]> git.proxmox.com Git - mirror_ovs.git/blob - tests/test-classifier.c
flow: Add new wildcard functions.
[mirror_ovs.git] / tests / test-classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* "White box" tests for classifier.
18 *
19 * With very few exceptions, these tests obtain complete coverage of every
20 * basic block and every branch in the classifier implementation, e.g. a clean
21 * report from "gcov -b". (Covering the exceptions would require finding
22 * collisions in the hash function used for flow data, etc.)
23 *
24 * This test should receive a clean report from "valgrind --leak-check=full":
25 * it frees every heap block that it allocates.
26 */
27
28 #include <config.h>
29 #include "classifier.h"
30 #include <errno.h>
31 #include <limits.h>
32 #include "byte-order.h"
33 #include "command-line.h"
34 #include "flow.h"
35 #include "ofp-util.h"
36 #include "packets.h"
37 #include "unaligned.h"
38
39 #undef NDEBUG
40 #include <assert.h>
41
42 /* Fields in a rule. */
43 #define CLS_FIELDS \
44 /* struct flow all-caps */ \
45 /* member name name */ \
46 /* ----------- -------- */ \
47 CLS_FIELD(tunnel.tun_id, TUN_ID) \
48 CLS_FIELD(metadata, METADATA) \
49 CLS_FIELD(nw_src, NW_SRC) \
50 CLS_FIELD(nw_dst, NW_DST) \
51 CLS_FIELD(in_port, IN_PORT) \
52 CLS_FIELD(vlan_tci, VLAN_TCI) \
53 CLS_FIELD(dl_type, DL_TYPE) \
54 CLS_FIELD(tp_src, TP_SRC) \
55 CLS_FIELD(tp_dst, TP_DST) \
56 CLS_FIELD(dl_src, DL_SRC) \
57 CLS_FIELD(dl_dst, DL_DST) \
58 CLS_FIELD(nw_proto, NW_PROTO) \
59 CLS_FIELD(nw_tos, NW_DSCP)
60
61 /* Field indexes.
62 *
63 * (These are also indexed into struct classifier's 'tables' array.) */
64 enum {
65 #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
66 CLS_FIELDS
67 #undef CLS_FIELD
68 CLS_N_FIELDS
69 };
70
71 /* Field information. */
72 struct cls_field {
73 int ofs; /* Offset in struct flow. */
74 int len; /* Length in bytes. */
75 const char *name; /* Name (for debugging). */
76 };
77
78 static const struct cls_field cls_fields[CLS_N_FIELDS] = {
79 #define CLS_FIELD(MEMBER, NAME) \
80 { offsetof(struct flow, MEMBER), \
81 sizeof ((struct flow *)0)->MEMBER, \
82 #NAME },
83 CLS_FIELDS
84 #undef CLS_FIELD
85 };
86
87 struct test_rule {
88 int aux; /* Auxiliary data. */
89 struct cls_rule cls_rule; /* Classifier rule data. */
90 };
91
92 static struct test_rule *
93 test_rule_from_cls_rule(const struct cls_rule *rule)
94 {
95 return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
96 }
97
98 static void
99 test_rule_destroy(struct test_rule *rule)
100 {
101 if (rule) {
102 cls_rule_destroy(&rule->cls_rule);
103 free(rule);
104 }
105 }
106
107 static struct test_rule *make_rule(int wc_fields, unsigned int priority,
108 int value_pat);
109 static void free_rule(struct test_rule *);
110 static struct test_rule *clone_rule(const struct test_rule *);
111
112 /* Trivial (linear) classifier. */
113 struct tcls {
114 size_t n_rules;
115 size_t allocated_rules;
116 struct test_rule **rules;
117 };
118
119 static void
120 tcls_init(struct tcls *tcls)
121 {
122 tcls->n_rules = 0;
123 tcls->allocated_rules = 0;
124 tcls->rules = NULL;
125 }
126
127 static void
128 tcls_destroy(struct tcls *tcls)
129 {
130 if (tcls) {
131 size_t i;
132
133 for (i = 0; i < tcls->n_rules; i++) {
134 test_rule_destroy(tcls->rules[i]);
135 }
136 free(tcls->rules);
137 }
138 }
139
140 static bool
141 tcls_is_empty(const struct tcls *tcls)
142 {
143 return tcls->n_rules == 0;
144 }
145
146 static struct test_rule *
147 tcls_insert(struct tcls *tcls, const struct test_rule *rule)
148 {
149 size_t i;
150
151 for (i = 0; i < tcls->n_rules; i++) {
152 const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
153 if (cls_rule_equal(pos, &rule->cls_rule)) {
154 /* Exact match. */
155 free_rule(tcls->rules[i]);
156 tcls->rules[i] = clone_rule(rule);
157 return tcls->rules[i];
158 } else if (pos->priority < rule->cls_rule.priority) {
159 break;
160 }
161 }
162
163 if (tcls->n_rules >= tcls->allocated_rules) {
164 tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
165 sizeof *tcls->rules);
166 }
167 if (i != tcls->n_rules) {
168 memmove(&tcls->rules[i + 1], &tcls->rules[i],
169 sizeof *tcls->rules * (tcls->n_rules - i));
170 }
171 tcls->rules[i] = clone_rule(rule);
172 tcls->n_rules++;
173 return tcls->rules[i];
174 }
175
176 static void
177 tcls_remove(struct tcls *cls, const struct test_rule *rule)
178 {
179 size_t i;
180
181 for (i = 0; i < cls->n_rules; i++) {
182 struct test_rule *pos = cls->rules[i];
183 if (pos == rule) {
184 test_rule_destroy(pos);
185
186 memmove(&cls->rules[i], &cls->rules[i + 1],
187 sizeof *cls->rules * (cls->n_rules - i - 1));
188
189 cls->n_rules--;
190 return;
191 }
192 }
193 NOT_REACHED();
194 }
195
196 static bool
197 match(const struct cls_rule *wild_, const struct flow *fixed)
198 {
199 struct match wild;
200 int f_idx;
201
202 minimatch_expand(&wild_->match, &wild);
203 for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
204 bool eq;
205
206 if (f_idx == CLS_F_IDX_NW_SRC) {
207 eq = !((fixed->nw_src ^ wild.flow.nw_src)
208 & wild.wc.masks.nw_src);
209 } else if (f_idx == CLS_F_IDX_NW_DST) {
210 eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
211 & wild.wc.masks.nw_dst);
212 } else if (f_idx == CLS_F_IDX_TP_SRC) {
213 eq = !((fixed->tp_src ^ wild.flow.tp_src)
214 & wild.wc.masks.tp_src);
215 } else if (f_idx == CLS_F_IDX_TP_DST) {
216 eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
217 & wild.wc.masks.tp_dst);
218 } else if (f_idx == CLS_F_IDX_DL_SRC) {
219 eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
220 wild.wc.masks.dl_src);
221 } else if (f_idx == CLS_F_IDX_DL_DST) {
222 eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
223 wild.wc.masks.dl_dst);
224 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
225 eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
226 & wild.wc.masks.vlan_tci);
227 } else if (f_idx == CLS_F_IDX_TUN_ID) {
228 eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
229 & wild.wc.masks.tunnel.tun_id);
230 } else if (f_idx == CLS_F_IDX_METADATA) {
231 eq = !((fixed->metadata ^ wild.flow.metadata)
232 & wild.wc.masks.metadata);
233 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
234 eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
235 (wild.wc.masks.nw_tos & IP_DSCP_MASK));
236 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
237 eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
238 & wild.wc.masks.nw_proto);
239 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
240 eq = !((fixed->dl_type ^ wild.flow.dl_type)
241 & wild.wc.masks.dl_type);
242 } else if (f_idx == CLS_F_IDX_IN_PORT) {
243 eq = !((fixed->in_port ^ wild.flow.in_port)
244 & wild.wc.masks.in_port);
245 } else {
246 NOT_REACHED();
247 }
248
249 if (!eq) {
250 return false;
251 }
252 }
253 return true;
254 }
255
256 static struct cls_rule *
257 tcls_lookup(const struct tcls *cls, const struct flow *flow)
258 {
259 size_t i;
260
261 for (i = 0; i < cls->n_rules; i++) {
262 struct test_rule *pos = cls->rules[i];
263 if (match(&pos->cls_rule, flow)) {
264 return &pos->cls_rule;
265 }
266 }
267 return NULL;
268 }
269
270 static void
271 tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
272 {
273 size_t i;
274
275 for (i = 0; i < cls->n_rules; ) {
276 struct test_rule *pos = cls->rules[i];
277 if (!minimask_has_extra(&pos->cls_rule.match.mask,
278 &target->match.mask)) {
279 struct flow flow;
280
281 miniflow_expand(&pos->cls_rule.match.flow, &flow);
282 if (match(target, &flow)) {
283 tcls_remove(cls, pos);
284 continue;
285 }
286 }
287 i++;
288 }
289 }
290 \f
291 static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
292 CONSTANT_HTONL(0xc0a04455) };
293 static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
294 CONSTANT_HTONL(0xc0a04455) };
295 static ovs_be64 tun_id_values[] = {
296 0,
297 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
298 static ovs_be64 metadata_values[] = {
299 0,
300 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
301 static uint16_t in_port_values[] = { 1, OFPP_LOCAL };
302 static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
303 static ovs_be16 dl_type_values[]
304 = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
305 static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
306 CONSTANT_HTONS(80) };
307 static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
308 static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
309 { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
310 static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
311 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
312 static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
313 static uint8_t nw_dscp_values[] = { 48, 0 };
314
315 static void *values[CLS_N_FIELDS][2];
316
317 static void
318 init_values(void)
319 {
320 values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
321 values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
322
323 values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
324 values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
325
326 values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
327 values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
328
329 values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
330 values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
331
332 values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
333 values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
334
335 values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
336 values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
337
338 values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
339 values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
340
341 values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
342 values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
343
344 values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
345 values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
346
347 values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
348 values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
349
350 values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
351 values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
352
353 values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
354 values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
355
356 values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
357 values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
358 }
359
360 #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
361 #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
362 #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
363 #define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
364 #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
365 #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
366 #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
367 #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
368 #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
369 #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
370 #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
371 #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
372 #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
373
374 #define N_FLOW_VALUES (N_NW_SRC_VALUES * \
375 N_NW_DST_VALUES * \
376 N_TUN_ID_VALUES * \
377 N_IN_PORT_VALUES * \
378 N_VLAN_TCI_VALUES * \
379 N_DL_TYPE_VALUES * \
380 N_TP_SRC_VALUES * \
381 N_TP_DST_VALUES * \
382 N_DL_SRC_VALUES * \
383 N_DL_DST_VALUES * \
384 N_NW_PROTO_VALUES * \
385 N_NW_DSCP_VALUES)
386
387 static unsigned int
388 get_value(unsigned int *x, unsigned n_values)
389 {
390 unsigned int rem = *x % n_values;
391 *x /= n_values;
392 return rem;
393 }
394
395 static void
396 compare_classifiers(struct classifier *cls, struct tcls *tcls)
397 {
398 static const int confidence = 500;
399 unsigned int i;
400
401 assert(classifier_count(cls) == tcls->n_rules);
402 for (i = 0; i < confidence; i++) {
403 struct cls_rule *cr0, *cr1;
404 struct flow flow;
405 unsigned int x;
406
407 x = rand () % N_FLOW_VALUES;
408 memset(&flow, 0, sizeof flow);
409 flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
410 flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
411 flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
412 flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
413 flow.in_port = in_port_values[get_value(&x, N_IN_PORT_VALUES)];
414 flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
415 flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
416 flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
417 flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
418 memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
419 ETH_ADDR_LEN);
420 memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
421 ETH_ADDR_LEN);
422 flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
423 flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
424
425 cr0 = classifier_lookup(cls, &flow, NULL);
426 cr1 = tcls_lookup(tcls, &flow);
427 assert((cr0 == NULL) == (cr1 == NULL));
428 if (cr0 != NULL) {
429 const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
430 const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
431
432 assert(cls_rule_equal(cr0, cr1));
433 assert(tr0->aux == tr1->aux);
434 }
435 }
436 }
437
438 static void
439 destroy_classifier(struct classifier *cls)
440 {
441 struct test_rule *rule, *next_rule;
442 struct cls_cursor cursor;
443
444 cls_cursor_init(&cursor, cls, NULL);
445 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
446 classifier_remove(cls, &rule->cls_rule);
447 free_rule(rule);
448 }
449 classifier_destroy(cls);
450 }
451
452 static void
453 check_tables(const struct classifier *cls,
454 int n_tables, int n_rules, int n_dups)
455 {
456 const struct cls_table *table;
457 struct test_rule *test_rule;
458 struct cls_cursor cursor;
459 int found_tables = 0;
460 int found_rules = 0;
461 int found_dups = 0;
462 int found_rules2 = 0;
463
464 HMAP_FOR_EACH (table, hmap_node, &cls->tables) {
465 const struct cls_rule *head;
466 unsigned int max_priority = 0;
467 unsigned int max_count = 0;
468
469 assert(!hmap_is_empty(&table->rules));
470
471 found_tables++;
472 HMAP_FOR_EACH (head, hmap_node, &table->rules) {
473 unsigned int prev_priority = UINT_MAX;
474 const struct cls_rule *rule;
475
476 if (head->priority > max_priority) {
477 max_priority = head->priority;
478 max_count = 1;
479 } else if (head->priority == max_priority) {
480 ++max_count;
481 }
482
483 found_rules++;
484 LIST_FOR_EACH (rule, list, &head->list) {
485 assert(rule->priority < prev_priority);
486 assert(rule->priority <= table->max_priority);
487
488 prev_priority = rule->priority;
489 found_rules++;
490 found_dups++;
491 assert(classifier_find_rule_exactly(cls, rule) == rule);
492 }
493 }
494 assert(table->max_priority == max_priority);
495 assert(table->max_count == max_count);
496 }
497
498 assert(found_tables == hmap_count(&cls->tables));
499 assert(n_tables == -1 || n_tables == hmap_count(&cls->tables));
500 assert(n_rules == -1 || found_rules == n_rules);
501 assert(n_dups == -1 || found_dups == n_dups);
502
503 cls_cursor_init(&cursor, cls, NULL);
504 CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) {
505 found_rules2++;
506 }
507 assert(found_rules == found_rules2);
508 }
509
510 static struct test_rule *
511 make_rule(int wc_fields, unsigned int priority, int value_pat)
512 {
513 const struct cls_field *f;
514 struct test_rule *rule;
515 struct match match;
516
517 match_init_catchall(&match);
518 for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
519 int f_idx = f - cls_fields;
520 int value_idx = (value_pat & (1u << f_idx)) != 0;
521 memcpy((char *) &match.flow + f->ofs,
522 values[f_idx][value_idx], f->len);
523
524 if (f_idx == CLS_F_IDX_NW_SRC) {
525 match.wc.masks.nw_src = htonl(UINT32_MAX);
526 } else if (f_idx == CLS_F_IDX_NW_DST) {
527 match.wc.masks.nw_dst = htonl(UINT32_MAX);
528 } else if (f_idx == CLS_F_IDX_TP_SRC) {
529 match.wc.masks.tp_src = htons(UINT16_MAX);
530 } else if (f_idx == CLS_F_IDX_TP_DST) {
531 match.wc.masks.tp_dst = htons(UINT16_MAX);
532 } else if (f_idx == CLS_F_IDX_DL_SRC) {
533 memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN);
534 } else if (f_idx == CLS_F_IDX_DL_DST) {
535 memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN);
536 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
537 match.wc.masks.vlan_tci = htons(UINT16_MAX);
538 } else if (f_idx == CLS_F_IDX_TUN_ID) {
539 match.wc.masks.tunnel.tun_id = htonll(UINT64_MAX);
540 } else if (f_idx == CLS_F_IDX_METADATA) {
541 match.wc.masks.metadata = htonll(UINT64_MAX);
542 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
543 match.wc.masks.nw_tos |= IP_DSCP_MASK;
544 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
545 match.wc.masks.nw_proto = UINT8_MAX;
546 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
547 match.wc.masks.dl_type = htons(UINT16_MAX);
548 } else if (f_idx == CLS_F_IDX_IN_PORT) {
549 match.wc.masks.in_port = UINT16_MAX;
550 } else {
551 NOT_REACHED();
552 }
553 }
554
555 rule = xzalloc(sizeof *rule);
556 cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX);
557 return rule;
558 }
559
560 static struct test_rule *
561 clone_rule(const struct test_rule *src)
562 {
563 struct test_rule *dst;
564
565 dst = xmalloc(sizeof *dst);
566 dst->aux = src->aux;
567 cls_rule_clone(&dst->cls_rule, &src->cls_rule);
568 return dst;
569 }
570
571 static void
572 free_rule(struct test_rule *rule)
573 {
574 cls_rule_destroy(&rule->cls_rule);
575 free(rule);
576 }
577
578 static void
579 shuffle(unsigned int *p, size_t n)
580 {
581 for (; n > 1; n--, p++) {
582 unsigned int *q = &p[rand() % n];
583 unsigned int tmp = *p;
584 *p = *q;
585 *q = tmp;
586 }
587 }
588
589 static void
590 shuffle_u32s(uint32_t *p, size_t n)
591 {
592 for (; n > 1; n--, p++) {
593 uint32_t *q = &p[rand() % n];
594 uint32_t tmp = *p;
595 *p = *q;
596 *q = tmp;
597 }
598 }
599 \f
600 /* Classifier tests. */
601
602 /* Tests an empty classifier. */
603 static void
604 test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
605 {
606 struct classifier cls;
607 struct tcls tcls;
608
609 classifier_init(&cls);
610 tcls_init(&tcls);
611 assert(classifier_is_empty(&cls));
612 assert(tcls_is_empty(&tcls));
613 compare_classifiers(&cls, &tcls);
614 classifier_destroy(&cls);
615 tcls_destroy(&tcls);
616 }
617
618 /* Destroys a null classifier. */
619 static void
620 test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
621 {
622 classifier_destroy(NULL);
623 }
624
625 /* Tests classification with one rule at a time. */
626 static void
627 test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
628 {
629 unsigned int wc_fields; /* Hilarious. */
630
631 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
632 struct classifier cls;
633 struct test_rule *rule, *tcls_rule;
634 struct tcls tcls;
635
636 rule = make_rule(wc_fields,
637 hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
638
639 classifier_init(&cls);
640 tcls_init(&tcls);
641
642 tcls_rule = tcls_insert(&tcls, rule);
643 classifier_insert(&cls, &rule->cls_rule);
644 check_tables(&cls, 1, 1, 0);
645 compare_classifiers(&cls, &tcls);
646
647 classifier_remove(&cls, &rule->cls_rule);
648 tcls_remove(&tcls, tcls_rule);
649 assert(classifier_is_empty(&cls));
650 assert(tcls_is_empty(&tcls));
651 compare_classifiers(&cls, &tcls);
652
653 free_rule(rule);
654 classifier_destroy(&cls);
655 tcls_destroy(&tcls);
656 }
657 }
658
659 /* Tests replacing one rule by another. */
660 static void
661 test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
662 {
663 unsigned int wc_fields;
664
665 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
666 struct classifier cls;
667 struct test_rule *rule1;
668 struct test_rule *rule2;
669 struct tcls tcls;
670
671 rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
672 rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
673 rule2->aux += 5;
674 rule2->aux += 5;
675
676 classifier_init(&cls);
677 tcls_init(&tcls);
678 tcls_insert(&tcls, rule1);
679 classifier_insert(&cls, &rule1->cls_rule);
680 check_tables(&cls, 1, 1, 0);
681 compare_classifiers(&cls, &tcls);
682 tcls_destroy(&tcls);
683
684 tcls_init(&tcls);
685 tcls_insert(&tcls, rule2);
686 assert(test_rule_from_cls_rule(
687 classifier_replace(&cls, &rule2->cls_rule)) == rule1);
688 free_rule(rule1);
689 check_tables(&cls, 1, 1, 0);
690 compare_classifiers(&cls, &tcls);
691 tcls_destroy(&tcls);
692 destroy_classifier(&cls);
693 }
694 }
695
696 static int
697 factorial(int n_items)
698 {
699 int n, i;
700
701 n = 1;
702 for (i = 2; i <= n_items; i++) {
703 n *= i;
704 }
705 return n;
706 }
707
708 static void
709 swap(int *a, int *b)
710 {
711 int tmp = *a;
712 *a = *b;
713 *b = tmp;
714 }
715
716 static void
717 reverse(int *a, int n)
718 {
719 int i;
720
721 for (i = 0; i < n / 2; i++) {
722 int j = n - (i + 1);
723 swap(&a[i], &a[j]);
724 }
725 }
726
727 static bool
728 next_permutation(int *a, int n)
729 {
730 int k;
731
732 for (k = n - 2; k >= 0; k--) {
733 if (a[k] < a[k + 1]) {
734 int l;
735
736 for (l = n - 1; ; l--) {
737 if (a[l] > a[k]) {
738 swap(&a[k], &a[l]);
739 reverse(a + (k + 1), n - (k + 1));
740 return true;
741 }
742 }
743 }
744 }
745 return false;
746 }
747
748 /* Tests classification with rules that have the same matching criteria. */
749 static void
750 test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
751 {
752 enum { N_RULES = 3 };
753 int n_pris;
754
755 for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
756 int ops[N_RULES * 2];
757 int pris[N_RULES];
758 int n_permutations;
759 int i;
760
761 pris[0] = 0;
762 for (i = 1; i < N_RULES; i++) {
763 pris[i] = pris[i - 1] + (n_pris > i);
764 }
765
766 for (i = 0; i < N_RULES * 2; i++) {
767 ops[i] = i / 2;
768 }
769
770 n_permutations = 0;
771 do {
772 struct test_rule *rules[N_RULES];
773 struct test_rule *tcls_rules[N_RULES];
774 int pri_rules[N_RULES];
775 struct classifier cls;
776 struct tcls tcls;
777
778 n_permutations++;
779
780 for (i = 0; i < N_RULES; i++) {
781 rules[i] = make_rule(456, pris[i], 0);
782 tcls_rules[i] = NULL;
783 pri_rules[i] = -1;
784 }
785
786 classifier_init(&cls);
787 tcls_init(&tcls);
788
789 for (i = 0; i < ARRAY_SIZE(ops); i++) {
790 int j = ops[i];
791 int m, n;
792
793 if (!tcls_rules[j]) {
794 struct test_rule *displaced_rule;
795
796 tcls_rules[j] = tcls_insert(&tcls, rules[j]);
797 displaced_rule = test_rule_from_cls_rule(
798 classifier_replace(&cls, &rules[j]->cls_rule));
799 if (pri_rules[pris[j]] >= 0) {
800 int k = pri_rules[pris[j]];
801 assert(displaced_rule != NULL);
802 assert(displaced_rule != rules[j]);
803 assert(pris[j] == displaced_rule->cls_rule.priority);
804 tcls_rules[k] = NULL;
805 } else {
806 assert(displaced_rule == NULL);
807 }
808 pri_rules[pris[j]] = j;
809 } else {
810 classifier_remove(&cls, &rules[j]->cls_rule);
811 tcls_remove(&tcls, tcls_rules[j]);
812 tcls_rules[j] = NULL;
813 pri_rules[pris[j]] = -1;
814 }
815
816 n = 0;
817 for (m = 0; m < N_RULES; m++) {
818 n += tcls_rules[m] != NULL;
819 }
820 check_tables(&cls, n > 0, n, n - 1);
821
822 compare_classifiers(&cls, &tcls);
823 }
824
825 classifier_destroy(&cls);
826 tcls_destroy(&tcls);
827
828 for (i = 0; i < N_RULES; i++) {
829 free_rule(rules[i]);
830 }
831 } while (next_permutation(ops, ARRAY_SIZE(ops)));
832 assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
833 }
834 }
835
836 static int
837 count_ones(unsigned long int x)
838 {
839 int n = 0;
840
841 while (x) {
842 x = zero_rightmost_1bit(x);
843 n++;
844 }
845
846 return n;
847 }
848
849 static bool
850 array_contains(int *array, int n, int value)
851 {
852 int i;
853
854 for (i = 0; i < n; i++) {
855 if (array[i] == value) {
856 return true;
857 }
858 }
859
860 return false;
861 }
862
863 /* Tests classification with two rules at a time that fall into the same
864 * table but different lists. */
865 static void
866 test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
867 {
868 int iteration;
869
870 for (iteration = 0; iteration < 50; iteration++) {
871 enum { N_RULES = 20 };
872 struct test_rule *rules[N_RULES];
873 struct test_rule *tcls_rules[N_RULES];
874 struct classifier cls;
875 struct tcls tcls;
876 int value_pats[N_RULES];
877 int value_mask;
878 int wcf;
879 int i;
880
881 do {
882 wcf = rand() & ((1u << CLS_N_FIELDS) - 1);
883 value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
884 } while ((1 << count_ones(value_mask)) < N_RULES);
885
886 classifier_init(&cls);
887 tcls_init(&tcls);
888
889 for (i = 0; i < N_RULES; i++) {
890 unsigned int priority = rand();
891
892 do {
893 value_pats[i] = rand() & value_mask;
894 } while (array_contains(value_pats, i, value_pats[i]));
895
896 rules[i] = make_rule(wcf, priority, value_pats[i]);
897 tcls_rules[i] = tcls_insert(&tcls, rules[i]);
898 classifier_insert(&cls, &rules[i]->cls_rule);
899
900 check_tables(&cls, 1, i + 1, 0);
901 compare_classifiers(&cls, &tcls);
902 }
903
904 for (i = 0; i < N_RULES; i++) {
905 tcls_remove(&tcls, tcls_rules[i]);
906 classifier_remove(&cls, &rules[i]->cls_rule);
907 free_rule(rules[i]);
908
909 check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
910 compare_classifiers(&cls, &tcls);
911 }
912
913 classifier_destroy(&cls);
914 tcls_destroy(&tcls);
915 }
916 }
917
918 /* Tests classification with many rules at a time that fall into random lists
919 * in 'n' tables. */
920 static void
921 test_many_rules_in_n_tables(int n_tables)
922 {
923 enum { MAX_RULES = 50 };
924 int wcfs[10];
925 int iteration;
926 int i;
927
928 assert(n_tables < 10);
929 for (i = 0; i < n_tables; i++) {
930 do {
931 wcfs[i] = rand() & ((1u << CLS_N_FIELDS) - 1);
932 } while (array_contains(wcfs, i, wcfs[i]));
933 }
934
935 for (iteration = 0; iteration < 30; iteration++) {
936 unsigned int priorities[MAX_RULES];
937 struct classifier cls;
938 struct tcls tcls;
939
940 srand(iteration);
941 for (i = 0; i < MAX_RULES; i++) {
942 priorities[i] = i * 129;
943 }
944 shuffle(priorities, ARRAY_SIZE(priorities));
945
946 classifier_init(&cls);
947 tcls_init(&tcls);
948
949 for (i = 0; i < MAX_RULES; i++) {
950 struct test_rule *rule;
951 unsigned int priority = priorities[i];
952 int wcf = wcfs[rand() % n_tables];
953 int value_pat = rand() & ((1u << CLS_N_FIELDS) - 1);
954 rule = make_rule(wcf, priority, value_pat);
955 tcls_insert(&tcls, rule);
956 classifier_insert(&cls, &rule->cls_rule);
957 check_tables(&cls, -1, i + 1, -1);
958 compare_classifiers(&cls, &tcls);
959 }
960
961 while (!classifier_is_empty(&cls)) {
962 struct test_rule *rule, *next_rule;
963 struct test_rule *target;
964 struct cls_cursor cursor;
965
966 target = clone_rule(tcls.rules[rand() % tcls.n_rules]);
967
968 cls_cursor_init(&cursor, &cls, &target->cls_rule);
969 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
970 classifier_remove(&cls, &rule->cls_rule);
971 free_rule(rule);
972 }
973 tcls_delete_matches(&tcls, &target->cls_rule);
974 compare_classifiers(&cls, &tcls);
975 check_tables(&cls, -1, -1, -1);
976 free_rule(target);
977 }
978
979 destroy_classifier(&cls);
980 tcls_destroy(&tcls);
981 }
982 }
983
984 static void
985 test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
986 {
987 test_many_rules_in_n_tables(2);
988 }
989
990 static void
991 test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
992 {
993 test_many_rules_in_n_tables(5);
994 }
995 \f
996 /* Miniflow tests. */
997
998 static uint32_t
999 random_value(void)
1000 {
1001 static const uint32_t values[] =
1002 { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
1003 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
1004
1005 return values[random_uint32() % ARRAY_SIZE(values)];
1006 }
1007
1008 static bool
1009 choose(unsigned int n, unsigned int *idxp)
1010 {
1011 if (*idxp < n) {
1012 return true;
1013 } else {
1014 *idxp -= n;
1015 return false;
1016 }
1017 }
1018
1019 static bool
1020 init_consecutive_values(int n_consecutive, struct flow *flow,
1021 unsigned int *idxp)
1022 {
1023 uint32_t *flow_u32 = (uint32_t *) flow;
1024
1025 if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
1026 int i;
1027
1028 for (i = 0; i < n_consecutive; i++) {
1029 flow_u32[*idxp + i] = random_value();
1030 }
1031 return true;
1032 } else {
1033 return false;
1034 }
1035 }
1036
1037 static bool
1038 next_random_flow(struct flow *flow, unsigned int idx)
1039 {
1040 uint32_t *flow_u32 = (uint32_t *) flow;
1041 int i;
1042
1043 memset(flow, 0, sizeof *flow);
1044
1045 /* Empty flow. */
1046 if (choose(1, &idx)) {
1047 return true;
1048 }
1049
1050 /* All flows with a small number of consecutive nonzero values. */
1051 for (i = 1; i <= 4; i++) {
1052 if (init_consecutive_values(i, flow, &idx)) {
1053 return true;
1054 }
1055 }
1056
1057 /* All flows with a large number of consecutive nonzero values. */
1058 for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
1059 if (init_consecutive_values(i, flow, &idx)) {
1060 return true;
1061 }
1062 }
1063
1064 /* All flows with exactly two nonconsecutive nonzero values. */
1065 if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
1066 int ofs1;
1067
1068 for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
1069 int ofs2;
1070
1071 for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
1072 if (choose(1, &idx)) {
1073 flow_u32[ofs1] = random_value();
1074 flow_u32[ofs2] = random_value();
1075 return true;
1076 }
1077 }
1078 }
1079 NOT_REACHED();
1080 }
1081
1082 /* 16 randomly chosen flows with N >= 3 nonzero values. */
1083 if (choose(16 * (FLOW_U32S - 4), &idx)) {
1084 int n = idx / 16 + 3;
1085 int i;
1086
1087 for (i = 0; i < n; i++) {
1088 flow_u32[i] = random_value();
1089 }
1090 shuffle_u32s(flow_u32, FLOW_U32S);
1091
1092 return true;
1093 }
1094
1095 return false;
1096 }
1097
1098 static void
1099 any_random_flow(struct flow *flow)
1100 {
1101 static unsigned int max;
1102 if (!max) {
1103 while (next_random_flow(flow, max)) {
1104 max++;
1105 }
1106 }
1107
1108 next_random_flow(flow, random_range(max));
1109 }
1110
1111 static void
1112 toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
1113 {
1114 const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
1115 uint32_t *flow_u32 = (uint32_t *) flow;
1116 int i;
1117
1118 for (i = 0; i < FLOW_U32S; i++) {
1119 if (mask_u32[i] != 0) {
1120 uint32_t bit;
1121
1122 do {
1123 bit = 1u << random_range(32);
1124 } while (!(bit & mask_u32[i]));
1125 flow_u32[i] ^= bit;
1126 }
1127 }
1128 }
1129
1130 static void
1131 wildcard_extra_bits(struct flow_wildcards *mask)
1132 {
1133 uint32_t *mask_u32 = (uint32_t *) &mask->masks;
1134 int i;
1135
1136 for (i = 0; i < FLOW_U32S; i++) {
1137 if (mask_u32[i] != 0) {
1138 uint32_t bit;
1139
1140 do {
1141 bit = 1u << random_range(32);
1142 } while (!(bit & mask_u32[i]));
1143 mask_u32[i] &= ~bit;
1144 }
1145 }
1146 }
1147
1148 static void
1149 test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1150 {
1151 struct flow flow;
1152 unsigned int idx;
1153
1154 random_set_seed(0xb3faca38);
1155 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1156 const uint32_t *flow_u32 = (const uint32_t *) &flow;
1157 struct miniflow miniflow, miniflow2, miniflow3;
1158 struct flow flow2, flow3;
1159 struct flow_wildcards mask;
1160 struct minimask minimask;
1161 int i;
1162
1163 /* Convert flow to miniflow. */
1164 miniflow_init(&miniflow, &flow);
1165
1166 /* Check that the flow equals its miniflow. */
1167 assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci));
1168 for (i = 0; i < FLOW_U32S; i++) {
1169 assert(miniflow_get(&miniflow, i) == flow_u32[i]);
1170 }
1171
1172 /* Check that the miniflow equals itself. */
1173 assert(miniflow_equal(&miniflow, &miniflow));
1174
1175 /* Convert miniflow back to flow and verify that it's the same. */
1176 miniflow_expand(&miniflow, &flow2);
1177 assert(flow_equal(&flow, &flow2));
1178
1179 /* Check that copying a miniflow works properly. */
1180 miniflow_clone(&miniflow2, &miniflow);
1181 assert(miniflow_equal(&miniflow, &miniflow2));
1182 assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0));
1183 miniflow_expand(&miniflow2, &flow3);
1184 assert(flow_equal(&flow, &flow3));
1185
1186 /* Check that masked matches work as expected for identical flows and
1187 * miniflows. */
1188 do {
1189 next_random_flow(&mask.masks, 1);
1190 } while (flow_wildcards_is_catchall(&mask));
1191 minimask_init(&minimask, &mask);
1192 assert(minimask_is_catchall(&minimask)
1193 == flow_wildcards_is_catchall(&mask));
1194 assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask));
1195 assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1196 assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) ==
1197 flow_hash_in_minimask(&flow, &minimask, 0x12345678));
1198
1199 /* Check that masked matches work as expected for differing flows and
1200 * miniflows. */
1201 toggle_masked_flow_bits(&flow2, &mask);
1202 assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1203 miniflow_init(&miniflow3, &flow2);
1204 assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask));
1205
1206 /* Clean up. */
1207 miniflow_destroy(&miniflow);
1208 miniflow_destroy(&miniflow2);
1209 miniflow_destroy(&miniflow3);
1210 minimask_destroy(&minimask);
1211 }
1212 }
1213
1214 static void
1215 test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1216 {
1217 struct flow_wildcards catchall;
1218 struct minimask minicatchall;
1219 struct flow flow;
1220 unsigned int idx;
1221
1222 flow_wildcards_init_catchall(&catchall);
1223 minimask_init(&minicatchall, &catchall);
1224 assert(minimask_is_catchall(&minicatchall));
1225
1226 random_set_seed(0x2ec7905b);
1227 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1228 struct flow_wildcards mask;
1229 struct minimask minimask;
1230
1231 mask.masks = flow;
1232 minimask_init(&minimask, &mask);
1233 assert(!minimask_has_extra(&minimask, &minimask));
1234 assert(minimask_has_extra(&minicatchall, &minimask)
1235 == !minimask_is_catchall(&minimask));
1236 if (!minimask_is_catchall(&minimask)) {
1237 struct minimask minimask2;
1238
1239 wildcard_extra_bits(&mask);
1240 minimask_init(&minimask2, &mask);
1241 assert(minimask_has_extra(&minimask2, &minimask));
1242 assert(!minimask_has_extra(&minimask, &minimask2));
1243 minimask_destroy(&minimask2);
1244 }
1245
1246 minimask_destroy(&minimask);
1247 }
1248
1249 minimask_destroy(&minicatchall);
1250 }
1251
1252 static void
1253 test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1254 {
1255 struct flow_wildcards catchall;
1256 struct minimask minicatchall;
1257 struct flow flow;
1258 unsigned int idx;
1259
1260 flow_wildcards_init_catchall(&catchall);
1261 minimask_init(&minicatchall, &catchall);
1262 assert(minimask_is_catchall(&minicatchall));
1263
1264 random_set_seed(0x181bf0cd);
1265 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1266 struct minimask minimask, minimask2, minicombined;
1267 struct flow_wildcards mask, mask2, combined, combined2;
1268 uint32_t storage[FLOW_U32S];
1269 struct flow flow2;
1270
1271 mask.masks = flow;
1272 minimask_init(&minimask, &mask);
1273
1274 minimask_combine(&minicombined, &minimask, &minicatchall, storage);
1275 assert(minimask_is_catchall(&minicombined));
1276
1277 any_random_flow(&flow2);
1278 mask2.masks = flow2;
1279 minimask_init(&minimask2, &mask2);
1280
1281 minimask_combine(&minicombined, &minimask, &minimask2, storage);
1282 flow_wildcards_and(&combined, &mask, &mask2);
1283 minimask_expand(&minicombined, &combined2);
1284 assert(flow_wildcards_equal(&combined, &combined2));
1285
1286 minimask_destroy(&minimask);
1287 minimask_destroy(&minimask2);
1288 }
1289
1290 minimask_destroy(&minicatchall);
1291 }
1292 \f
1293 static const struct command commands[] = {
1294 /* Classifier tests. */
1295 {"empty", 0, 0, test_empty},
1296 {"destroy-null", 0, 0, test_destroy_null},
1297 {"single-rule", 0, 0, test_single_rule},
1298 {"rule-replacement", 0, 0, test_rule_replacement},
1299 {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list},
1300 {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
1301 {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables},
1302 {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables},
1303
1304 /* Miniflow and minimask tests. */
1305 {"miniflow", 0, 0, test_miniflow},
1306 {"minimask_has_extra", 0, 0, test_minimask_has_extra},
1307 {"minimask_combine", 0, 0, test_minimask_combine},
1308
1309 {NULL, 0, 0, NULL},
1310 };
1311
1312 int
1313 main(int argc, char *argv[])
1314 {
1315 set_program_name(argv[0]);
1316 init_values();
1317 run_command(argc - 1, argv + 1, commands);
1318 return 0;
1319 }