARGS */
1459
1460 op = tcg_emit_op(INDEX_op_call);
1461
1462 pi = 0;
1463 if (ret != NULL) {
1464 #if defined(__sparc__) && !defined(__arch64__) \
1465 && !defined(CONFIG_TCG_INTERPRETER)
1466 if (orig_sizemask & 1) {
1467 /* The 32-bit ABI is going to return the 64-bit value in
1468 the %o0/%o1 register pair. Prepare for this by using
1469 two return temporaries, and reassemble below. */
1470 retl = tcg_temp_new_i64();
1471 reth = tcg_temp_new_i64();
1472 op->args[pi++] = tcgv_i64_arg(reth);
1473 op->args[pi++] = tcgv_i64_arg(retl);
1474 nb_rets = 2;
1475 } else {
1476 op->args[pi++] = temp_arg(ret);
1477 nb_rets = 1;
1478 }
1479 #else
1480 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) {
1481 #ifdef HOST_WORDS_BIGENDIAN
1482 op->args[pi++] = temp_arg(ret + 1);
1483 op->args[pi++] = temp_arg(ret);
1484 #else
1485 op->args[pi++] = temp_arg(ret);
1486 op->args[pi++] = temp_arg(ret + 1);
1487 #endif
1488 nb_rets = 2;
1489 } else {
1490 op->args[pi++] = temp_arg(ret);
1491 nb_rets = 1;
1492 }
1493 #endif
1494 } else {
1495 nb_rets = 0;
1496 }
1497 TCGOP_CALLO(op) = nb_rets;
1498
1499 real_args = 0;
1500 for (i = 0; i < nargs; i++) {
1501 int is_64bit = sizemask & (1 << (i+1)*2);
1502 if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1503 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1504 /* some targets want aligned 64 bit args */
1505 if (real_args & 1) {
1506 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1507 real_args++;
1508 }
1509 #endif
1510 /* If stack grows up, then we will be placing successive
1511 arguments at lower addresses, which means we need to
1512 reverse the order compared to how we would normally
1513 treat either big or little-endian. For those arguments
1514 that will wind up in registers, this still works for
1515 HPPA (the only current STACK_GROWSUP target) since the
1516 argument registers are *also* allocated in decreasing
1517 order. If another such target is added, this logic may
1518 have to get more complicated to differentiate between
1519 stack arguments and register arguments. */
1520 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP)
1521 op->args[pi++] = temp_arg(args[i] + 1);
1522 op->args[pi++] = temp_arg(args[i]);
1523 #else
1524 op->args[pi++] = temp_arg(args[i]);
1525 op->args[pi++] = temp_arg(args[i] + 1);
1526 #endif
1527 real_args += 2;
1528 continue;
1529 }
1530
1531 op->args[pi++] = temp_arg(args[i]);
1532 real_args++;
1533 }
1534 op->args[pi++] = (uintptr_t)func;
1535 op->args[pi++] = flags;
1536 TCGOP_CALLI(op) = real_args;
1537
1538 /* Make sure the fields didn't overflow. */
1539 tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1540 tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1541
1542 #if defined(__sparc__) && !defined(__arch64__) \
1543 && !defined(CONFIG_TCG_INTERPRETER)
1544 /* Free all of the parts we allocated above. */
1545 for (i = real_args = 0; i < orig_nargs; ++i) {
1546 int is_64bit = orig_sizemask & (1 << (i+1)*2);
1547 if (is_64bit) {
1548 tcg_temp_free_internal(args[real_args++]);
1549 tcg_temp_free_internal(args[real_args++]);
1550 } else {
1551 real_args++;
1552 }
1553 }
1554 if (orig_sizemask & 1) {
1555 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them.
1556 Note that describing these as TCGv_i64 eliminates an unnecessary
1557 zero-extension that tcg_gen_concat_i32_i64 would create. */
1558 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1559 tcg_temp_free_i64(retl);
1560 tcg_temp_free_i64(reth);
1561 }
1562 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1563 for (i = 0; i < nargs; ++i) {
1564 int is_64bit = sizemask & (1 << (i+1)*2);
1565 if (!is_64bit) {
1566 tcg_temp_free_internal(args[i]);
1567 }
1568 }
1569 #endif /* TCG_TARGET_EXTEND_ARGS */
1570 }
1571
1572 static void tcg_reg_alloc_start(TCGContext *s)
1573 {
1574 int i, n;
1575 TCGTemp *ts;
1576
1577 for (i = 0, n = s->nb_globals; i < n; i++) {
1578 ts = &s->temps[i];
1579 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM);
1580 }
1581 for (n = s->nb_temps; i < n; i++) {
1582 ts = &s->temps[i];
1583 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
1584 ts->mem_allocated = 0;
1585 ts->fixed_reg = 0;
1586 }
1587
1588 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1589 }
1590
1591 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1592 TCGTemp *ts)
1593 {
1594 int idx = temp_idx(ts);
1595
1596 if (ts->temp_global) {
1597 pstrcpy(buf, buf_size, ts->name);
1598 } else if (ts->temp_local) {
1599 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1600 } else {
1601 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1602 }
1603 return buf;
1604 }
1605
1606 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1607 int buf_size, TCGArg arg)
1608 {
1609 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1610 }
1611
1612 /* Find helper name. */
1613 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val)
1614 {
1615 const char *ret = NULL;
1616 if (helper_table) {
1617 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val);
1618 if (info) {
1619 ret = info->name;
1620 }
1621 }
1622 return ret;
1623 }
1624
1625 static const char * const cond_name[] =
1626 {
1627 [TCG_COND_NEVER] = "never",
1628 [TCG_COND_ALWAYS] = "always",
1629 [TCG_COND_EQ] = "eq",
1630 [TCG_COND_NE] = "ne",
1631 [TCG_COND_LT] = "lt",
1632 [TCG_COND_GE] = "ge",
1633 [TCG_COND_LE] = "le",
1634 [TCG_COND_GT] = "gt",
1635 [TCG_COND_LTU] = "ltu",
1636 [TCG_COND_GEU] = "geu",
1637 [TCG_COND_LEU] = "leu",
1638 [TCG_COND_GTU] = "gtu"
1639 };
1640
1641 static const char * const ldst_name[] =
1642 {
1643 [MO_UB] = "ub",
1644 [MO_SB] = "sb",
1645 [MO_LEUW] = "leuw",
1646 [MO_LESW] = "lesw",
1647 [MO_LEUL] = "leul",
1648 [MO_LESL] = "lesl",
1649 [MO_LEQ] = "leq",
1650 [MO_BEUW] = "beuw",
1651 [MO_BESW] = "besw",
1652 [MO_BEUL] = "beul",
1653 [MO_BESL] = "besl",
1654 [MO_BEQ] = "beq",
1655 };
1656
1657 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1658 #ifdef ALIGNED_ONLY
1659 [MO_UNALN >> MO_ASHIFT] = "un+",
1660 [MO_ALIGN >> MO_ASHIFT] = "",
1661 #else
1662 [MO_UNALN >> MO_ASHIFT] = "",
1663 [MO_ALIGN >> MO_ASHIFT] = "al+",
1664 #endif
1665 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+",
1666 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+",
1667 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+",
1668 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1669 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1670 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1671 };
1672
1673 void tcg_dump_ops(TCGContext *s)
1674 {
1675 char buf[128];
1676 TCGOp *op;
1677
1678 QTAILQ_FOREACH(op, &s->ops, link) {
1679 int i, k, nb_oargs, nb_iargs, nb_cargs;
1680 const TCGOpDef *def;
1681 TCGOpcode c;
1682 int col = 0;
1683
1684 c = op->opc;
1685 def = &tcg_op_defs[c];
1686
1687 if (c == INDEX_op_insn_start) {
1688 col += qemu_log("\n ----");
1689
1690 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
1691 target_ulong a;
1692 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
1693 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
1694 #else
1695 a = op->args[i];
1696 #endif
1697 col += qemu_log(" " TARGET_FMT_lx, a);
1698 }
1699 } else if (c == INDEX_op_call) {
1700 /* variable number of arguments */
1701 nb_oargs = TCGOP_CALLO(op);
1702 nb_iargs = TCGOP_CALLI(op);
1703 nb_cargs = def->nb_cargs;
1704
1705 /* function name, flags, out args */
1706 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name,
1707 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]),
1708 op->args[nb_oargs + nb_iargs + 1], nb_oargs);
1709 for (i = 0; i < nb_oargs; i++) {
1710 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
1711 op->args[i]));
1712 }
1713 for (i = 0; i < nb_iargs; i++) {
1714 TCGArg arg = op->args[nb_oargs + i];
1715 const char *t = "<dummy>";
1716 if (arg != TCG_CALL_DUMMY_ARG) {
1717 t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
1718 }
1719 col += qemu_log(",%s", t);
1720 }
1721 } else {
1722 col += qemu_log(" %s ", def->name);
1723
1724 nb_oargs = def->nb_oargs;
1725 nb_iargs = def->nb_iargs;
1726 nb_cargs = def->nb_cargs;
1727
1728 if (def->flags & TCG_OPF_VECTOR) {
1729 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
1730 8 << TCGOP_VECE(op));
1731 }
1732
1733 k = 0;
1734 for (i = 0; i < nb_oargs; i++) {
1735 if (k != 0) {
1736 col += qemu_log(",");
1737 }
1738 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1739 op->args[k++]));
1740 }
1741 for (i = 0; i < nb_iargs; i++) {
1742 if (k != 0) {
1743 col += qemu_log(",");
1744 }
1745 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1746 op->args[k++]));
1747 }
1748 switch (c) {
1749 case INDEX_op_brcond_i32:
1750 case INDEX_op_setcond_i32:
1751 case INDEX_op_movcond_i32:
1752 case INDEX_op_brcond2_i32:
1753 case INDEX_op_setcond2_i32:
1754 case INDEX_op_brcond_i64:
1755 case INDEX_op_setcond_i64:
1756 case INDEX_op_movcond_i64:
1757 case INDEX_op_cmp_vec:
1758 if (op->args[k] < ARRAY_SIZE(cond_name)
1759 && cond_name[op->args[k]]) {
1760 col += qemu_log(",%s", cond_name[op->args[k++]]);
1761 } else {
1762 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
1763 }
1764 i = 1;
1765 break;
1766 case INDEX_op_qemu_ld_i32:
1767 case INDEX_op_qemu_st_i32:
1768 case INDEX_op_qemu_ld_i64:
1769 case INDEX_op_qemu_st_i64:
1770 {
1771 TCGMemOpIdx oi = op->args[k++];
1772 TCGMemOp op = get_memop(oi);
1773 unsigned ix = get_mmuidx(oi);
1774
1775 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
1776 col += qemu_log(",$0x%x,%u", op, ix);
1777 } else {
1778 const char *s_al, *s_op;
1779 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
1780 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
1781 col += qemu_log(",%s%s,%u", s_al, s_op, ix);
1782 }
1783 i = 1;
1784 }
1785 break;
1786 default:
1787 i = 0;
1788 break;
1789 }
1790 switch (c) {
1791 case INDEX_op_set_label:
1792 case INDEX_op_br:
1793 case INDEX_op_brcond_i32:
1794 case INDEX_op_brcond_i64:
1795 case INDEX_op_brcond2_i32:
1796 col += qemu_log("%s$L%d", k ? "," : "",
1797 arg_label(op->args[k])->id);
1798 i++, k++;
1799 break;
1800 default:
1801 break;
1802 }
1803 for (; i < nb_cargs; i++, k++) {
1804 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
1805 }
1806 }
1807 if (op->life) {
1808 unsigned life = op->life;
1809
1810 for (; col < 48; ++col) {
1811 putc(' ', qemu_logfile);
1812 }
1813
1814 if (life & (SYNC_ARG * 3)) {
1815 qemu_log(" sync:");
1816 for (i = 0; i < 2; ++i) {
1817 if (life & (SYNC_ARG << i)) {
1818 qemu_log(" %d", i);
1819 }
1820 }
1821 }
1822 life /= DEAD_ARG;
1823 if (life) {
1824 qemu_log(" dead:");
1825 for (i = 0; life; ++i, life >>= 1) {
1826 if (life & 1) {
1827 qemu_log(" %d", i);
1828 }
1829 }
1830 }
1831 }
1832 qemu_log("\n");
1833 }
1834 }
1835
1836 /* we give more priority to constraints with less registers */
1837 static int get_constraint_priority(const TCGOpDef *def, int k)
1838 {
1839 const TCGArgConstraint *arg_ct;
1840
1841 int i, n;
1842 arg_ct = &def->args_ct[k];
1843 if (arg_ct->ct & TCG_CT_ALIAS) {
1844 /* an alias is equivalent to a single register */
1845 n = 1;
1846 } else {
1847 if (!(arg_ct->ct & TCG_CT_REG))
1848 return 0;
1849 n = 0;
1850 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
1851 if (tcg_regset_test_reg(arg_ct->u.regs, i))
1852 n++;
1853 }
1854 }
1855 return TCG_TARGET_NB_REGS - n + 1;
1856 }
1857
1858 /* sort from highest priority to lowest */
1859 static void sort_constraints(TCGOpDef *def, int start, int n)
1860 {
1861 int i, j, p1, p2, tmp;
1862
1863 for(i = 0; i < n; i++)
1864 def->sorted_args[start + i] = start + i;
1865 if (n <= 1)
1866 return;
1867 for(i = 0; i < n - 1; i++) {
1868 for(j = i + 1; j < n; j++) {
1869 p1 = get_constraint_priority(def, def->sorted_args[start + i]);
1870 p2 = get_constraint_priority(def, def->sorted_args[start + j]);
1871 if (p1 < p2) {
1872 tmp = def->sorted_args[start + i];
1873 def->sorted_args[start + i] = def->sorted_args[start + j];
1874 def->sorted_args[start + j] = tmp;
1875 }
1876 }
1877 }
1878 }
1879
1880 static void process_op_defs(TCGContext *s)
1881 {
1882 TCGOpcode op;
1883
1884 for (op = 0; op < NB_OPS; op++) {
1885 TCGOpDef *def = &tcg_op_defs[op];
1886 const TCGTargetOpDef *tdefs;
1887 TCGType type;
1888 int i, nb_args;
1889
1890 if (def->flags & TCG_OPF_NOT_PRESENT) {
1891 continue;
1892 }
1893
1894 nb_args = def->nb_iargs + def->nb_oargs;
1895 if (nb_args == 0) {
1896 continue;
1897 }
1898
1899 tdefs = tcg_target_op_def(op);
1900 /* Missing TCGTargetOpDef entry. */
1901 tcg_debug_assert(tdefs != NULL);
1902
1903 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32);
1904 for (i = 0; i < nb_args; i++) {
1905 const char *ct_str = tdefs->args_ct_str[i];
1906 /* Incomplete TCGTargetOpDef entry. */
1907 tcg_debug_assert(ct_str != NULL);
1908
1909 def->args_ct[i].u.regs = 0;
1910 def->args_ct[i].ct = 0;
1911 while (*ct_str != '\0') {
1912 switch(*ct_str) {
1913 case '0' ... '9':
1914 {
1915 int oarg = *ct_str - '0';
1916 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
1917 tcg_debug_assert(oarg < def->nb_oargs);
1918 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG);
1919 /* TCG_CT_ALIAS is for the output arguments.
1920 The input is tagged with TCG_CT_IALIAS. */
1921 def->args_ct[i] = def->args_ct[oarg];
1922 def->args_ct[oarg].ct |= TCG_CT_ALIAS;
1923 def->args_ct[oarg].alias_index = i;
1924 def->args_ct[i].ct |= TCG_CT_IALIAS;
1925 def->args_ct[i].alias_index = oarg;
1926 }
1927 ct_str++;
1928 break;
1929 case '&':
1930 def->args_ct[i].ct |= TCG_CT_NEWREG;
1931 ct_str++;
1932 break;
1933 case 'i':
1934 def->args_ct[i].ct |= TCG_CT_CONST;
1935 ct_str++;
1936 break;
1937 default:
1938 ct_str = target_parse_constraint(&def->args_ct[i],
1939 ct_str, type);
1940 /* Typo in TCGTargetOpDef constraint. */
1941 tcg_debug_assert(ct_str != NULL);
1942 }
1943 }
1944 }
1945
1946 /* TCGTargetOpDef entry with too much information? */
1947 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
1948
1949 /* sort the constraints (XXX: this is just an heuristic) */
1950 sort_constraints(def, 0, def->nb_oargs);
1951 sort_constraints(def, def->nb_oargs, def->nb_iargs);
1952 }
1953 }
1954
1955 void tcg_op_remove(TCGContext *s, TCGOp *op)
1956 {
1957 QTAILQ_REMOVE(&s->ops, op, link);
1958 QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
1959
1960 #ifdef CONFIG_PROFILER
1961 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
1962 #endif
1963 }
1964
1965 static TCGOp *tcg_op_alloc(TCGOpcode opc)
1966 {
1967 TCGContext *s = tcg_ctx;
1968 TCGOp *op;
1969
1970 if (likely(QTAILQ_EMPTY(&s->free_ops))) {
1971 op = tcg_malloc(sizeof(TCGOp));
1972 } else {
1973 op = QTAILQ_FIRST(&s->free_ops);
1974 QTAILQ_REMOVE(&s->free_ops, op, link);
1975 }
1976 memset(op, 0, offsetof(TCGOp, link));
1977 op->opc = opc;
1978
1979 return op;
1980 }
1981
1982 TCGOp *tcg_emit_op(TCGOpcode opc)
1983 {
1984 TCGOp *op = tcg_op_alloc(opc);
1985 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
1986 return op;
1987 }
1988
1989 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op,
1990 TCGOpcode opc, int nargs)
1991 {
1992 TCGOp *new_op = tcg_op_alloc(opc);
1993 QTAILQ_INSERT_BEFORE(old_op, new_op, link);
1994 return new_op;
1995 }
1996
1997 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op,
1998 TCGOpcode opc, int nargs)
1999 {
2000 TCGOp *new_op = tcg_op_alloc(opc);
2001 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2002 return new_op;
2003 }
2004
2005 #define TS_DEAD 1
2006 #define TS_MEM 2
2007
2008 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n)))
2009 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2010
2011 /* liveness analysis: end of function: all temps are dead, and globals
2012 should be in memory. */
2013 static void tcg_la_func_end(TCGContext *s)
2014 {
2015 int ng = s->nb_globals;
2016 int nt = s->nb_temps;
2017 int i;
2018
2019 for (i = 0; i < ng; ++i) {
2020 s->temps[i].state = TS_DEAD | TS_MEM;
2021 }
2022 for (i = ng; i < nt; ++i) {
2023 s->temps[i].state = TS_DEAD;
2024 }
2025 }
2026
2027 /* liveness analysis: end of basic block: all temps are dead, globals
2028 and local temps should be in memory. */
2029 static void tcg_la_bb_end(TCGContext *s)
2030 {
2031 int ng = s->nb_globals;
2032 int nt = s->nb_temps;
2033 int i;
2034
2035 for (i = 0; i < ng; ++i) {
2036 s->temps[i].state = TS_DEAD | TS_MEM;
2037 }
2038 for (i = ng; i < nt; ++i) {
2039 s->temps[i].state = (s->temps[i].temp_local
2040 ? TS_DEAD | TS_MEM
2041 : TS_DEAD);
2042 }
2043 }
2044
2045 /* Liveness analysis : update the opc_arg_life array to tell if a
2046 given input arguments is dead. Instructions updating dead
2047 temporaries are removed. */
2048 static void liveness_pass_1(TCGContext *s)
2049 {
2050 int nb_globals = s->nb_globals;
2051 TCGOp *op, *op_prev;
2052
2053 tcg_la_func_end(s);
2054
2055 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, TCGOpHead, link, op_prev) {
2056 int i, nb_iargs, nb_oargs;
2057 TCGOpcode opc_new, opc_new2;
2058 bool have_opc_new2;
2059 TCGLifeData arg_life = 0;
2060 TCGTemp *arg_ts;
2061 TCGOpcode opc = op->opc;
2062 const TCGOpDef *def = &tcg_op_defs[opc];
2063
2064 switch (opc) {
2065 case INDEX_op_call:
2066 {
2067 int call_flags;
2068
2069 nb_oargs = TCGOP_CALLO(op);
2070 nb_iargs = TCGOP_CALLI(op);
2071 call_flags = op->args[nb_oargs + nb_iargs + 1];
2072
2073 /* pure functions can be removed if their result is unused */
2074 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2075 for (i = 0; i < nb_oargs; i++) {
2076 arg_ts = arg_temp(op->args[i]);
2077 if (arg_ts->state != TS_DEAD) {
2078 goto do_not_remove_call;
2079 }
2080 }
2081 goto do_remove;
2082 } else {
2083 do_not_remove_call:
2084
2085 /* output args are dead */
2086 for (i = 0; i < nb_oargs; i++) {
2087 arg_ts = arg_temp(op->args[i]);
2088 if (arg_ts->state & TS_DEAD) {
2089 arg_life |= DEAD_ARG << i;
2090 }
2091 if (arg_ts->state & TS_MEM) {
2092 arg_life |= SYNC_ARG << i;
2093 }
2094 arg_ts->state = TS_DEAD;
2095 }
2096
2097 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2098 TCG_CALL_NO_READ_GLOBALS))) {
2099 /* globals should go back to memory */
2100 for (i = 0; i < nb_globals; i++) {
2101 s->temps[i].state = TS_DEAD | TS_MEM;
2102 }
2103 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2104 /* globals should be synced to memory */
2105 for (i = 0; i < nb_globals; i++) {
2106 s->temps[i].state |= TS_MEM;
2107 }
2108 }
2109
2110 /* record arguments that die in this helper */
2111 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2112 arg_ts = arg_temp(op->args[i]);
2113 if (arg_ts && arg_ts->state & TS_DEAD) {
2114 arg_life |= DEAD_ARG << i;
2115 }
2116 }
2117 /* input arguments are live for preceding opcodes */
2118 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2119 arg_ts = arg_temp(op->args[i]);
2120 if (arg_ts) {
2121 arg_ts->state &= ~TS_DEAD;
2122 }
2123 }
2124 }
2125 }
2126 break;
2127 case INDEX_op_insn_start:
2128 break;
2129 case INDEX_op_discard:
2130 /* mark the temporary as dead */
2131 arg_temp(op->args[0])->state = TS_DEAD;
2132 break;
2133
2134 case INDEX_op_add2_i32:
2135 opc_new = INDEX_op_add_i32;
2136 goto do_addsub2;
2137 case INDEX_op_sub2_i32:
2138 opc_new = INDEX_op_sub_i32;
2139 goto do_addsub2;
2140 case INDEX_op_add2_i64:
2141 opc_new = INDEX_op_add_i64;
2142 goto do_addsub2;
2143 case INDEX_op_sub2_i64:
2144 opc_new = INDEX_op_sub_i64;
2145 do_addsub2:
2146 nb_iargs = 4;
2147 nb_oargs = 2;
2148 /* Test if the high part of the operation is dead, but not
2149 the low part. The result can be optimized to a simple
2150 add or sub. This happens often for x86_64 guest when the
2151 cpu mode is set to 32 bit. */
2152 if (arg_temp(op->args[1])->state == TS_DEAD) {
2153 if (arg_temp(op->args[0])->state == TS_DEAD) {
2154 goto do_remove;
2155 }
2156 /* Replace the opcode and adjust the args in place,
2157 leaving 3 unused args at the end. */
2158 op->opc = opc = opc_new;
2159 op->args[1] = op->args[2];
2160 op->args[2] = op->args[4];
2161 /* Fall through and mark the single-word operation live. */
2162 nb_iargs = 2;
2163 nb_oargs = 1;
2164 }
2165 goto do_not_remove;
2166
2167 case INDEX_op_mulu2_i32:
2168 opc_new = INDEX_op_mul_i32;
2169 opc_new2 = INDEX_op_muluh_i32;
2170 have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2171 goto do_mul2;
2172 case INDEX_op_muls2_i32:
2173 opc_new = INDEX_op_mul_i32;
2174 opc_new2 = INDEX_op_mulsh_i32;
2175 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2176 goto do_mul2;
2177 case INDEX_op_mulu2_i64:
2178 opc_new = INDEX_op_mul_i64;
2179 opc_new2 = INDEX_op_muluh_i64;
2180 have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2181 goto do_mul2;
2182 case INDEX_op_muls2_i64:
2183 opc_new = INDEX_op_mul_i64;
2184 opc_new2 = INDEX_op_mulsh_i64;
2185 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2186 goto do_mul2;
2187 do_mul2:
2188 nb_iargs = 2;
2189 nb_oargs = 2;
2190 if (arg_temp(op->args[1])->state == TS_DEAD) {
2191 if (arg_temp(op->args[0])->state == TS_DEAD) {
2192 /* Both parts of the operation are dead. */
2193 goto do_remove;
2194 }
2195 /* The high part of the operation is dead; generate the low. */
2196 op->opc = opc = opc_new;
2197 op->args[1] = op->args[2];
2198 op->args[2] = op->args[3];
2199 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2200 /* The low part of the operation is dead; generate the high. */
2201 op->opc = opc = opc_new2;
2202 op->args[0] = op->args[1];
2203 op->args[1] = op->args[2];
2204 op->args[2] = op->args[3];
2205 } else {
2206 goto do_not_remove;
2207 }
2208 /* Mark the single-word operation live. */
2209 nb_oargs = 1;
2210 goto do_not_remove;
2211
2212 default:
2213 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2214 nb_iargs = def->nb_iargs;
2215 nb_oargs = def->nb_oargs;
2216
2217 /* Test if the operation can be removed because all
2218 its outputs are dead. We assume that nb_oargs == 0
2219 implies side effects */
2220 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2221 for (i = 0; i < nb_oargs; i++) {
2222 if (arg_temp(op->args[i])->state != TS_DEAD) {
2223 goto do_not_remove;
2224 }
2225 }
2226 do_remove:
2227 tcg_op_remove(s, op);
2228 } else {
2229 do_not_remove:
2230 /* output args are dead */
2231 for (i = 0; i < nb_oargs; i++) {
2232 arg_ts = arg_temp(op->args[i]);
2233 if (arg_ts->state & TS_DEAD) {
2234 arg_life |= DEAD_ARG << i;
2235 }
2236 if (arg_ts->state & TS_MEM) {
2237 arg_life |= SYNC_ARG << i;
2238 }
2239 arg_ts->state = TS_DEAD;
2240 }
2241
2242 /* if end of basic block, update */
2243 if (def->flags & TCG_OPF_BB_END) {
2244 tcg_la_bb_end(s);
2245 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2246 /* globals should be synced to memory */
2247 for (i = 0; i < nb_globals; i++) {
2248 s->temps[i].state |= TS_MEM;
2249 }
2250 }
2251
2252 /* record arguments that die in this opcode */
2253 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2254 arg_ts = arg_temp(op->args[i]);
2255 if (arg_ts->state & TS_DEAD) {
2256 arg_life |= DEAD_ARG << i;
2257 }
2258 }
2259 /* input arguments are live for preceding opcodes */
2260 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2261 arg_temp(op->args[i])->state &= ~TS_DEAD;
2262 }
2263 }
2264 break;
2265 }
2266 op->life = arg_life;
2267 }
2268 }
2269
2270 /* Liveness analysis: Convert indirect regs to direct temporaries. */
2271 static bool liveness_pass_2(TCGContext *s)
2272 {
2273 int nb_globals = s->nb_globals;
2274 int nb_temps, i;
2275 bool changes = false;
2276 TCGOp *op, *op_next;
2277
2278 /* Create a temporary for each indirect global. */
2279 for (i = 0; i < nb_globals; ++i) {
2280 TCGTemp *its = &s->temps[i];
2281 if (its->indirect_reg) {
2282 TCGTemp *dts = tcg_temp_alloc(s);
2283 dts->type = its->type;
2284 dts->base_type = its->base_type;
2285 its->state_ptr = dts;
2286 } else {
2287 its->state_ptr = NULL;
2288 }
2289 /* All globals begin dead. */
2290 its->state = TS_DEAD;
2291 }
2292 for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2293 TCGTemp *its = &s->temps[i];
2294 its->state_ptr = NULL;
2295 its->state = TS_DEAD;
2296 }
2297
2298 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2299 TCGOpcode opc = op->opc;
2300 const TCGOpDef *def = &tcg_op_defs[opc];
2301 TCGLifeData arg_life = op->life;
2302 int nb_iargs, nb_oargs, call_flags;
2303 TCGTemp *arg_ts, *dir_ts;
2304
2305 if (opc == INDEX_op_call) {
2306 nb_oargs = TCGOP_CALLO(op);
2307 nb_iargs = TCGOP_CALLI(op);
2308 call_flags = op->args[nb_oargs + nb_iargs + 1];
2309 } else {
2310 nb_iargs = def->nb_iargs;
2311 nb_oargs = def->nb_oargs;
2312
2313 /* Set flags similar to how calls require. */
2314 if (def->flags & TCG_OPF_BB_END) {
2315 /* Like writing globals: save_globals */
2316 call_flags = 0;
2317 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2318 /* Like reading globals: sync_globals */
2319 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2320 } else {
2321 /* No effect on globals. */
2322 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2323 TCG_CALL_NO_WRITE_GLOBALS);
2324 }
2325 }
2326
2327 /* Make sure that input arguments are available. */
2328 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2329 arg_ts = arg_temp(op->args[i]);
2330 if (arg_ts) {
2331 dir_ts = arg_ts->state_ptr;
2332 if (dir_ts && arg_ts->state == TS_DEAD) {
2333 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2334 ? INDEX_op_ld_i32
2335 : INDEX_op_ld_i64);
2336 TCGOp *lop = tcg_op_insert_before(s, op, lopc, 3);
2337
2338 lop->args[0] = temp_arg(dir_ts);
2339 lop->args[1] = temp_arg(arg_ts->mem_base);
2340 lop->args[2] = arg_ts->mem_offset;
2341
2342 /* Loaded, but synced with memory. */
2343 arg_ts->state = TS_MEM;
2344 }
2345 }
2346 }
2347
2348 /* Perform input replacement, and mark inputs that became dead.
2349 No action is required except keeping temp_state up to date
2350 so that we reload when needed. */
2351 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2352 arg_ts = arg_temp(op->args[i]);
2353 if (arg_ts) {
2354 dir_ts = arg_ts->state_ptr;
2355 if (dir_ts) {
2356 op->args[i] = temp_arg(dir_ts);
2357 changes = true;
2358 if (IS_DEAD_ARG(i)) {
2359 arg_ts->state = TS_DEAD;
2360 }
2361 }
2362 }
2363 }
2364
2365 /* Liveness analysis should ensure that the following are
2366 all correct, for call sites and basic block end points. */
2367 if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2368 /* Nothing to do */
2369 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2370 for (i = 0; i < nb_globals; ++i) {
2371 /* Liveness should see that globals are synced back,
2372 that is, either TS_DEAD or TS_MEM. */
2373 arg_ts = &s->temps[i];
2374 tcg_debug_assert(arg_ts->state_ptr == 0
2375 || arg_ts->state != 0);
2376 }
2377 } else {
2378 for (i = 0; i < nb_globals; ++i) {
2379 /* Liveness should see that globals are saved back,
2380 that is, TS_DEAD, waiting to be reloaded. */
2381 arg_ts = &s->temps[i];
2382 tcg_debug_assert(arg_ts->state_ptr == 0
2383 || arg_ts->state == TS_DEAD);
2384 }
2385 }
2386
2387 /* Outputs become available. */
2388 for (i = 0; i < nb_oargs; i++) {
2389 arg_ts = arg_temp(op->args[i]);
2390 dir_ts = arg_ts->state_ptr;
2391 if (!dir_ts) {
2392 continue;
2393 }
2394 op->args[i] = temp_arg(dir_ts);
2395 changes = true;
2396
2397 /* The output is now live and modified. */
2398 arg_ts->state = 0;
2399
2400 /* Sync outputs upon their last write. */
2401 if (NEED_SYNC_ARG(i)) {
2402 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2403 ? INDEX_op_st_i32
2404 : INDEX_op_st_i64);
2405 TCGOp *sop = tcg_op_insert_after(s, op, sopc, 3);
2406
2407 sop->args[0] = temp_arg(dir_ts);
2408 sop->args[1] = temp_arg(arg_ts->mem_base);
2409 sop->args[2] = arg_ts->mem_offset;
2410
2411 arg_ts->state = TS_MEM;
2412 }
2413 /* Drop outputs that are dead. */
2414 if (IS_DEAD_ARG(i)) {
2415 arg_ts->state = TS_DEAD;
2416 }
2417 }
2418 }
2419
2420 return changes;
2421 }
2422
2423 #ifdef CONFIG_DEBUG_TCG
2424 static void dump_regs(TCGContext *s)
2425 {
2426 TCGTemp *ts;
2427 int i;
2428 char buf[64];
2429
2430 for(i = 0; i < s->nb_temps; i++) {
2431 ts = &s->temps[i];
2432 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2433 switch(ts->val_type) {
2434 case TEMP_VAL_REG:
2435 printf("%s", tcg_target_reg_names[ts->reg]);
2436 break;
2437 case TEMP_VAL_MEM:
2438 printf("%d(%s)", (int)ts->mem_offset,
2439 tcg_target_reg_names[ts->mem_base->reg]);
2440 break;
2441 case TEMP_VAL_CONST:
2442 printf("$0x%" TCG_PRIlx, ts->val);
2443 break;
2444 case TEMP_VAL_DEAD:
2445 printf("D");
2446 break;
2447 default:
2448 printf("???");
2449 break;
2450 }
2451 printf("\n");
2452 }
2453
2454 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2455 if (s->reg_to_temp[i] != NULL) {
2456 printf("%s: %s\n",
2457 tcg_target_reg_names[i],
2458 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
2459 }
2460 }
2461 }
2462
2463 static void check_regs(TCGContext *s)
2464 {
2465 int reg;
2466 int k;
2467 TCGTemp *ts;
2468 char buf[64];
2469
2470 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
2471 ts = s->reg_to_temp[reg];
2472 if (ts != NULL) {
2473 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
2474 printf("Inconsistency for register %s:\n",
2475 tcg_target_reg_names[reg]);
2476 goto fail;
2477 }
2478 }
2479 }
2480 for (k = 0; k < s->nb_temps; k++) {
2481 ts = &s->temps[k];
2482 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg
2483 && s->reg_to_temp[ts->reg] != ts) {
2484 printf("Inconsistency for temp %s:\n",
2485 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2486 fail:
2487 printf("reg state:\n");
2488 dump_regs(s);
2489 tcg_abort();
2490 }
2491 }
2492 }
2493 #endif
2494
2495 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
2496 {
2497 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64)
2498 /* Sparc64 stack is accessed with offset of 2047 */
2499 s->current_frame_offset = (s->current_frame_offset +
2500 (tcg_target_long)sizeof(tcg_target_long) - 1) &
2501 ~(sizeof(tcg_target_long) - 1);
2502 #endif
2503 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) >
2504 s->frame_end) {
2505 tcg_abort();
2506 }
2507 ts->mem_offset = s->current_frame_offset;
2508 ts->mem_base = s->frame_temp;
2509 ts->mem_allocated = 1;
2510 s->current_frame_offset += sizeof(tcg_target_long);
2511 }
2512
2513 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet);
2514
2515 /* Mark a temporary as free or dead. If 'free_or_dead' is negative,
2516 mark it free; otherwise mark it dead. */
2517 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
2518 {
2519 if (ts->fixed_reg) {
2520 return;
2521 }
2522 if (ts->val_type == TEMP_VAL_REG) {
2523 s->reg_to_temp[ts->reg] = NULL;
2524 }
2525 ts->val_type = (free_or_dead < 0
2526 || ts->temp_local
2527 || ts->temp_global
2528 ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
2529 }
2530
2531 /* Mark a temporary as dead. */
2532 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
2533 {
2534 temp_free_or_dead(s, ts, 1);
2535 }
2536
2537 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
2538 registers needs to be allocated to store a constant. If 'free_or_dead'
2539 is non-zero, subsequently release the temporary; if it is positive, the
2540 temp is dead; if it is negative, the temp is free. */
2541 static void temp_sync(TCGContext *s, TCGTemp *ts,
2542 TCGRegSet allocated_regs, int free_or_dead)
2543 {
2544 if (ts->fixed_reg) {
2545 return;
2546 }
2547 if (!ts->mem_coherent) {
2548 if (!ts->mem_allocated) {
2549 temp_allocate_frame(s, ts);
2550 }
2551 switch (ts->val_type) {
2552 case TEMP_VAL_CONST:
2553 /* If we're going to free the temp immediately, then we won't
2554 require it later in a register, so attempt to store the
2555 constant to memory directly. */
2556 if (free_or_dead
2557 && tcg_out_sti(s, ts->type, ts->val,
2558 ts->mem_base->reg, ts->mem_offset)) {
2559 break;
2560 }
2561 temp_load(s, ts, tcg_target_available_regs[ts->type],
2562 allocated_regs);
2563 /* fallthrough */
2564
2565 case TEMP_VAL_REG:
2566 tcg_out_st(s, ts->type, ts->reg,
2567 ts->mem_base->reg, ts->mem_offset);
2568 break;
2569
2570 case TEMP_VAL_MEM:
2571 break;
2572
2573 case TEMP_VAL_DEAD:
2574 default:
2575 tcg_abort();
2576 }
2577 ts->mem_coherent = 1;
2578 }
2579 if (free_or_dead) {
2580 temp_free_or_dead(s, ts, free_or_dead);
2581 }
2582 }
2583
2584 /* free register 'reg' by spilling the corresponding temporary if necessary */
2585 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
2586 {
2587 TCGTemp *ts = s->reg_to_temp[reg];
2588 if (ts != NULL) {
2589 temp_sync(s, ts, allocated_regs, -1);
2590 }
2591 }
2592
2593 /* Allocate a register belonging to reg1 & ~reg2 */
2594 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet desired_regs,
2595 TCGRegSet allocated_regs, bool rev)
2596 {
2597 int i, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
2598 const int *order;
2599 TCGReg reg;
2600 TCGRegSet reg_ct;
2601
2602 reg_ct = desired_regs & ~allocated_regs;
2603 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
2604
2605 /* first try free registers */
2606 for(i = 0; i < n; i++) {
2607 reg = order[i];
2608 if (tcg_regset_test_reg(reg_ct, reg) && s->reg_to_temp[reg] == NULL)
2609 return reg;
2610 }
2611
2612 /* XXX: do better spill choice */
2613 for(i = 0; i < n; i++) {
2614 reg = order[i];
2615 if (tcg_regset_test_reg(reg_ct, reg)) {
2616 tcg_reg_free(s, reg, allocated_regs);
2617 return reg;
2618 }
2619 }
2620
2621 tcg_abort();
2622 }
2623
2624 /* Make sure the temporary is in a register. If needed, allocate the register
2625 from DESIRED while avoiding ALLOCATED. */
2626 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
2627 TCGRegSet allocated_regs)
2628 {
2629 TCGReg reg;
2630
2631 switch (ts->val_type) {
2632 case TEMP_VAL_REG:
2633 return;
2634 case TEMP_VAL_CONST:
2635 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, ts->indirect_base);
2636 tcg_out_movi(s, ts->type, reg, ts->val);
2637 ts->mem_coherent = 0;
2638 break;
2639 case TEMP_VAL_MEM:
2640 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, ts->indirect_base);
2641 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
2642 ts->mem_coherent = 1;
2643 break;
2644 case TEMP_VAL_DEAD:
2645 default:
2646 tcg_abort();
2647 }
2648 ts->reg = reg;
2649 ts->val_type = TEMP_VAL_REG;
2650 s->reg_to_temp[reg] = ts;
2651 }
2652
2653 /* Save a temporary to memory. 'allocated_regs' is used in case a
2654 temporary registers needs to be allocated to store a constant. */
2655 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
2656 {
2657 /* The liveness analysis already ensures that globals are back
2658 in memory. Keep an tcg_debug_assert for safety. */
2659 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg);
2660 }
2661
2662 /* save globals to their canonical location and assume they can be
2663 modified be the following code. 'allocated_regs' is used in case a
2664 temporary registers needs to be allocated to store a constant. */
2665 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
2666 {
2667 int i, n;
2668
2669 for (i = 0, n = s->nb_globals; i < n; i++) {
2670 temp_save(s, &s->temps[i], allocated_regs);
2671 }
2672 }
2673
2674 /* sync globals to their canonical location and assume they can be
2675 read by the following code. 'allocated_regs' is used in case a
2676 temporary registers needs to be allocated to store a constant. */
2677 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
2678 {
2679 int i, n;
2680
2681 for (i = 0, n = s->nb_globals; i < n; i++) {
2682 TCGTemp *ts = &s->temps[i];
2683 tcg_debug_assert(ts->val_type != TEMP_VAL_REG
2684 || ts->fixed_reg
2685 || ts->mem_coherent);
2686 }
2687 }
2688
2689 /* at the end of a basic block, we assume all temporaries are dead and
2690 all globals are stored at their canonical location. */
2691 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
2692 {
2693 int i;
2694
2695 for (i = s->nb_globals; i < s->nb_temps; i++) {
2696 TCGTemp *ts = &s->temps[i];
2697 if (ts->temp_local) {
2698 temp_save(s, ts, allocated_regs);
2699 } else {
2700 /* The liveness analysis already ensures that temps are dead.
2701 Keep an tcg_debug_assert for safety. */
2702 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
2703 }
2704 }
2705
2706 save_globals(s, allocated_regs);
2707 }
2708
2709 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
2710 tcg_target_ulong val, TCGLifeData arg_life)
2711 {
2712 if (ots->fixed_reg) {
2713 /* For fixed registers, we do not do any constant propagation. */
2714 tcg_out_movi(s, ots->type, ots->reg, val);
2715 return;
2716 }
2717
2718 /* The movi is not explicitly generated here. */
2719 if (ots->val_type == TEMP_VAL_REG) {
2720 s->reg_to_temp[ots->reg] = NULL;
2721 }
2722 ots->val_type = TEMP_VAL_CONST;
2723 ots->val = val;
2724 ots->mem_coherent = 0;
2725 if (NEED_SYNC_ARG(0)) {
2726 temp_sync(s, ots, s->reserved_regs, IS_DEAD_ARG(0));
2727 } else if (IS_DEAD_ARG(0)) {
2728 temp_dead(s, ots);
2729 }
2730 }
2731
2732 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op)
2733 {
2734 TCGTemp *ots = arg_temp(op->args[0]);
2735 tcg_target_ulong val = op->args[1];
2736
2737 tcg_reg_alloc_do_movi(s, ots, val, op->life);
2738 }
2739
2740 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
2741 {
2742 const TCGLifeData arg_life = op->life;
2743 TCGRegSet allocated_regs;
2744 TCGTemp *ts, *ots;
2745 TCGType otype, itype;
2746
2747 allocated_regs = s->reserved_regs;
2748 ots = arg_temp(op->args[0]);
2749 ts = arg_temp(op->args[1]);
2750
2751 /* Note that otype != itype for no-op truncation. */
2752 otype = ots->type;
2753 itype = ts->type;
2754
2755 if (ts->val_type == TEMP_VAL_CONST) {
2756 /* propagate constant or generate sti */
2757 tcg_target_ulong val = ts->val;
2758 if (IS_DEAD_ARG(1)) {
2759 temp_dead(s, ts);
2760 }
2761 tcg_reg_alloc_do_movi(s, ots, val, arg_life);
2762 return;
2763 }
2764
2765 /* If the source value is in memory we're going to be forced
2766 to have it in a register in order to perform the copy. Copy
2767 the SOURCE value into its own register first, that way we
2768 don't have to reload SOURCE the next time it is used. */
2769 if (ts->val_type == TEMP_VAL_MEM) {
2770 temp_load(s, ts, tcg_target_available_regs[itype], allocated_regs);
2771 }
2772
2773 tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
2774 if (IS_DEAD_ARG(0) && !ots->fixed_reg) {
2775 /* mov to a non-saved dead register makes no sense (even with
2776 liveness analysis disabled). */
2777 tcg_debug_assert(NEED_SYNC_ARG(0));
2778 if (!ots->mem_allocated) {
2779 temp_allocate_frame(s, ots);
2780 }
2781 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
2782 if (IS_DEAD_ARG(1)) {
2783 temp_dead(s, ts);
2784 }
2785 temp_dead(s, ots);
2786 } else {
2787 if (IS_DEAD_ARG(1) && !ts->fixed_reg && !ots->fixed_reg) {
2788 /* the mov can be suppressed */
2789 if (ots->val_type == TEMP_VAL_REG) {
2790 s->reg_to_temp[ots->reg] = NULL;
2791 }
2792 ots->reg = ts->reg;
2793 temp_dead(s, ts);
2794 } else {
2795 if (ots->val_type != TEMP_VAL_REG) {
2796 /* When allocating a new register, make sure to not spill the
2797 input one. */
2798 tcg_regset_set_reg(allocated_regs, ts->reg);
2799 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
2800 allocated_regs, ots->indirect_base);
2801 }
2802 tcg_out_mov(s, otype, ots->reg, ts->reg);
2803 }
2804 ots->val_type = TEMP_VAL_REG;
2805 ots->mem_coherent = 0;
2806 s->reg_to_temp[ots->reg] = ots;
2807 if (NEED_SYNC_ARG(0)) {
2808 temp_sync(s, ots, allocated_regs, 0);
2809 }
2810 }
2811 }
2812
2813 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
2814 {
2815 const TCGLifeData arg_life = op->life;
2816 const TCGOpDef * const def = &tcg_op_defs[op->opc];
2817 TCGRegSet i_allocated_regs;
2818 TCGRegSet o_allocated_regs;
2819 int i, k, nb_iargs, nb_oargs;
2820 TCGReg reg;
2821 TCGArg arg;
2822 const TCGArgConstraint *arg_ct;
2823 TCGTemp *ts;
2824 TCGArg new_args[TCG_MAX_OP_ARGS];
2825 int const_args[TCG_MAX_OP_ARGS];
2826
2827 nb_oargs = def->nb_oargs;
2828 nb_iargs = def->nb_iargs;
2829
2830 /* copy constants */
2831 memcpy(new_args + nb_oargs + nb_iargs,
2832 op->args + nb_oargs + nb_iargs,
2833 sizeof(TCGArg) * def->nb_cargs);
2834
2835 i_allocated_regs = s->reserved_regs;
2836 o_allocated_regs = s->reserved_regs;
2837
2838 /* satisfy input constraints */
2839 for (k = 0; k < nb_iargs; k++) {
2840 i = def->sorted_args[nb_oargs + k];
2841 arg = op->args[i];
2842 arg_ct = &def->args_ct[i];
2843 ts = arg_temp(arg);
2844
2845 if (ts->val_type == TEMP_VAL_CONST
2846 && tcg_target_const_match(ts->val, ts->type, arg_ct)) {
2847 /* constant is OK for instruction */
2848 const_args[i] = 1;
2849 new_args[i] = ts->val;
2850 goto iarg_end;
2851 }
2852
2853 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs);
2854
2855 if (arg_ct->ct & TCG_CT_IALIAS) {
2856 if (ts->fixed_reg) {
2857 /* if fixed register, we must allocate a new register
2858 if the alias is not the same register */
2859 if (arg != op->args[arg_ct->alias_index])
2860 goto allocate_in_reg;
2861 } else {
2862 /* if the input is aliased to an output and if it is
2863 not dead after the instruction, we must allocate
2864 a new register and move it */
2865 if (!IS_DEAD_ARG(i)) {
2866 goto allocate_in_reg;
2867 }
2868 /* check if the current register has already been allocated
2869 for another input aliased to an output */
2870 int k2, i2;
2871 for (k2 = 0 ; k2 < k ; k2++) {
2872 i2 = def->sorted_args[nb_oargs + k2];
2873 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) &&
2874 (new_args[i2] == ts->reg)) {
2875 goto allocate_in_reg;
2876 }
2877 }
2878 }
2879 }
2880 reg = ts->reg;
2881 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
2882 /* nothing to do : the constraint is satisfied */
2883 } else {
2884 allocate_in_reg:
2885 /* allocate a new register matching the constraint
2886 and move the temporary register into it */
2887 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs,
2888 ts->indirect_base);
2889 tcg_out_mov(s, ts->type, reg, ts->reg);
2890 }
2891 new_args[i] = reg;
2892 const_args[i] = 0;
2893 tcg_regset_set_reg(i_allocated_regs, reg);
2894 iarg_end: ;
2895 }
2896
2897 /* mark dead temporaries and free the associated registers */
2898 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2899 if (IS_DEAD_ARG(i)) {
2900 temp_dead(s, arg_temp(op->args[i]));
2901 }
2902 }
2903
2904 if (def->flags & TCG_OPF_BB_END) {
2905 tcg_reg_alloc_bb_end(s, i_allocated_regs);
2906 } else {
2907 if (def->flags & TCG_OPF_CALL_CLOBBER) {
2908 /* XXX: permit generic clobber register list ? */
2909 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
2910 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
2911 tcg_reg_free(s, i, i_allocated_regs);
2912 }
2913 }
2914 }
2915 if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2916 /* sync globals if the op has side effects and might trigger
2917 an exception. */
2918 sync_globals(s, i_allocated_regs);
2919 }
2920
2921 /* satisfy the output constraints */
2922 for(k = 0; k < nb_oargs; k++) {
2923 i = def->sorted_args[k];
2924 arg = op->args[i];
2925 arg_ct = &def->args_ct[i];
2926 ts = arg_temp(arg);
2927 if ((arg_ct->ct & TCG_CT_ALIAS)
2928 && !const_args[arg_ct->alias_index]) {
2929 reg = new_args[arg_ct->alias_index];
2930 } else if (arg_ct->ct & TCG_CT_NEWREG) {
2931 reg = tcg_reg_alloc(s, arg_ct->u.regs,
2932 i_allocated_regs | o_allocated_regs,
2933 ts->indirect_base);
2934 } else {
2935 /* if fixed register, we try to use it */
2936 reg = ts->reg;
2937 if (ts->fixed_reg &&
2938 tcg_regset_test_reg(arg_ct->u.regs, reg)) {
2939 goto oarg_end;
2940 }
2941 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs,
2942 ts->indirect_base);
2943 }
2944 tcg_regset_set_reg(o_allocated_regs, reg);
2945 /* if a fixed register is used, then a move will be done afterwards */
2946 if (!ts->fixed_reg) {
2947 if (ts->val_type == TEMP_VAL_REG) {
2948 s->reg_to_temp[ts->reg] = NULL;
2949 }
2950 ts->val_type = TEMP_VAL_REG;
2951 ts->reg = reg;
2952 /* temp value is modified, so the value kept in memory is
2953 potentially not the same */
2954 ts->mem_coherent = 0;
2955 s->reg_to_temp[reg] = ts;
2956 }
2957 oarg_end:
2958 new_args[i] = reg;
2959 }
2960 }
2961
2962 /* emit instruction */
2963 if (def->flags & TCG_OPF_VECTOR) {
2964 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
2965 new_args, const_args);
2966 } else {
2967 tcg_out_op(s, op->opc, new_args, const_args);
2968 }
2969
2970 /* move the outputs in the correct register if needed */
2971 for(i = 0; i < nb_oargs; i++) {
2972 ts = arg_temp(op->args[i]);
2973 reg = new_args[i];
2974 if (ts->fixed_reg && ts->reg != reg) {
2975 tcg_out_mov(s, ts->type, ts->reg, reg);
2976 }
2977 if (NEED_SYNC_ARG(i)) {
2978 temp_sync(s, ts, o_allocated_regs, IS_DEAD_ARG(i));
2979 } else if (IS_DEAD_ARG(i)) {
2980 temp_dead(s, ts);
2981 }
2982 }
2983 }
2984
2985 #ifdef TCG_TARGET_STACK_GROWSUP
2986 #define STACK_DIR(x) (-(x))
2987 #else
2988 #define STACK_DIR(x) (x)
2989 #endif
2990
2991 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
2992 {
2993 const int nb_oargs = TCGOP_CALLO(op);
2994 const int nb_iargs = TCGOP_CALLI(op);
2995 const TCGLifeData arg_life = op->life;
2996 int flags, nb_regs, i;
2997 TCGReg reg;
2998 TCGArg arg;
2999 TCGTemp *ts;
3000 intptr_t stack_offset;
3001 size_t call_stack_size;
3002 tcg_insn_unit *func_addr;
3003 int allocate_args;
3004 TCGRegSet allocated_regs;
3005
3006 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs];
3007 flags = op->args[nb_oargs + nb_iargs + 1];
3008
3009 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3010 if (nb_regs > nb_iargs) {
3011 nb_regs = nb_iargs;
3012 }
3013
3014 /* assign stack slots first */
3015 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3016 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3017 ~(TCG_TARGET_STACK_ALIGN - 1);
3018 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3019 if (allocate_args) {
3020 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3021 preallocate call stack */
3022 tcg_abort();
3023 }
3024
3025 stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3026 for (i = nb_regs; i < nb_iargs; i++) {
3027 arg = op->args[nb_oargs + i];
3028 #ifdef TCG_TARGET_STACK_GROWSUP
3029 stack_offset -= sizeof(tcg_target_long);
3030 #endif
3031 if (arg != TCG_CALL_DUMMY_ARG) {
3032 ts = arg_temp(arg);
3033 temp_load(s, ts, tcg_target_available_regs[ts->type],
3034 s->reserved_regs);
3035 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3036 }
3037 #ifndef TCG_TARGET_STACK_GROWSUP
3038 stack_offset += sizeof(tcg_target_long);
3039 #endif
3040 }
3041
3042 /* assign input registers */
3043 allocated_regs = s->reserved_regs;
3044 for (i = 0; i < nb_regs; i++) {
3045 arg = op->args[nb_oargs + i];
3046 if (arg != TCG_CALL_DUMMY_ARG) {
3047 ts = arg_temp(arg);
3048 reg = tcg_target_call_iarg_regs[i];
3049 tcg_reg_free(s, reg, allocated_regs);
3050
3051 if (ts->val_type == TEMP_VAL_REG) {
3052 if (ts->reg != reg) {
3053 tcg_out_mov(s, ts->type, reg, ts->reg);
3054 }
3055 } else {
3056 TCGRegSet arg_set = 0;
3057
3058 tcg_regset_set_reg(arg_set, reg);
3059 temp_load(s, ts, arg_set, allocated_regs);
3060 }
3061
3062 tcg_regset_set_reg(allocated_regs, reg);
3063 }
3064 }
3065
3066 /* mark dead temporaries and free the associated registers */
3067 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
3068 if (IS_DEAD_ARG(i)) {
3069 temp_dead(s, arg_temp(op->args[i]));
3070 }
3071 }
3072
3073 /* clobber call registers */
3074 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3075 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3076 tcg_reg_free(s, i, allocated_regs);
3077 }
3078 }
3079
3080 /* Save globals if they might be written by the helper, sync them if
3081 they might be read. */
3082 if (flags & TCG_CALL_NO_READ_GLOBALS) {
3083 /* Nothing to do */
3084 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
3085 sync_globals(s, allocated_regs);
3086 } else {
3087 save_globals(s, allocated_regs);
3088 }
3089
3090 tcg_out_call(s, func_addr);
3091
3092 /* assign output registers and emit moves if needed */
3093 for(i = 0; i < nb_oargs; i++) {
3094 arg = op->args[i];
3095 ts = arg_temp(arg);
3096 reg = tcg_target_call_oarg_regs[i];
3097 tcg_debug_assert(s->reg_to_temp[reg] == NULL);
3098
3099 if (ts->fixed_reg) {
3100 if (ts->reg != reg) {
3101 tcg_out_mov(s, ts->type, ts->reg, reg);
3102 }
3103 } else {
3104 if (ts->val_type == TEMP_VAL_REG) {
3105 s->reg_to_temp[ts->reg] = NULL;
3106 }
3107 ts->val_type = TEMP_VAL_REG;
3108 ts->reg = reg;
3109 ts->mem_coherent = 0;
3110 s->reg_to_temp[reg] = ts;
3111 if (NEED_SYNC_ARG(i)) {
3112 temp_sync(s, ts, allocated_regs, IS_DEAD_ARG(i));
3113 } else if (IS_DEAD_ARG(i)) {
3114 temp_dead(s, ts);
3115 }
3116 }
3117 }
3118 }
3119
3120 #ifdef CONFIG_PROFILER
3121
3122 /* avoid copy/paste errors */
3123 #define PROF_ADD(to, from, field) \
3124 do { \
3125 (to)->field += atomic_read(&((from)->field)); \
3126 } while (0)
3127
3128 #define PROF_MAX(to, from, field) \
3129 do { \
3130 typeof((from)->field) val__ = atomic_read(&((from)->field)); \
3131 if (val__ > (to)->field) { \
3132 (to)->field = val__; \
3133 } \
3134 } while (0)
3135
3136 /* Pass in a zero'ed @prof */
3137 static inline
3138 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
3139 {
3140 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3141 unsigned int i;
3142
3143 for (i = 0; i < n_ctxs; i++) {
3144 TCGContext *s = atomic_read(&tcg_ctxs[i]);
3145 const TCGProfile *orig = &s->prof;
3146
3147 if (counters) {
3148 PROF_ADD(prof, orig, tb_count1);
3149 PROF_ADD(prof, orig, tb_count);
3150 PROF_ADD(prof, orig, op_count);
3151 PROF_MAX(prof, orig, op_count_max);
3152 PROF_ADD(prof, orig, temp_count);
3153 PROF_MAX(prof, orig, temp_count_max);
3154 PROF_ADD(prof, orig, del_op_count);
3155 PROF_ADD(prof, orig, code_in_len);
3156 PROF_ADD(prof, orig, code_out_len);
3157 PROF_ADD(prof, orig, search_out_len);
3158 PROF_ADD(prof, orig, interm_time);
3159 PROF_ADD(prof, orig, code_time);
3160 PROF_ADD(prof, orig, la_time);
3161 PROF_ADD(prof, orig, opt_time);
3162 PROF_ADD(prof, orig, restore_count);
3163 PROF_ADD(prof, orig, restore_time);
3164 }
3165 if (table) {
3166 int i;
3167
3168 for (i = 0; i < NB_OPS; i++) {
3169 PROF_ADD(prof, orig, table_op_count[i]);
3170 }
3171 }
3172 }
3173 }
3174
3175 #undef PROF_ADD
3176 #undef PROF_MAX
3177
3178 static void tcg_profile_snapshot_counters(TCGProfile *prof)
3179 {
3180 tcg_profile_snapshot(prof, true, false);
3181 }
3182
3183 static void tcg_profile_snapshot_table(TCGProfile *prof)
3184 {
3185 tcg_profile_snapshot(prof, false, true);
3186 }
3187
3188 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf)
3189 {
3190 TCGProfile prof = {};
3191 int i;
3192
3193 tcg_profile_snapshot_table(&prof);
3194 for (i = 0; i < NB_OPS; i++) {
3195 cpu_fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name,
3196 prof.table_op_count[i]);
3197 }
3198 }
3199 #else
3200 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf)
3201 {
3202 cpu_fprintf(f, "[TCG profiler not compiled]\n");
3203 }
3204 #endif
3205
3206
3207 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
3208 {
3209 #ifdef CONFIG_PROFILER
3210 TCGProfile *prof = &s->prof;
3211 #endif
3212 int i, num_insns;
3213 TCGOp *op;
3214
3215 #ifdef CONFIG_PROFILER
3216 {
3217 int n;
3218
3219 QTAILQ_FOREACH(op, &s->ops, link) {
3220 n++;
3221 }
3222 atomic_set(&prof->op_count, prof->op_count + n);
3223 if (n > prof->op_count_max) {
3224 atomic_set(&prof->op_count_max, n);
3225 }
3226
3227 n = s->nb_temps;
3228 atomic_set(&prof->temp_count, prof->temp_count + n);
3229 if (n > prof->temp_count_max) {
3230 atomic_set(&prof->temp_count_max, n);
3231 }
3232 }
3233 #endif
3234
3235 #ifdef DEBUG_DISAS
3236 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
3237 && qemu_log_in_addr_range(tb->pc))) {
3238 qemu_log_lock();
3239 qemu_log("OP:\n");
3240 tcg_dump_ops(s);
3241 qemu_log("\n");
3242 qemu_log_unlock();
3243 }
3244 #endif
3245
3246 #ifdef CONFIG_PROFILER
3247 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
3248 #endif
3249
3250 #ifdef USE_TCG_OPTIMIZATIONS
3251 tcg_optimize(s);
3252 #endif
3253
3254 #ifdef CONFIG_PROFILER
3255 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
3256 atomic_set(&prof->la_time, prof->la_time - profile_getclock());
3257 #endif
3258
3259 liveness_pass_1(s);
3260
3261 if (s->nb_indirects > 0) {
3262 #ifdef DEBUG_DISAS
3263 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
3264 && qemu_log_in_addr_range(tb->pc))) {
3265 qemu_log_lock();
3266 qemu_log("OP before indirect lowering:\n");
3267 tcg_dump_ops(s);
3268 qemu_log("\n");
3269 qemu_log_unlock();
3270 }
3271 #endif
3272 /* Replace indirect temps with direct temps. */
3273 if (liveness_pass_2(s)) {
3274 /* If changes were made, re-run liveness. */
3275 liveness_pass_1(s);
3276 }
3277 }
3278
3279 #ifdef CONFIG_PROFILER
3280 atomic_set(&prof->la_time, prof->la_time + profile_getclock());
3281 #endif
3282
3283 #ifdef DEBUG_DISAS
3284 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
3285 && qemu_log_in_addr_range(tb->pc))) {
3286 qemu_log_lock();
3287 qemu_log("OP after optimization and liveness analysis:\n");
3288 tcg_dump_ops(s);
3289 qemu_log("\n");
3290 qemu_log_unlock();
3291 }
3292 #endif
3293
3294 tcg_reg_alloc_start(s);
3295
3296 s->code_buf = tb->tc.ptr;
3297 s->code_ptr = tb->tc.ptr;
3298
3299 #ifdef TCG_TARGET_NEED_LDST_LABELS
3300 s->ldst_labels = NULL;
3301 #endif
3302 #ifdef TCG_TARGET_NEED_POOL_LABELS
3303 s->pool_labels = NULL;
3304 #endif
3305
3306 num_insns = -1;
3307 QTAILQ_FOREACH(op, &s->ops, link) {
3308 TCGOpcode opc = op->opc;
3309
3310 #ifdef CONFIG_PROFILER
3311 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
3312 #endif
3313
3314 switch (opc) {
3315 case INDEX_op_mov_i32:
3316 case INDEX_op_mov_i64:
3317 case INDEX_op_mov_vec:
3318 tcg_reg_alloc_mov(s, op);
3319 break;
3320 case INDEX_op_movi_i32:
3321 case INDEX_op_movi_i64:
3322 case INDEX_op_dupi_vec:
3323 tcg_reg_alloc_movi(s, op);
3324 break;
3325 case INDEX_op_insn_start:
3326 if (num_insns >= 0) {
3327 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
3328 }
3329 num_insns++;
3330 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
3331 target_ulong a;
3332 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
3333 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
3334 #else
3335 a = op->args[i];
3336 #endif
3337 s->gen_insn_data[num_insns][i] = a;
3338 }
3339 break;
3340 case INDEX_op_discard:
3341 temp_dead(s, arg_temp(op->args[0]));
3342 break;
3343 case INDEX_op_set_label:
3344 tcg_reg_alloc_bb_end(s, s->reserved_regs);
3345 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr);
3346 break;
3347 case INDEX_op_call:
3348 tcg_reg_alloc_call(s, op);
3349 break;
3350 default:
3351 /* Sanity check that we've not introduced any unhandled opcodes. */
3352 tcg_debug_assert(tcg_op_supported(opc));
3353 /* Note: in order to speed up the code, it would be much
3354 faster to have specialized register allocator functions for
3355 some common argument patterns */
3356 tcg_reg_alloc_op(s, op);
3357 break;
3358 }
3359 #ifdef CONFIG_DEBUG_TCG
3360 check_regs(s);
3361 #endif
3362 /* Test for (pending) buffer overflow. The assumption is that any
3363 one operation beginning below the high water mark cannot overrun
3364 the buffer completely. Thus we can test for overflow after
3365 generating code without having to check during generation. */
3366 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
3367 return -1;
3368 }
3369 }
3370 tcg_debug_assert(num_insns >= 0);
3371 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
3372
3373 /* Generate TB finalization at the end of block */
3374 #ifdef TCG_TARGET_NEED_LDST_LABELS
3375 if (!tcg_out_ldst_finalize(s)) {
3376 return -1;
3377 }
3378 #endif
3379 #ifdef TCG_TARGET_NEED_POOL_LABELS
3380 if (!tcg_out_pool_finalize(s)) {
3381 return -1;
3382 }
3383 #endif
3384
3385 /* flush instruction cache */
3386 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr);
3387
3388 return tcg_current_code_size(s);
3389 }
3390
3391 #ifdef CONFIG_PROFILER
3392 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf)
3393 {
3394 TCGProfile prof = {};
3395 const TCGProfile *s;
3396 int64_t tb_count;
3397 int64_t tb_div_count;
3398 int64_t tot;
3399
3400 tcg_profile_snapshot_counters(&prof);
3401 s = &prof;
3402 tb_count = s->tb_count;
3403 tb_div_count = tb_count ? tb_count : 1;
3404 tot = s->interm_time + s->code_time;
3405
3406 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
3407 tot, tot / 2.4e9);
3408 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
3409 tb_count, s->tb_count1 - tb_count,
3410 (double)(s->tb_count1 - s->tb_count)
3411 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
3412 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
3413 (double)s->op_count / tb_div_count, s->op_count_max);
3414 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3415 (double)s->del_op_count / tb_div_count);
3416 cpu_fprintf(f, "avg temps/TB %0.2f max=%d\n",
3417 (double)s->temp_count / tb_div_count, s->temp_count_max);
3418 cpu_fprintf(f, "avg host code/TB %0.1f\n",
3419 (double)s->code_out_len / tb_div_count);
3420 cpu_fprintf(f, "avg search data/TB %0.1f\n",
3421 (double)s->search_out_len / tb_div_count);
3422
3423 cpu_fprintf(f, "cycles/op %0.1f\n",
3424 s->op_count ? (double)tot / s->op_count : 0);
3425 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3426 s->code_in_len ? (double)tot / s->code_in_len : 0);
3427 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3428 s->code_out_len ? (double)tot / s->code_out_len : 0);
3429 cpu_fprintf(f, "cycles/search byte %0.1f\n",
3430 s->search_out_len ? (double)tot / s->search_out_len : 0);
3431 if (tot == 0) {
3432 tot = 1;
3433 }
3434 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3435 (double)s->interm_time / tot * 100.0);
3436 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3437 (double)s->code_time / tot * 100.0);
3438 cpu_fprintf(f, "optim./code time %0.1f%%\n",
3439 (double)s->opt_time / (s->code_time ? s->code_time : 1)
3440 * 100.0);
3441 cpu_fprintf(f, "liveness/code time %0.1f%%\n",
3442 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0);
3443 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3444 s->restore_count);
3445 cpu_fprintf(f, " avg cycles %0.1f\n",
3446 s->restore_count ? (double)s->restore_time / s->restore_count : 0);
3447 }
3448 #else
3449 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf)
3450 {
3451 cpu_fprintf(f, "[TCG profiler not compiled]\n");
3452 }
3453 #endif
3454
3455 #ifdef ELF_HOST_MACHINE
3456 /* In order to use this feature, the backend needs to do three things:
3457
3458 (1) Define ELF_HOST_MACHINE to indicate both what value to
3459 put into the ELF image and to indicate support for the feature.
3460
3461 (2) Define tcg_register_jit. This should create a buffer containing
3462 the contents of a .debug_frame section that describes the post-
3463 prologue unwind info for the tcg machine.
3464
3465 (3) Call tcg_register_jit_int, with the constructed .debug_frame.
3466 */
3467
3468 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */
3469 typedef enum {
3470 JIT_NOACTION = 0,
3471 JIT_REGISTER_FN,
3472 JIT_UNREGISTER_FN
3473 } jit_actions_t;
3474
3475 struct jit_code_entry {
3476 struct jit_code_entry *next_entry;
3477 struct jit_code_entry *prev_entry;
3478 const void *symfile_addr;
3479 uint64_t symfile_size;
3480 };
3481
3482 struct jit_descriptor {
3483 uint32_t version;
3484 uint32_t action_flag;
3485 struct jit_code_entry *relevant_entry;
3486 struct jit_code_entry *first_entry;
3487 };
3488
3489 void __jit_debug_register_code(void) __attribute__((noinline));
3490 void __jit_debug_register_code(void)
3491 {
3492 asm("");
3493 }
3494
3495 /* Must statically initialize the version, because GDB may check
3496 the version before we can set it. */
3497 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
3498
3499 /* End GDB interface. */
3500
3501 static int find_string(const char *strtab, const char *str)
3502 {
3503 const char *p = strtab + 1;
3504
3505 while (1) {
3506 if (strcmp(p, str) == 0) {
3507 return p - strtab;
3508 }
3509 p += strlen(p) + 1;
3510 }
3511 }
3512
3513 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size,
3514 const void *debug_frame,
3515 size_t debug_frame_size)
3516 {
3517 struct __attribute__((packed)) DebugInfo {
3518 uint32_t len;
3519 uint16_t version;
3520 uint32_t abbrev;
3521 uint8_t ptr_size;
3522 uint8_t cu_die;
3523 uint16_t cu_lang;
3524 uintptr_t cu_low_pc;
3525 uintptr_t cu_high_pc;
3526 uint8_t fn_die;
3527 char fn_name[16];
3528 uintptr_t fn_low_pc;
3529 uintptr_t fn_high_pc;
3530 uint8_t cu_eoc;
3531 };
3532
3533 struct ElfImage {
3534 ElfW(Ehdr) ehdr;
3535 ElfW(Phdr) phdr;
3536 ElfW(Shdr) shdr[7];
3537 ElfW(Sym) sym[2];
3538 struct DebugInfo di;
3539 uint8_t da[24];
3540 char str[80];
3541 };
3542
3543 struct ElfImage *img;
3544
3545 static const struct ElfImage img_template = {
3546 .ehdr = {
3547 .e_ident[EI_MAG0] = ELFMAG0,
3548 .e_ident[EI_MAG1] = ELFMAG1,
3549 .e_ident[EI_MAG2] = ELFMAG2,
3550 .e_ident[EI_MAG3] = ELFMAG3,
3551 .e_ident[EI_CLASS] = ELF_CLASS,
3552 .e_ident[EI_DATA] = ELF_DATA,
3553 .e_ident[EI_VERSION] = EV_CURRENT,
3554 .e_type = ET_EXEC,
3555 .e_machine = ELF_HOST_MACHINE,
3556 .e_version = EV_CURRENT,
3557 .e_phoff = offsetof(struct ElfImage, phdr),
3558 .e_shoff = offsetof(struct ElfImage, shdr),
3559 .e_ehsize = sizeof(ElfW(Shdr)),
3560 .e_phentsize = sizeof(ElfW(Phdr)),
3561 .e_phnum = 1,
3562 .e_shentsize = sizeof(ElfW(Shdr)),
3563 .e_shnum = ARRAY_SIZE(img->shdr),
3564 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
3565 #ifdef ELF_HOST_FLAGS
3566 .e_flags = ELF_HOST_FLAGS,
3567 #endif
3568 #ifdef ELF_OSABI
3569 .e_ident[EI_OSABI] = ELF_OSABI,
3570 #endif
3571 },
3572 .phdr = {
3573 .p_type = PT_LOAD,
3574 .p_flags = PF_X,
3575 },
3576 .shdr = {
3577 [0] = { .sh_type = SHT_NULL },
3578 /* Trick: The contents of code_gen_buffer are not present in
3579 this fake ELF file; that got allocated elsewhere. Therefore
3580 we mark .text as SHT_NOBITS (similar to .bss) so that readers
3581 will not look for contents. We can record any address. */
3582 [1] = { /* .text */
3583 .sh_type = SHT_NOBITS,
3584 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
3585 },
3586 [2] = { /* .debug_info */
3587 .sh_type = SHT_PROGBITS,
3588 .sh_offset = offsetof(struct ElfImage, di),
3589 .sh_size = sizeof(struct DebugInfo),
3590 },
3591 [3] = { /* .debug_abbrev */
3592 .sh_type = SHT_PROGBITS,
3593 .sh_offset = offsetof(struct ElfImage, da),
3594 .sh_size = sizeof(img->da),
3595 },
3596 [4] = { /* .debug_frame */
3597 .sh_type = SHT_PROGBITS,
3598 .sh_offset = sizeof(struct ElfImage),
3599 },
3600 [5] = { /* .symtab */
3601 .sh_type = SHT_SYMTAB,
3602 .sh_offset = offsetof(struct ElfImage, sym),
3603 .sh_size = sizeof(img->sym),
3604 .sh_info = 1,
3605 .sh_link = ARRAY_SIZE(img->shdr) - 1,
3606 .sh_entsize = sizeof(ElfW(Sym)),
3607 },
3608 [6] = { /* .strtab */
3609 .sh_type = SHT_STRTAB,
3610 .sh_offset = offsetof(struct ElfImage, str),
3611 .sh_size = sizeof(img->str),
3612 }
3613 },
3614 .sym = {
3615 [1] = { /* code_gen_buffer */
3616 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
3617 .st_shndx = 1,
3618 }
3619 },
3620 .di = {
3621 .len = sizeof(struct DebugInfo) - 4,
3622 .version = 2,
3623 .ptr_size = sizeof(void *),
3624 .cu_die = 1,
3625 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */
3626 .fn_die = 2,
3627 .fn_name = "code_gen_buffer"
3628 },
3629 .da = {
3630 1, /* abbrev number (the cu) */
3631 0x11, 1, /* DW_TAG_compile_unit, has children */
3632 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */
3633 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
3634 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
3635 0, 0, /* end of abbrev */
3636 2, /* abbrev number (the fn) */
3637 0x2e, 0, /* DW_TAG_subprogram, no children */
3638 0x3, 0x8, /* DW_AT_name, DW_FORM_string */
3639 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
3640 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
3641 0, 0, /* end of abbrev */
3642 0 /* no more abbrev */
3643 },
3644 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
3645 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
3646 };
3647
3648 /* We only need a single jit entry; statically allocate it. */
3649 static struct jit_code_entry one_entry;
3650
3651 uintptr_t buf = (uintptr_t)buf_ptr;
3652 size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
3653 DebugFrameHeader *dfh;
3654
3655 img = g_malloc(img_size);
3656 *img = img_template;
3657
3658 img->phdr.p_vaddr = buf;
3659 img->phdr.p_paddr = buf;
3660 img->phdr.p_memsz = buf_size;
3661
3662 img->shdr[1].sh_name = find_string(img->str, ".text");
3663 img->shdr[1].sh_addr = buf;
3664 img->shdr[1].sh_size = buf_size;
3665
3666 img->shdr[2].sh_name = find_string(img->str, ".debug_info");
3667 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
3668
3669 img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
3670 img->shdr[4].sh_size = debug_frame_size;
3671
3672 img->shdr[5].sh_name = find_string(img->str, ".symtab");
3673 img->shdr[6].sh_name = find_string(img->str, ".strtab");
3674
3675 img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
3676 img->sym[1].st_value = buf;
3677 img->sym[1].st_size = buf_size;
3678
3679 img->di.cu_low_pc = buf;
3680 img->di.cu_high_pc = buf + buf_size;
3681 img->di.fn_low_pc = buf;
3682 img->di.fn_high_pc = buf + buf_size;
3683
3684 dfh = (DebugFrameHeader *)(img + 1);
3685 memcpy(dfh, debug_frame, debug_frame_size);
3686 dfh->fde.func_start = buf;
3687 dfh->fde.func_len = buf_size;
3688
3689 #ifdef DEBUG_JIT
3690 /* Enable this block to be able to debug the ELF image file creation.
3691 One can use readelf, objdump, or other inspection utilities. */
3692 {
3693 FILE *f = fopen("/tmp/qemu.jit", "w+b");
3694 if (f) {
3695 if (fwrite(img, img_size, 1, f) != img_size) {
3696 /* Avoid stupid unused return value warning for fwrite. */
3697 }
3698 fclose(f);
3699 }
3700 }
3701 #endif
3702
3703 one_entry.symfile_addr = img;
3704 one_entry.symfile_size = img_size;
3705
3706 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
3707 __jit_debug_descriptor.relevant_entry = &one_entry;
3708 __jit_debug_descriptor.first_entry = &one_entry;
3709 __jit_debug_register_code();
3710 }
3711 #else
3712 /* No support for the feature. Provide the entry point expected by exec.c,
3713 and implement the internal function we declared earlier. */
3714
3715 static void tcg_register_jit_int(void *buf, size_t size,
3716 const void *debug_frame,
3717 size_t debug_frame_size)
3718 {
3719 }
3720
3721 void tcg_register_jit(void *buf, size_t buf_size)
3722 {
3723 }
3724 #endif /* ELF_HOST_MACHINE */
3725
3726 #if !TCG_TARGET_MAYBE_vec
3727 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
3728 {
3729 g_assert_not_reached();
3730 }
3731 #endif