]> git.proxmox.com Git - mirror_ovs.git/blob - tests/test-classifier.c
lib/classifier: Simplify iteration with C99 declaration.
[mirror_ovs.git] / tests / test-classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* "White box" tests for classifier.
18 *
19 * With very few exceptions, these tests obtain complete coverage of every
20 * basic block and every branch in the classifier implementation, e.g. a clean
21 * report from "gcov -b". (Covering the exceptions would require finding
22 * collisions in the hash function used for flow data, etc.)
23 *
24 * This test should receive a clean report from "valgrind --leak-check=full":
25 * it frees every heap block that it allocates.
26 */
27
28 #include <config.h>
29 #include <errno.h>
30 #include <limits.h>
31 #include "byte-order.h"
32 #include "command-line.h"
33 #include "flow.h"
34 #include "ofp-util.h"
35 #include "packets.h"
36 #include "random.h"
37 #include "unaligned.h"
38 #include "ovstest.h"
39 #undef NDEBUG
40 #include <assert.h>
41
42 /* We need access to classifier internal definitions to be able to fully
43 * test them. The alternative would be to expose them all in the classifier
44 * API. */
45 #include "classifier.c"
46
47 /* Fields in a rule. */
48 #define CLS_FIELDS \
49 /* struct flow all-caps */ \
50 /* member name name */ \
51 /* ----------- -------- */ \
52 CLS_FIELD(tunnel.tun_id, TUN_ID) \
53 CLS_FIELD(metadata, METADATA) \
54 CLS_FIELD(nw_src, NW_SRC) \
55 CLS_FIELD(nw_dst, NW_DST) \
56 CLS_FIELD(in_port, IN_PORT) \
57 CLS_FIELD(vlan_tci, VLAN_TCI) \
58 CLS_FIELD(dl_type, DL_TYPE) \
59 CLS_FIELD(tp_src, TP_SRC) \
60 CLS_FIELD(tp_dst, TP_DST) \
61 CLS_FIELD(dl_src, DL_SRC) \
62 CLS_FIELD(dl_dst, DL_DST) \
63 CLS_FIELD(nw_proto, NW_PROTO) \
64 CLS_FIELD(nw_tos, NW_DSCP)
65
66 /* Field indexes.
67 *
68 * (These are also indexed into struct classifier's 'tables' array.) */
69 enum {
70 #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
71 CLS_FIELDS
72 #undef CLS_FIELD
73 CLS_N_FIELDS
74 };
75
76 /* Field information. */
77 struct cls_field {
78 int ofs; /* Offset in struct flow. */
79 int len; /* Length in bytes. */
80 const char *name; /* Name (for debugging). */
81 };
82
83 static const struct cls_field cls_fields[CLS_N_FIELDS] = {
84 #define CLS_FIELD(MEMBER, NAME) \
85 { offsetof(struct flow, MEMBER), \
86 sizeof ((struct flow *)0)->MEMBER, \
87 #NAME },
88 CLS_FIELDS
89 #undef CLS_FIELD
90 };
91
92 struct test_rule {
93 int aux; /* Auxiliary data. */
94 struct cls_rule cls_rule; /* Classifier rule data. */
95 };
96
97 static struct test_rule *
98 test_rule_from_cls_rule(const struct cls_rule *rule)
99 {
100 return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
101 }
102
103 static void
104 test_rule_destroy(struct test_rule *rule)
105 {
106 if (rule) {
107 cls_rule_destroy(&rule->cls_rule);
108 free(rule);
109 }
110 }
111
112 static struct test_rule *make_rule(int wc_fields, unsigned int priority,
113 int value_pat);
114 static void free_rule(struct test_rule *);
115 static struct test_rule *clone_rule(const struct test_rule *);
116
117 /* Trivial (linear) classifier. */
118 struct tcls {
119 size_t n_rules;
120 size_t allocated_rules;
121 struct test_rule **rules;
122 };
123
124 static void
125 tcls_init(struct tcls *tcls)
126 {
127 tcls->n_rules = 0;
128 tcls->allocated_rules = 0;
129 tcls->rules = NULL;
130 }
131
132 static void
133 tcls_destroy(struct tcls *tcls)
134 {
135 if (tcls) {
136 size_t i;
137
138 for (i = 0; i < tcls->n_rules; i++) {
139 test_rule_destroy(tcls->rules[i]);
140 }
141 free(tcls->rules);
142 }
143 }
144
145 static bool
146 tcls_is_empty(const struct tcls *tcls)
147 {
148 return tcls->n_rules == 0;
149 }
150
151 static struct test_rule *
152 tcls_insert(struct tcls *tcls, const struct test_rule *rule)
153 {
154 size_t i;
155
156 for (i = 0; i < tcls->n_rules; i++) {
157 const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
158 if (cls_rule_equal(pos, &rule->cls_rule)) {
159 /* Exact match. */
160 free_rule(tcls->rules[i]);
161 tcls->rules[i] = clone_rule(rule);
162 return tcls->rules[i];
163 } else if (pos->priority < rule->cls_rule.priority) {
164 break;
165 }
166 }
167
168 if (tcls->n_rules >= tcls->allocated_rules) {
169 tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
170 sizeof *tcls->rules);
171 }
172 if (i != tcls->n_rules) {
173 memmove(&tcls->rules[i + 1], &tcls->rules[i],
174 sizeof *tcls->rules * (tcls->n_rules - i));
175 }
176 tcls->rules[i] = clone_rule(rule);
177 tcls->n_rules++;
178 return tcls->rules[i];
179 }
180
181 static void
182 tcls_remove(struct tcls *cls, const struct test_rule *rule)
183 {
184 size_t i;
185
186 for (i = 0; i < cls->n_rules; i++) {
187 struct test_rule *pos = cls->rules[i];
188 if (pos == rule) {
189 test_rule_destroy(pos);
190
191 memmove(&cls->rules[i], &cls->rules[i + 1],
192 sizeof *cls->rules * (cls->n_rules - i - 1));
193
194 cls->n_rules--;
195 return;
196 }
197 }
198 OVS_NOT_REACHED();
199 }
200
201 static bool
202 match(const struct cls_rule *wild_, const struct flow *fixed)
203 {
204 struct match wild;
205 int f_idx;
206
207 minimatch_expand(&wild_->match, &wild);
208 for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
209 bool eq;
210
211 if (f_idx == CLS_F_IDX_NW_SRC) {
212 eq = !((fixed->nw_src ^ wild.flow.nw_src)
213 & wild.wc.masks.nw_src);
214 } else if (f_idx == CLS_F_IDX_NW_DST) {
215 eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
216 & wild.wc.masks.nw_dst);
217 } else if (f_idx == CLS_F_IDX_TP_SRC) {
218 eq = !((fixed->tp_src ^ wild.flow.tp_src)
219 & wild.wc.masks.tp_src);
220 } else if (f_idx == CLS_F_IDX_TP_DST) {
221 eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
222 & wild.wc.masks.tp_dst);
223 } else if (f_idx == CLS_F_IDX_DL_SRC) {
224 eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
225 wild.wc.masks.dl_src);
226 } else if (f_idx == CLS_F_IDX_DL_DST) {
227 eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
228 wild.wc.masks.dl_dst);
229 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
230 eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
231 & wild.wc.masks.vlan_tci);
232 } else if (f_idx == CLS_F_IDX_TUN_ID) {
233 eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
234 & wild.wc.masks.tunnel.tun_id);
235 } else if (f_idx == CLS_F_IDX_METADATA) {
236 eq = !((fixed->metadata ^ wild.flow.metadata)
237 & wild.wc.masks.metadata);
238 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
239 eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
240 (wild.wc.masks.nw_tos & IP_DSCP_MASK));
241 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
242 eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
243 & wild.wc.masks.nw_proto);
244 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
245 eq = !((fixed->dl_type ^ wild.flow.dl_type)
246 & wild.wc.masks.dl_type);
247 } else if (f_idx == CLS_F_IDX_IN_PORT) {
248 eq = !((fixed->in_port.ofp_port
249 ^ wild.flow.in_port.ofp_port)
250 & wild.wc.masks.in_port.ofp_port);
251 } else {
252 OVS_NOT_REACHED();
253 }
254
255 if (!eq) {
256 return false;
257 }
258 }
259 return true;
260 }
261
262 static struct cls_rule *
263 tcls_lookup(const struct tcls *cls, const struct flow *flow)
264 {
265 size_t i;
266
267 for (i = 0; i < cls->n_rules; i++) {
268 struct test_rule *pos = cls->rules[i];
269 if (match(&pos->cls_rule, flow)) {
270 return &pos->cls_rule;
271 }
272 }
273 return NULL;
274 }
275
276 static void
277 tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
278 {
279 size_t i;
280
281 for (i = 0; i < cls->n_rules; ) {
282 struct test_rule *pos = cls->rules[i];
283 if (!minimask_has_extra(&pos->cls_rule.match.mask,
284 &target->match.mask)) {
285 struct flow flow;
286
287 miniflow_expand(&pos->cls_rule.match.flow, &flow);
288 if (match(target, &flow)) {
289 tcls_remove(cls, pos);
290 continue;
291 }
292 }
293 i++;
294 }
295 }
296 \f
297 static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
298 CONSTANT_HTONL(0xc0a04455) };
299 static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
300 CONSTANT_HTONL(0xc0a04455) };
301 static ovs_be64 tun_id_values[] = {
302 0,
303 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
304 static ovs_be64 metadata_values[] = {
305 0,
306 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
307 static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL };
308 static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
309 static ovs_be16 dl_type_values[]
310 = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
311 static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
312 CONSTANT_HTONS(80) };
313 static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
314 static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
315 { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
316 static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
317 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
318 static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
319 static uint8_t nw_dscp_values[] = { 48, 0 };
320
321 static void *values[CLS_N_FIELDS][2];
322
323 static void
324 init_values(void)
325 {
326 values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
327 values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
328
329 values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
330 values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
331
332 values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
333 values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
334
335 values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
336 values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
337
338 values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
339 values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
340
341 values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
342 values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
343
344 values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
345 values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
346
347 values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
348 values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
349
350 values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
351 values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
352
353 values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
354 values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
355
356 values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
357 values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
358
359 values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
360 values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
361
362 values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
363 values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
364 }
365
366 #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
367 #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
368 #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
369 #define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
370 #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
371 #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
372 #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
373 #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
374 #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
375 #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
376 #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
377 #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
378 #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
379
380 #define N_FLOW_VALUES (N_NW_SRC_VALUES * \
381 N_NW_DST_VALUES * \
382 N_TUN_ID_VALUES * \
383 N_IN_PORT_VALUES * \
384 N_VLAN_TCI_VALUES * \
385 N_DL_TYPE_VALUES * \
386 N_TP_SRC_VALUES * \
387 N_TP_DST_VALUES * \
388 N_DL_SRC_VALUES * \
389 N_DL_DST_VALUES * \
390 N_NW_PROTO_VALUES * \
391 N_NW_DSCP_VALUES)
392
393 static unsigned int
394 get_value(unsigned int *x, unsigned n_values)
395 {
396 unsigned int rem = *x % n_values;
397 *x /= n_values;
398 return rem;
399 }
400
401 static void
402 compare_classifiers(struct classifier *cls, struct tcls *tcls)
403 OVS_REQ_RDLOCK(cls->rwlock)
404 {
405 static const int confidence = 500;
406 unsigned int i;
407
408 assert(classifier_count(cls) == tcls->n_rules);
409 for (i = 0; i < confidence; i++) {
410 struct cls_rule *cr0, *cr1, *cr2;
411 struct flow flow;
412 struct flow_wildcards wc;
413 unsigned int x;
414
415 flow_wildcards_init_catchall(&wc);
416 x = random_range(N_FLOW_VALUES);
417 memset(&flow, 0, sizeof flow);
418 flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
419 flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
420 flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
421 flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
422 flow.in_port.ofp_port = in_port_values[get_value(&x,
423 N_IN_PORT_VALUES)];
424 flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
425 flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
426 flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
427 flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
428 memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
429 ETH_ADDR_LEN);
430 memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
431 ETH_ADDR_LEN);
432 flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
433 flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
434
435 /* This assertion is here to suppress a GCC 4.9 array-bounds warning */
436 ovs_assert(cls->cls->n_tries <= CLS_MAX_TRIES);
437
438 cr0 = classifier_lookup(cls, &flow, &wc);
439 cr1 = tcls_lookup(tcls, &flow);
440 assert((cr0 == NULL) == (cr1 == NULL));
441 if (cr0 != NULL) {
442 const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
443 const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
444
445 assert(cls_rule_equal(cr0, cr1));
446 assert(tr0->aux == tr1->aux);
447 }
448 cr2 = classifier_lookup(cls, &flow, NULL);
449 assert(cr2 == cr0);
450 }
451 }
452
453 static void
454 destroy_classifier(struct classifier *cls)
455 {
456 struct test_rule *rule, *next_rule;
457
458 CLS_FOR_EACH_SAFE (rule, next_rule, cls_rule, cls) {
459 fat_rwlock_wrlock(&cls->rwlock);
460 classifier_remove(cls, &rule->cls_rule);
461 fat_rwlock_unlock(&cls->rwlock);
462 free_rule(rule);
463 }
464 classifier_destroy(cls);
465 }
466
467 static void
468 pvector_verify(struct pvector *pvec)
469 {
470 void *ptr OVS_UNUSED;
471 unsigned int priority, prev_priority = UINT_MAX;
472
473 PVECTOR_FOR_EACH (ptr, pvec) {
474 priority = cursor__.vector[cursor__.entry_idx].priority;
475 if (priority > prev_priority) {
476 VLOG_ABORT("Priority vector is out of order (%u > %u)",
477 priority, prev_priority);
478 }
479 prev_priority = priority;
480 }
481 }
482
483 static void
484 check_tables(const struct classifier *cls, int n_tables, int n_rules,
485 int n_dups) OVS_EXCLUDED(cls->rwlock)
486 {
487 const struct cls_subtable *table;
488 struct test_rule *test_rule;
489 int found_tables = 0;
490 int found_rules = 0;
491 int found_dups = 0;
492 int found_rules2 = 0;
493
494 pvector_verify(&cls->cls->subtables);
495
496 CMAP_FOR_EACH (table, cmap_node, &cls->cls->subtables_map) {
497 const struct cls_match *head;
498 unsigned int max_priority = 0;
499 unsigned int max_count = 0;
500 bool found = false;
501 const struct cls_subtable *iter;
502
503 /* Locate the subtable from 'subtables'. */
504 PVECTOR_FOR_EACH (iter, &cls->cls->subtables) {
505 if (iter == table) {
506 if (found) {
507 VLOG_ABORT("Subtable %p duplicated in 'subtables'.",
508 table);
509 }
510 found = true;
511 }
512 }
513 if (!found) {
514 VLOG_ABORT("Subtable %p not found from 'subtables'.", table);
515 }
516
517 assert(!cmap_is_empty(&table->rules));
518
519 found_tables++;
520 CMAP_FOR_EACH (head, cmap_node, &table->rules) {
521 unsigned int prev_priority = UINT_MAX;
522 const struct cls_match *rule;
523
524 if (head->priority > max_priority) {
525 max_priority = head->priority;
526 max_count = 1;
527 } else if (head->priority == max_priority) {
528 ++max_count;
529 }
530
531 found_rules++;
532 LIST_FOR_EACH (rule, list, &head->list) {
533 assert(rule->priority < prev_priority);
534 assert(rule->priority <= table->max_priority);
535
536 prev_priority = rule->priority;
537 found_rules++;
538 found_dups++;
539 fat_rwlock_rdlock(&cls->rwlock);
540 assert(classifier_find_rule_exactly(cls, rule->cls_rule)
541 == rule->cls_rule);
542 fat_rwlock_unlock(&cls->rwlock);
543 }
544 }
545 assert(table->max_priority == max_priority);
546 assert(table->max_count == max_count);
547 }
548
549 assert(found_tables == cmap_count(&cls->cls->subtables_map));
550 assert(found_tables == pvector_count(&cls->cls->subtables));
551 assert(n_tables == -1 || n_tables == cmap_count(&cls->cls->subtables_map));
552 assert(n_rules == -1 || found_rules == n_rules);
553 assert(n_dups == -1 || found_dups == n_dups);
554
555 CLS_FOR_EACH (test_rule, cls_rule, cls) {
556 found_rules2++;
557 }
558 assert(found_rules == found_rules2);
559 }
560
561 static struct test_rule *
562 make_rule(int wc_fields, unsigned int priority, int value_pat)
563 {
564 const struct cls_field *f;
565 struct test_rule *rule;
566 struct match match;
567
568 match_init_catchall(&match);
569 for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
570 int f_idx = f - cls_fields;
571 int value_idx = (value_pat & (1u << f_idx)) != 0;
572 memcpy((char *) &match.flow + f->ofs,
573 values[f_idx][value_idx], f->len);
574
575 if (f_idx == CLS_F_IDX_NW_SRC) {
576 match.wc.masks.nw_src = OVS_BE32_MAX;
577 } else if (f_idx == CLS_F_IDX_NW_DST) {
578 match.wc.masks.nw_dst = OVS_BE32_MAX;
579 } else if (f_idx == CLS_F_IDX_TP_SRC) {
580 match.wc.masks.tp_src = OVS_BE16_MAX;
581 } else if (f_idx == CLS_F_IDX_TP_DST) {
582 match.wc.masks.tp_dst = OVS_BE16_MAX;
583 } else if (f_idx == CLS_F_IDX_DL_SRC) {
584 memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN);
585 } else if (f_idx == CLS_F_IDX_DL_DST) {
586 memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN);
587 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
588 match.wc.masks.vlan_tci = OVS_BE16_MAX;
589 } else if (f_idx == CLS_F_IDX_TUN_ID) {
590 match.wc.masks.tunnel.tun_id = OVS_BE64_MAX;
591 } else if (f_idx == CLS_F_IDX_METADATA) {
592 match.wc.masks.metadata = OVS_BE64_MAX;
593 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
594 match.wc.masks.nw_tos |= IP_DSCP_MASK;
595 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
596 match.wc.masks.nw_proto = UINT8_MAX;
597 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
598 match.wc.masks.dl_type = OVS_BE16_MAX;
599 } else if (f_idx == CLS_F_IDX_IN_PORT) {
600 match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
601 } else {
602 OVS_NOT_REACHED();
603 }
604 }
605
606 rule = xzalloc(sizeof *rule);
607 cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX);
608 return rule;
609 }
610
611 static struct test_rule *
612 clone_rule(const struct test_rule *src)
613 {
614 struct test_rule *dst;
615
616 dst = xmalloc(sizeof *dst);
617 dst->aux = src->aux;
618 cls_rule_clone(&dst->cls_rule, &src->cls_rule);
619 return dst;
620 }
621
622 static void
623 free_rule(struct test_rule *rule)
624 {
625 cls_rule_destroy(&rule->cls_rule);
626 free(rule);
627 }
628
629 static void
630 shuffle(unsigned int *p, size_t n)
631 {
632 for (; n > 1; n--, p++) {
633 unsigned int *q = &p[random_range(n)];
634 unsigned int tmp = *p;
635 *p = *q;
636 *q = tmp;
637 }
638 }
639
640 static void
641 shuffle_u32s(uint32_t *p, size_t n)
642 {
643 for (; n > 1; n--, p++) {
644 uint32_t *q = &p[random_range(n)];
645 uint32_t tmp = *p;
646 *p = *q;
647 *q = tmp;
648 }
649 }
650 \f
651 /* Classifier tests. */
652
653 static enum mf_field_id trie_fields[2] = {
654 MFF_IPV4_DST, MFF_IPV4_SRC
655 };
656
657 /* Tests an empty classifier. */
658 static void
659 test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
660 {
661 struct classifier cls;
662 struct tcls tcls;
663
664 classifier_init(&cls, flow_segment_u32s);
665 fat_rwlock_wrlock(&cls.rwlock);
666 classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields));
667 tcls_init(&tcls);
668 assert(classifier_is_empty(&cls));
669 assert(tcls_is_empty(&tcls));
670 compare_classifiers(&cls, &tcls);
671 fat_rwlock_unlock(&cls.rwlock);
672 classifier_destroy(&cls);
673 tcls_destroy(&tcls);
674 }
675
676 /* Destroys a null classifier. */
677 static void
678 test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
679 {
680 classifier_destroy(NULL);
681 }
682
683 /* Tests classification with one rule at a time. */
684 static void
685 test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
686 {
687 unsigned int wc_fields; /* Hilarious. */
688
689 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
690 struct classifier cls;
691 struct test_rule *rule, *tcls_rule;
692 struct tcls tcls;
693
694 rule = make_rule(wc_fields,
695 hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
696
697 classifier_init(&cls, flow_segment_u32s);
698 fat_rwlock_wrlock(&cls.rwlock);
699 classifier_set_prefix_fields(&cls, trie_fields,
700 ARRAY_SIZE(trie_fields));
701 tcls_init(&tcls);
702
703 tcls_rule = tcls_insert(&tcls, rule);
704 classifier_insert(&cls, &rule->cls_rule);
705 compare_classifiers(&cls, &tcls);
706 fat_rwlock_unlock(&cls.rwlock);
707 check_tables(&cls, 1, 1, 0);
708
709 fat_rwlock_wrlock(&cls.rwlock);
710 classifier_remove(&cls, &rule->cls_rule);
711 tcls_remove(&tcls, tcls_rule);
712 assert(classifier_is_empty(&cls));
713 assert(tcls_is_empty(&tcls));
714 compare_classifiers(&cls, &tcls);
715 fat_rwlock_unlock(&cls.rwlock);
716
717 free_rule(rule);
718 classifier_destroy(&cls);
719 tcls_destroy(&tcls);
720 }
721 }
722
723 /* Tests replacing one rule by another. */
724 static void
725 test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
726 {
727 unsigned int wc_fields;
728
729 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
730 struct classifier cls;
731 struct test_rule *rule1;
732 struct test_rule *rule2;
733 struct tcls tcls;
734
735 rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
736 rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
737 rule2->aux += 5;
738 rule2->aux += 5;
739
740 classifier_init(&cls, flow_segment_u32s);
741 fat_rwlock_wrlock(&cls.rwlock);
742 classifier_set_prefix_fields(&cls, trie_fields,
743 ARRAY_SIZE(trie_fields));
744 tcls_init(&tcls);
745 tcls_insert(&tcls, rule1);
746 classifier_insert(&cls, &rule1->cls_rule);
747 compare_classifiers(&cls, &tcls);
748 fat_rwlock_unlock(&cls.rwlock);
749 check_tables(&cls, 1, 1, 0);
750 tcls_destroy(&tcls);
751
752 tcls_init(&tcls);
753 tcls_insert(&tcls, rule2);
754
755 fat_rwlock_wrlock(&cls.rwlock);
756 assert(test_rule_from_cls_rule(
757 classifier_replace(&cls, &rule2->cls_rule)) == rule1);
758 free_rule(rule1);
759 compare_classifiers(&cls, &tcls);
760 fat_rwlock_unlock(&cls.rwlock);
761 check_tables(&cls, 1, 1, 0);
762
763 tcls_destroy(&tcls);
764 destroy_classifier(&cls);
765 }
766 }
767
768 static int
769 factorial(int n_items)
770 {
771 int n, i;
772
773 n = 1;
774 for (i = 2; i <= n_items; i++) {
775 n *= i;
776 }
777 return n;
778 }
779
780 static void
781 swap(int *a, int *b)
782 {
783 int tmp = *a;
784 *a = *b;
785 *b = tmp;
786 }
787
788 static void
789 reverse(int *a, int n)
790 {
791 int i;
792
793 for (i = 0; i < n / 2; i++) {
794 int j = n - (i + 1);
795 swap(&a[i], &a[j]);
796 }
797 }
798
799 static bool
800 next_permutation(int *a, int n)
801 {
802 int k;
803
804 for (k = n - 2; k >= 0; k--) {
805 if (a[k] < a[k + 1]) {
806 int l;
807
808 for (l = n - 1; ; l--) {
809 if (a[l] > a[k]) {
810 swap(&a[k], &a[l]);
811 reverse(a + (k + 1), n - (k + 1));
812 return true;
813 }
814 }
815 }
816 }
817 return false;
818 }
819
820 /* Tests classification with rules that have the same matching criteria. */
821 static void
822 test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
823 {
824 enum { N_RULES = 3 };
825 int n_pris;
826
827 for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
828 int ops[N_RULES * 2];
829 int pris[N_RULES];
830 int n_permutations;
831 int i;
832
833 pris[0] = 0;
834 for (i = 1; i < N_RULES; i++) {
835 pris[i] = pris[i - 1] + (n_pris > i);
836 }
837
838 for (i = 0; i < N_RULES * 2; i++) {
839 ops[i] = i / 2;
840 }
841
842 n_permutations = 0;
843 do {
844 struct test_rule *rules[N_RULES];
845 struct test_rule *tcls_rules[N_RULES];
846 int pri_rules[N_RULES];
847 struct classifier cls;
848 struct tcls tcls;
849
850 n_permutations++;
851
852 for (i = 0; i < N_RULES; i++) {
853 rules[i] = make_rule(456, pris[i], 0);
854 tcls_rules[i] = NULL;
855 pri_rules[i] = -1;
856 }
857
858 classifier_init(&cls, flow_segment_u32s);
859 fat_rwlock_wrlock(&cls.rwlock);
860 classifier_set_prefix_fields(&cls, trie_fields,
861 ARRAY_SIZE(trie_fields));
862 fat_rwlock_unlock(&cls.rwlock);
863 tcls_init(&tcls);
864
865 for (i = 0; i < ARRAY_SIZE(ops); i++) {
866 int j = ops[i];
867 int m, n;
868
869 fat_rwlock_wrlock(&cls.rwlock);
870 if (!tcls_rules[j]) {
871 struct test_rule *displaced_rule;
872
873 tcls_rules[j] = tcls_insert(&tcls, rules[j]);
874 displaced_rule = test_rule_from_cls_rule(
875 classifier_replace(&cls, &rules[j]->cls_rule));
876 if (pri_rules[pris[j]] >= 0) {
877 int k = pri_rules[pris[j]];
878 assert(displaced_rule != NULL);
879 assert(displaced_rule != rules[j]);
880 assert(pris[j] == displaced_rule->cls_rule.priority);
881 tcls_rules[k] = NULL;
882 } else {
883 assert(displaced_rule == NULL);
884 }
885 pri_rules[pris[j]] = j;
886 } else {
887 classifier_remove(&cls, &rules[j]->cls_rule);
888 tcls_remove(&tcls, tcls_rules[j]);
889 tcls_rules[j] = NULL;
890 pri_rules[pris[j]] = -1;
891 }
892 compare_classifiers(&cls, &tcls);
893 fat_rwlock_unlock(&cls.rwlock);
894
895 n = 0;
896 for (m = 0; m < N_RULES; m++) {
897 n += tcls_rules[m] != NULL;
898 }
899 check_tables(&cls, n > 0, n, n - 1);
900 }
901
902 fat_rwlock_wrlock(&cls.rwlock);
903 for (i = 0; i < N_RULES; i++) {
904 if (rules[i]->cls_rule.cls_match) {
905 classifier_remove(&cls, &rules[i]->cls_rule);
906 }
907 free_rule(rules[i]);
908 }
909 fat_rwlock_unlock(&cls.rwlock);
910 classifier_destroy(&cls);
911 tcls_destroy(&tcls);
912 } while (next_permutation(ops, ARRAY_SIZE(ops)));
913 assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
914 }
915 }
916
917 static int
918 count_ones(unsigned long int x)
919 {
920 int n = 0;
921
922 while (x) {
923 x = zero_rightmost_1bit(x);
924 n++;
925 }
926
927 return n;
928 }
929
930 static bool
931 array_contains(int *array, int n, int value)
932 {
933 int i;
934
935 for (i = 0; i < n; i++) {
936 if (array[i] == value) {
937 return true;
938 }
939 }
940
941 return false;
942 }
943
944 /* Tests classification with two rules at a time that fall into the same
945 * table but different lists. */
946 static void
947 test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
948 {
949 int iteration;
950
951 for (iteration = 0; iteration < 50; iteration++) {
952 enum { N_RULES = 20 };
953 struct test_rule *rules[N_RULES];
954 struct test_rule *tcls_rules[N_RULES];
955 struct classifier cls;
956 struct tcls tcls;
957 int value_pats[N_RULES];
958 int value_mask;
959 int wcf;
960 int i;
961
962 do {
963 wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
964 value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
965 } while ((1 << count_ones(value_mask)) < N_RULES);
966
967 classifier_init(&cls, flow_segment_u32s);
968 fat_rwlock_wrlock(&cls.rwlock);
969 classifier_set_prefix_fields(&cls, trie_fields,
970 ARRAY_SIZE(trie_fields));
971 fat_rwlock_unlock(&cls.rwlock);
972 tcls_init(&tcls);
973
974 for (i = 0; i < N_RULES; i++) {
975 unsigned int priority = random_uint32();
976
977 do {
978 value_pats[i] = random_uint32() & value_mask;
979 } while (array_contains(value_pats, i, value_pats[i]));
980
981 rules[i] = make_rule(wcf, priority, value_pats[i]);
982 tcls_rules[i] = tcls_insert(&tcls, rules[i]);
983
984 fat_rwlock_wrlock(&cls.rwlock);
985 classifier_insert(&cls, &rules[i]->cls_rule);
986 compare_classifiers(&cls, &tcls);
987 fat_rwlock_unlock(&cls.rwlock);
988
989 check_tables(&cls, 1, i + 1, 0);
990 }
991
992 for (i = 0; i < N_RULES; i++) {
993 tcls_remove(&tcls, tcls_rules[i]);
994 fat_rwlock_wrlock(&cls.rwlock);
995 classifier_remove(&cls, &rules[i]->cls_rule);
996 compare_classifiers(&cls, &tcls);
997 fat_rwlock_unlock(&cls.rwlock);
998 free_rule(rules[i]);
999
1000 check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
1001 }
1002
1003 classifier_destroy(&cls);
1004 tcls_destroy(&tcls);
1005 }
1006 }
1007
1008 /* Tests classification with many rules at a time that fall into random lists
1009 * in 'n' tables. */
1010 static void
1011 test_many_rules_in_n_tables(int n_tables)
1012 {
1013 enum { MAX_RULES = 50 };
1014 int wcfs[10];
1015 int iteration;
1016 int i;
1017
1018 assert(n_tables < 10);
1019 for (i = 0; i < n_tables; i++) {
1020 do {
1021 wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
1022 } while (array_contains(wcfs, i, wcfs[i]));
1023 }
1024
1025 for (iteration = 0; iteration < 30; iteration++) {
1026 unsigned int priorities[MAX_RULES];
1027 struct classifier cls;
1028 struct tcls tcls;
1029
1030 random_set_seed(iteration + 1);
1031 for (i = 0; i < MAX_RULES; i++) {
1032 priorities[i] = i * 129;
1033 }
1034 shuffle(priorities, ARRAY_SIZE(priorities));
1035
1036 classifier_init(&cls, flow_segment_u32s);
1037 fat_rwlock_wrlock(&cls.rwlock);
1038 classifier_set_prefix_fields(&cls, trie_fields,
1039 ARRAY_SIZE(trie_fields));
1040 fat_rwlock_unlock(&cls.rwlock);
1041 tcls_init(&tcls);
1042
1043 for (i = 0; i < MAX_RULES; i++) {
1044 struct test_rule *rule;
1045 unsigned int priority = priorities[i];
1046 int wcf = wcfs[random_range(n_tables)];
1047 int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
1048 rule = make_rule(wcf, priority, value_pat);
1049 tcls_insert(&tcls, rule);
1050 fat_rwlock_wrlock(&cls.rwlock);
1051 classifier_insert(&cls, &rule->cls_rule);
1052 compare_classifiers(&cls, &tcls);
1053 fat_rwlock_unlock(&cls.rwlock);
1054 check_tables(&cls, -1, i + 1, -1);
1055 }
1056
1057 while (!classifier_is_empty(&cls)) {
1058 struct test_rule *rule, *next_rule;
1059 struct test_rule *target;
1060
1061 target = clone_rule(tcls.rules[random_range(tcls.n_rules)]);
1062
1063 CLS_FOR_EACH_TARGET_SAFE (rule, next_rule, cls_rule, &cls,
1064 &target->cls_rule) {
1065 fat_rwlock_wrlock(&cls.rwlock);
1066 classifier_remove(&cls, &rule->cls_rule);
1067 fat_rwlock_unlock(&cls.rwlock);
1068 free_rule(rule);
1069 }
1070
1071 tcls_delete_matches(&tcls, &target->cls_rule);
1072 fat_rwlock_rdlock(&cls.rwlock);
1073 compare_classifiers(&cls, &tcls);
1074 fat_rwlock_unlock(&cls.rwlock);
1075 check_tables(&cls, -1, -1, -1);
1076 free_rule(target);
1077 }
1078
1079 destroy_classifier(&cls);
1080 tcls_destroy(&tcls);
1081 }
1082 }
1083
1084 static void
1085 test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1086 {
1087 test_many_rules_in_n_tables(2);
1088 }
1089
1090 static void
1091 test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1092 {
1093 test_many_rules_in_n_tables(5);
1094 }
1095 \f
1096 /* Miniflow tests. */
1097
1098 static uint32_t
1099 random_value(void)
1100 {
1101 static const uint32_t values[] =
1102 { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
1103 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
1104
1105 return values[random_range(ARRAY_SIZE(values))];
1106 }
1107
1108 static bool
1109 choose(unsigned int n, unsigned int *idxp)
1110 {
1111 if (*idxp < n) {
1112 return true;
1113 } else {
1114 *idxp -= n;
1115 return false;
1116 }
1117 }
1118
1119 static bool
1120 init_consecutive_values(int n_consecutive, struct flow *flow,
1121 unsigned int *idxp)
1122 {
1123 uint32_t *flow_u32 = (uint32_t *) flow;
1124
1125 if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
1126 int i;
1127
1128 for (i = 0; i < n_consecutive; i++) {
1129 flow_u32[*idxp + i] = random_value();
1130 }
1131 return true;
1132 } else {
1133 return false;
1134 }
1135 }
1136
1137 static bool
1138 next_random_flow(struct flow *flow, unsigned int idx)
1139 {
1140 uint32_t *flow_u32 = (uint32_t *) flow;
1141 int i;
1142
1143 memset(flow, 0, sizeof *flow);
1144
1145 /* Empty flow. */
1146 if (choose(1, &idx)) {
1147 return true;
1148 }
1149
1150 /* All flows with a small number of consecutive nonzero values. */
1151 for (i = 1; i <= 4; i++) {
1152 if (init_consecutive_values(i, flow, &idx)) {
1153 return true;
1154 }
1155 }
1156
1157 /* All flows with a large number of consecutive nonzero values. */
1158 for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
1159 if (init_consecutive_values(i, flow, &idx)) {
1160 return true;
1161 }
1162 }
1163
1164 /* All flows with exactly two nonconsecutive nonzero values. */
1165 if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
1166 int ofs1;
1167
1168 for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
1169 int ofs2;
1170
1171 for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
1172 if (choose(1, &idx)) {
1173 flow_u32[ofs1] = random_value();
1174 flow_u32[ofs2] = random_value();
1175 return true;
1176 }
1177 }
1178 }
1179 OVS_NOT_REACHED();
1180 }
1181
1182 /* 16 randomly chosen flows with N >= 3 nonzero values. */
1183 if (choose(16 * (FLOW_U32S - 4), &idx)) {
1184 int n = idx / 16 + 3;
1185 int i;
1186
1187 for (i = 0; i < n; i++) {
1188 flow_u32[i] = random_value();
1189 }
1190 shuffle_u32s(flow_u32, FLOW_U32S);
1191
1192 return true;
1193 }
1194
1195 return false;
1196 }
1197
1198 static void
1199 any_random_flow(struct flow *flow)
1200 {
1201 static unsigned int max;
1202 if (!max) {
1203 while (next_random_flow(flow, max)) {
1204 max++;
1205 }
1206 }
1207
1208 next_random_flow(flow, random_range(max));
1209 }
1210
1211 static void
1212 toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
1213 {
1214 const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
1215 uint32_t *flow_u32 = (uint32_t *) flow;
1216 int i;
1217
1218 for (i = 0; i < FLOW_U32S; i++) {
1219 if (mask_u32[i] != 0) {
1220 uint32_t bit;
1221
1222 do {
1223 bit = 1u << random_range(32);
1224 } while (!(bit & mask_u32[i]));
1225 flow_u32[i] ^= bit;
1226 }
1227 }
1228 }
1229
1230 static void
1231 wildcard_extra_bits(struct flow_wildcards *mask)
1232 {
1233 uint32_t *mask_u32 = (uint32_t *) &mask->masks;
1234 int i;
1235
1236 for (i = 0; i < FLOW_U32S; i++) {
1237 if (mask_u32[i] != 0) {
1238 uint32_t bit;
1239
1240 do {
1241 bit = 1u << random_range(32);
1242 } while (!(bit & mask_u32[i]));
1243 mask_u32[i] &= ~bit;
1244 }
1245 }
1246 }
1247
1248 static void
1249 test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1250 {
1251 struct flow flow;
1252 unsigned int idx;
1253
1254 random_set_seed(0xb3faca38);
1255 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1256 const uint32_t *flow_u32 = (const uint32_t *) &flow;
1257 struct miniflow miniflow, miniflow2, miniflow3;
1258 struct flow flow2, flow3;
1259 struct flow_wildcards mask;
1260 struct minimask minimask;
1261 int i;
1262
1263 /* Convert flow to miniflow. */
1264 miniflow_init(&miniflow, &flow);
1265
1266 /* Check that the flow equals its miniflow. */
1267 assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci));
1268 for (i = 0; i < FLOW_U32S; i++) {
1269 assert(MINIFLOW_GET_TYPE(&miniflow, uint32_t, i * 4)
1270 == flow_u32[i]);
1271 }
1272
1273 /* Check that the miniflow equals itself. */
1274 assert(miniflow_equal(&miniflow, &miniflow));
1275
1276 /* Convert miniflow back to flow and verify that it's the same. */
1277 miniflow_expand(&miniflow, &flow2);
1278 assert(flow_equal(&flow, &flow2));
1279
1280 /* Check that copying a miniflow works properly. */
1281 miniflow_clone(&miniflow2, &miniflow);
1282 assert(miniflow_equal(&miniflow, &miniflow2));
1283 assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0));
1284 miniflow_expand(&miniflow2, &flow3);
1285 assert(flow_equal(&flow, &flow3));
1286
1287 /* Check that masked matches work as expected for identical flows and
1288 * miniflows. */
1289 do {
1290 next_random_flow(&mask.masks, 1);
1291 } while (flow_wildcards_is_catchall(&mask));
1292 minimask_init(&minimask, &mask);
1293 assert(minimask_is_catchall(&minimask)
1294 == flow_wildcards_is_catchall(&mask));
1295 assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask));
1296 assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1297 assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) ==
1298 flow_hash_in_minimask(&flow, &minimask, 0x12345678));
1299
1300 /* Check that masked matches work as expected for differing flows and
1301 * miniflows. */
1302 toggle_masked_flow_bits(&flow2, &mask);
1303 assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1304 miniflow_init(&miniflow3, &flow2);
1305 assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask));
1306
1307 /* Clean up. */
1308 miniflow_destroy(&miniflow);
1309 miniflow_destroy(&miniflow2);
1310 miniflow_destroy(&miniflow3);
1311 minimask_destroy(&minimask);
1312 }
1313 }
1314
1315 static void
1316 test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1317 {
1318 struct flow_wildcards catchall;
1319 struct minimask minicatchall;
1320 struct flow flow;
1321 unsigned int idx;
1322
1323 flow_wildcards_init_catchall(&catchall);
1324 minimask_init(&minicatchall, &catchall);
1325 assert(minimask_is_catchall(&minicatchall));
1326
1327 random_set_seed(0x2ec7905b);
1328 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1329 struct flow_wildcards mask;
1330 struct minimask minimask;
1331
1332 mask.masks = flow;
1333 minimask_init(&minimask, &mask);
1334 assert(!minimask_has_extra(&minimask, &minimask));
1335 assert(minimask_has_extra(&minicatchall, &minimask)
1336 == !minimask_is_catchall(&minimask));
1337 if (!minimask_is_catchall(&minimask)) {
1338 struct minimask minimask2;
1339
1340 wildcard_extra_bits(&mask);
1341 minimask_init(&minimask2, &mask);
1342 assert(minimask_has_extra(&minimask2, &minimask));
1343 assert(!minimask_has_extra(&minimask, &minimask2));
1344 minimask_destroy(&minimask2);
1345 }
1346
1347 minimask_destroy(&minimask);
1348 }
1349
1350 minimask_destroy(&minicatchall);
1351 }
1352
1353 static void
1354 test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1355 {
1356 struct flow_wildcards catchall;
1357 struct minimask minicatchall;
1358 struct flow flow;
1359 unsigned int idx;
1360
1361 flow_wildcards_init_catchall(&catchall);
1362 minimask_init(&minicatchall, &catchall);
1363 assert(minimask_is_catchall(&minicatchall));
1364
1365 random_set_seed(0x181bf0cd);
1366 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1367 struct minimask minimask, minimask2, minicombined;
1368 struct flow_wildcards mask, mask2, combined, combined2;
1369 uint32_t storage[FLOW_U32S];
1370 struct flow flow2;
1371
1372 mask.masks = flow;
1373 minimask_init(&minimask, &mask);
1374
1375 minimask_combine(&minicombined, &minimask, &minicatchall, storage);
1376 assert(minimask_is_catchall(&minicombined));
1377
1378 any_random_flow(&flow2);
1379 mask2.masks = flow2;
1380 minimask_init(&minimask2, &mask2);
1381
1382 minimask_combine(&minicombined, &minimask, &minimask2, storage);
1383 flow_wildcards_and(&combined, &mask, &mask2);
1384 minimask_expand(&minicombined, &combined2);
1385 assert(flow_wildcards_equal(&combined, &combined2));
1386
1387 minimask_destroy(&minimask);
1388 minimask_destroy(&minimask2);
1389 }
1390
1391 minimask_destroy(&minicatchall);
1392 }
1393 \f
1394 static const struct command commands[] = {
1395 /* Classifier tests. */
1396 {"empty", 0, 0, test_empty},
1397 {"destroy-null", 0, 0, test_destroy_null},
1398 {"single-rule", 0, 0, test_single_rule},
1399 {"rule-replacement", 0, 0, test_rule_replacement},
1400 {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list},
1401 {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
1402 {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables},
1403 {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables},
1404
1405 /* Miniflow and minimask tests. */
1406 {"miniflow", 0, 0, test_miniflow},
1407 {"minimask_has_extra", 0, 0, test_minimask_has_extra},
1408 {"minimask_combine", 0, 0, test_minimask_combine},
1409
1410 {NULL, 0, 0, NULL},
1411 };
1412
1413 static void
1414 test_classifier_main(int argc, char *argv[])
1415 {
1416 set_program_name(argv[0]);
1417 init_values();
1418 run_command(argc - 1, argv + 1, commands);
1419 }
1420
1421 OVSTEST_REGISTER("test-classifier", test_classifier_main);