]> git.proxmox.com Git - ovs.git/blob - tests/test-classifier.c
85adb0dca4f27a06e0b69d04d4b8b6ca10d0076d
[ovs.git] / tests / test-classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* "White box" tests for classifier.
18 *
19 * With very few exceptions, these tests obtain complete coverage of every
20 * basic block and every branch in the classifier implementation, e.g. a clean
21 * report from "gcov -b". (Covering the exceptions would require finding
22 * collisions in the hash function used for flow data, etc.)
23 *
24 * This test should receive a clean report from "valgrind --leak-check=full":
25 * it frees every heap block that it allocates.
26 */
27
28 #include <config.h>
29 #undef NDEBUG
30 #include "classifier.h"
31 #include <assert.h>
32 #include <errno.h>
33 #include <limits.h>
34 #include "byte-order.h"
35 #include "classifier-private.h"
36 #include "command-line.h"
37 #include "flow.h"
38 #include "ofp-util.h"
39 #include "ovstest.h"
40 #include "packets.h"
41 #include "random.h"
42 #include "unaligned.h"
43 #include "util.h"
44
45 /* Fields in a rule. */
46 #define CLS_FIELDS \
47 /* struct flow all-caps */ \
48 /* member name name */ \
49 /* ----------- -------- */ \
50 CLS_FIELD(tunnel.tun_id, TUN_ID) \
51 CLS_FIELD(metadata, METADATA) \
52 CLS_FIELD(nw_src, NW_SRC) \
53 CLS_FIELD(nw_dst, NW_DST) \
54 CLS_FIELD(in_port, IN_PORT) \
55 CLS_FIELD(vlan_tci, VLAN_TCI) \
56 CLS_FIELD(dl_type, DL_TYPE) \
57 CLS_FIELD(tp_src, TP_SRC) \
58 CLS_FIELD(tp_dst, TP_DST) \
59 CLS_FIELD(dl_src, DL_SRC) \
60 CLS_FIELD(dl_dst, DL_DST) \
61 CLS_FIELD(nw_proto, NW_PROTO) \
62 CLS_FIELD(nw_tos, NW_DSCP)
63
64 /* Field indexes.
65 *
66 * (These are also indexed into struct classifier's 'tables' array.) */
67 enum {
68 #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
69 CLS_FIELDS
70 #undef CLS_FIELD
71 CLS_N_FIELDS
72 };
73
74 /* Field information. */
75 struct cls_field {
76 int ofs; /* Offset in struct flow. */
77 int len; /* Length in bytes. */
78 const char *name; /* Name (for debugging). */
79 };
80
81 static const struct cls_field cls_fields[CLS_N_FIELDS] = {
82 #define CLS_FIELD(MEMBER, NAME) \
83 { offsetof(struct flow, MEMBER), \
84 sizeof ((struct flow *)0)->MEMBER, \
85 #NAME },
86 CLS_FIELDS
87 #undef CLS_FIELD
88 };
89
90 struct test_rule {
91 int aux; /* Auxiliary data. */
92 struct cls_rule cls_rule; /* Classifier rule data. */
93 };
94
95 static struct test_rule *
96 test_rule_from_cls_rule(const struct cls_rule *rule)
97 {
98 return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
99 }
100
101 static void
102 test_rule_destroy(struct test_rule *rule)
103 {
104 if (rule) {
105 cls_rule_destroy(&rule->cls_rule);
106 free(rule);
107 }
108 }
109
110 static struct test_rule *make_rule(int wc_fields, unsigned int priority,
111 int value_pat);
112 static void free_rule(struct test_rule *);
113 static struct test_rule *clone_rule(const struct test_rule *);
114
115 /* Trivial (linear) classifier. */
116 struct tcls {
117 size_t n_rules;
118 size_t allocated_rules;
119 struct test_rule **rules;
120 };
121
122 static void
123 tcls_init(struct tcls *tcls)
124 {
125 tcls->n_rules = 0;
126 tcls->allocated_rules = 0;
127 tcls->rules = NULL;
128 }
129
130 static void
131 tcls_destroy(struct tcls *tcls)
132 {
133 if (tcls) {
134 size_t i;
135
136 for (i = 0; i < tcls->n_rules; i++) {
137 test_rule_destroy(tcls->rules[i]);
138 }
139 free(tcls->rules);
140 }
141 }
142
143 static bool
144 tcls_is_empty(const struct tcls *tcls)
145 {
146 return tcls->n_rules == 0;
147 }
148
149 static struct test_rule *
150 tcls_insert(struct tcls *tcls, const struct test_rule *rule)
151 {
152 size_t i;
153
154 for (i = 0; i < tcls->n_rules; i++) {
155 const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
156 if (cls_rule_equal(pos, &rule->cls_rule)) {
157 /* Exact match. */
158 ovsrcu_postpone(free_rule, tcls->rules[i]);
159 tcls->rules[i] = clone_rule(rule);
160 return tcls->rules[i];
161 } else if (pos->priority < rule->cls_rule.priority) {
162 break;
163 }
164 }
165
166 if (tcls->n_rules >= tcls->allocated_rules) {
167 tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
168 sizeof *tcls->rules);
169 }
170 if (i != tcls->n_rules) {
171 memmove(&tcls->rules[i + 1], &tcls->rules[i],
172 sizeof *tcls->rules * (tcls->n_rules - i));
173 }
174 tcls->rules[i] = clone_rule(rule);
175 tcls->n_rules++;
176 return tcls->rules[i];
177 }
178
179 static void
180 tcls_remove(struct tcls *cls, const struct test_rule *rule)
181 {
182 size_t i;
183
184 for (i = 0; i < cls->n_rules; i++) {
185 struct test_rule *pos = cls->rules[i];
186 if (pos == rule) {
187 test_rule_destroy(pos);
188
189 memmove(&cls->rules[i], &cls->rules[i + 1],
190 sizeof *cls->rules * (cls->n_rules - i - 1));
191
192 cls->n_rules--;
193 return;
194 }
195 }
196 OVS_NOT_REACHED();
197 }
198
199 static bool
200 match(const struct cls_rule *wild_, const struct flow *fixed)
201 {
202 struct match wild;
203 int f_idx;
204
205 minimatch_expand(&wild_->match, &wild);
206 for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
207 bool eq;
208
209 if (f_idx == CLS_F_IDX_NW_SRC) {
210 eq = !((fixed->nw_src ^ wild.flow.nw_src)
211 & wild.wc.masks.nw_src);
212 } else if (f_idx == CLS_F_IDX_NW_DST) {
213 eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
214 & wild.wc.masks.nw_dst);
215 } else if (f_idx == CLS_F_IDX_TP_SRC) {
216 eq = !((fixed->tp_src ^ wild.flow.tp_src)
217 & wild.wc.masks.tp_src);
218 } else if (f_idx == CLS_F_IDX_TP_DST) {
219 eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
220 & wild.wc.masks.tp_dst);
221 } else if (f_idx == CLS_F_IDX_DL_SRC) {
222 eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
223 wild.wc.masks.dl_src);
224 } else if (f_idx == CLS_F_IDX_DL_DST) {
225 eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
226 wild.wc.masks.dl_dst);
227 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
228 eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
229 & wild.wc.masks.vlan_tci);
230 } else if (f_idx == CLS_F_IDX_TUN_ID) {
231 eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
232 & wild.wc.masks.tunnel.tun_id);
233 } else if (f_idx == CLS_F_IDX_METADATA) {
234 eq = !((fixed->metadata ^ wild.flow.metadata)
235 & wild.wc.masks.metadata);
236 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
237 eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
238 (wild.wc.masks.nw_tos & IP_DSCP_MASK));
239 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
240 eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
241 & wild.wc.masks.nw_proto);
242 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
243 eq = !((fixed->dl_type ^ wild.flow.dl_type)
244 & wild.wc.masks.dl_type);
245 } else if (f_idx == CLS_F_IDX_IN_PORT) {
246 eq = !((fixed->in_port.ofp_port
247 ^ wild.flow.in_port.ofp_port)
248 & wild.wc.masks.in_port.ofp_port);
249 } else {
250 OVS_NOT_REACHED();
251 }
252
253 if (!eq) {
254 return false;
255 }
256 }
257 return true;
258 }
259
260 static struct cls_rule *
261 tcls_lookup(const struct tcls *cls, const struct flow *flow)
262 {
263 size_t i;
264
265 for (i = 0; i < cls->n_rules; i++) {
266 struct test_rule *pos = cls->rules[i];
267 if (match(&pos->cls_rule, flow)) {
268 return &pos->cls_rule;
269 }
270 }
271 return NULL;
272 }
273
274 static void
275 tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
276 {
277 size_t i;
278
279 for (i = 0; i < cls->n_rules; ) {
280 struct test_rule *pos = cls->rules[i];
281 if (!minimask_has_extra(&pos->cls_rule.match.mask,
282 &target->match.mask)) {
283 struct flow flow;
284
285 miniflow_expand(&pos->cls_rule.match.flow, &flow);
286 if (match(target, &flow)) {
287 tcls_remove(cls, pos);
288 continue;
289 }
290 }
291 i++;
292 }
293 }
294 \f
295 static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
296 CONSTANT_HTONL(0xc0a04455) };
297 static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
298 CONSTANT_HTONL(0xc0a04455) };
299 static ovs_be64 tun_id_values[] = {
300 0,
301 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
302 static ovs_be64 metadata_values[] = {
303 0,
304 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
305 static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL };
306 static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
307 static ovs_be16 dl_type_values[]
308 = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
309 static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
310 CONSTANT_HTONS(80) };
311 static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
312 static uint8_t dl_src_values[][ETH_ADDR_LEN] = {
313 { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
314 { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
315 static uint8_t dl_dst_values[][ETH_ADDR_LEN] = {
316 { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
317 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
318 static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
319 static uint8_t nw_dscp_values[] = { 48, 0 };
320
321 static void *values[CLS_N_FIELDS][2];
322
323 static void
324 init_values(void)
325 {
326 values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
327 values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
328
329 values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
330 values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
331
332 values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
333 values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
334
335 values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
336 values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
337
338 values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
339 values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
340
341 values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
342 values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
343
344 values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
345 values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
346
347 values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
348 values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
349
350 values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
351 values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
352
353 values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
354 values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
355
356 values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
357 values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
358
359 values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
360 values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
361
362 values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
363 values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
364 }
365
366 #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
367 #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
368 #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
369 #define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
370 #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
371 #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
372 #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
373 #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
374 #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
375 #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
376 #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
377 #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
378 #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
379
380 #define N_FLOW_VALUES (N_NW_SRC_VALUES * \
381 N_NW_DST_VALUES * \
382 N_TUN_ID_VALUES * \
383 N_IN_PORT_VALUES * \
384 N_VLAN_TCI_VALUES * \
385 N_DL_TYPE_VALUES * \
386 N_TP_SRC_VALUES * \
387 N_TP_DST_VALUES * \
388 N_DL_SRC_VALUES * \
389 N_DL_DST_VALUES * \
390 N_NW_PROTO_VALUES * \
391 N_NW_DSCP_VALUES)
392
393 static unsigned int
394 get_value(unsigned int *x, unsigned n_values)
395 {
396 unsigned int rem = *x % n_values;
397 *x /= n_values;
398 return rem;
399 }
400
401 static void
402 compare_classifiers(struct classifier *cls, struct tcls *tcls)
403 {
404 static const int confidence = 500;
405 unsigned int i;
406
407 assert(classifier_count(cls) == tcls->n_rules);
408 for (i = 0; i < confidence; i++) {
409 struct cls_rule *cr0, *cr1, *cr2;
410 struct flow flow;
411 struct flow_wildcards wc;
412 unsigned int x;
413
414 flow_wildcards_init_catchall(&wc);
415 x = random_range(N_FLOW_VALUES);
416 memset(&flow, 0, sizeof flow);
417 flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
418 flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
419 flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
420 flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
421 flow.in_port.ofp_port = in_port_values[get_value(&x,
422 N_IN_PORT_VALUES)];
423 flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
424 flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
425 flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
426 flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
427 memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
428 ETH_ADDR_LEN);
429 memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
430 ETH_ADDR_LEN);
431 flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
432 flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
433
434 /* This assertion is here to suppress a GCC 4.9 array-bounds warning */
435 ovs_assert(cls->n_tries <= CLS_MAX_TRIES);
436
437 cr0 = classifier_lookup(cls, &flow, &wc);
438 cr1 = tcls_lookup(tcls, &flow);
439 assert((cr0 == NULL) == (cr1 == NULL));
440 if (cr0 != NULL) {
441 const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
442 const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
443
444 assert(cls_rule_equal(cr0, cr1));
445 assert(tr0->aux == tr1->aux);
446 }
447 cr2 = classifier_lookup(cls, &flow, NULL);
448 assert(cr2 == cr0);
449 }
450 }
451
452 static void
453 destroy_classifier(struct classifier *cls)
454 {
455 struct test_rule *rule;
456
457 CLS_FOR_EACH_SAFE (rule, cls_rule, cls) {
458 if (classifier_remove(cls, &rule->cls_rule)) {
459 ovsrcu_postpone(free_rule, rule);
460 }
461 }
462 classifier_destroy(cls);
463 }
464
465 static void
466 pvector_verify(const struct pvector *pvec)
467 {
468 void *ptr OVS_UNUSED;
469 unsigned int priority, prev_priority = UINT_MAX;
470
471 PVECTOR_FOR_EACH (ptr, pvec) {
472 priority = cursor__.vector[cursor__.entry_idx].priority;
473 if (priority > prev_priority) {
474 ovs_abort(0, "Priority vector is out of order (%u > %u)",
475 priority, prev_priority);
476 }
477 prev_priority = priority;
478 }
479 }
480
481 static unsigned int
482 trie_verify(const rcu_trie_ptr *trie, unsigned int ofs, unsigned int n_bits)
483 {
484 const struct trie_node *node = ovsrcu_get(struct trie_node *, trie);
485
486 if (node) {
487 assert(node->n_rules == 0 || node->n_bits > 0);
488 ofs += node->n_bits;
489 assert((ofs > 0 || (ofs == 0 && node->n_bits == 0)) && ofs <= n_bits);
490
491 return node->n_rules
492 + trie_verify(&node->edges[0], ofs, n_bits)
493 + trie_verify(&node->edges[1], ofs, n_bits);
494 }
495 return 0;
496 }
497
498 static void
499 verify_tries(struct classifier *cls)
500 {
501 unsigned int n_rules = 0;
502 int i;
503
504 for (i = 0; i < cls->n_tries; i++) {
505 n_rules += trie_verify(&cls->tries[i].root, 0,
506 cls->tries[i].field->n_bits);
507 }
508 ovs_mutex_lock(&cls->mutex);
509 assert(n_rules <= cls->n_rules);
510 ovs_mutex_unlock(&cls->mutex);
511 }
512
513 static void
514 check_tables(const struct classifier *cls, int n_tables, int n_rules,
515 int n_dups)
516 {
517 const struct cls_subtable *table;
518 struct test_rule *test_rule;
519 int found_tables = 0;
520 int found_rules = 0;
521 int found_dups = 0;
522 int found_rules2 = 0;
523
524 pvector_verify(&cls->subtables);
525 CMAP_FOR_EACH (table, cmap_node, &cls->subtables_map) {
526 const struct cls_match *head;
527 unsigned int max_priority = 0;
528 unsigned int max_count = 0;
529 bool found = false;
530 const struct cls_subtable *iter;
531
532 /* Locate the subtable from 'subtables'. */
533 PVECTOR_FOR_EACH (iter, &cls->subtables) {
534 if (iter == table) {
535 if (found) {
536 ovs_abort(0, "Subtable %p duplicated in 'subtables'.",
537 table);
538 }
539 found = true;
540 }
541 }
542 if (!found) {
543 ovs_abort(0, "Subtable %p not found from 'subtables'.", table);
544 }
545
546 assert(!cmap_is_empty(&table->rules));
547
548 ovs_mutex_lock(&cls->mutex);
549 assert(trie_verify(&table->ports_trie, 0, table->ports_mask_len)
550 == (table->ports_mask_len ? table->n_rules : 0));
551 ovs_mutex_unlock(&cls->mutex);
552
553 found_tables++;
554 CMAP_FOR_EACH (head, cmap_node, &table->rules) {
555 unsigned int prev_priority = UINT_MAX;
556 const struct cls_match *rule;
557
558 if (head->priority > max_priority) {
559 max_priority = head->priority;
560 max_count = 1;
561 } else if (head->priority == max_priority) {
562 ++max_count;
563 }
564
565 found_rules++;
566 ovs_mutex_lock(&cls->mutex);
567 LIST_FOR_EACH (rule, list, &head->list) {
568 assert(rule->priority < prev_priority);
569 assert(rule->priority <= table->max_priority);
570
571 prev_priority = rule->priority;
572 found_rules++;
573 found_dups++;
574 ovs_mutex_unlock(&cls->mutex);
575 assert(classifier_find_rule_exactly(cls, rule->cls_rule)
576 == rule->cls_rule);
577 ovs_mutex_lock(&cls->mutex);
578 }
579 ovs_mutex_unlock(&cls->mutex);
580 }
581 ovs_mutex_lock(&cls->mutex);
582 assert(table->max_priority == max_priority);
583 assert(table->max_count == max_count);
584 ovs_mutex_unlock(&cls->mutex);
585 }
586
587 assert(found_tables == cmap_count(&cls->subtables_map));
588 assert(found_tables == pvector_count(&cls->subtables));
589 assert(n_tables == -1 || n_tables == cmap_count(&cls->subtables_map));
590 assert(n_rules == -1 || found_rules == n_rules);
591 assert(n_dups == -1 || found_dups == n_dups);
592
593 CLS_FOR_EACH (test_rule, cls_rule, cls) {
594 found_rules2++;
595 }
596 assert(found_rules == found_rules2);
597 }
598
599 static struct test_rule *
600 make_rule(int wc_fields, unsigned int priority, int value_pat)
601 {
602 const struct cls_field *f;
603 struct test_rule *rule;
604 struct match match;
605
606 match_init_catchall(&match);
607 for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
608 int f_idx = f - cls_fields;
609 int value_idx = (value_pat & (1u << f_idx)) != 0;
610 memcpy((char *) &match.flow + f->ofs,
611 values[f_idx][value_idx], f->len);
612
613 if (f_idx == CLS_F_IDX_NW_SRC) {
614 match.wc.masks.nw_src = OVS_BE32_MAX;
615 } else if (f_idx == CLS_F_IDX_NW_DST) {
616 match.wc.masks.nw_dst = OVS_BE32_MAX;
617 } else if (f_idx == CLS_F_IDX_TP_SRC) {
618 match.wc.masks.tp_src = OVS_BE16_MAX;
619 } else if (f_idx == CLS_F_IDX_TP_DST) {
620 match.wc.masks.tp_dst = OVS_BE16_MAX;
621 } else if (f_idx == CLS_F_IDX_DL_SRC) {
622 memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN);
623 } else if (f_idx == CLS_F_IDX_DL_DST) {
624 memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN);
625 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
626 match.wc.masks.vlan_tci = OVS_BE16_MAX;
627 } else if (f_idx == CLS_F_IDX_TUN_ID) {
628 match.wc.masks.tunnel.tun_id = OVS_BE64_MAX;
629 } else if (f_idx == CLS_F_IDX_METADATA) {
630 match.wc.masks.metadata = OVS_BE64_MAX;
631 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
632 match.wc.masks.nw_tos |= IP_DSCP_MASK;
633 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
634 match.wc.masks.nw_proto = UINT8_MAX;
635 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
636 match.wc.masks.dl_type = OVS_BE16_MAX;
637 } else if (f_idx == CLS_F_IDX_IN_PORT) {
638 match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
639 } else {
640 OVS_NOT_REACHED();
641 }
642 }
643
644 rule = xzalloc(sizeof *rule);
645 cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX);
646 return rule;
647 }
648
649 static struct test_rule *
650 clone_rule(const struct test_rule *src)
651 {
652 struct test_rule *dst;
653
654 dst = xmalloc(sizeof *dst);
655 dst->aux = src->aux;
656 cls_rule_clone(&dst->cls_rule, &src->cls_rule);
657 return dst;
658 }
659
660 static void
661 free_rule(struct test_rule *rule)
662 {
663 cls_rule_destroy(&rule->cls_rule);
664 free(rule);
665 }
666
667 static void
668 shuffle(unsigned int *p, size_t n)
669 {
670 for (; n > 1; n--, p++) {
671 unsigned int *q = &p[random_range(n)];
672 unsigned int tmp = *p;
673 *p = *q;
674 *q = tmp;
675 }
676 }
677
678 static void
679 shuffle_u32s(uint32_t *p, size_t n)
680 {
681 for (; n > 1; n--, p++) {
682 uint32_t *q = &p[random_range(n)];
683 uint32_t tmp = *p;
684 *p = *q;
685 *q = tmp;
686 }
687 }
688 \f
689 /* Classifier tests. */
690
691 static enum mf_field_id trie_fields[2] = {
692 MFF_IPV4_DST, MFF_IPV4_SRC
693 };
694
695 static void
696 set_prefix_fields(struct classifier *cls)
697 {
698 verify_tries(cls);
699 classifier_set_prefix_fields(cls, trie_fields, ARRAY_SIZE(trie_fields));
700 verify_tries(cls);
701 }
702
703 /* Tests an empty classifier. */
704 static void
705 test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
706 {
707 struct classifier cls;
708 struct tcls tcls;
709
710 classifier_init(&cls, flow_segment_u32s);
711 set_prefix_fields(&cls);
712 tcls_init(&tcls);
713 assert(classifier_is_empty(&cls));
714 assert(tcls_is_empty(&tcls));
715 compare_classifiers(&cls, &tcls);
716 classifier_destroy(&cls);
717 tcls_destroy(&tcls);
718 }
719
720 /* Destroys a null classifier. */
721 static void
722 test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
723 {
724 classifier_destroy(NULL);
725 }
726
727 /* Tests classification with one rule at a time. */
728 static void
729 test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
730 {
731 unsigned int wc_fields; /* Hilarious. */
732
733 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
734 struct classifier cls;
735 struct test_rule *rule, *tcls_rule;
736 struct tcls tcls;
737
738 rule = make_rule(wc_fields,
739 hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
740
741 classifier_init(&cls, flow_segment_u32s);
742 set_prefix_fields(&cls);
743 tcls_init(&tcls);
744
745 tcls_rule = tcls_insert(&tcls, rule);
746 classifier_insert(&cls, &rule->cls_rule);
747 compare_classifiers(&cls, &tcls);
748 check_tables(&cls, 1, 1, 0);
749
750 classifier_remove(&cls, &rule->cls_rule);
751 tcls_remove(&tcls, tcls_rule);
752 assert(classifier_is_empty(&cls));
753 assert(tcls_is_empty(&tcls));
754 compare_classifiers(&cls, &tcls);
755
756 ovsrcu_postpone(free_rule, rule);
757 classifier_destroy(&cls);
758 tcls_destroy(&tcls);
759 }
760 }
761
762 /* Tests replacing one rule by another. */
763 static void
764 test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
765 {
766 unsigned int wc_fields;
767
768 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
769 struct classifier cls;
770 struct test_rule *rule1;
771 struct test_rule *rule2;
772 struct tcls tcls;
773
774 rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
775 rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
776 rule2->aux += 5;
777 rule2->aux += 5;
778
779 classifier_init(&cls, flow_segment_u32s);
780 set_prefix_fields(&cls);
781 tcls_init(&tcls);
782 tcls_insert(&tcls, rule1);
783 classifier_insert(&cls, &rule1->cls_rule);
784 compare_classifiers(&cls, &tcls);
785 check_tables(&cls, 1, 1, 0);
786 tcls_destroy(&tcls);
787
788 tcls_init(&tcls);
789 tcls_insert(&tcls, rule2);
790
791 assert(test_rule_from_cls_rule(
792 classifier_replace(&cls, &rule2->cls_rule)) == rule1);
793 ovsrcu_postpone(free_rule, rule1);
794 compare_classifiers(&cls, &tcls);
795 check_tables(&cls, 1, 1, 0);
796 classifier_remove(&cls, &rule2->cls_rule);
797
798 tcls_destroy(&tcls);
799 destroy_classifier(&cls);
800 }
801 }
802
803 static int
804 factorial(int n_items)
805 {
806 int n, i;
807
808 n = 1;
809 for (i = 2; i <= n_items; i++) {
810 n *= i;
811 }
812 return n;
813 }
814
815 static void
816 swap(int *a, int *b)
817 {
818 int tmp = *a;
819 *a = *b;
820 *b = tmp;
821 }
822
823 static void
824 reverse(int *a, int n)
825 {
826 int i;
827
828 for (i = 0; i < n / 2; i++) {
829 int j = n - (i + 1);
830 swap(&a[i], &a[j]);
831 }
832 }
833
834 static bool
835 next_permutation(int *a, int n)
836 {
837 int k;
838
839 for (k = n - 2; k >= 0; k--) {
840 if (a[k] < a[k + 1]) {
841 int l;
842
843 for (l = n - 1; ; l--) {
844 if (a[l] > a[k]) {
845 swap(&a[k], &a[l]);
846 reverse(a + (k + 1), n - (k + 1));
847 return true;
848 }
849 }
850 }
851 }
852 return false;
853 }
854
855 /* Tests classification with rules that have the same matching criteria. */
856 static void
857 test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
858 {
859 enum { N_RULES = 3 };
860 int n_pris;
861
862 for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
863 int ops[N_RULES * 2];
864 int pris[N_RULES];
865 int n_permutations;
866 int i;
867
868 pris[0] = 0;
869 for (i = 1; i < N_RULES; i++) {
870 pris[i] = pris[i - 1] + (n_pris > i);
871 }
872
873 for (i = 0; i < N_RULES * 2; i++) {
874 ops[i] = i / 2;
875 }
876
877 n_permutations = 0;
878 do {
879 struct test_rule *rules[N_RULES];
880 struct test_rule *tcls_rules[N_RULES];
881 int pri_rules[N_RULES];
882 struct classifier cls;
883 struct tcls tcls;
884
885 n_permutations++;
886
887 for (i = 0; i < N_RULES; i++) {
888 rules[i] = make_rule(456, pris[i], 0);
889 tcls_rules[i] = NULL;
890 pri_rules[i] = -1;
891 }
892
893 classifier_init(&cls, flow_segment_u32s);
894 set_prefix_fields(&cls);
895 tcls_init(&tcls);
896
897 for (i = 0; i < ARRAY_SIZE(ops); i++) {
898 int j = ops[i];
899 int m, n;
900
901 if (!tcls_rules[j]) {
902 struct test_rule *displaced_rule;
903
904 tcls_rules[j] = tcls_insert(&tcls, rules[j]);
905 displaced_rule = test_rule_from_cls_rule(
906 classifier_replace(&cls, &rules[j]->cls_rule));
907 if (pri_rules[pris[j]] >= 0) {
908 int k = pri_rules[pris[j]];
909 assert(displaced_rule != NULL);
910 assert(displaced_rule != rules[j]);
911 assert(pris[j] == displaced_rule->cls_rule.priority);
912 tcls_rules[k] = NULL;
913 } else {
914 assert(displaced_rule == NULL);
915 }
916 pri_rules[pris[j]] = j;
917 } else {
918 classifier_remove(&cls, &rules[j]->cls_rule);
919 tcls_remove(&tcls, tcls_rules[j]);
920 tcls_rules[j] = NULL;
921 pri_rules[pris[j]] = -1;
922 }
923 compare_classifiers(&cls, &tcls);
924
925 n = 0;
926 for (m = 0; m < N_RULES; m++) {
927 n += tcls_rules[m] != NULL;
928 }
929 check_tables(&cls, n > 0, n, n - 1);
930 }
931
932 for (i = 0; i < N_RULES; i++) {
933 if (classifier_remove(&cls, &rules[i]->cls_rule)) {
934 ovsrcu_postpone(free_rule, rules[i]);
935 }
936 }
937 classifier_destroy(&cls);
938 tcls_destroy(&tcls);
939 } while (next_permutation(ops, ARRAY_SIZE(ops)));
940 assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
941 }
942 }
943
944 static int
945 count_ones(unsigned long int x)
946 {
947 int n = 0;
948
949 while (x) {
950 x = zero_rightmost_1bit(x);
951 n++;
952 }
953
954 return n;
955 }
956
957 static bool
958 array_contains(int *array, int n, int value)
959 {
960 int i;
961
962 for (i = 0; i < n; i++) {
963 if (array[i] == value) {
964 return true;
965 }
966 }
967
968 return false;
969 }
970
971 /* Tests classification with two rules at a time that fall into the same
972 * table but different lists. */
973 static void
974 test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
975 {
976 int iteration;
977
978 for (iteration = 0; iteration < 50; iteration++) {
979 enum { N_RULES = 20 };
980 struct test_rule *rules[N_RULES];
981 struct test_rule *tcls_rules[N_RULES];
982 struct classifier cls;
983 struct tcls tcls;
984 int value_pats[N_RULES];
985 int value_mask;
986 int wcf;
987 int i;
988
989 do {
990 wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
991 value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
992 } while ((1 << count_ones(value_mask)) < N_RULES);
993
994 classifier_init(&cls, flow_segment_u32s);
995 set_prefix_fields(&cls);
996 tcls_init(&tcls);
997
998 for (i = 0; i < N_RULES; i++) {
999 unsigned int priority = random_uint32();
1000
1001 do {
1002 value_pats[i] = random_uint32() & value_mask;
1003 } while (array_contains(value_pats, i, value_pats[i]));
1004
1005 rules[i] = make_rule(wcf, priority, value_pats[i]);
1006 tcls_rules[i] = tcls_insert(&tcls, rules[i]);
1007
1008 classifier_insert(&cls, &rules[i]->cls_rule);
1009 compare_classifiers(&cls, &tcls);
1010
1011 check_tables(&cls, 1, i + 1, 0);
1012 }
1013
1014 for (i = 0; i < N_RULES; i++) {
1015 tcls_remove(&tcls, tcls_rules[i]);
1016 classifier_remove(&cls, &rules[i]->cls_rule);
1017 compare_classifiers(&cls, &tcls);
1018 ovsrcu_postpone(free_rule, rules[i]);
1019
1020 check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
1021 }
1022
1023 classifier_destroy(&cls);
1024 tcls_destroy(&tcls);
1025 }
1026 }
1027
1028 /* Tests classification with many rules at a time that fall into random lists
1029 * in 'n' tables. */
1030 static void
1031 test_many_rules_in_n_tables(int n_tables)
1032 {
1033 enum { MAX_RULES = 50 };
1034 int wcfs[10];
1035 int iteration;
1036 int i;
1037
1038 assert(n_tables < 10);
1039 for (i = 0; i < n_tables; i++) {
1040 do {
1041 wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
1042 } while (array_contains(wcfs, i, wcfs[i]));
1043 }
1044
1045 for (iteration = 0; iteration < 30; iteration++) {
1046 unsigned int priorities[MAX_RULES];
1047 struct classifier cls;
1048 struct tcls tcls;
1049
1050 random_set_seed(iteration + 1);
1051 for (i = 0; i < MAX_RULES; i++) {
1052 priorities[i] = i * 129;
1053 }
1054 shuffle(priorities, ARRAY_SIZE(priorities));
1055
1056 classifier_init(&cls, flow_segment_u32s);
1057 set_prefix_fields(&cls);
1058 tcls_init(&tcls);
1059
1060 for (i = 0; i < MAX_RULES; i++) {
1061 struct test_rule *rule;
1062 unsigned int priority = priorities[i];
1063 int wcf = wcfs[random_range(n_tables)];
1064 int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
1065 rule = make_rule(wcf, priority, value_pat);
1066 tcls_insert(&tcls, rule);
1067 classifier_insert(&cls, &rule->cls_rule);
1068 compare_classifiers(&cls, &tcls);
1069 check_tables(&cls, -1, i + 1, -1);
1070 }
1071
1072 while (!classifier_is_empty(&cls)) {
1073 struct test_rule *target;
1074 struct test_rule *rule;
1075
1076 target = clone_rule(tcls.rules[random_range(tcls.n_rules)]);
1077
1078 CLS_FOR_EACH_TARGET_SAFE (rule, cls_rule, &cls,
1079 &target->cls_rule) {
1080 if (classifier_remove(&cls, &rule->cls_rule)) {
1081 ovsrcu_postpone(free_rule, rule);
1082 }
1083 }
1084
1085 tcls_delete_matches(&tcls, &target->cls_rule);
1086 compare_classifiers(&cls, &tcls);
1087 check_tables(&cls, -1, -1, -1);
1088 free_rule(target);
1089 }
1090
1091 destroy_classifier(&cls);
1092 tcls_destroy(&tcls);
1093 }
1094 }
1095
1096 static void
1097 test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1098 {
1099 test_many_rules_in_n_tables(2);
1100 }
1101
1102 static void
1103 test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1104 {
1105 test_many_rules_in_n_tables(5);
1106 }
1107 \f
1108 /* Miniflow tests. */
1109
1110 static uint32_t
1111 random_value(void)
1112 {
1113 static const uint32_t values[] =
1114 { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
1115 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
1116
1117 return values[random_range(ARRAY_SIZE(values))];
1118 }
1119
1120 static bool
1121 choose(unsigned int n, unsigned int *idxp)
1122 {
1123 if (*idxp < n) {
1124 return true;
1125 } else {
1126 *idxp -= n;
1127 return false;
1128 }
1129 }
1130
1131 static bool
1132 init_consecutive_values(int n_consecutive, struct flow *flow,
1133 unsigned int *idxp)
1134 {
1135 uint32_t *flow_u32 = (uint32_t *) flow;
1136
1137 if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
1138 int i;
1139
1140 for (i = 0; i < n_consecutive; i++) {
1141 flow_u32[*idxp + i] = random_value();
1142 }
1143 return true;
1144 } else {
1145 return false;
1146 }
1147 }
1148
1149 static bool
1150 next_random_flow(struct flow *flow, unsigned int idx)
1151 {
1152 uint32_t *flow_u32 = (uint32_t *) flow;
1153 int i;
1154
1155 memset(flow, 0, sizeof *flow);
1156
1157 /* Empty flow. */
1158 if (choose(1, &idx)) {
1159 return true;
1160 }
1161
1162 /* All flows with a small number of consecutive nonzero values. */
1163 for (i = 1; i <= 4; i++) {
1164 if (init_consecutive_values(i, flow, &idx)) {
1165 return true;
1166 }
1167 }
1168
1169 /* All flows with a large number of consecutive nonzero values. */
1170 for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
1171 if (init_consecutive_values(i, flow, &idx)) {
1172 return true;
1173 }
1174 }
1175
1176 /* All flows with exactly two nonconsecutive nonzero values. */
1177 if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
1178 int ofs1;
1179
1180 for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
1181 int ofs2;
1182
1183 for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
1184 if (choose(1, &idx)) {
1185 flow_u32[ofs1] = random_value();
1186 flow_u32[ofs2] = random_value();
1187 return true;
1188 }
1189 }
1190 }
1191 OVS_NOT_REACHED();
1192 }
1193
1194 /* 16 randomly chosen flows with N >= 3 nonzero values. */
1195 if (choose(16 * (FLOW_U32S - 4), &idx)) {
1196 int n = idx / 16 + 3;
1197 int i;
1198
1199 for (i = 0; i < n; i++) {
1200 flow_u32[i] = random_value();
1201 }
1202 shuffle_u32s(flow_u32, FLOW_U32S);
1203
1204 return true;
1205 }
1206
1207 return false;
1208 }
1209
1210 static void
1211 any_random_flow(struct flow *flow)
1212 {
1213 static unsigned int max;
1214 if (!max) {
1215 while (next_random_flow(flow, max)) {
1216 max++;
1217 }
1218 }
1219
1220 next_random_flow(flow, random_range(max));
1221 }
1222
1223 static void
1224 toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
1225 {
1226 const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
1227 uint32_t *flow_u32 = (uint32_t *) flow;
1228 int i;
1229
1230 for (i = 0; i < FLOW_U32S; i++) {
1231 if (mask_u32[i] != 0) {
1232 uint32_t bit;
1233
1234 do {
1235 bit = 1u << random_range(32);
1236 } while (!(bit & mask_u32[i]));
1237 flow_u32[i] ^= bit;
1238 }
1239 }
1240 }
1241
1242 static void
1243 wildcard_extra_bits(struct flow_wildcards *mask)
1244 {
1245 uint32_t *mask_u32 = (uint32_t *) &mask->masks;
1246 int i;
1247
1248 for (i = 0; i < FLOW_U32S; i++) {
1249 if (mask_u32[i] != 0) {
1250 uint32_t bit;
1251
1252 do {
1253 bit = 1u << random_range(32);
1254 } while (!(bit & mask_u32[i]));
1255 mask_u32[i] &= ~bit;
1256 }
1257 }
1258 }
1259
1260 static void
1261 test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1262 {
1263 struct flow flow;
1264 unsigned int idx;
1265
1266 random_set_seed(0xb3faca38);
1267 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1268 const uint32_t *flow_u32 = (const uint32_t *) &flow;
1269 struct miniflow miniflow, miniflow2, miniflow3;
1270 struct flow flow2, flow3;
1271 struct flow_wildcards mask;
1272 struct minimask minimask;
1273 int i;
1274
1275 /* Convert flow to miniflow. */
1276 miniflow_init(&miniflow, &flow);
1277
1278 /* Check that the flow equals its miniflow. */
1279 assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci));
1280 for (i = 0; i < FLOW_U32S; i++) {
1281 assert(MINIFLOW_GET_TYPE(&miniflow, uint32_t, i * 4)
1282 == flow_u32[i]);
1283 }
1284
1285 /* Check that the miniflow equals itself. */
1286 assert(miniflow_equal(&miniflow, &miniflow));
1287
1288 /* Convert miniflow back to flow and verify that it's the same. */
1289 miniflow_expand(&miniflow, &flow2);
1290 assert(flow_equal(&flow, &flow2));
1291
1292 /* Check that copying a miniflow works properly. */
1293 miniflow_clone(&miniflow2, &miniflow);
1294 assert(miniflow_equal(&miniflow, &miniflow2));
1295 assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0));
1296 miniflow_expand(&miniflow2, &flow3);
1297 assert(flow_equal(&flow, &flow3));
1298
1299 /* Check that masked matches work as expected for identical flows and
1300 * miniflows. */
1301 do {
1302 next_random_flow(&mask.masks, 1);
1303 } while (flow_wildcards_is_catchall(&mask));
1304 minimask_init(&minimask, &mask);
1305 assert(minimask_is_catchall(&minimask)
1306 == flow_wildcards_is_catchall(&mask));
1307 assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask));
1308 assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1309 assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) ==
1310 flow_hash_in_minimask(&flow, &minimask, 0x12345678));
1311
1312 /* Check that masked matches work as expected for differing flows and
1313 * miniflows. */
1314 toggle_masked_flow_bits(&flow2, &mask);
1315 assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1316 miniflow_init(&miniflow3, &flow2);
1317 assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask));
1318
1319 /* Clean up. */
1320 miniflow_destroy(&miniflow);
1321 miniflow_destroy(&miniflow2);
1322 miniflow_destroy(&miniflow3);
1323 minimask_destroy(&minimask);
1324 }
1325 }
1326
1327 static void
1328 test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1329 {
1330 struct flow_wildcards catchall;
1331 struct minimask minicatchall;
1332 struct flow flow;
1333 unsigned int idx;
1334
1335 flow_wildcards_init_catchall(&catchall);
1336 minimask_init(&minicatchall, &catchall);
1337 assert(minimask_is_catchall(&minicatchall));
1338
1339 random_set_seed(0x2ec7905b);
1340 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1341 struct flow_wildcards mask;
1342 struct minimask minimask;
1343
1344 mask.masks = flow;
1345 minimask_init(&minimask, &mask);
1346 assert(!minimask_has_extra(&minimask, &minimask));
1347 assert(minimask_has_extra(&minicatchall, &minimask)
1348 == !minimask_is_catchall(&minimask));
1349 if (!minimask_is_catchall(&minimask)) {
1350 struct minimask minimask2;
1351
1352 wildcard_extra_bits(&mask);
1353 minimask_init(&minimask2, &mask);
1354 assert(minimask_has_extra(&minimask2, &minimask));
1355 assert(!minimask_has_extra(&minimask, &minimask2));
1356 minimask_destroy(&minimask2);
1357 }
1358
1359 minimask_destroy(&minimask);
1360 }
1361
1362 minimask_destroy(&minicatchall);
1363 }
1364
1365 static void
1366 test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1367 {
1368 struct flow_wildcards catchall;
1369 struct minimask minicatchall;
1370 struct flow flow;
1371 unsigned int idx;
1372
1373 flow_wildcards_init_catchall(&catchall);
1374 minimask_init(&minicatchall, &catchall);
1375 assert(minimask_is_catchall(&minicatchall));
1376
1377 random_set_seed(0x181bf0cd);
1378 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1379 struct minimask minimask, minimask2, minicombined;
1380 struct flow_wildcards mask, mask2, combined, combined2;
1381 uint32_t storage[FLOW_U32S];
1382 struct flow flow2;
1383
1384 mask.masks = flow;
1385 minimask_init(&minimask, &mask);
1386
1387 minimask_combine(&minicombined, &minimask, &minicatchall, storage);
1388 assert(minimask_is_catchall(&minicombined));
1389
1390 any_random_flow(&flow2);
1391 mask2.masks = flow2;
1392 minimask_init(&minimask2, &mask2);
1393
1394 minimask_combine(&minicombined, &minimask, &minimask2, storage);
1395 flow_wildcards_and(&combined, &mask, &mask2);
1396 minimask_expand(&minicombined, &combined2);
1397 assert(flow_wildcards_equal(&combined, &combined2));
1398
1399 minimask_destroy(&minimask);
1400 minimask_destroy(&minimask2);
1401 }
1402
1403 minimask_destroy(&minicatchall);
1404 }
1405 \f
1406 static const struct command commands[] = {
1407 /* Classifier tests. */
1408 {"empty", NULL, 0, 0, test_empty},
1409 {"destroy-null", NULL, 0, 0, test_destroy_null},
1410 {"single-rule", NULL, 0, 0, test_single_rule},
1411 {"rule-replacement", NULL, 0, 0, test_rule_replacement},
1412 {"many-rules-in-one-list", NULL, 0, 0, test_many_rules_in_one_list},
1413 {"many-rules-in-one-table", NULL, 0, 0, test_many_rules_in_one_table},
1414 {"many-rules-in-two-tables", NULL, 0, 0, test_many_rules_in_two_tables},
1415 {"many-rules-in-five-tables", NULL, 0, 0, test_many_rules_in_five_tables},
1416
1417 /* Miniflow and minimask tests. */
1418 {"miniflow", NULL, 0, 0, test_miniflow},
1419 {"minimask_has_extra", NULL, 0, 0, test_minimask_has_extra},
1420 {"minimask_combine", NULL, 0, 0, test_minimask_combine},
1421
1422 {NULL, NULL, 0, 0, NULL},
1423 };
1424
1425 static void
1426 test_classifier_main(int argc, char *argv[])
1427 {
1428 set_program_name(argv[0]);
1429 init_values();
1430 run_command(argc - 1, argv + 1, commands);
1431 }
1432
1433 OVSTEST_REGISTER("test-classifier", test_classifier_main);