]> git.proxmox.com Git - mirror_ovs.git/blob - tests/test-classifier.c
test-classifier: add ovs_assert to prevent warning
[mirror_ovs.git] / tests / test-classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* "White box" tests for classifier.
18 *
19 * With very few exceptions, these tests obtain complete coverage of every
20 * basic block and every branch in the classifier implementation, e.g. a clean
21 * report from "gcov -b". (Covering the exceptions would require finding
22 * collisions in the hash function used for flow data, etc.)
23 *
24 * This test should receive a clean report from "valgrind --leak-check=full":
25 * it frees every heap block that it allocates.
26 */
27
28 #include <config.h>
29 #include <errno.h>
30 #include <limits.h>
31 #include "byte-order.h"
32 #include "command-line.h"
33 #include "flow.h"
34 #include "ofp-util.h"
35 #include "packets.h"
36 #include "random.h"
37 #include "unaligned.h"
38 #include "ovstest.h"
39 #undef NDEBUG
40 #include <assert.h>
41
42 /* We need access to classifier internal definitions to be able to fully
43 * test them. The alternative would be to expose them all in the classifier
44 * API. */
45 #include "classifier.c"
46
47 /* Fields in a rule. */
48 #define CLS_FIELDS \
49 /* struct flow all-caps */ \
50 /* member name name */ \
51 /* ----------- -------- */ \
52 CLS_FIELD(tunnel.tun_id, TUN_ID) \
53 CLS_FIELD(metadata, METADATA) \
54 CLS_FIELD(nw_src, NW_SRC) \
55 CLS_FIELD(nw_dst, NW_DST) \
56 CLS_FIELD(in_port, IN_PORT) \
57 CLS_FIELD(vlan_tci, VLAN_TCI) \
58 CLS_FIELD(dl_type, DL_TYPE) \
59 CLS_FIELD(tp_src, TP_SRC) \
60 CLS_FIELD(tp_dst, TP_DST) \
61 CLS_FIELD(dl_src, DL_SRC) \
62 CLS_FIELD(dl_dst, DL_DST) \
63 CLS_FIELD(nw_proto, NW_PROTO) \
64 CLS_FIELD(nw_tos, NW_DSCP)
65
66 /* Field indexes.
67 *
68 * (These are also indexed into struct classifier's 'tables' array.) */
69 enum {
70 #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
71 CLS_FIELDS
72 #undef CLS_FIELD
73 CLS_N_FIELDS
74 };
75
76 /* Field information. */
77 struct cls_field {
78 int ofs; /* Offset in struct flow. */
79 int len; /* Length in bytes. */
80 const char *name; /* Name (for debugging). */
81 };
82
83 static const struct cls_field cls_fields[CLS_N_FIELDS] = {
84 #define CLS_FIELD(MEMBER, NAME) \
85 { offsetof(struct flow, MEMBER), \
86 sizeof ((struct flow *)0)->MEMBER, \
87 #NAME },
88 CLS_FIELDS
89 #undef CLS_FIELD
90 };
91
92 struct test_rule {
93 int aux; /* Auxiliary data. */
94 struct cls_rule cls_rule; /* Classifier rule data. */
95 };
96
97 static struct test_rule *
98 test_rule_from_cls_rule(const struct cls_rule *rule)
99 {
100 return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
101 }
102
103 static void
104 test_rule_destroy(struct test_rule *rule)
105 {
106 if (rule) {
107 cls_rule_destroy(&rule->cls_rule);
108 free(rule);
109 }
110 }
111
112 static struct test_rule *make_rule(int wc_fields, unsigned int priority,
113 int value_pat);
114 static void free_rule(struct test_rule *);
115 static struct test_rule *clone_rule(const struct test_rule *);
116
117 /* Trivial (linear) classifier. */
118 struct tcls {
119 size_t n_rules;
120 size_t allocated_rules;
121 struct test_rule **rules;
122 };
123
124 static void
125 tcls_init(struct tcls *tcls)
126 {
127 tcls->n_rules = 0;
128 tcls->allocated_rules = 0;
129 tcls->rules = NULL;
130 }
131
132 static void
133 tcls_destroy(struct tcls *tcls)
134 {
135 if (tcls) {
136 size_t i;
137
138 for (i = 0; i < tcls->n_rules; i++) {
139 test_rule_destroy(tcls->rules[i]);
140 }
141 free(tcls->rules);
142 }
143 }
144
145 static bool
146 tcls_is_empty(const struct tcls *tcls)
147 {
148 return tcls->n_rules == 0;
149 }
150
151 static struct test_rule *
152 tcls_insert(struct tcls *tcls, const struct test_rule *rule)
153 {
154 size_t i;
155
156 for (i = 0; i < tcls->n_rules; i++) {
157 const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
158 if (cls_rule_equal(pos, &rule->cls_rule)) {
159 /* Exact match. */
160 free_rule(tcls->rules[i]);
161 tcls->rules[i] = clone_rule(rule);
162 return tcls->rules[i];
163 } else if (pos->priority < rule->cls_rule.priority) {
164 break;
165 }
166 }
167
168 if (tcls->n_rules >= tcls->allocated_rules) {
169 tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
170 sizeof *tcls->rules);
171 }
172 if (i != tcls->n_rules) {
173 memmove(&tcls->rules[i + 1], &tcls->rules[i],
174 sizeof *tcls->rules * (tcls->n_rules - i));
175 }
176 tcls->rules[i] = clone_rule(rule);
177 tcls->n_rules++;
178 return tcls->rules[i];
179 }
180
181 static void
182 tcls_remove(struct tcls *cls, const struct test_rule *rule)
183 {
184 size_t i;
185
186 for (i = 0; i < cls->n_rules; i++) {
187 struct test_rule *pos = cls->rules[i];
188 if (pos == rule) {
189 test_rule_destroy(pos);
190
191 memmove(&cls->rules[i], &cls->rules[i + 1],
192 sizeof *cls->rules * (cls->n_rules - i - 1));
193
194 cls->n_rules--;
195 return;
196 }
197 }
198 OVS_NOT_REACHED();
199 }
200
201 static bool
202 match(const struct cls_rule *wild_, const struct flow *fixed)
203 {
204 struct match wild;
205 int f_idx;
206
207 minimatch_expand(&wild_->match, &wild);
208 for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
209 bool eq;
210
211 if (f_idx == CLS_F_IDX_NW_SRC) {
212 eq = !((fixed->nw_src ^ wild.flow.nw_src)
213 & wild.wc.masks.nw_src);
214 } else if (f_idx == CLS_F_IDX_NW_DST) {
215 eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
216 & wild.wc.masks.nw_dst);
217 } else if (f_idx == CLS_F_IDX_TP_SRC) {
218 eq = !((fixed->tp_src ^ wild.flow.tp_src)
219 & wild.wc.masks.tp_src);
220 } else if (f_idx == CLS_F_IDX_TP_DST) {
221 eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
222 & wild.wc.masks.tp_dst);
223 } else if (f_idx == CLS_F_IDX_DL_SRC) {
224 eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
225 wild.wc.masks.dl_src);
226 } else if (f_idx == CLS_F_IDX_DL_DST) {
227 eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
228 wild.wc.masks.dl_dst);
229 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
230 eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
231 & wild.wc.masks.vlan_tci);
232 } else if (f_idx == CLS_F_IDX_TUN_ID) {
233 eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
234 & wild.wc.masks.tunnel.tun_id);
235 } else if (f_idx == CLS_F_IDX_METADATA) {
236 eq = !((fixed->metadata ^ wild.flow.metadata)
237 & wild.wc.masks.metadata);
238 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
239 eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
240 (wild.wc.masks.nw_tos & IP_DSCP_MASK));
241 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
242 eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
243 & wild.wc.masks.nw_proto);
244 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
245 eq = !((fixed->dl_type ^ wild.flow.dl_type)
246 & wild.wc.masks.dl_type);
247 } else if (f_idx == CLS_F_IDX_IN_PORT) {
248 eq = !((fixed->in_port.ofp_port
249 ^ wild.flow.in_port.ofp_port)
250 & wild.wc.masks.in_port.ofp_port);
251 } else {
252 OVS_NOT_REACHED();
253 }
254
255 if (!eq) {
256 return false;
257 }
258 }
259 return true;
260 }
261
262 static struct cls_rule *
263 tcls_lookup(const struct tcls *cls, const struct flow *flow)
264 {
265 size_t i;
266
267 for (i = 0; i < cls->n_rules; i++) {
268 struct test_rule *pos = cls->rules[i];
269 if (match(&pos->cls_rule, flow)) {
270 return &pos->cls_rule;
271 }
272 }
273 return NULL;
274 }
275
276 static void
277 tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
278 {
279 size_t i;
280
281 for (i = 0; i < cls->n_rules; ) {
282 struct test_rule *pos = cls->rules[i];
283 if (!minimask_has_extra(&pos->cls_rule.match.mask,
284 &target->match.mask)) {
285 struct flow flow;
286
287 miniflow_expand(&pos->cls_rule.match.flow, &flow);
288 if (match(target, &flow)) {
289 tcls_remove(cls, pos);
290 continue;
291 }
292 }
293 i++;
294 }
295 }
296 \f
297 static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
298 CONSTANT_HTONL(0xc0a04455) };
299 static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
300 CONSTANT_HTONL(0xc0a04455) };
301 static ovs_be64 tun_id_values[] = {
302 0,
303 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
304 static ovs_be64 metadata_values[] = {
305 0,
306 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
307 static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL };
308 static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
309 static ovs_be16 dl_type_values[]
310 = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
311 static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
312 CONSTANT_HTONS(80) };
313 static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
314 static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
315 { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
316 static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
317 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
318 static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
319 static uint8_t nw_dscp_values[] = { 48, 0 };
320
321 static void *values[CLS_N_FIELDS][2];
322
323 static void
324 init_values(void)
325 {
326 values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
327 values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
328
329 values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
330 values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
331
332 values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
333 values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
334
335 values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
336 values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
337
338 values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
339 values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
340
341 values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
342 values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
343
344 values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
345 values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
346
347 values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
348 values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
349
350 values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
351 values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
352
353 values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
354 values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
355
356 values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
357 values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
358
359 values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
360 values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
361
362 values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
363 values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
364 }
365
366 #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
367 #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
368 #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
369 #define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
370 #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
371 #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
372 #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
373 #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
374 #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
375 #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
376 #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
377 #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
378 #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
379
380 #define N_FLOW_VALUES (N_NW_SRC_VALUES * \
381 N_NW_DST_VALUES * \
382 N_TUN_ID_VALUES * \
383 N_IN_PORT_VALUES * \
384 N_VLAN_TCI_VALUES * \
385 N_DL_TYPE_VALUES * \
386 N_TP_SRC_VALUES * \
387 N_TP_DST_VALUES * \
388 N_DL_SRC_VALUES * \
389 N_DL_DST_VALUES * \
390 N_NW_PROTO_VALUES * \
391 N_NW_DSCP_VALUES)
392
393 static unsigned int
394 get_value(unsigned int *x, unsigned n_values)
395 {
396 unsigned int rem = *x % n_values;
397 *x /= n_values;
398 return rem;
399 }
400
401 static void
402 compare_classifiers(struct classifier *cls, struct tcls *tcls)
403 OVS_REQ_RDLOCK(cls->rwlock)
404 {
405 static const int confidence = 500;
406 unsigned int i;
407
408 assert(classifier_count(cls) == tcls->n_rules);
409 for (i = 0; i < confidence; i++) {
410 struct cls_rule *cr0, *cr1, *cr2;
411 struct flow flow;
412 struct flow_wildcards wc;
413 unsigned int x;
414
415 flow_wildcards_init_catchall(&wc);
416 x = random_range(N_FLOW_VALUES);
417 memset(&flow, 0, sizeof flow);
418 flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
419 flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
420 flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
421 flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
422 flow.in_port.ofp_port = in_port_values[get_value(&x,
423 N_IN_PORT_VALUES)];
424 flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
425 flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
426 flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
427 flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
428 memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
429 ETH_ADDR_LEN);
430 memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
431 ETH_ADDR_LEN);
432 flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
433 flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
434
435 /* This assertion is here to suppress a GCC 4.9 array-bounds warning */
436 ovs_assert(cls->cls->n_tries <= CLS_MAX_TRIES);
437
438 cr0 = classifier_lookup(cls, &flow, &wc);
439 cr1 = tcls_lookup(tcls, &flow);
440 assert((cr0 == NULL) == (cr1 == NULL));
441 if (cr0 != NULL) {
442 const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
443 const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
444
445 assert(cls_rule_equal(cr0, cr1));
446 assert(tr0->aux == tr1->aux);
447 }
448 cr2 = classifier_lookup(cls, &flow, NULL);
449 assert(cr2 == cr0);
450 }
451 }
452
453 static void
454 destroy_classifier(struct classifier *cls)
455 {
456 struct test_rule *rule, *next_rule;
457 struct cls_cursor cursor;
458
459 fat_rwlock_wrlock(&cls->rwlock);
460 cls_cursor_init(&cursor, cls, NULL);
461 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
462 classifier_remove(cls, &rule->cls_rule);
463 free_rule(rule);
464 }
465 fat_rwlock_unlock(&cls->rwlock);
466 classifier_destroy(cls);
467 }
468
469 static void
470 check_tables(const struct classifier *cls, int n_tables, int n_rules,
471 int n_dups) OVS_REQ_RDLOCK(cls->rwlock)
472 {
473 const struct cls_subtable *table;
474 struct test_rule *test_rule;
475 struct cls_cursor cursor;
476 int found_tables = 0;
477 int found_rules = 0;
478 int found_dups = 0;
479 int found_rules2 = 0;
480
481 HMAP_FOR_EACH (table, hmap_node, &cls->cls->subtables_map) {
482 const struct cls_match *head;
483 unsigned int max_priority = 0;
484 unsigned int max_count = 0;
485
486 assert(!hmap_is_empty(&table->rules));
487
488 found_tables++;
489 HMAP_FOR_EACH (head, hmap_node, &table->rules) {
490 unsigned int prev_priority = UINT_MAX;
491 const struct cls_match *rule;
492
493 if (head->priority > max_priority) {
494 max_priority = head->priority;
495 max_count = 1;
496 } else if (head->priority == max_priority) {
497 ++max_count;
498 }
499
500 found_rules++;
501 LIST_FOR_EACH (rule, list, &head->list) {
502 assert(rule->priority < prev_priority);
503 assert(rule->priority <= table->max_priority);
504
505 prev_priority = rule->priority;
506 found_rules++;
507 found_dups++;
508 assert(classifier_find_rule_exactly(cls, rule->cls_rule)
509 == rule->cls_rule);
510 }
511 }
512 assert(table->max_priority == max_priority);
513 assert(table->max_count == max_count);
514 }
515
516 assert(found_tables == hmap_count(&cls->cls->subtables_map));
517 assert(n_tables == -1 || n_tables == hmap_count(&cls->cls->subtables_map));
518 assert(n_rules == -1 || found_rules == n_rules);
519 assert(n_dups == -1 || found_dups == n_dups);
520
521 cls_cursor_init(&cursor, cls, NULL);
522 CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) {
523 found_rules2++;
524 }
525 assert(found_rules == found_rules2);
526 }
527
528 static struct test_rule *
529 make_rule(int wc_fields, unsigned int priority, int value_pat)
530 {
531 const struct cls_field *f;
532 struct test_rule *rule;
533 struct match match;
534
535 match_init_catchall(&match);
536 for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
537 int f_idx = f - cls_fields;
538 int value_idx = (value_pat & (1u << f_idx)) != 0;
539 memcpy((char *) &match.flow + f->ofs,
540 values[f_idx][value_idx], f->len);
541
542 if (f_idx == CLS_F_IDX_NW_SRC) {
543 match.wc.masks.nw_src = OVS_BE32_MAX;
544 } else if (f_idx == CLS_F_IDX_NW_DST) {
545 match.wc.masks.nw_dst = OVS_BE32_MAX;
546 } else if (f_idx == CLS_F_IDX_TP_SRC) {
547 match.wc.masks.tp_src = OVS_BE16_MAX;
548 } else if (f_idx == CLS_F_IDX_TP_DST) {
549 match.wc.masks.tp_dst = OVS_BE16_MAX;
550 } else if (f_idx == CLS_F_IDX_DL_SRC) {
551 memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN);
552 } else if (f_idx == CLS_F_IDX_DL_DST) {
553 memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN);
554 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
555 match.wc.masks.vlan_tci = OVS_BE16_MAX;
556 } else if (f_idx == CLS_F_IDX_TUN_ID) {
557 match.wc.masks.tunnel.tun_id = OVS_BE64_MAX;
558 } else if (f_idx == CLS_F_IDX_METADATA) {
559 match.wc.masks.metadata = OVS_BE64_MAX;
560 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
561 match.wc.masks.nw_tos |= IP_DSCP_MASK;
562 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
563 match.wc.masks.nw_proto = UINT8_MAX;
564 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
565 match.wc.masks.dl_type = OVS_BE16_MAX;
566 } else if (f_idx == CLS_F_IDX_IN_PORT) {
567 match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
568 } else {
569 OVS_NOT_REACHED();
570 }
571 }
572
573 rule = xzalloc(sizeof *rule);
574 cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX);
575 return rule;
576 }
577
578 static struct test_rule *
579 clone_rule(const struct test_rule *src)
580 {
581 struct test_rule *dst;
582
583 dst = xmalloc(sizeof *dst);
584 dst->aux = src->aux;
585 cls_rule_clone(&dst->cls_rule, &src->cls_rule);
586 return dst;
587 }
588
589 static void
590 free_rule(struct test_rule *rule)
591 {
592 cls_rule_destroy(&rule->cls_rule);
593 free(rule);
594 }
595
596 static void
597 shuffle(unsigned int *p, size_t n)
598 {
599 for (; n > 1; n--, p++) {
600 unsigned int *q = &p[random_range(n)];
601 unsigned int tmp = *p;
602 *p = *q;
603 *q = tmp;
604 }
605 }
606
607 static void
608 shuffle_u32s(uint32_t *p, size_t n)
609 {
610 for (; n > 1; n--, p++) {
611 uint32_t *q = &p[random_range(n)];
612 uint32_t tmp = *p;
613 *p = *q;
614 *q = tmp;
615 }
616 }
617 \f
618 /* Classifier tests. */
619
620 static enum mf_field_id trie_fields[2] = {
621 MFF_IPV4_DST, MFF_IPV4_SRC
622 };
623
624 /* Tests an empty classifier. */
625 static void
626 test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
627 {
628 struct classifier cls;
629 struct tcls tcls;
630
631 classifier_init(&cls, flow_segment_u32s);
632 fat_rwlock_wrlock(&cls.rwlock);
633 classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields));
634 tcls_init(&tcls);
635 assert(classifier_is_empty(&cls));
636 assert(tcls_is_empty(&tcls));
637 compare_classifiers(&cls, &tcls);
638 fat_rwlock_unlock(&cls.rwlock);
639 classifier_destroy(&cls);
640 tcls_destroy(&tcls);
641 }
642
643 /* Destroys a null classifier. */
644 static void
645 test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
646 {
647 classifier_destroy(NULL);
648 }
649
650 /* Tests classification with one rule at a time. */
651 static void
652 test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
653 {
654 unsigned int wc_fields; /* Hilarious. */
655
656 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
657 struct classifier cls;
658 struct test_rule *rule, *tcls_rule;
659 struct tcls tcls;
660
661 rule = make_rule(wc_fields,
662 hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
663
664 classifier_init(&cls, flow_segment_u32s);
665 fat_rwlock_wrlock(&cls.rwlock);
666 classifier_set_prefix_fields(&cls, trie_fields,
667 ARRAY_SIZE(trie_fields));
668 tcls_init(&tcls);
669
670 tcls_rule = tcls_insert(&tcls, rule);
671 classifier_insert(&cls, &rule->cls_rule);
672 check_tables(&cls, 1, 1, 0);
673 compare_classifiers(&cls, &tcls);
674
675 classifier_remove(&cls, &rule->cls_rule);
676 tcls_remove(&tcls, tcls_rule);
677 assert(classifier_is_empty(&cls));
678 assert(tcls_is_empty(&tcls));
679 compare_classifiers(&cls, &tcls);
680
681 free_rule(rule);
682 fat_rwlock_unlock(&cls.rwlock);
683 classifier_destroy(&cls);
684 tcls_destroy(&tcls);
685 }
686 }
687
688 /* Tests replacing one rule by another. */
689 static void
690 test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
691 {
692 unsigned int wc_fields;
693
694 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
695 struct classifier cls;
696 struct test_rule *rule1;
697 struct test_rule *rule2;
698 struct tcls tcls;
699
700 rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
701 rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
702 rule2->aux += 5;
703 rule2->aux += 5;
704
705 classifier_init(&cls, flow_segment_u32s);
706 fat_rwlock_wrlock(&cls.rwlock);
707 classifier_set_prefix_fields(&cls, trie_fields,
708 ARRAY_SIZE(trie_fields));
709 tcls_init(&tcls);
710 tcls_insert(&tcls, rule1);
711 classifier_insert(&cls, &rule1->cls_rule);
712 check_tables(&cls, 1, 1, 0);
713 compare_classifiers(&cls, &tcls);
714 tcls_destroy(&tcls);
715
716 tcls_init(&tcls);
717 tcls_insert(&tcls, rule2);
718 assert(test_rule_from_cls_rule(
719 classifier_replace(&cls, &rule2->cls_rule)) == rule1);
720 free_rule(rule1);
721 check_tables(&cls, 1, 1, 0);
722 compare_classifiers(&cls, &tcls);
723 tcls_destroy(&tcls);
724 fat_rwlock_unlock(&cls.rwlock);
725 destroy_classifier(&cls);
726 }
727 }
728
729 static int
730 factorial(int n_items)
731 {
732 int n, i;
733
734 n = 1;
735 for (i = 2; i <= n_items; i++) {
736 n *= i;
737 }
738 return n;
739 }
740
741 static void
742 swap(int *a, int *b)
743 {
744 int tmp = *a;
745 *a = *b;
746 *b = tmp;
747 }
748
749 static void
750 reverse(int *a, int n)
751 {
752 int i;
753
754 for (i = 0; i < n / 2; i++) {
755 int j = n - (i + 1);
756 swap(&a[i], &a[j]);
757 }
758 }
759
760 static bool
761 next_permutation(int *a, int n)
762 {
763 int k;
764
765 for (k = n - 2; k >= 0; k--) {
766 if (a[k] < a[k + 1]) {
767 int l;
768
769 for (l = n - 1; ; l--) {
770 if (a[l] > a[k]) {
771 swap(&a[k], &a[l]);
772 reverse(a + (k + 1), n - (k + 1));
773 return true;
774 }
775 }
776 }
777 }
778 return false;
779 }
780
781 /* Tests classification with rules that have the same matching criteria. */
782 static void
783 test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
784 {
785 enum { N_RULES = 3 };
786 int n_pris;
787
788 for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
789 int ops[N_RULES * 2];
790 int pris[N_RULES];
791 int n_permutations;
792 int i;
793
794 pris[0] = 0;
795 for (i = 1; i < N_RULES; i++) {
796 pris[i] = pris[i - 1] + (n_pris > i);
797 }
798
799 for (i = 0; i < N_RULES * 2; i++) {
800 ops[i] = i / 2;
801 }
802
803 n_permutations = 0;
804 do {
805 struct test_rule *rules[N_RULES];
806 struct test_rule *tcls_rules[N_RULES];
807 int pri_rules[N_RULES];
808 struct classifier cls;
809 struct tcls tcls;
810
811 n_permutations++;
812
813 for (i = 0; i < N_RULES; i++) {
814 rules[i] = make_rule(456, pris[i], 0);
815 tcls_rules[i] = NULL;
816 pri_rules[i] = -1;
817 }
818
819 classifier_init(&cls, flow_segment_u32s);
820 fat_rwlock_wrlock(&cls.rwlock);
821 classifier_set_prefix_fields(&cls, trie_fields,
822 ARRAY_SIZE(trie_fields));
823 tcls_init(&tcls);
824
825 for (i = 0; i < ARRAY_SIZE(ops); i++) {
826 int j = ops[i];
827 int m, n;
828
829 if (!tcls_rules[j]) {
830 struct test_rule *displaced_rule;
831
832 tcls_rules[j] = tcls_insert(&tcls, rules[j]);
833 displaced_rule = test_rule_from_cls_rule(
834 classifier_replace(&cls, &rules[j]->cls_rule));
835 if (pri_rules[pris[j]] >= 0) {
836 int k = pri_rules[pris[j]];
837 assert(displaced_rule != NULL);
838 assert(displaced_rule != rules[j]);
839 assert(pris[j] == displaced_rule->cls_rule.priority);
840 tcls_rules[k] = NULL;
841 } else {
842 assert(displaced_rule == NULL);
843 }
844 pri_rules[pris[j]] = j;
845 } else {
846 classifier_remove(&cls, &rules[j]->cls_rule);
847 tcls_remove(&tcls, tcls_rules[j]);
848 tcls_rules[j] = NULL;
849 pri_rules[pris[j]] = -1;
850 }
851
852 n = 0;
853 for (m = 0; m < N_RULES; m++) {
854 n += tcls_rules[m] != NULL;
855 }
856 check_tables(&cls, n > 0, n, n - 1);
857
858 compare_classifiers(&cls, &tcls);
859 }
860
861 for (i = 0; i < N_RULES; i++) {
862 if (rules[i]->cls_rule.cls_match) {
863 classifier_remove(&cls, &rules[i]->cls_rule);
864 }
865 free_rule(rules[i]);
866 }
867
868 fat_rwlock_unlock(&cls.rwlock);
869 classifier_destroy(&cls);
870 tcls_destroy(&tcls);
871 } while (next_permutation(ops, ARRAY_SIZE(ops)));
872 assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
873 }
874 }
875
876 static int
877 count_ones(unsigned long int x)
878 {
879 int n = 0;
880
881 while (x) {
882 x = zero_rightmost_1bit(x);
883 n++;
884 }
885
886 return n;
887 }
888
889 static bool
890 array_contains(int *array, int n, int value)
891 {
892 int i;
893
894 for (i = 0; i < n; i++) {
895 if (array[i] == value) {
896 return true;
897 }
898 }
899
900 return false;
901 }
902
903 /* Tests classification with two rules at a time that fall into the same
904 * table but different lists. */
905 static void
906 test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
907 {
908 int iteration;
909
910 for (iteration = 0; iteration < 50; iteration++) {
911 enum { N_RULES = 20 };
912 struct test_rule *rules[N_RULES];
913 struct test_rule *tcls_rules[N_RULES];
914 struct classifier cls;
915 struct tcls tcls;
916 int value_pats[N_RULES];
917 int value_mask;
918 int wcf;
919 int i;
920
921 do {
922 wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
923 value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
924 } while ((1 << count_ones(value_mask)) < N_RULES);
925
926 classifier_init(&cls, flow_segment_u32s);
927 fat_rwlock_wrlock(&cls.rwlock);
928 classifier_set_prefix_fields(&cls, trie_fields,
929 ARRAY_SIZE(trie_fields));
930 tcls_init(&tcls);
931
932 for (i = 0; i < N_RULES; i++) {
933 unsigned int priority = random_uint32();
934
935 do {
936 value_pats[i] = random_uint32() & value_mask;
937 } while (array_contains(value_pats, i, value_pats[i]));
938
939 rules[i] = make_rule(wcf, priority, value_pats[i]);
940 tcls_rules[i] = tcls_insert(&tcls, rules[i]);
941 classifier_insert(&cls, &rules[i]->cls_rule);
942
943 check_tables(&cls, 1, i + 1, 0);
944 compare_classifiers(&cls, &tcls);
945 }
946
947 for (i = 0; i < N_RULES; i++) {
948 tcls_remove(&tcls, tcls_rules[i]);
949 classifier_remove(&cls, &rules[i]->cls_rule);
950 free_rule(rules[i]);
951
952 check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
953 compare_classifiers(&cls, &tcls);
954 }
955
956 fat_rwlock_unlock(&cls.rwlock);
957 classifier_destroy(&cls);
958 tcls_destroy(&tcls);
959 }
960 }
961
962 /* Tests classification with many rules at a time that fall into random lists
963 * in 'n' tables. */
964 static void
965 test_many_rules_in_n_tables(int n_tables)
966 {
967 enum { MAX_RULES = 50 };
968 int wcfs[10];
969 int iteration;
970 int i;
971
972 assert(n_tables < 10);
973 for (i = 0; i < n_tables; i++) {
974 do {
975 wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
976 } while (array_contains(wcfs, i, wcfs[i]));
977 }
978
979 for (iteration = 0; iteration < 30; iteration++) {
980 unsigned int priorities[MAX_RULES];
981 struct classifier cls;
982 struct tcls tcls;
983
984 random_set_seed(iteration + 1);
985 for (i = 0; i < MAX_RULES; i++) {
986 priorities[i] = i * 129;
987 }
988 shuffle(priorities, ARRAY_SIZE(priorities));
989
990 classifier_init(&cls, flow_segment_u32s);
991 fat_rwlock_wrlock(&cls.rwlock);
992 classifier_set_prefix_fields(&cls, trie_fields,
993 ARRAY_SIZE(trie_fields));
994 tcls_init(&tcls);
995
996 for (i = 0; i < MAX_RULES; i++) {
997 struct test_rule *rule;
998 unsigned int priority = priorities[i];
999 int wcf = wcfs[random_range(n_tables)];
1000 int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
1001 rule = make_rule(wcf, priority, value_pat);
1002 tcls_insert(&tcls, rule);
1003 classifier_insert(&cls, &rule->cls_rule);
1004 check_tables(&cls, -1, i + 1, -1);
1005 compare_classifiers(&cls, &tcls);
1006 }
1007
1008 while (!classifier_is_empty(&cls)) {
1009 struct test_rule *rule, *next_rule;
1010 struct test_rule *target;
1011 struct cls_cursor cursor;
1012
1013 target = clone_rule(tcls.rules[random_range(tcls.n_rules)]);
1014
1015 cls_cursor_init(&cursor, &cls, &target->cls_rule);
1016 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
1017 classifier_remove(&cls, &rule->cls_rule);
1018 free_rule(rule);
1019 }
1020 tcls_delete_matches(&tcls, &target->cls_rule);
1021 compare_classifiers(&cls, &tcls);
1022 check_tables(&cls, -1, -1, -1);
1023 free_rule(target);
1024 }
1025
1026 fat_rwlock_unlock(&cls.rwlock);
1027 destroy_classifier(&cls);
1028 tcls_destroy(&tcls);
1029 }
1030 }
1031
1032 static void
1033 test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1034 {
1035 test_many_rules_in_n_tables(2);
1036 }
1037
1038 static void
1039 test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1040 {
1041 test_many_rules_in_n_tables(5);
1042 }
1043 \f
1044 /* Miniflow tests. */
1045
1046 static uint32_t
1047 random_value(void)
1048 {
1049 static const uint32_t values[] =
1050 { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
1051 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
1052
1053 return values[random_range(ARRAY_SIZE(values))];
1054 }
1055
1056 static bool
1057 choose(unsigned int n, unsigned int *idxp)
1058 {
1059 if (*idxp < n) {
1060 return true;
1061 } else {
1062 *idxp -= n;
1063 return false;
1064 }
1065 }
1066
1067 static bool
1068 init_consecutive_values(int n_consecutive, struct flow *flow,
1069 unsigned int *idxp)
1070 {
1071 uint32_t *flow_u32 = (uint32_t *) flow;
1072
1073 if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
1074 int i;
1075
1076 for (i = 0; i < n_consecutive; i++) {
1077 flow_u32[*idxp + i] = random_value();
1078 }
1079 return true;
1080 } else {
1081 return false;
1082 }
1083 }
1084
1085 static bool
1086 next_random_flow(struct flow *flow, unsigned int idx)
1087 {
1088 uint32_t *flow_u32 = (uint32_t *) flow;
1089 int i;
1090
1091 memset(flow, 0, sizeof *flow);
1092
1093 /* Empty flow. */
1094 if (choose(1, &idx)) {
1095 return true;
1096 }
1097
1098 /* All flows with a small number of consecutive nonzero values. */
1099 for (i = 1; i <= 4; i++) {
1100 if (init_consecutive_values(i, flow, &idx)) {
1101 return true;
1102 }
1103 }
1104
1105 /* All flows with a large number of consecutive nonzero values. */
1106 for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
1107 if (init_consecutive_values(i, flow, &idx)) {
1108 return true;
1109 }
1110 }
1111
1112 /* All flows with exactly two nonconsecutive nonzero values. */
1113 if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
1114 int ofs1;
1115
1116 for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
1117 int ofs2;
1118
1119 for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
1120 if (choose(1, &idx)) {
1121 flow_u32[ofs1] = random_value();
1122 flow_u32[ofs2] = random_value();
1123 return true;
1124 }
1125 }
1126 }
1127 OVS_NOT_REACHED();
1128 }
1129
1130 /* 16 randomly chosen flows with N >= 3 nonzero values. */
1131 if (choose(16 * (FLOW_U32S - 4), &idx)) {
1132 int n = idx / 16 + 3;
1133 int i;
1134
1135 for (i = 0; i < n; i++) {
1136 flow_u32[i] = random_value();
1137 }
1138 shuffle_u32s(flow_u32, FLOW_U32S);
1139
1140 return true;
1141 }
1142
1143 return false;
1144 }
1145
1146 static void
1147 any_random_flow(struct flow *flow)
1148 {
1149 static unsigned int max;
1150 if (!max) {
1151 while (next_random_flow(flow, max)) {
1152 max++;
1153 }
1154 }
1155
1156 next_random_flow(flow, random_range(max));
1157 }
1158
1159 static void
1160 toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
1161 {
1162 const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
1163 uint32_t *flow_u32 = (uint32_t *) flow;
1164 int i;
1165
1166 for (i = 0; i < FLOW_U32S; i++) {
1167 if (mask_u32[i] != 0) {
1168 uint32_t bit;
1169
1170 do {
1171 bit = 1u << random_range(32);
1172 } while (!(bit & mask_u32[i]));
1173 flow_u32[i] ^= bit;
1174 }
1175 }
1176 }
1177
1178 static void
1179 wildcard_extra_bits(struct flow_wildcards *mask)
1180 {
1181 uint32_t *mask_u32 = (uint32_t *) &mask->masks;
1182 int i;
1183
1184 for (i = 0; i < FLOW_U32S; i++) {
1185 if (mask_u32[i] != 0) {
1186 uint32_t bit;
1187
1188 do {
1189 bit = 1u << random_range(32);
1190 } while (!(bit & mask_u32[i]));
1191 mask_u32[i] &= ~bit;
1192 }
1193 }
1194 }
1195
1196 static void
1197 test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1198 {
1199 struct flow flow;
1200 unsigned int idx;
1201
1202 random_set_seed(0xb3faca38);
1203 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1204 const uint32_t *flow_u32 = (const uint32_t *) &flow;
1205 struct miniflow miniflow, miniflow2, miniflow3;
1206 struct flow flow2, flow3;
1207 struct flow_wildcards mask;
1208 struct minimask minimask;
1209 int i;
1210
1211 /* Convert flow to miniflow. */
1212 miniflow_init(&miniflow, &flow);
1213
1214 /* Check that the flow equals its miniflow. */
1215 assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci));
1216 for (i = 0; i < FLOW_U32S; i++) {
1217 assert(MINIFLOW_GET_TYPE(&miniflow, uint32_t, i * 4)
1218 == flow_u32[i]);
1219 }
1220
1221 /* Check that the miniflow equals itself. */
1222 assert(miniflow_equal(&miniflow, &miniflow));
1223
1224 /* Convert miniflow back to flow and verify that it's the same. */
1225 miniflow_expand(&miniflow, &flow2);
1226 assert(flow_equal(&flow, &flow2));
1227
1228 /* Check that copying a miniflow works properly. */
1229 miniflow_clone(&miniflow2, &miniflow);
1230 assert(miniflow_equal(&miniflow, &miniflow2));
1231 assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0));
1232 miniflow_expand(&miniflow2, &flow3);
1233 assert(flow_equal(&flow, &flow3));
1234
1235 /* Check that masked matches work as expected for identical flows and
1236 * miniflows. */
1237 do {
1238 next_random_flow(&mask.masks, 1);
1239 } while (flow_wildcards_is_catchall(&mask));
1240 minimask_init(&minimask, &mask);
1241 assert(minimask_is_catchall(&minimask)
1242 == flow_wildcards_is_catchall(&mask));
1243 assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask));
1244 assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1245 assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) ==
1246 flow_hash_in_minimask(&flow, &minimask, 0x12345678));
1247
1248 /* Check that masked matches work as expected for differing flows and
1249 * miniflows. */
1250 toggle_masked_flow_bits(&flow2, &mask);
1251 assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1252 miniflow_init(&miniflow3, &flow2);
1253 assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask));
1254
1255 /* Clean up. */
1256 miniflow_destroy(&miniflow);
1257 miniflow_destroy(&miniflow2);
1258 miniflow_destroy(&miniflow3);
1259 minimask_destroy(&minimask);
1260 }
1261 }
1262
1263 static void
1264 test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1265 {
1266 struct flow_wildcards catchall;
1267 struct minimask minicatchall;
1268 struct flow flow;
1269 unsigned int idx;
1270
1271 flow_wildcards_init_catchall(&catchall);
1272 minimask_init(&minicatchall, &catchall);
1273 assert(minimask_is_catchall(&minicatchall));
1274
1275 random_set_seed(0x2ec7905b);
1276 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1277 struct flow_wildcards mask;
1278 struct minimask minimask;
1279
1280 mask.masks = flow;
1281 minimask_init(&minimask, &mask);
1282 assert(!minimask_has_extra(&minimask, &minimask));
1283 assert(minimask_has_extra(&minicatchall, &minimask)
1284 == !minimask_is_catchall(&minimask));
1285 if (!minimask_is_catchall(&minimask)) {
1286 struct minimask minimask2;
1287
1288 wildcard_extra_bits(&mask);
1289 minimask_init(&minimask2, &mask);
1290 assert(minimask_has_extra(&minimask2, &minimask));
1291 assert(!minimask_has_extra(&minimask, &minimask2));
1292 minimask_destroy(&minimask2);
1293 }
1294
1295 minimask_destroy(&minimask);
1296 }
1297
1298 minimask_destroy(&minicatchall);
1299 }
1300
1301 static void
1302 test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1303 {
1304 struct flow_wildcards catchall;
1305 struct minimask minicatchall;
1306 struct flow flow;
1307 unsigned int idx;
1308
1309 flow_wildcards_init_catchall(&catchall);
1310 minimask_init(&minicatchall, &catchall);
1311 assert(minimask_is_catchall(&minicatchall));
1312
1313 random_set_seed(0x181bf0cd);
1314 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1315 struct minimask minimask, minimask2, minicombined;
1316 struct flow_wildcards mask, mask2, combined, combined2;
1317 uint32_t storage[FLOW_U32S];
1318 struct flow flow2;
1319
1320 mask.masks = flow;
1321 minimask_init(&minimask, &mask);
1322
1323 minimask_combine(&minicombined, &minimask, &minicatchall, storage);
1324 assert(minimask_is_catchall(&minicombined));
1325
1326 any_random_flow(&flow2);
1327 mask2.masks = flow2;
1328 minimask_init(&minimask2, &mask2);
1329
1330 minimask_combine(&minicombined, &minimask, &minimask2, storage);
1331 flow_wildcards_and(&combined, &mask, &mask2);
1332 minimask_expand(&minicombined, &combined2);
1333 assert(flow_wildcards_equal(&combined, &combined2));
1334
1335 minimask_destroy(&minimask);
1336 minimask_destroy(&minimask2);
1337 }
1338
1339 minimask_destroy(&minicatchall);
1340 }
1341 \f
1342 static const struct command commands[] = {
1343 /* Classifier tests. */
1344 {"empty", 0, 0, test_empty},
1345 {"destroy-null", 0, 0, test_destroy_null},
1346 {"single-rule", 0, 0, test_single_rule},
1347 {"rule-replacement", 0, 0, test_rule_replacement},
1348 {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list},
1349 {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
1350 {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables},
1351 {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables},
1352
1353 /* Miniflow and minimask tests. */
1354 {"miniflow", 0, 0, test_miniflow},
1355 {"minimask_has_extra", 0, 0, test_minimask_has_extra},
1356 {"minimask_combine", 0, 0, test_minimask_combine},
1357
1358 {NULL, 0, 0, NULL},
1359 };
1360
1361 static void
1362 test_classifier_main(int argc, char *argv[])
1363 {
1364 set_program_name(argv[0]);
1365 init_values();
1366 run_command(argc - 1, argv + 1, commands);
1367 }
1368
1369 OVSTEST_REGISTER("test-classifier", test_classifier_main);