]> git.proxmox.com Git - mirror_qemu.git/blob - tests/e1000e-test.c
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / tests / e1000e-test.c
1 /*
2 * QTest testcase for e1000e NIC
3 *
4 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
5 * Developed by Daynix Computing LTD (http://www.daynix.com)
6 *
7 * Authors:
8 * Dmitry Fleytman <dmitry@daynix.com>
9 * Leonid Bloch <leonid@daynix.com>
10 * Yan Vugenfirer <yan@daynix.com>
11 *
12 * This library is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2 of the License, or (at your option) any later version.
16 *
17 * This library is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
21 *
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 */
25
26
27 #include "qemu/osdep.h"
28 #include "libqtest.h"
29 #include "qemu-common.h"
30 #include "libqos/pci-pc.h"
31 #include "qemu/sockets.h"
32 #include "qemu/iov.h"
33 #include "qemu/bitops.h"
34 #include "libqos/malloc.h"
35 #include "libqos/malloc-pc.h"
36 #include "libqos/malloc-generic.h"
37
38 #define E1000E_IMS (0x00d0)
39
40 #define E1000E_STATUS (0x0008)
41 #define E1000E_STATUS_LU BIT(1)
42 #define E1000E_STATUS_ASDV1000 BIT(9)
43
44 #define E1000E_CTRL (0x0000)
45 #define E1000E_CTRL_RESET BIT(26)
46
47 #define E1000E_RCTL (0x0100)
48 #define E1000E_RCTL_EN BIT(1)
49 #define E1000E_RCTL_UPE BIT(3)
50 #define E1000E_RCTL_MPE BIT(4)
51
52 #define E1000E_RFCTL (0x5008)
53 #define E1000E_RFCTL_EXTEN BIT(15)
54
55 #define E1000E_TCTL (0x0400)
56 #define E1000E_TCTL_EN BIT(1)
57
58 #define E1000E_CTRL_EXT (0x0018)
59 #define E1000E_CTRL_EXT_DRV_LOAD BIT(28)
60 #define E1000E_CTRL_EXT_TXLSFLOW BIT(22)
61
62 #define E1000E_RX0_MSG_ID (0)
63 #define E1000E_TX0_MSG_ID (1)
64 #define E1000E_OTHER_MSG_ID (2)
65
66 #define E1000E_IVAR (0x00E4)
67 #define E1000E_IVAR_TEST_CFG ((E1000E_RX0_MSG_ID << 0) | BIT(3) | \
68 (E1000E_TX0_MSG_ID << 8) | BIT(11) | \
69 (E1000E_OTHER_MSG_ID << 16) | BIT(19) | \
70 BIT(31))
71
72 #define E1000E_RING_LEN (0x1000)
73 #define E1000E_TXD_LEN (16)
74 #define E1000E_RXD_LEN (16)
75
76 #define E1000E_TDBAL (0x3800)
77 #define E1000E_TDBAH (0x3804)
78 #define E1000E_TDLEN (0x3808)
79 #define E1000E_TDH (0x3810)
80 #define E1000E_TDT (0x3818)
81
82 #define E1000E_RDBAL (0x2800)
83 #define E1000E_RDBAH (0x2804)
84 #define E1000E_RDLEN (0x2808)
85 #define E1000E_RDH (0x2810)
86 #define E1000E_RDT (0x2818)
87
88 typedef struct e1000e_device {
89 QPCIDevice *pci_dev;
90 void *mac_regs;
91
92 uint64_t tx_ring;
93 uint64_t rx_ring;
94 } e1000e_device;
95
96 static int test_sockets[2];
97 static QGuestAllocator *test_alloc;
98 static QPCIBus *test_bus;
99
100 static void e1000e_pci_foreach_callback(QPCIDevice *dev, int devfn, void *data)
101 {
102 *(QPCIDevice **) data = dev;
103 }
104
105 static QPCIDevice *e1000e_device_find(QPCIBus *bus)
106 {
107 static const int e1000e_vendor_id = 0x8086;
108 static const int e1000e_dev_id = 0x10D3;
109
110 QPCIDevice *e1000e_dev = NULL;
111
112 qpci_device_foreach(bus, e1000e_vendor_id, e1000e_dev_id,
113 e1000e_pci_foreach_callback, &e1000e_dev);
114
115 g_assert_nonnull(e1000e_dev);
116
117 return e1000e_dev;
118 }
119
120 static void e1000e_macreg_write(e1000e_device *d, uint32_t reg, uint32_t val)
121 {
122 qpci_io_writel(d->pci_dev, d->mac_regs + reg, val);
123 }
124
125 static uint32_t e1000e_macreg_read(e1000e_device *d, uint32_t reg)
126 {
127 return qpci_io_readl(d->pci_dev, d->mac_regs + reg);
128 }
129
130 static void e1000e_device_init(QPCIBus *bus, e1000e_device *d)
131 {
132 uint32_t val;
133
134 d->pci_dev = e1000e_device_find(bus);
135
136 /* Enable the device */
137 qpci_device_enable(d->pci_dev);
138
139 /* Map BAR0 (mac registers) */
140 d->mac_regs = qpci_iomap(d->pci_dev, 0, NULL);
141 g_assert_nonnull(d->mac_regs);
142
143 /* Reset the device */
144 val = e1000e_macreg_read(d, E1000E_CTRL);
145 e1000e_macreg_write(d, E1000E_CTRL, val | E1000E_CTRL_RESET);
146
147 /* Enable and configure MSI-X */
148 qpci_msix_enable(d->pci_dev);
149 e1000e_macreg_write(d, E1000E_IVAR, E1000E_IVAR_TEST_CFG);
150
151 /* Check the device status - link and speed */
152 val = e1000e_macreg_read(d, E1000E_STATUS);
153 g_assert_cmphex(val & (E1000E_STATUS_LU | E1000E_STATUS_ASDV1000),
154 ==, E1000E_STATUS_LU | E1000E_STATUS_ASDV1000);
155
156 /* Initialize TX/RX logic */
157 e1000e_macreg_write(d, E1000E_RCTL, 0);
158 e1000e_macreg_write(d, E1000E_TCTL, 0);
159
160 /* Notify the device that the driver is ready */
161 val = e1000e_macreg_read(d, E1000E_CTRL_EXT);
162 e1000e_macreg_write(d, E1000E_CTRL_EXT,
163 val | E1000E_CTRL_EXT_DRV_LOAD | E1000E_CTRL_EXT_TXLSFLOW);
164
165 /* Allocate and setup TX ring */
166 d->tx_ring = guest_alloc(test_alloc, E1000E_RING_LEN);
167 g_assert(d->tx_ring != 0);
168
169 e1000e_macreg_write(d, E1000E_TDBAL, (uint32_t) d->tx_ring);
170 e1000e_macreg_write(d, E1000E_TDBAH, (uint32_t) (d->tx_ring >> 32));
171 e1000e_macreg_write(d, E1000E_TDLEN, E1000E_RING_LEN);
172 e1000e_macreg_write(d, E1000E_TDT, 0);
173 e1000e_macreg_write(d, E1000E_TDH, 0);
174
175 /* Enable transmit */
176 e1000e_macreg_write(d, E1000E_TCTL, E1000E_TCTL_EN);
177
178 /* Allocate and setup RX ring */
179 d->rx_ring = guest_alloc(test_alloc, E1000E_RING_LEN);
180 g_assert(d->rx_ring != 0);
181
182 e1000e_macreg_write(d, E1000E_RDBAL, (uint32_t)d->rx_ring);
183 e1000e_macreg_write(d, E1000E_RDBAH, (uint32_t)(d->rx_ring >> 32));
184 e1000e_macreg_write(d, E1000E_RDLEN, E1000E_RING_LEN);
185 e1000e_macreg_write(d, E1000E_RDT, 0);
186 e1000e_macreg_write(d, E1000E_RDH, 0);
187
188 /* Enable receive */
189 e1000e_macreg_write(d, E1000E_RFCTL, E1000E_RFCTL_EXTEN);
190 e1000e_macreg_write(d, E1000E_RCTL, E1000E_RCTL_EN |
191 E1000E_RCTL_UPE |
192 E1000E_RCTL_MPE);
193
194 /* Enable all interrupts */
195 e1000e_macreg_write(d, E1000E_IMS, 0xFFFFFFFF);
196 }
197
198 static void e1000e_tx_ring_push(e1000e_device *d, void *descr)
199 {
200 uint32_t tail = e1000e_macreg_read(d, E1000E_TDT);
201 uint32_t len = e1000e_macreg_read(d, E1000E_TDLEN) / E1000E_TXD_LEN;
202
203 memwrite(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN);
204 e1000e_macreg_write(d, E1000E_TDT, (tail + 1) % len);
205
206 /* Read WB data for the packet transmitted */
207 memread(d->tx_ring + tail * E1000E_TXD_LEN, descr, E1000E_TXD_LEN);
208 }
209
210 static void e1000e_rx_ring_push(e1000e_device *d, void *descr)
211 {
212 uint32_t tail = e1000e_macreg_read(d, E1000E_RDT);
213 uint32_t len = e1000e_macreg_read(d, E1000E_RDLEN) / E1000E_RXD_LEN;
214
215 memwrite(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN);
216 e1000e_macreg_write(d, E1000E_RDT, (tail + 1) % len);
217
218 /* Read WB data for the packet received */
219 memread(d->rx_ring + tail * E1000E_RXD_LEN, descr, E1000E_RXD_LEN);
220 }
221
222 static void e1000e_wait_isr(e1000e_device *d, uint16_t msg_id)
223 {
224 guint64 end_time = g_get_monotonic_time() + 5 * G_TIME_SPAN_SECOND;
225
226 do {
227 if (qpci_msix_pending(d->pci_dev, msg_id)) {
228 return;
229 }
230 clock_step(10000);
231 } while (g_get_monotonic_time() < end_time);
232
233 g_error("Timeout expired");
234 }
235
236 static void e1000e_send_verify(e1000e_device *d)
237 {
238 struct {
239 uint64_t buffer_addr;
240 union {
241 uint32_t data;
242 struct {
243 uint16_t length;
244 uint8_t cso;
245 uint8_t cmd;
246 } flags;
247 } lower;
248 union {
249 uint32_t data;
250 struct {
251 uint8_t status;
252 uint8_t css;
253 uint16_t special;
254 } fields;
255 } upper;
256 } descr;
257
258 static const uint32_t dtyp_data = BIT(20);
259 static const uint32_t dtyp_ext = BIT(29);
260 static const uint32_t dcmd_rs = BIT(27);
261 static const uint32_t dcmd_eop = BIT(24);
262 static const uint32_t dsta_dd = BIT(0);
263 static const int data_len = 64;
264 char buffer[64];
265 int ret;
266 uint32_t recv_len;
267
268 /* Prepare test data buffer */
269 uint64_t data = guest_alloc(test_alloc, data_len);
270 memwrite(data, "TEST", 5);
271
272 /* Prepare TX descriptor */
273 memset(&descr, 0, sizeof(descr));
274 descr.buffer_addr = cpu_to_le64(data);
275 descr.lower.data = cpu_to_le32(dcmd_rs |
276 dcmd_eop |
277 dtyp_ext |
278 dtyp_data |
279 data_len);
280
281 /* Put descriptor to the ring */
282 e1000e_tx_ring_push(d, &descr);
283
284 /* Wait for TX WB interrupt */
285 e1000e_wait_isr(d, E1000E_TX0_MSG_ID);
286
287 /* Check DD bit */
288 g_assert_cmphex(le32_to_cpu(descr.upper.data) & dsta_dd, ==, dsta_dd);
289
290 /* Check data sent to the backend */
291 ret = qemu_recv(test_sockets[0], &recv_len, sizeof(recv_len), 0);
292 g_assert_cmpint(ret, == , sizeof(recv_len));
293 qemu_recv(test_sockets[0], buffer, 64, 0);
294 g_assert_cmpstr(buffer, == , "TEST");
295
296 /* Free test data buffer */
297 guest_free(test_alloc, data);
298 }
299
300 static void e1000e_receive_verify(e1000e_device *d)
301 {
302 union {
303 struct {
304 uint64_t buffer_addr;
305 uint64_t reserved;
306 } read;
307 struct {
308 struct {
309 uint32_t mrq;
310 union {
311 uint32_t rss;
312 struct {
313 uint16_t ip_id;
314 uint16_t csum;
315 } csum_ip;
316 } hi_dword;
317 } lower;
318 struct {
319 uint32_t status_error;
320 uint16_t length;
321 uint16_t vlan;
322 } upper;
323 } wb;
324 } descr;
325
326 static const uint32_t esta_dd = BIT(0);
327
328 char test[] = "TEST";
329 int len = htonl(sizeof(test));
330 struct iovec iov[] = {
331 {
332 .iov_base = &len,
333 .iov_len = sizeof(len),
334 },{
335 .iov_base = test,
336 .iov_len = sizeof(test),
337 },
338 };
339
340 static const int data_len = 64;
341 char buffer[64];
342 int ret;
343
344 /* Send a dummy packet to device's socket*/
345 ret = iov_send(test_sockets[0], iov, 2, 0, sizeof(len) + sizeof(test));
346 g_assert_cmpint(ret, == , sizeof(test) + sizeof(len));
347
348 /* Prepare test data buffer */
349 uint64_t data = guest_alloc(test_alloc, data_len);
350
351 /* Prepare RX descriptor */
352 memset(&descr, 0, sizeof(descr));
353 descr.read.buffer_addr = cpu_to_le64(data);
354
355 /* Put descriptor to the ring */
356 e1000e_rx_ring_push(d, &descr);
357
358 /* Wait for TX WB interrupt */
359 e1000e_wait_isr(d, E1000E_RX0_MSG_ID);
360
361 /* Check DD bit */
362 g_assert_cmphex(le32_to_cpu(descr.wb.upper.status_error) &
363 esta_dd, ==, esta_dd);
364
365 /* Check data sent to the backend */
366 memread(data, buffer, sizeof(buffer));
367 g_assert_cmpstr(buffer, == , "TEST");
368
369 /* Free test data buffer */
370 guest_free(test_alloc, data);
371 }
372
373 static void e1000e_device_clear(QPCIBus *bus, e1000e_device *d)
374 {
375 qpci_iounmap(d->pci_dev, d->mac_regs);
376 qpci_msix_disable(d->pci_dev);
377 }
378
379 static void data_test_init(e1000e_device *d)
380 {
381 char *cmdline;
382
383 int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, test_sockets);
384 g_assert_cmpint(ret, != , -1);
385
386 cmdline = g_strdup_printf("-netdev socket,fd=%d,id=hs0 "
387 "-device e1000e,netdev=hs0", test_sockets[1]);
388 g_assert_nonnull(cmdline);
389
390 qtest_start(cmdline);
391 g_free(cmdline);
392
393 test_bus = qpci_init_pc();
394 g_assert_nonnull(test_bus);
395
396 test_alloc = pc_alloc_init();
397 g_assert_nonnull(test_alloc);
398
399 e1000e_device_init(test_bus, d);
400 }
401
402 static void data_test_clear(e1000e_device *d)
403 {
404 e1000e_device_clear(test_bus, d);
405 close(test_sockets[0]);
406 pc_alloc_uninit(test_alloc);
407 qpci_free_pc(test_bus);
408 qtest_end();
409 }
410
411 static void test_e1000e_init(gconstpointer data)
412 {
413 e1000e_device d;
414
415 data_test_init(&d);
416 data_test_clear(&d);
417 }
418
419 static void test_e1000e_tx(gconstpointer data)
420 {
421 e1000e_device d;
422
423 data_test_init(&d);
424 e1000e_send_verify(&d);
425 data_test_clear(&d);
426 }
427
428 static void test_e1000e_rx(gconstpointer data)
429 {
430 e1000e_device d;
431
432 data_test_init(&d);
433 e1000e_receive_verify(&d);
434 data_test_clear(&d);
435 }
436
437 static void test_e1000e_multiple_transfers(gconstpointer data)
438 {
439 static const long iterations = 4 * 1024;
440 long i;
441
442 e1000e_device d;
443
444 data_test_init(&d);
445
446 for (i = 0; i < iterations; i++) {
447 e1000e_send_verify(&d);
448 e1000e_receive_verify(&d);
449 }
450
451 data_test_clear(&d);
452 }
453
454 static void test_e1000e_hotplug(gconstpointer data)
455 {
456 static const uint8_t slot = 0x06;
457
458 qtest_start("-device e1000e");
459
460 qpci_plug_device_test("e1000e", "e1000e_net", slot, NULL);
461 qpci_unplug_acpi_device_test("e1000e_net", slot);
462
463 qtest_end();
464 }
465
466 int main(int argc, char **argv)
467 {
468 g_test_init(&argc, &argv, NULL);
469
470 qtest_add_data_func("e1000e/init", NULL, test_e1000e_init);
471 qtest_add_data_func("e1000e/tx", NULL, test_e1000e_tx);
472 qtest_add_data_func("e1000e/rx", NULL, test_e1000e_rx);
473 qtest_add_data_func("e1000e/multiple_transfers", NULL,
474 test_e1000e_multiple_transfers);
475 qtest_add_data_func("e1000e/hotplug", NULL, test_e1000e_hotplug);
476
477 return g_test_run();
478 }