]> git.proxmox.com Git - mirror_ovs.git/blob - tests/test-classifier.c
classifier: Rename struct cls_table as cls_subtable.
[mirror_ovs.git] / tests / test-classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* "White box" tests for classifier.
18 *
19 * With very few exceptions, these tests obtain complete coverage of every
20 * basic block and every branch in the classifier implementation, e.g. a clean
21 * report from "gcov -b". (Covering the exceptions would require finding
22 * collisions in the hash function used for flow data, etc.)
23 *
24 * This test should receive a clean report from "valgrind --leak-check=full":
25 * it frees every heap block that it allocates.
26 */
27
28 #include <config.h>
29 #include "classifier.h"
30 #include <errno.h>
31 #include <limits.h>
32 #include "byte-order.h"
33 #include "command-line.h"
34 #include "flow.h"
35 #include "ofp-util.h"
36 #include "packets.h"
37 #include "random.h"
38 #include "unaligned.h"
39
40 #undef NDEBUG
41 #include <assert.h>
42
43 /* Fields in a rule. */
44 #define CLS_FIELDS \
45 /* struct flow all-caps */ \
46 /* member name name */ \
47 /* ----------- -------- */ \
48 CLS_FIELD(tunnel.tun_id, TUN_ID) \
49 CLS_FIELD(metadata, METADATA) \
50 CLS_FIELD(nw_src, NW_SRC) \
51 CLS_FIELD(nw_dst, NW_DST) \
52 CLS_FIELD(in_port, IN_PORT) \
53 CLS_FIELD(vlan_tci, VLAN_TCI) \
54 CLS_FIELD(dl_type, DL_TYPE) \
55 CLS_FIELD(tp_src, TP_SRC) \
56 CLS_FIELD(tp_dst, TP_DST) \
57 CLS_FIELD(dl_src, DL_SRC) \
58 CLS_FIELD(dl_dst, DL_DST) \
59 CLS_FIELD(nw_proto, NW_PROTO) \
60 CLS_FIELD(nw_tos, NW_DSCP)
61
62 /* Field indexes.
63 *
64 * (These are also indexed into struct classifier's 'tables' array.) */
65 enum {
66 #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
67 CLS_FIELDS
68 #undef CLS_FIELD
69 CLS_N_FIELDS
70 };
71
72 /* Field information. */
73 struct cls_field {
74 int ofs; /* Offset in struct flow. */
75 int len; /* Length in bytes. */
76 const char *name; /* Name (for debugging). */
77 };
78
79 static const struct cls_field cls_fields[CLS_N_FIELDS] = {
80 #define CLS_FIELD(MEMBER, NAME) \
81 { offsetof(struct flow, MEMBER), \
82 sizeof ((struct flow *)0)->MEMBER, \
83 #NAME },
84 CLS_FIELDS
85 #undef CLS_FIELD
86 };
87
88 struct test_rule {
89 int aux; /* Auxiliary data. */
90 struct cls_rule cls_rule; /* Classifier rule data. */
91 };
92
93 static struct test_rule *
94 test_rule_from_cls_rule(const struct cls_rule *rule)
95 {
96 return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
97 }
98
99 static void
100 test_rule_destroy(struct test_rule *rule)
101 {
102 if (rule) {
103 cls_rule_destroy(&rule->cls_rule);
104 free(rule);
105 }
106 }
107
108 static struct test_rule *make_rule(int wc_fields, unsigned int priority,
109 int value_pat);
110 static void free_rule(struct test_rule *);
111 static struct test_rule *clone_rule(const struct test_rule *);
112
113 /* Trivial (linear) classifier. */
114 struct tcls {
115 size_t n_rules;
116 size_t allocated_rules;
117 struct test_rule **rules;
118 };
119
120 static void
121 tcls_init(struct tcls *tcls)
122 {
123 tcls->n_rules = 0;
124 tcls->allocated_rules = 0;
125 tcls->rules = NULL;
126 }
127
128 static void
129 tcls_destroy(struct tcls *tcls)
130 {
131 if (tcls) {
132 size_t i;
133
134 for (i = 0; i < tcls->n_rules; i++) {
135 test_rule_destroy(tcls->rules[i]);
136 }
137 free(tcls->rules);
138 }
139 }
140
141 static bool
142 tcls_is_empty(const struct tcls *tcls)
143 {
144 return tcls->n_rules == 0;
145 }
146
147 static struct test_rule *
148 tcls_insert(struct tcls *tcls, const struct test_rule *rule)
149 {
150 size_t i;
151
152 for (i = 0; i < tcls->n_rules; i++) {
153 const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
154 if (cls_rule_equal(pos, &rule->cls_rule)) {
155 /* Exact match. */
156 free_rule(tcls->rules[i]);
157 tcls->rules[i] = clone_rule(rule);
158 return tcls->rules[i];
159 } else if (pos->priority < rule->cls_rule.priority) {
160 break;
161 }
162 }
163
164 if (tcls->n_rules >= tcls->allocated_rules) {
165 tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
166 sizeof *tcls->rules);
167 }
168 if (i != tcls->n_rules) {
169 memmove(&tcls->rules[i + 1], &tcls->rules[i],
170 sizeof *tcls->rules * (tcls->n_rules - i));
171 }
172 tcls->rules[i] = clone_rule(rule);
173 tcls->n_rules++;
174 return tcls->rules[i];
175 }
176
177 static void
178 tcls_remove(struct tcls *cls, const struct test_rule *rule)
179 {
180 size_t i;
181
182 for (i = 0; i < cls->n_rules; i++) {
183 struct test_rule *pos = cls->rules[i];
184 if (pos == rule) {
185 test_rule_destroy(pos);
186
187 memmove(&cls->rules[i], &cls->rules[i + 1],
188 sizeof *cls->rules * (cls->n_rules - i - 1));
189
190 cls->n_rules--;
191 return;
192 }
193 }
194 NOT_REACHED();
195 }
196
197 static bool
198 match(const struct cls_rule *wild_, const struct flow *fixed)
199 {
200 struct match wild;
201 int f_idx;
202
203 minimatch_expand(&wild_->match, &wild);
204 for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
205 bool eq;
206
207 if (f_idx == CLS_F_IDX_NW_SRC) {
208 eq = !((fixed->nw_src ^ wild.flow.nw_src)
209 & wild.wc.masks.nw_src);
210 } else if (f_idx == CLS_F_IDX_NW_DST) {
211 eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
212 & wild.wc.masks.nw_dst);
213 } else if (f_idx == CLS_F_IDX_TP_SRC) {
214 eq = !((fixed->tp_src ^ wild.flow.tp_src)
215 & wild.wc.masks.tp_src);
216 } else if (f_idx == CLS_F_IDX_TP_DST) {
217 eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
218 & wild.wc.masks.tp_dst);
219 } else if (f_idx == CLS_F_IDX_DL_SRC) {
220 eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
221 wild.wc.masks.dl_src);
222 } else if (f_idx == CLS_F_IDX_DL_DST) {
223 eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
224 wild.wc.masks.dl_dst);
225 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
226 eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
227 & wild.wc.masks.vlan_tci);
228 } else if (f_idx == CLS_F_IDX_TUN_ID) {
229 eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
230 & wild.wc.masks.tunnel.tun_id);
231 } else if (f_idx == CLS_F_IDX_METADATA) {
232 eq = !((fixed->metadata ^ wild.flow.metadata)
233 & wild.wc.masks.metadata);
234 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
235 eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
236 (wild.wc.masks.nw_tos & IP_DSCP_MASK));
237 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
238 eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
239 & wild.wc.masks.nw_proto);
240 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
241 eq = !((fixed->dl_type ^ wild.flow.dl_type)
242 & wild.wc.masks.dl_type);
243 } else if (f_idx == CLS_F_IDX_IN_PORT) {
244 eq = !((fixed->in_port.ofp_port
245 ^ wild.flow.in_port.ofp_port)
246 & wild.wc.masks.in_port.ofp_port);
247 } else {
248 NOT_REACHED();
249 }
250
251 if (!eq) {
252 return false;
253 }
254 }
255 return true;
256 }
257
258 static struct cls_rule *
259 tcls_lookup(const struct tcls *cls, const struct flow *flow)
260 {
261 size_t i;
262
263 for (i = 0; i < cls->n_rules; i++) {
264 struct test_rule *pos = cls->rules[i];
265 if (match(&pos->cls_rule, flow)) {
266 return &pos->cls_rule;
267 }
268 }
269 return NULL;
270 }
271
272 static void
273 tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
274 {
275 size_t i;
276
277 for (i = 0; i < cls->n_rules; ) {
278 struct test_rule *pos = cls->rules[i];
279 if (!minimask_has_extra(&pos->cls_rule.match.mask,
280 &target->match.mask)) {
281 struct flow flow;
282
283 miniflow_expand(&pos->cls_rule.match.flow, &flow);
284 if (match(target, &flow)) {
285 tcls_remove(cls, pos);
286 continue;
287 }
288 }
289 i++;
290 }
291 }
292 \f
293 static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
294 CONSTANT_HTONL(0xc0a04455) };
295 static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
296 CONSTANT_HTONL(0xc0a04455) };
297 static ovs_be64 tun_id_values[] = {
298 0,
299 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
300 static ovs_be64 metadata_values[] = {
301 0,
302 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
303 static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL };
304 static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
305 static ovs_be16 dl_type_values[]
306 = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
307 static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
308 CONSTANT_HTONS(80) };
309 static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
310 static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
311 { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
312 static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
313 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
314 static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
315 static uint8_t nw_dscp_values[] = { 48, 0 };
316
317 static void *values[CLS_N_FIELDS][2];
318
319 static void
320 init_values(void)
321 {
322 values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
323 values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
324
325 values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
326 values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
327
328 values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
329 values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
330
331 values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
332 values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
333
334 values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
335 values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
336
337 values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
338 values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
339
340 values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
341 values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
342
343 values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
344 values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
345
346 values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
347 values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
348
349 values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
350 values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
351
352 values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
353 values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
354
355 values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
356 values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
357
358 values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
359 values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
360 }
361
362 #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
363 #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
364 #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
365 #define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
366 #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
367 #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
368 #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
369 #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
370 #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
371 #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
372 #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
373 #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
374 #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
375
376 #define N_FLOW_VALUES (N_NW_SRC_VALUES * \
377 N_NW_DST_VALUES * \
378 N_TUN_ID_VALUES * \
379 N_IN_PORT_VALUES * \
380 N_VLAN_TCI_VALUES * \
381 N_DL_TYPE_VALUES * \
382 N_TP_SRC_VALUES * \
383 N_TP_DST_VALUES * \
384 N_DL_SRC_VALUES * \
385 N_DL_DST_VALUES * \
386 N_NW_PROTO_VALUES * \
387 N_NW_DSCP_VALUES)
388
389 static unsigned int
390 get_value(unsigned int *x, unsigned n_values)
391 {
392 unsigned int rem = *x % n_values;
393 *x /= n_values;
394 return rem;
395 }
396
397 static void
398 compare_classifiers(struct classifier *cls, struct tcls *tcls)
399 OVS_REQ_RDLOCK(cls->rwlock)
400 {
401 static const int confidence = 500;
402 unsigned int i;
403
404 assert(classifier_count(cls) == tcls->n_rules);
405 for (i = 0; i < confidence; i++) {
406 struct cls_rule *cr0, *cr1;
407 struct flow flow;
408 unsigned int x;
409
410 x = random_range(N_FLOW_VALUES);
411 memset(&flow, 0, sizeof flow);
412 flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
413 flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
414 flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
415 flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
416 flow.in_port.ofp_port = in_port_values[get_value(&x,
417 N_IN_PORT_VALUES)];
418 flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
419 flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
420 flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
421 flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
422 memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
423 ETH_ADDR_LEN);
424 memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
425 ETH_ADDR_LEN);
426 flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
427 flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
428
429 cr0 = classifier_lookup(cls, &flow, NULL);
430 cr1 = tcls_lookup(tcls, &flow);
431 assert((cr0 == NULL) == (cr1 == NULL));
432 if (cr0 != NULL) {
433 const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
434 const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
435
436 assert(cls_rule_equal(cr0, cr1));
437 assert(tr0->aux == tr1->aux);
438 }
439 }
440 }
441
442 static void
443 destroy_classifier(struct classifier *cls)
444 {
445 struct test_rule *rule, *next_rule;
446 struct cls_cursor cursor;
447
448 ovs_rwlock_wrlock(&cls->rwlock);
449 cls_cursor_init(&cursor, cls, NULL);
450 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
451 classifier_remove(cls, &rule->cls_rule);
452 free_rule(rule);
453 }
454 ovs_rwlock_unlock(&cls->rwlock);
455 classifier_destroy(cls);
456 }
457
458 static void
459 check_tables(const struct classifier *cls, int n_tables, int n_rules,
460 int n_dups) OVS_REQ_RDLOCK(cls->rwlock)
461 {
462 const struct cls_subtable *table;
463 struct test_rule *test_rule;
464 struct cls_cursor cursor;
465 int found_tables = 0;
466 int found_rules = 0;
467 int found_dups = 0;
468 int found_rules2 = 0;
469
470 HMAP_FOR_EACH (table, hmap_node, &cls->subtables) {
471 const struct cls_rule *head;
472 unsigned int max_priority = 0;
473 unsigned int max_count = 0;
474
475 assert(!hmap_is_empty(&table->rules));
476
477 found_tables++;
478 HMAP_FOR_EACH (head, hmap_node, &table->rules) {
479 unsigned int prev_priority = UINT_MAX;
480 const struct cls_rule *rule;
481
482 if (head->priority > max_priority) {
483 max_priority = head->priority;
484 max_count = 1;
485 } else if (head->priority == max_priority) {
486 ++max_count;
487 }
488
489 found_rules++;
490 LIST_FOR_EACH (rule, list, &head->list) {
491 assert(rule->priority < prev_priority);
492 assert(rule->priority <= table->max_priority);
493
494 prev_priority = rule->priority;
495 found_rules++;
496 found_dups++;
497 assert(classifier_find_rule_exactly(cls, rule) == rule);
498 }
499 }
500 assert(table->max_priority == max_priority);
501 assert(table->max_count == max_count);
502 }
503
504 assert(found_tables == hmap_count(&cls->subtables));
505 assert(n_tables == -1 || n_tables == hmap_count(&cls->subtables));
506 assert(n_rules == -1 || found_rules == n_rules);
507 assert(n_dups == -1 || found_dups == n_dups);
508
509 cls_cursor_init(&cursor, cls, NULL);
510 CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) {
511 found_rules2++;
512 }
513 assert(found_rules == found_rules2);
514 }
515
516 static struct test_rule *
517 make_rule(int wc_fields, unsigned int priority, int value_pat)
518 {
519 const struct cls_field *f;
520 struct test_rule *rule;
521 struct match match;
522
523 match_init_catchall(&match);
524 for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
525 int f_idx = f - cls_fields;
526 int value_idx = (value_pat & (1u << f_idx)) != 0;
527 memcpy((char *) &match.flow + f->ofs,
528 values[f_idx][value_idx], f->len);
529
530 if (f_idx == CLS_F_IDX_NW_SRC) {
531 match.wc.masks.nw_src = OVS_BE32_MAX;
532 } else if (f_idx == CLS_F_IDX_NW_DST) {
533 match.wc.masks.nw_dst = OVS_BE32_MAX;
534 } else if (f_idx == CLS_F_IDX_TP_SRC) {
535 match.wc.masks.tp_src = OVS_BE16_MAX;
536 } else if (f_idx == CLS_F_IDX_TP_DST) {
537 match.wc.masks.tp_dst = OVS_BE16_MAX;
538 } else if (f_idx == CLS_F_IDX_DL_SRC) {
539 memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN);
540 } else if (f_idx == CLS_F_IDX_DL_DST) {
541 memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN);
542 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
543 match.wc.masks.vlan_tci = OVS_BE16_MAX;
544 } else if (f_idx == CLS_F_IDX_TUN_ID) {
545 match.wc.masks.tunnel.tun_id = OVS_BE64_MAX;
546 } else if (f_idx == CLS_F_IDX_METADATA) {
547 match.wc.masks.metadata = OVS_BE64_MAX;
548 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
549 match.wc.masks.nw_tos |= IP_DSCP_MASK;
550 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
551 match.wc.masks.nw_proto = UINT8_MAX;
552 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
553 match.wc.masks.dl_type = OVS_BE16_MAX;
554 } else if (f_idx == CLS_F_IDX_IN_PORT) {
555 match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
556 } else {
557 NOT_REACHED();
558 }
559 }
560
561 rule = xzalloc(sizeof *rule);
562 cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX);
563 return rule;
564 }
565
566 static struct test_rule *
567 clone_rule(const struct test_rule *src)
568 {
569 struct test_rule *dst;
570
571 dst = xmalloc(sizeof *dst);
572 dst->aux = src->aux;
573 cls_rule_clone(&dst->cls_rule, &src->cls_rule);
574 return dst;
575 }
576
577 static void
578 free_rule(struct test_rule *rule)
579 {
580 cls_rule_destroy(&rule->cls_rule);
581 free(rule);
582 }
583
584 static void
585 shuffle(unsigned int *p, size_t n)
586 {
587 for (; n > 1; n--, p++) {
588 unsigned int *q = &p[random_range(n)];
589 unsigned int tmp = *p;
590 *p = *q;
591 *q = tmp;
592 }
593 }
594
595 static void
596 shuffle_u32s(uint32_t *p, size_t n)
597 {
598 for (; n > 1; n--, p++) {
599 uint32_t *q = &p[random_range(n)];
600 uint32_t tmp = *p;
601 *p = *q;
602 *q = tmp;
603 }
604 }
605 \f
606 /* Classifier tests. */
607
608 /* Tests an empty classifier. */
609 static void
610 test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
611 {
612 struct classifier cls;
613 struct tcls tcls;
614
615 classifier_init(&cls);
616 ovs_rwlock_rdlock(&cls.rwlock);
617 tcls_init(&tcls);
618 assert(classifier_is_empty(&cls));
619 assert(tcls_is_empty(&tcls));
620 compare_classifiers(&cls, &tcls);
621 ovs_rwlock_unlock(&cls.rwlock);
622 classifier_destroy(&cls);
623 tcls_destroy(&tcls);
624 }
625
626 /* Destroys a null classifier. */
627 static void
628 test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
629 {
630 classifier_destroy(NULL);
631 }
632
633 /* Tests classification with one rule at a time. */
634 static void
635 test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
636 {
637 unsigned int wc_fields; /* Hilarious. */
638
639 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
640 struct classifier cls;
641 struct test_rule *rule, *tcls_rule;
642 struct tcls tcls;
643
644 rule = make_rule(wc_fields,
645 hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
646
647 classifier_init(&cls);
648 ovs_rwlock_wrlock(&cls.rwlock);
649 tcls_init(&tcls);
650
651 tcls_rule = tcls_insert(&tcls, rule);
652 classifier_insert(&cls, &rule->cls_rule);
653 check_tables(&cls, 1, 1, 0);
654 compare_classifiers(&cls, &tcls);
655
656 classifier_remove(&cls, &rule->cls_rule);
657 tcls_remove(&tcls, tcls_rule);
658 assert(classifier_is_empty(&cls));
659 assert(tcls_is_empty(&tcls));
660 compare_classifiers(&cls, &tcls);
661
662 free_rule(rule);
663 ovs_rwlock_unlock(&cls.rwlock);
664 classifier_destroy(&cls);
665 tcls_destroy(&tcls);
666 }
667 }
668
669 /* Tests replacing one rule by another. */
670 static void
671 test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
672 {
673 unsigned int wc_fields;
674
675 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
676 struct classifier cls;
677 struct test_rule *rule1;
678 struct test_rule *rule2;
679 struct tcls tcls;
680
681 rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
682 rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
683 rule2->aux += 5;
684 rule2->aux += 5;
685
686 classifier_init(&cls);
687 ovs_rwlock_wrlock(&cls.rwlock);
688 tcls_init(&tcls);
689 tcls_insert(&tcls, rule1);
690 classifier_insert(&cls, &rule1->cls_rule);
691 check_tables(&cls, 1, 1, 0);
692 compare_classifiers(&cls, &tcls);
693 tcls_destroy(&tcls);
694
695 tcls_init(&tcls);
696 tcls_insert(&tcls, rule2);
697 assert(test_rule_from_cls_rule(
698 classifier_replace(&cls, &rule2->cls_rule)) == rule1);
699 free_rule(rule1);
700 check_tables(&cls, 1, 1, 0);
701 compare_classifiers(&cls, &tcls);
702 tcls_destroy(&tcls);
703 ovs_rwlock_unlock(&cls.rwlock);
704 destroy_classifier(&cls);
705 }
706 }
707
708 static int
709 factorial(int n_items)
710 {
711 int n, i;
712
713 n = 1;
714 for (i = 2; i <= n_items; i++) {
715 n *= i;
716 }
717 return n;
718 }
719
720 static void
721 swap(int *a, int *b)
722 {
723 int tmp = *a;
724 *a = *b;
725 *b = tmp;
726 }
727
728 static void
729 reverse(int *a, int n)
730 {
731 int i;
732
733 for (i = 0; i < n / 2; i++) {
734 int j = n - (i + 1);
735 swap(&a[i], &a[j]);
736 }
737 }
738
739 static bool
740 next_permutation(int *a, int n)
741 {
742 int k;
743
744 for (k = n - 2; k >= 0; k--) {
745 if (a[k] < a[k + 1]) {
746 int l;
747
748 for (l = n - 1; ; l--) {
749 if (a[l] > a[k]) {
750 swap(&a[k], &a[l]);
751 reverse(a + (k + 1), n - (k + 1));
752 return true;
753 }
754 }
755 }
756 }
757 return false;
758 }
759
760 /* Tests classification with rules that have the same matching criteria. */
761 static void
762 test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
763 {
764 enum { N_RULES = 3 };
765 int n_pris;
766
767 for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
768 int ops[N_RULES * 2];
769 int pris[N_RULES];
770 int n_permutations;
771 int i;
772
773 pris[0] = 0;
774 for (i = 1; i < N_RULES; i++) {
775 pris[i] = pris[i - 1] + (n_pris > i);
776 }
777
778 for (i = 0; i < N_RULES * 2; i++) {
779 ops[i] = i / 2;
780 }
781
782 n_permutations = 0;
783 do {
784 struct test_rule *rules[N_RULES];
785 struct test_rule *tcls_rules[N_RULES];
786 int pri_rules[N_RULES];
787 struct classifier cls;
788 struct tcls tcls;
789
790 n_permutations++;
791
792 for (i = 0; i < N_RULES; i++) {
793 rules[i] = make_rule(456, pris[i], 0);
794 tcls_rules[i] = NULL;
795 pri_rules[i] = -1;
796 }
797
798 classifier_init(&cls);
799 ovs_rwlock_wrlock(&cls.rwlock);
800 tcls_init(&tcls);
801
802 for (i = 0; i < ARRAY_SIZE(ops); i++) {
803 int j = ops[i];
804 int m, n;
805
806 if (!tcls_rules[j]) {
807 struct test_rule *displaced_rule;
808
809 tcls_rules[j] = tcls_insert(&tcls, rules[j]);
810 displaced_rule = test_rule_from_cls_rule(
811 classifier_replace(&cls, &rules[j]->cls_rule));
812 if (pri_rules[pris[j]] >= 0) {
813 int k = pri_rules[pris[j]];
814 assert(displaced_rule != NULL);
815 assert(displaced_rule != rules[j]);
816 assert(pris[j] == displaced_rule->cls_rule.priority);
817 tcls_rules[k] = NULL;
818 } else {
819 assert(displaced_rule == NULL);
820 }
821 pri_rules[pris[j]] = j;
822 } else {
823 classifier_remove(&cls, &rules[j]->cls_rule);
824 tcls_remove(&tcls, tcls_rules[j]);
825 tcls_rules[j] = NULL;
826 pri_rules[pris[j]] = -1;
827 }
828
829 n = 0;
830 for (m = 0; m < N_RULES; m++) {
831 n += tcls_rules[m] != NULL;
832 }
833 check_tables(&cls, n > 0, n, n - 1);
834
835 compare_classifiers(&cls, &tcls);
836 }
837
838 ovs_rwlock_unlock(&cls.rwlock);
839 classifier_destroy(&cls);
840 tcls_destroy(&tcls);
841
842 for (i = 0; i < N_RULES; i++) {
843 free_rule(rules[i]);
844 }
845 } while (next_permutation(ops, ARRAY_SIZE(ops)));
846 assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
847 }
848 }
849
850 static int
851 count_ones(unsigned long int x)
852 {
853 int n = 0;
854
855 while (x) {
856 x = zero_rightmost_1bit(x);
857 n++;
858 }
859
860 return n;
861 }
862
863 static bool
864 array_contains(int *array, int n, int value)
865 {
866 int i;
867
868 for (i = 0; i < n; i++) {
869 if (array[i] == value) {
870 return true;
871 }
872 }
873
874 return false;
875 }
876
877 /* Tests classification with two rules at a time that fall into the same
878 * table but different lists. */
879 static void
880 test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
881 {
882 int iteration;
883
884 for (iteration = 0; iteration < 50; iteration++) {
885 enum { N_RULES = 20 };
886 struct test_rule *rules[N_RULES];
887 struct test_rule *tcls_rules[N_RULES];
888 struct classifier cls;
889 struct tcls tcls;
890 int value_pats[N_RULES];
891 int value_mask;
892 int wcf;
893 int i;
894
895 do {
896 wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
897 value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
898 } while ((1 << count_ones(value_mask)) < N_RULES);
899
900 classifier_init(&cls);
901 ovs_rwlock_wrlock(&cls.rwlock);
902 tcls_init(&tcls);
903
904 for (i = 0; i < N_RULES; i++) {
905 unsigned int priority = random_uint32();
906
907 do {
908 value_pats[i] = random_uint32() & value_mask;
909 } while (array_contains(value_pats, i, value_pats[i]));
910
911 rules[i] = make_rule(wcf, priority, value_pats[i]);
912 tcls_rules[i] = tcls_insert(&tcls, rules[i]);
913 classifier_insert(&cls, &rules[i]->cls_rule);
914
915 check_tables(&cls, 1, i + 1, 0);
916 compare_classifiers(&cls, &tcls);
917 }
918
919 for (i = 0; i < N_RULES; i++) {
920 tcls_remove(&tcls, tcls_rules[i]);
921 classifier_remove(&cls, &rules[i]->cls_rule);
922 free_rule(rules[i]);
923
924 check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
925 compare_classifiers(&cls, &tcls);
926 }
927
928 ovs_rwlock_unlock(&cls.rwlock);
929 classifier_destroy(&cls);
930 tcls_destroy(&tcls);
931 }
932 }
933
934 /* Tests classification with many rules at a time that fall into random lists
935 * in 'n' tables. */
936 static void
937 test_many_rules_in_n_tables(int n_tables)
938 {
939 enum { MAX_RULES = 50 };
940 int wcfs[10];
941 int iteration;
942 int i;
943
944 assert(n_tables < 10);
945 for (i = 0; i < n_tables; i++) {
946 do {
947 wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
948 } while (array_contains(wcfs, i, wcfs[i]));
949 }
950
951 for (iteration = 0; iteration < 30; iteration++) {
952 unsigned int priorities[MAX_RULES];
953 struct classifier cls;
954 struct tcls tcls;
955
956 random_set_seed(iteration + 1);
957 for (i = 0; i < MAX_RULES; i++) {
958 priorities[i] = i * 129;
959 }
960 shuffle(priorities, ARRAY_SIZE(priorities));
961
962 classifier_init(&cls);
963 ovs_rwlock_wrlock(&cls.rwlock);
964 tcls_init(&tcls);
965
966 for (i = 0; i < MAX_RULES; i++) {
967 struct test_rule *rule;
968 unsigned int priority = priorities[i];
969 int wcf = wcfs[random_range(n_tables)];
970 int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
971 rule = make_rule(wcf, priority, value_pat);
972 tcls_insert(&tcls, rule);
973 classifier_insert(&cls, &rule->cls_rule);
974 check_tables(&cls, -1, i + 1, -1);
975 compare_classifiers(&cls, &tcls);
976 }
977
978 while (!classifier_is_empty(&cls)) {
979 struct test_rule *rule, *next_rule;
980 struct test_rule *target;
981 struct cls_cursor cursor;
982
983 target = clone_rule(tcls.rules[random_range(tcls.n_rules)]);
984
985 cls_cursor_init(&cursor, &cls, &target->cls_rule);
986 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
987 classifier_remove(&cls, &rule->cls_rule);
988 free_rule(rule);
989 }
990 tcls_delete_matches(&tcls, &target->cls_rule);
991 compare_classifiers(&cls, &tcls);
992 check_tables(&cls, -1, -1, -1);
993 free_rule(target);
994 }
995
996 ovs_rwlock_unlock(&cls.rwlock);
997 destroy_classifier(&cls);
998 tcls_destroy(&tcls);
999 }
1000 }
1001
1002 static void
1003 test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1004 {
1005 test_many_rules_in_n_tables(2);
1006 }
1007
1008 static void
1009 test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1010 {
1011 test_many_rules_in_n_tables(5);
1012 }
1013 \f
1014 /* Miniflow tests. */
1015
1016 static uint32_t
1017 random_value(void)
1018 {
1019 static const uint32_t values[] =
1020 { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
1021 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
1022
1023 return values[random_range(ARRAY_SIZE(values))];
1024 }
1025
1026 static bool
1027 choose(unsigned int n, unsigned int *idxp)
1028 {
1029 if (*idxp < n) {
1030 return true;
1031 } else {
1032 *idxp -= n;
1033 return false;
1034 }
1035 }
1036
1037 static bool
1038 init_consecutive_values(int n_consecutive, struct flow *flow,
1039 unsigned int *idxp)
1040 {
1041 uint32_t *flow_u32 = (uint32_t *) flow;
1042
1043 if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
1044 int i;
1045
1046 for (i = 0; i < n_consecutive; i++) {
1047 flow_u32[*idxp + i] = random_value();
1048 }
1049 return true;
1050 } else {
1051 return false;
1052 }
1053 }
1054
1055 static bool
1056 next_random_flow(struct flow *flow, unsigned int idx)
1057 {
1058 uint32_t *flow_u32 = (uint32_t *) flow;
1059 int i;
1060
1061 memset(flow, 0, sizeof *flow);
1062
1063 /* Empty flow. */
1064 if (choose(1, &idx)) {
1065 return true;
1066 }
1067
1068 /* All flows with a small number of consecutive nonzero values. */
1069 for (i = 1; i <= 4; i++) {
1070 if (init_consecutive_values(i, flow, &idx)) {
1071 return true;
1072 }
1073 }
1074
1075 /* All flows with a large number of consecutive nonzero values. */
1076 for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
1077 if (init_consecutive_values(i, flow, &idx)) {
1078 return true;
1079 }
1080 }
1081
1082 /* All flows with exactly two nonconsecutive nonzero values. */
1083 if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
1084 int ofs1;
1085
1086 for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
1087 int ofs2;
1088
1089 for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
1090 if (choose(1, &idx)) {
1091 flow_u32[ofs1] = random_value();
1092 flow_u32[ofs2] = random_value();
1093 return true;
1094 }
1095 }
1096 }
1097 NOT_REACHED();
1098 }
1099
1100 /* 16 randomly chosen flows with N >= 3 nonzero values. */
1101 if (choose(16 * (FLOW_U32S - 4), &idx)) {
1102 int n = idx / 16 + 3;
1103 int i;
1104
1105 for (i = 0; i < n; i++) {
1106 flow_u32[i] = random_value();
1107 }
1108 shuffle_u32s(flow_u32, FLOW_U32S);
1109
1110 return true;
1111 }
1112
1113 return false;
1114 }
1115
1116 static void
1117 any_random_flow(struct flow *flow)
1118 {
1119 static unsigned int max;
1120 if (!max) {
1121 while (next_random_flow(flow, max)) {
1122 max++;
1123 }
1124 }
1125
1126 next_random_flow(flow, random_range(max));
1127 }
1128
1129 static void
1130 toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
1131 {
1132 const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
1133 uint32_t *flow_u32 = (uint32_t *) flow;
1134 int i;
1135
1136 for (i = 0; i < FLOW_U32S; i++) {
1137 if (mask_u32[i] != 0) {
1138 uint32_t bit;
1139
1140 do {
1141 bit = 1u << random_range(32);
1142 } while (!(bit & mask_u32[i]));
1143 flow_u32[i] ^= bit;
1144 }
1145 }
1146 }
1147
1148 static void
1149 wildcard_extra_bits(struct flow_wildcards *mask)
1150 {
1151 uint32_t *mask_u32 = (uint32_t *) &mask->masks;
1152 int i;
1153
1154 for (i = 0; i < FLOW_U32S; i++) {
1155 if (mask_u32[i] != 0) {
1156 uint32_t bit;
1157
1158 do {
1159 bit = 1u << random_range(32);
1160 } while (!(bit & mask_u32[i]));
1161 mask_u32[i] &= ~bit;
1162 }
1163 }
1164 }
1165
1166 static void
1167 test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1168 {
1169 struct flow flow;
1170 unsigned int idx;
1171
1172 random_set_seed(0xb3faca38);
1173 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1174 const uint32_t *flow_u32 = (const uint32_t *) &flow;
1175 struct miniflow miniflow, miniflow2, miniflow3;
1176 struct flow flow2, flow3;
1177 struct flow_wildcards mask;
1178 struct minimask minimask;
1179 int i;
1180
1181 /* Convert flow to miniflow. */
1182 miniflow_init(&miniflow, &flow);
1183
1184 /* Check that the flow equals its miniflow. */
1185 assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci));
1186 for (i = 0; i < FLOW_U32S; i++) {
1187 assert(miniflow_get(&miniflow, i) == flow_u32[i]);
1188 }
1189
1190 /* Check that the miniflow equals itself. */
1191 assert(miniflow_equal(&miniflow, &miniflow));
1192
1193 /* Convert miniflow back to flow and verify that it's the same. */
1194 miniflow_expand(&miniflow, &flow2);
1195 assert(flow_equal(&flow, &flow2));
1196
1197 /* Check that copying a miniflow works properly. */
1198 miniflow_clone(&miniflow2, &miniflow);
1199 assert(miniflow_equal(&miniflow, &miniflow2));
1200 assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0));
1201 miniflow_expand(&miniflow2, &flow3);
1202 assert(flow_equal(&flow, &flow3));
1203
1204 /* Check that masked matches work as expected for identical flows and
1205 * miniflows. */
1206 do {
1207 next_random_flow(&mask.masks, 1);
1208 } while (flow_wildcards_is_catchall(&mask));
1209 minimask_init(&minimask, &mask);
1210 assert(minimask_is_catchall(&minimask)
1211 == flow_wildcards_is_catchall(&mask));
1212 assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask));
1213 assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1214 assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) ==
1215 flow_hash_in_minimask(&flow, &minimask, 0x12345678));
1216
1217 /* Check that masked matches work as expected for differing flows and
1218 * miniflows. */
1219 toggle_masked_flow_bits(&flow2, &mask);
1220 assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1221 miniflow_init(&miniflow3, &flow2);
1222 assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask));
1223
1224 /* Clean up. */
1225 miniflow_destroy(&miniflow);
1226 miniflow_destroy(&miniflow2);
1227 miniflow_destroy(&miniflow3);
1228 minimask_destroy(&minimask);
1229 }
1230 }
1231
1232 static void
1233 test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1234 {
1235 struct flow_wildcards catchall;
1236 struct minimask minicatchall;
1237 struct flow flow;
1238 unsigned int idx;
1239
1240 flow_wildcards_init_catchall(&catchall);
1241 minimask_init(&minicatchall, &catchall);
1242 assert(minimask_is_catchall(&minicatchall));
1243
1244 random_set_seed(0x2ec7905b);
1245 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1246 struct flow_wildcards mask;
1247 struct minimask minimask;
1248
1249 mask.masks = flow;
1250 minimask_init(&minimask, &mask);
1251 assert(!minimask_has_extra(&minimask, &minimask));
1252 assert(minimask_has_extra(&minicatchall, &minimask)
1253 == !minimask_is_catchall(&minimask));
1254 if (!minimask_is_catchall(&minimask)) {
1255 struct minimask minimask2;
1256
1257 wildcard_extra_bits(&mask);
1258 minimask_init(&minimask2, &mask);
1259 assert(minimask_has_extra(&minimask2, &minimask));
1260 assert(!minimask_has_extra(&minimask, &minimask2));
1261 minimask_destroy(&minimask2);
1262 }
1263
1264 minimask_destroy(&minimask);
1265 }
1266
1267 minimask_destroy(&minicatchall);
1268 }
1269
1270 static void
1271 test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1272 {
1273 struct flow_wildcards catchall;
1274 struct minimask minicatchall;
1275 struct flow flow;
1276 unsigned int idx;
1277
1278 flow_wildcards_init_catchall(&catchall);
1279 minimask_init(&minicatchall, &catchall);
1280 assert(minimask_is_catchall(&minicatchall));
1281
1282 random_set_seed(0x181bf0cd);
1283 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1284 struct minimask minimask, minimask2, minicombined;
1285 struct flow_wildcards mask, mask2, combined, combined2;
1286 uint32_t storage[FLOW_U32S];
1287 struct flow flow2;
1288
1289 mask.masks = flow;
1290 minimask_init(&minimask, &mask);
1291
1292 minimask_combine(&minicombined, &minimask, &minicatchall, storage);
1293 assert(minimask_is_catchall(&minicombined));
1294
1295 any_random_flow(&flow2);
1296 mask2.masks = flow2;
1297 minimask_init(&minimask2, &mask2);
1298
1299 minimask_combine(&minicombined, &minimask, &minimask2, storage);
1300 flow_wildcards_and(&combined, &mask, &mask2);
1301 minimask_expand(&minicombined, &combined2);
1302 assert(flow_wildcards_equal(&combined, &combined2));
1303
1304 minimask_destroy(&minimask);
1305 minimask_destroy(&minimask2);
1306 }
1307
1308 minimask_destroy(&minicatchall);
1309 }
1310 \f
1311 static const struct command commands[] = {
1312 /* Classifier tests. */
1313 {"empty", 0, 0, test_empty},
1314 {"destroy-null", 0, 0, test_destroy_null},
1315 {"single-rule", 0, 0, test_single_rule},
1316 {"rule-replacement", 0, 0, test_rule_replacement},
1317 {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list},
1318 {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
1319 {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables},
1320 {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables},
1321
1322 /* Miniflow and minimask tests. */
1323 {"miniflow", 0, 0, test_miniflow},
1324 {"minimask_has_extra", 0, 0, test_minimask_has_extra},
1325 {"minimask_combine", 0, 0, test_minimask_combine},
1326
1327 {NULL, 0, 0, NULL},
1328 };
1329
1330 int
1331 main(int argc, char *argv[])
1332 {
1333 set_program_name(argv[0]);
1334 init_values();
1335 run_command(argc - 1, argv + 1, commands);
1336 return 0;
1337 }