]> git.proxmox.com Git - mirror_ovs.git/blob - tests/test-classifier.c
lib/classifier: Hide more of the internal data structures.
[mirror_ovs.git] / tests / test-classifier.c
1 /*
2 * Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* "White box" tests for classifier.
18 *
19 * With very few exceptions, these tests obtain complete coverage of every
20 * basic block and every branch in the classifier implementation, e.g. a clean
21 * report from "gcov -b". (Covering the exceptions would require finding
22 * collisions in the hash function used for flow data, etc.)
23 *
24 * This test should receive a clean report from "valgrind --leak-check=full":
25 * it frees every heap block that it allocates.
26 */
27
28 #include <config.h>
29 #include <errno.h>
30 #include <limits.h>
31 #include "byte-order.h"
32 #include "command-line.h"
33 #include "flow.h"
34 #include "ofp-util.h"
35 #include "packets.h"
36 #include "random.h"
37 #include "unaligned.h"
38 #include "ovstest.h"
39 #undef NDEBUG
40 #include <assert.h>
41
42 /* We need access to classifier internal definitions to be able to fully
43 * test them. The alternative would be to expose them all in the classifier
44 * API. */
45 #include "classifier.c"
46
47 /* Fields in a rule. */
48 #define CLS_FIELDS \
49 /* struct flow all-caps */ \
50 /* member name name */ \
51 /* ----------- -------- */ \
52 CLS_FIELD(tunnel.tun_id, TUN_ID) \
53 CLS_FIELD(metadata, METADATA) \
54 CLS_FIELD(nw_src, NW_SRC) \
55 CLS_FIELD(nw_dst, NW_DST) \
56 CLS_FIELD(in_port, IN_PORT) \
57 CLS_FIELD(vlan_tci, VLAN_TCI) \
58 CLS_FIELD(dl_type, DL_TYPE) \
59 CLS_FIELD(tp_src, TP_SRC) \
60 CLS_FIELD(tp_dst, TP_DST) \
61 CLS_FIELD(dl_src, DL_SRC) \
62 CLS_FIELD(dl_dst, DL_DST) \
63 CLS_FIELD(nw_proto, NW_PROTO) \
64 CLS_FIELD(nw_tos, NW_DSCP)
65
66 /* Field indexes.
67 *
68 * (These are also indexed into struct classifier's 'tables' array.) */
69 enum {
70 #define CLS_FIELD(MEMBER, NAME) CLS_F_IDX_##NAME,
71 CLS_FIELDS
72 #undef CLS_FIELD
73 CLS_N_FIELDS
74 };
75
76 /* Field information. */
77 struct cls_field {
78 int ofs; /* Offset in struct flow. */
79 int len; /* Length in bytes. */
80 const char *name; /* Name (for debugging). */
81 };
82
83 static const struct cls_field cls_fields[CLS_N_FIELDS] = {
84 #define CLS_FIELD(MEMBER, NAME) \
85 { offsetof(struct flow, MEMBER), \
86 sizeof ((struct flow *)0)->MEMBER, \
87 #NAME },
88 CLS_FIELDS
89 #undef CLS_FIELD
90 };
91
92 struct test_rule {
93 int aux; /* Auxiliary data. */
94 struct cls_rule cls_rule; /* Classifier rule data. */
95 };
96
97 static struct test_rule *
98 test_rule_from_cls_rule(const struct cls_rule *rule)
99 {
100 return rule ? CONTAINER_OF(rule, struct test_rule, cls_rule) : NULL;
101 }
102
103 static void
104 test_rule_destroy(struct test_rule *rule)
105 {
106 if (rule) {
107 cls_rule_destroy(&rule->cls_rule);
108 free(rule);
109 }
110 }
111
112 static struct test_rule *make_rule(int wc_fields, unsigned int priority,
113 int value_pat);
114 static void free_rule(struct test_rule *);
115 static struct test_rule *clone_rule(const struct test_rule *);
116
117 /* Trivial (linear) classifier. */
118 struct tcls {
119 size_t n_rules;
120 size_t allocated_rules;
121 struct test_rule **rules;
122 };
123
124 static void
125 tcls_init(struct tcls *tcls)
126 {
127 tcls->n_rules = 0;
128 tcls->allocated_rules = 0;
129 tcls->rules = NULL;
130 }
131
132 static void
133 tcls_destroy(struct tcls *tcls)
134 {
135 if (tcls) {
136 size_t i;
137
138 for (i = 0; i < tcls->n_rules; i++) {
139 test_rule_destroy(tcls->rules[i]);
140 }
141 free(tcls->rules);
142 }
143 }
144
145 static bool
146 tcls_is_empty(const struct tcls *tcls)
147 {
148 return tcls->n_rules == 0;
149 }
150
151 static struct test_rule *
152 tcls_insert(struct tcls *tcls, const struct test_rule *rule)
153 {
154 size_t i;
155
156 for (i = 0; i < tcls->n_rules; i++) {
157 const struct cls_rule *pos = &tcls->rules[i]->cls_rule;
158 if (cls_rule_equal(pos, &rule->cls_rule)) {
159 /* Exact match. */
160 free_rule(tcls->rules[i]);
161 tcls->rules[i] = clone_rule(rule);
162 return tcls->rules[i];
163 } else if (pos->priority < rule->cls_rule.priority) {
164 break;
165 }
166 }
167
168 if (tcls->n_rules >= tcls->allocated_rules) {
169 tcls->rules = x2nrealloc(tcls->rules, &tcls->allocated_rules,
170 sizeof *tcls->rules);
171 }
172 if (i != tcls->n_rules) {
173 memmove(&tcls->rules[i + 1], &tcls->rules[i],
174 sizeof *tcls->rules * (tcls->n_rules - i));
175 }
176 tcls->rules[i] = clone_rule(rule);
177 tcls->n_rules++;
178 return tcls->rules[i];
179 }
180
181 static void
182 tcls_remove(struct tcls *cls, const struct test_rule *rule)
183 {
184 size_t i;
185
186 for (i = 0; i < cls->n_rules; i++) {
187 struct test_rule *pos = cls->rules[i];
188 if (pos == rule) {
189 test_rule_destroy(pos);
190
191 memmove(&cls->rules[i], &cls->rules[i + 1],
192 sizeof *cls->rules * (cls->n_rules - i - 1));
193
194 cls->n_rules--;
195 return;
196 }
197 }
198 OVS_NOT_REACHED();
199 }
200
201 static bool
202 match(const struct cls_rule *wild_, const struct flow *fixed)
203 {
204 struct match wild;
205 int f_idx;
206
207 minimatch_expand(&wild_->match, &wild);
208 for (f_idx = 0; f_idx < CLS_N_FIELDS; f_idx++) {
209 bool eq;
210
211 if (f_idx == CLS_F_IDX_NW_SRC) {
212 eq = !((fixed->nw_src ^ wild.flow.nw_src)
213 & wild.wc.masks.nw_src);
214 } else if (f_idx == CLS_F_IDX_NW_DST) {
215 eq = !((fixed->nw_dst ^ wild.flow.nw_dst)
216 & wild.wc.masks.nw_dst);
217 } else if (f_idx == CLS_F_IDX_TP_SRC) {
218 eq = !((fixed->tp_src ^ wild.flow.tp_src)
219 & wild.wc.masks.tp_src);
220 } else if (f_idx == CLS_F_IDX_TP_DST) {
221 eq = !((fixed->tp_dst ^ wild.flow.tp_dst)
222 & wild.wc.masks.tp_dst);
223 } else if (f_idx == CLS_F_IDX_DL_SRC) {
224 eq = eth_addr_equal_except(fixed->dl_src, wild.flow.dl_src,
225 wild.wc.masks.dl_src);
226 } else if (f_idx == CLS_F_IDX_DL_DST) {
227 eq = eth_addr_equal_except(fixed->dl_dst, wild.flow.dl_dst,
228 wild.wc.masks.dl_dst);
229 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
230 eq = !((fixed->vlan_tci ^ wild.flow.vlan_tci)
231 & wild.wc.masks.vlan_tci);
232 } else if (f_idx == CLS_F_IDX_TUN_ID) {
233 eq = !((fixed->tunnel.tun_id ^ wild.flow.tunnel.tun_id)
234 & wild.wc.masks.tunnel.tun_id);
235 } else if (f_idx == CLS_F_IDX_METADATA) {
236 eq = !((fixed->metadata ^ wild.flow.metadata)
237 & wild.wc.masks.metadata);
238 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
239 eq = !((fixed->nw_tos ^ wild.flow.nw_tos) &
240 (wild.wc.masks.nw_tos & IP_DSCP_MASK));
241 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
242 eq = !((fixed->nw_proto ^ wild.flow.nw_proto)
243 & wild.wc.masks.nw_proto);
244 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
245 eq = !((fixed->dl_type ^ wild.flow.dl_type)
246 & wild.wc.masks.dl_type);
247 } else if (f_idx == CLS_F_IDX_IN_PORT) {
248 eq = !((fixed->in_port.ofp_port
249 ^ wild.flow.in_port.ofp_port)
250 & wild.wc.masks.in_port.ofp_port);
251 } else {
252 OVS_NOT_REACHED();
253 }
254
255 if (!eq) {
256 return false;
257 }
258 }
259 return true;
260 }
261
262 static struct cls_rule *
263 tcls_lookup(const struct tcls *cls, const struct flow *flow)
264 {
265 size_t i;
266
267 for (i = 0; i < cls->n_rules; i++) {
268 struct test_rule *pos = cls->rules[i];
269 if (match(&pos->cls_rule, flow)) {
270 return &pos->cls_rule;
271 }
272 }
273 return NULL;
274 }
275
276 static void
277 tcls_delete_matches(struct tcls *cls, const struct cls_rule *target)
278 {
279 size_t i;
280
281 for (i = 0; i < cls->n_rules; ) {
282 struct test_rule *pos = cls->rules[i];
283 if (!minimask_has_extra(&pos->cls_rule.match.mask,
284 &target->match.mask)) {
285 struct flow flow;
286
287 miniflow_expand(&pos->cls_rule.match.flow, &flow);
288 if (match(target, &flow)) {
289 tcls_remove(cls, pos);
290 continue;
291 }
292 }
293 i++;
294 }
295 }
296 \f
297 static ovs_be32 nw_src_values[] = { CONSTANT_HTONL(0xc0a80001),
298 CONSTANT_HTONL(0xc0a04455) };
299 static ovs_be32 nw_dst_values[] = { CONSTANT_HTONL(0xc0a80002),
300 CONSTANT_HTONL(0xc0a04455) };
301 static ovs_be64 tun_id_values[] = {
302 0,
303 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
304 static ovs_be64 metadata_values[] = {
305 0,
306 CONSTANT_HTONLL(UINT64_C(0xfedcba9876543210)) };
307 static ofp_port_t in_port_values[] = { OFP_PORT_C(1), OFPP_LOCAL };
308 static ovs_be16 vlan_tci_values[] = { CONSTANT_HTONS(101), CONSTANT_HTONS(0) };
309 static ovs_be16 dl_type_values[]
310 = { CONSTANT_HTONS(ETH_TYPE_IP), CONSTANT_HTONS(ETH_TYPE_ARP) };
311 static ovs_be16 tp_src_values[] = { CONSTANT_HTONS(49362),
312 CONSTANT_HTONS(80) };
313 static ovs_be16 tp_dst_values[] = { CONSTANT_HTONS(6667), CONSTANT_HTONS(22) };
314 static uint8_t dl_src_values[][6] = { { 0x00, 0x02, 0xe3, 0x0f, 0x80, 0xa4 },
315 { 0x5e, 0x33, 0x7f, 0x5f, 0x1e, 0x99 } };
316 static uint8_t dl_dst_values[][6] = { { 0x4a, 0x27, 0x71, 0xae, 0x64, 0xc1 },
317 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
318 static uint8_t nw_proto_values[] = { IPPROTO_TCP, IPPROTO_ICMP };
319 static uint8_t nw_dscp_values[] = { 48, 0 };
320
321 static void *values[CLS_N_FIELDS][2];
322
323 static void
324 init_values(void)
325 {
326 values[CLS_F_IDX_TUN_ID][0] = &tun_id_values[0];
327 values[CLS_F_IDX_TUN_ID][1] = &tun_id_values[1];
328
329 values[CLS_F_IDX_METADATA][0] = &metadata_values[0];
330 values[CLS_F_IDX_METADATA][1] = &metadata_values[1];
331
332 values[CLS_F_IDX_IN_PORT][0] = &in_port_values[0];
333 values[CLS_F_IDX_IN_PORT][1] = &in_port_values[1];
334
335 values[CLS_F_IDX_VLAN_TCI][0] = &vlan_tci_values[0];
336 values[CLS_F_IDX_VLAN_TCI][1] = &vlan_tci_values[1];
337
338 values[CLS_F_IDX_DL_SRC][0] = dl_src_values[0];
339 values[CLS_F_IDX_DL_SRC][1] = dl_src_values[1];
340
341 values[CLS_F_IDX_DL_DST][0] = dl_dst_values[0];
342 values[CLS_F_IDX_DL_DST][1] = dl_dst_values[1];
343
344 values[CLS_F_IDX_DL_TYPE][0] = &dl_type_values[0];
345 values[CLS_F_IDX_DL_TYPE][1] = &dl_type_values[1];
346
347 values[CLS_F_IDX_NW_SRC][0] = &nw_src_values[0];
348 values[CLS_F_IDX_NW_SRC][1] = &nw_src_values[1];
349
350 values[CLS_F_IDX_NW_DST][0] = &nw_dst_values[0];
351 values[CLS_F_IDX_NW_DST][1] = &nw_dst_values[1];
352
353 values[CLS_F_IDX_NW_PROTO][0] = &nw_proto_values[0];
354 values[CLS_F_IDX_NW_PROTO][1] = &nw_proto_values[1];
355
356 values[CLS_F_IDX_NW_DSCP][0] = &nw_dscp_values[0];
357 values[CLS_F_IDX_NW_DSCP][1] = &nw_dscp_values[1];
358
359 values[CLS_F_IDX_TP_SRC][0] = &tp_src_values[0];
360 values[CLS_F_IDX_TP_SRC][1] = &tp_src_values[1];
361
362 values[CLS_F_IDX_TP_DST][0] = &tp_dst_values[0];
363 values[CLS_F_IDX_TP_DST][1] = &tp_dst_values[1];
364 }
365
366 #define N_NW_SRC_VALUES ARRAY_SIZE(nw_src_values)
367 #define N_NW_DST_VALUES ARRAY_SIZE(nw_dst_values)
368 #define N_TUN_ID_VALUES ARRAY_SIZE(tun_id_values)
369 #define N_METADATA_VALUES ARRAY_SIZE(metadata_values)
370 #define N_IN_PORT_VALUES ARRAY_SIZE(in_port_values)
371 #define N_VLAN_TCI_VALUES ARRAY_SIZE(vlan_tci_values)
372 #define N_DL_TYPE_VALUES ARRAY_SIZE(dl_type_values)
373 #define N_TP_SRC_VALUES ARRAY_SIZE(tp_src_values)
374 #define N_TP_DST_VALUES ARRAY_SIZE(tp_dst_values)
375 #define N_DL_SRC_VALUES ARRAY_SIZE(dl_src_values)
376 #define N_DL_DST_VALUES ARRAY_SIZE(dl_dst_values)
377 #define N_NW_PROTO_VALUES ARRAY_SIZE(nw_proto_values)
378 #define N_NW_DSCP_VALUES ARRAY_SIZE(nw_dscp_values)
379
380 #define N_FLOW_VALUES (N_NW_SRC_VALUES * \
381 N_NW_DST_VALUES * \
382 N_TUN_ID_VALUES * \
383 N_IN_PORT_VALUES * \
384 N_VLAN_TCI_VALUES * \
385 N_DL_TYPE_VALUES * \
386 N_TP_SRC_VALUES * \
387 N_TP_DST_VALUES * \
388 N_DL_SRC_VALUES * \
389 N_DL_DST_VALUES * \
390 N_NW_PROTO_VALUES * \
391 N_NW_DSCP_VALUES)
392
393 static unsigned int
394 get_value(unsigned int *x, unsigned n_values)
395 {
396 unsigned int rem = *x % n_values;
397 *x /= n_values;
398 return rem;
399 }
400
401 static void
402 compare_classifiers(struct classifier *cls, struct tcls *tcls)
403 OVS_REQ_RDLOCK(cls->rwlock)
404 {
405 static const int confidence = 500;
406 unsigned int i;
407
408 assert(classifier_count(cls) == tcls->n_rules);
409 for (i = 0; i < confidence; i++) {
410 struct cls_rule *cr0, *cr1, *cr2;
411 struct flow flow;
412 struct flow_wildcards wc;
413 unsigned int x;
414
415 flow_wildcards_init_catchall(&wc);
416 x = random_range(N_FLOW_VALUES);
417 memset(&flow, 0, sizeof flow);
418 flow.nw_src = nw_src_values[get_value(&x, N_NW_SRC_VALUES)];
419 flow.nw_dst = nw_dst_values[get_value(&x, N_NW_DST_VALUES)];
420 flow.tunnel.tun_id = tun_id_values[get_value(&x, N_TUN_ID_VALUES)];
421 flow.metadata = metadata_values[get_value(&x, N_METADATA_VALUES)];
422 flow.in_port.ofp_port = in_port_values[get_value(&x,
423 N_IN_PORT_VALUES)];
424 flow.vlan_tci = vlan_tci_values[get_value(&x, N_VLAN_TCI_VALUES)];
425 flow.dl_type = dl_type_values[get_value(&x, N_DL_TYPE_VALUES)];
426 flow.tp_src = tp_src_values[get_value(&x, N_TP_SRC_VALUES)];
427 flow.tp_dst = tp_dst_values[get_value(&x, N_TP_DST_VALUES)];
428 memcpy(flow.dl_src, dl_src_values[get_value(&x, N_DL_SRC_VALUES)],
429 ETH_ADDR_LEN);
430 memcpy(flow.dl_dst, dl_dst_values[get_value(&x, N_DL_DST_VALUES)],
431 ETH_ADDR_LEN);
432 flow.nw_proto = nw_proto_values[get_value(&x, N_NW_PROTO_VALUES)];
433 flow.nw_tos = nw_dscp_values[get_value(&x, N_NW_DSCP_VALUES)];
434
435 cr0 = classifier_lookup(cls, &flow, &wc);
436 cr1 = tcls_lookup(tcls, &flow);
437 assert((cr0 == NULL) == (cr1 == NULL));
438 if (cr0 != NULL) {
439 const struct test_rule *tr0 = test_rule_from_cls_rule(cr0);
440 const struct test_rule *tr1 = test_rule_from_cls_rule(cr1);
441
442 assert(cls_rule_equal(cr0, cr1));
443 assert(tr0->aux == tr1->aux);
444 }
445 cr2 = classifier_lookup(cls, &flow, NULL);
446 assert(cr2 == cr0);
447 }
448 }
449
450 static void
451 destroy_classifier(struct classifier *cls)
452 {
453 struct test_rule *rule, *next_rule;
454 struct cls_cursor cursor;
455
456 fat_rwlock_wrlock(&cls->rwlock);
457 cls_cursor_init(&cursor, cls, NULL);
458 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
459 classifier_remove(cls, &rule->cls_rule);
460 free_rule(rule);
461 }
462 fat_rwlock_unlock(&cls->rwlock);
463 classifier_destroy(cls);
464 }
465
466 static void
467 check_tables(const struct classifier *cls, int n_tables, int n_rules,
468 int n_dups) OVS_REQ_RDLOCK(cls->rwlock)
469 {
470 const struct cls_subtable *table;
471 struct test_rule *test_rule;
472 struct cls_cursor cursor;
473 int found_tables = 0;
474 int found_rules = 0;
475 int found_dups = 0;
476 int found_rules2 = 0;
477
478 HMAP_FOR_EACH (table, hmap_node, &cls->cls->subtables) {
479 const struct cls_rule *head;
480 unsigned int max_priority = 0;
481 unsigned int max_count = 0;
482
483 assert(!hmap_is_empty(&table->rules));
484
485 found_tables++;
486 HMAP_FOR_EACH (head, hmap_node, &table->rules) {
487 unsigned int prev_priority = UINT_MAX;
488 const struct cls_rule *rule;
489
490 if (head->priority > max_priority) {
491 max_priority = head->priority;
492 max_count = 1;
493 } else if (head->priority == max_priority) {
494 ++max_count;
495 }
496
497 found_rules++;
498 LIST_FOR_EACH (rule, list, &head->list) {
499 assert(rule->priority < prev_priority);
500 assert(rule->priority <= table->max_priority);
501
502 prev_priority = rule->priority;
503 found_rules++;
504 found_dups++;
505 assert(classifier_find_rule_exactly(cls, rule) == rule);
506 }
507 }
508 assert(table->max_priority == max_priority);
509 assert(table->max_count == max_count);
510 }
511
512 assert(found_tables == hmap_count(&cls->cls->subtables));
513 assert(n_tables == -1 || n_tables == hmap_count(&cls->cls->subtables));
514 assert(n_rules == -1 || found_rules == n_rules);
515 assert(n_dups == -1 || found_dups == n_dups);
516
517 cls_cursor_init(&cursor, cls, NULL);
518 CLS_CURSOR_FOR_EACH (test_rule, cls_rule, &cursor) {
519 found_rules2++;
520 }
521 assert(found_rules == found_rules2);
522 }
523
524 static struct test_rule *
525 make_rule(int wc_fields, unsigned int priority, int value_pat)
526 {
527 const struct cls_field *f;
528 struct test_rule *rule;
529 struct match match;
530
531 match_init_catchall(&match);
532 for (f = &cls_fields[0]; f < &cls_fields[CLS_N_FIELDS]; f++) {
533 int f_idx = f - cls_fields;
534 int value_idx = (value_pat & (1u << f_idx)) != 0;
535 memcpy((char *) &match.flow + f->ofs,
536 values[f_idx][value_idx], f->len);
537
538 if (f_idx == CLS_F_IDX_NW_SRC) {
539 match.wc.masks.nw_src = OVS_BE32_MAX;
540 } else if (f_idx == CLS_F_IDX_NW_DST) {
541 match.wc.masks.nw_dst = OVS_BE32_MAX;
542 } else if (f_idx == CLS_F_IDX_TP_SRC) {
543 match.wc.masks.tp_src = OVS_BE16_MAX;
544 } else if (f_idx == CLS_F_IDX_TP_DST) {
545 match.wc.masks.tp_dst = OVS_BE16_MAX;
546 } else if (f_idx == CLS_F_IDX_DL_SRC) {
547 memset(match.wc.masks.dl_src, 0xff, ETH_ADDR_LEN);
548 } else if (f_idx == CLS_F_IDX_DL_DST) {
549 memset(match.wc.masks.dl_dst, 0xff, ETH_ADDR_LEN);
550 } else if (f_idx == CLS_F_IDX_VLAN_TCI) {
551 match.wc.masks.vlan_tci = OVS_BE16_MAX;
552 } else if (f_idx == CLS_F_IDX_TUN_ID) {
553 match.wc.masks.tunnel.tun_id = OVS_BE64_MAX;
554 } else if (f_idx == CLS_F_IDX_METADATA) {
555 match.wc.masks.metadata = OVS_BE64_MAX;
556 } else if (f_idx == CLS_F_IDX_NW_DSCP) {
557 match.wc.masks.nw_tos |= IP_DSCP_MASK;
558 } else if (f_idx == CLS_F_IDX_NW_PROTO) {
559 match.wc.masks.nw_proto = UINT8_MAX;
560 } else if (f_idx == CLS_F_IDX_DL_TYPE) {
561 match.wc.masks.dl_type = OVS_BE16_MAX;
562 } else if (f_idx == CLS_F_IDX_IN_PORT) {
563 match.wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
564 } else {
565 OVS_NOT_REACHED();
566 }
567 }
568
569 rule = xzalloc(sizeof *rule);
570 cls_rule_init(&rule->cls_rule, &match, wc_fields ? priority : UINT_MAX);
571 return rule;
572 }
573
574 static struct test_rule *
575 clone_rule(const struct test_rule *src)
576 {
577 struct test_rule *dst;
578
579 dst = xmalloc(sizeof *dst);
580 dst->aux = src->aux;
581 cls_rule_clone(&dst->cls_rule, &src->cls_rule);
582 return dst;
583 }
584
585 static void
586 free_rule(struct test_rule *rule)
587 {
588 cls_rule_destroy(&rule->cls_rule);
589 free(rule);
590 }
591
592 static void
593 shuffle(unsigned int *p, size_t n)
594 {
595 for (; n > 1; n--, p++) {
596 unsigned int *q = &p[random_range(n)];
597 unsigned int tmp = *p;
598 *p = *q;
599 *q = tmp;
600 }
601 }
602
603 static void
604 shuffle_u32s(uint32_t *p, size_t n)
605 {
606 for (; n > 1; n--, p++) {
607 uint32_t *q = &p[random_range(n)];
608 uint32_t tmp = *p;
609 *p = *q;
610 *q = tmp;
611 }
612 }
613 \f
614 /* Classifier tests. */
615
616 static enum mf_field_id trie_fields[2] = {
617 MFF_IPV4_DST, MFF_IPV4_SRC
618 };
619
620 /* Tests an empty classifier. */
621 static void
622 test_empty(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
623 {
624 struct classifier cls;
625 struct tcls tcls;
626
627 classifier_init(&cls, flow_segment_u32s);
628 fat_rwlock_wrlock(&cls.rwlock);
629 classifier_set_prefix_fields(&cls, trie_fields, ARRAY_SIZE(trie_fields));
630 tcls_init(&tcls);
631 assert(classifier_is_empty(&cls));
632 assert(tcls_is_empty(&tcls));
633 compare_classifiers(&cls, &tcls);
634 fat_rwlock_unlock(&cls.rwlock);
635 classifier_destroy(&cls);
636 tcls_destroy(&tcls);
637 }
638
639 /* Destroys a null classifier. */
640 static void
641 test_destroy_null(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
642 {
643 classifier_destroy(NULL);
644 }
645
646 /* Tests classification with one rule at a time. */
647 static void
648 test_single_rule(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
649 {
650 unsigned int wc_fields; /* Hilarious. */
651
652 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
653 struct classifier cls;
654 struct test_rule *rule, *tcls_rule;
655 struct tcls tcls;
656
657 rule = make_rule(wc_fields,
658 hash_bytes(&wc_fields, sizeof wc_fields, 0), 0);
659
660 classifier_init(&cls, flow_segment_u32s);
661 fat_rwlock_wrlock(&cls.rwlock);
662 classifier_set_prefix_fields(&cls, trie_fields,
663 ARRAY_SIZE(trie_fields));
664 tcls_init(&tcls);
665
666 tcls_rule = tcls_insert(&tcls, rule);
667 classifier_insert(&cls, &rule->cls_rule);
668 check_tables(&cls, 1, 1, 0);
669 compare_classifiers(&cls, &tcls);
670
671 classifier_remove(&cls, &rule->cls_rule);
672 tcls_remove(&tcls, tcls_rule);
673 assert(classifier_is_empty(&cls));
674 assert(tcls_is_empty(&tcls));
675 compare_classifiers(&cls, &tcls);
676
677 free_rule(rule);
678 fat_rwlock_unlock(&cls.rwlock);
679 classifier_destroy(&cls);
680 tcls_destroy(&tcls);
681 }
682 }
683
684 /* Tests replacing one rule by another. */
685 static void
686 test_rule_replacement(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
687 {
688 unsigned int wc_fields;
689
690 for (wc_fields = 0; wc_fields < (1u << CLS_N_FIELDS); wc_fields++) {
691 struct classifier cls;
692 struct test_rule *rule1;
693 struct test_rule *rule2;
694 struct tcls tcls;
695
696 rule1 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
697 rule2 = make_rule(wc_fields, OFP_DEFAULT_PRIORITY, UINT_MAX);
698 rule2->aux += 5;
699 rule2->aux += 5;
700
701 classifier_init(&cls, flow_segment_u32s);
702 fat_rwlock_wrlock(&cls.rwlock);
703 classifier_set_prefix_fields(&cls, trie_fields,
704 ARRAY_SIZE(trie_fields));
705 tcls_init(&tcls);
706 tcls_insert(&tcls, rule1);
707 classifier_insert(&cls, &rule1->cls_rule);
708 check_tables(&cls, 1, 1, 0);
709 compare_classifiers(&cls, &tcls);
710 tcls_destroy(&tcls);
711
712 tcls_init(&tcls);
713 tcls_insert(&tcls, rule2);
714 assert(test_rule_from_cls_rule(
715 classifier_replace(&cls, &rule2->cls_rule)) == rule1);
716 free_rule(rule1);
717 check_tables(&cls, 1, 1, 0);
718 compare_classifiers(&cls, &tcls);
719 tcls_destroy(&tcls);
720 fat_rwlock_unlock(&cls.rwlock);
721 destroy_classifier(&cls);
722 }
723 }
724
725 static int
726 factorial(int n_items)
727 {
728 int n, i;
729
730 n = 1;
731 for (i = 2; i <= n_items; i++) {
732 n *= i;
733 }
734 return n;
735 }
736
737 static void
738 swap(int *a, int *b)
739 {
740 int tmp = *a;
741 *a = *b;
742 *b = tmp;
743 }
744
745 static void
746 reverse(int *a, int n)
747 {
748 int i;
749
750 for (i = 0; i < n / 2; i++) {
751 int j = n - (i + 1);
752 swap(&a[i], &a[j]);
753 }
754 }
755
756 static bool
757 next_permutation(int *a, int n)
758 {
759 int k;
760
761 for (k = n - 2; k >= 0; k--) {
762 if (a[k] < a[k + 1]) {
763 int l;
764
765 for (l = n - 1; ; l--) {
766 if (a[l] > a[k]) {
767 swap(&a[k], &a[l]);
768 reverse(a + (k + 1), n - (k + 1));
769 return true;
770 }
771 }
772 }
773 }
774 return false;
775 }
776
777 /* Tests classification with rules that have the same matching criteria. */
778 static void
779 test_many_rules_in_one_list (int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
780 {
781 enum { N_RULES = 3 };
782 int n_pris;
783
784 for (n_pris = N_RULES; n_pris >= 1; n_pris--) {
785 int ops[N_RULES * 2];
786 int pris[N_RULES];
787 int n_permutations;
788 int i;
789
790 pris[0] = 0;
791 for (i = 1; i < N_RULES; i++) {
792 pris[i] = pris[i - 1] + (n_pris > i);
793 }
794
795 for (i = 0; i < N_RULES * 2; i++) {
796 ops[i] = i / 2;
797 }
798
799 n_permutations = 0;
800 do {
801 struct test_rule *rules[N_RULES];
802 struct test_rule *tcls_rules[N_RULES];
803 int pri_rules[N_RULES];
804 struct classifier cls;
805 struct tcls tcls;
806
807 n_permutations++;
808
809 for (i = 0; i < N_RULES; i++) {
810 rules[i] = make_rule(456, pris[i], 0);
811 tcls_rules[i] = NULL;
812 pri_rules[i] = -1;
813 }
814
815 classifier_init(&cls, flow_segment_u32s);
816 fat_rwlock_wrlock(&cls.rwlock);
817 classifier_set_prefix_fields(&cls, trie_fields,
818 ARRAY_SIZE(trie_fields));
819 tcls_init(&tcls);
820
821 for (i = 0; i < ARRAY_SIZE(ops); i++) {
822 int j = ops[i];
823 int m, n;
824
825 if (!tcls_rules[j]) {
826 struct test_rule *displaced_rule;
827
828 tcls_rules[j] = tcls_insert(&tcls, rules[j]);
829 displaced_rule = test_rule_from_cls_rule(
830 classifier_replace(&cls, &rules[j]->cls_rule));
831 if (pri_rules[pris[j]] >= 0) {
832 int k = pri_rules[pris[j]];
833 assert(displaced_rule != NULL);
834 assert(displaced_rule != rules[j]);
835 assert(pris[j] == displaced_rule->cls_rule.priority);
836 tcls_rules[k] = NULL;
837 } else {
838 assert(displaced_rule == NULL);
839 }
840 pri_rules[pris[j]] = j;
841 } else {
842 classifier_remove(&cls, &rules[j]->cls_rule);
843 tcls_remove(&tcls, tcls_rules[j]);
844 tcls_rules[j] = NULL;
845 pri_rules[pris[j]] = -1;
846 }
847
848 n = 0;
849 for (m = 0; m < N_RULES; m++) {
850 n += tcls_rules[m] != NULL;
851 }
852 check_tables(&cls, n > 0, n, n - 1);
853
854 compare_classifiers(&cls, &tcls);
855 }
856
857 fat_rwlock_unlock(&cls.rwlock);
858 classifier_destroy(&cls);
859 tcls_destroy(&tcls);
860
861 for (i = 0; i < N_RULES; i++) {
862 free_rule(rules[i]);
863 }
864 } while (next_permutation(ops, ARRAY_SIZE(ops)));
865 assert(n_permutations == (factorial(N_RULES * 2) >> N_RULES));
866 }
867 }
868
869 static int
870 count_ones(unsigned long int x)
871 {
872 int n = 0;
873
874 while (x) {
875 x = zero_rightmost_1bit(x);
876 n++;
877 }
878
879 return n;
880 }
881
882 static bool
883 array_contains(int *array, int n, int value)
884 {
885 int i;
886
887 for (i = 0; i < n; i++) {
888 if (array[i] == value) {
889 return true;
890 }
891 }
892
893 return false;
894 }
895
896 /* Tests classification with two rules at a time that fall into the same
897 * table but different lists. */
898 static void
899 test_many_rules_in_one_table(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
900 {
901 int iteration;
902
903 for (iteration = 0; iteration < 50; iteration++) {
904 enum { N_RULES = 20 };
905 struct test_rule *rules[N_RULES];
906 struct test_rule *tcls_rules[N_RULES];
907 struct classifier cls;
908 struct tcls tcls;
909 int value_pats[N_RULES];
910 int value_mask;
911 int wcf;
912 int i;
913
914 do {
915 wcf = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
916 value_mask = ~wcf & ((1u << CLS_N_FIELDS) - 1);
917 } while ((1 << count_ones(value_mask)) < N_RULES);
918
919 classifier_init(&cls, flow_segment_u32s);
920 fat_rwlock_wrlock(&cls.rwlock);
921 classifier_set_prefix_fields(&cls, trie_fields,
922 ARRAY_SIZE(trie_fields));
923 tcls_init(&tcls);
924
925 for (i = 0; i < N_RULES; i++) {
926 unsigned int priority = random_uint32();
927
928 do {
929 value_pats[i] = random_uint32() & value_mask;
930 } while (array_contains(value_pats, i, value_pats[i]));
931
932 rules[i] = make_rule(wcf, priority, value_pats[i]);
933 tcls_rules[i] = tcls_insert(&tcls, rules[i]);
934 classifier_insert(&cls, &rules[i]->cls_rule);
935
936 check_tables(&cls, 1, i + 1, 0);
937 compare_classifiers(&cls, &tcls);
938 }
939
940 for (i = 0; i < N_RULES; i++) {
941 tcls_remove(&tcls, tcls_rules[i]);
942 classifier_remove(&cls, &rules[i]->cls_rule);
943 free_rule(rules[i]);
944
945 check_tables(&cls, i < N_RULES - 1, N_RULES - (i + 1), 0);
946 compare_classifiers(&cls, &tcls);
947 }
948
949 fat_rwlock_unlock(&cls.rwlock);
950 classifier_destroy(&cls);
951 tcls_destroy(&tcls);
952 }
953 }
954
955 /* Tests classification with many rules at a time that fall into random lists
956 * in 'n' tables. */
957 static void
958 test_many_rules_in_n_tables(int n_tables)
959 {
960 enum { MAX_RULES = 50 };
961 int wcfs[10];
962 int iteration;
963 int i;
964
965 assert(n_tables < 10);
966 for (i = 0; i < n_tables; i++) {
967 do {
968 wcfs[i] = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
969 } while (array_contains(wcfs, i, wcfs[i]));
970 }
971
972 for (iteration = 0; iteration < 30; iteration++) {
973 unsigned int priorities[MAX_RULES];
974 struct classifier cls;
975 struct tcls tcls;
976
977 random_set_seed(iteration + 1);
978 for (i = 0; i < MAX_RULES; i++) {
979 priorities[i] = i * 129;
980 }
981 shuffle(priorities, ARRAY_SIZE(priorities));
982
983 classifier_init(&cls, flow_segment_u32s);
984 fat_rwlock_wrlock(&cls.rwlock);
985 classifier_set_prefix_fields(&cls, trie_fields,
986 ARRAY_SIZE(trie_fields));
987 tcls_init(&tcls);
988
989 for (i = 0; i < MAX_RULES; i++) {
990 struct test_rule *rule;
991 unsigned int priority = priorities[i];
992 int wcf = wcfs[random_range(n_tables)];
993 int value_pat = random_uint32() & ((1u << CLS_N_FIELDS) - 1);
994 rule = make_rule(wcf, priority, value_pat);
995 tcls_insert(&tcls, rule);
996 classifier_insert(&cls, &rule->cls_rule);
997 check_tables(&cls, -1, i + 1, -1);
998 compare_classifiers(&cls, &tcls);
999 }
1000
1001 while (!classifier_is_empty(&cls)) {
1002 struct test_rule *rule, *next_rule;
1003 struct test_rule *target;
1004 struct cls_cursor cursor;
1005
1006 target = clone_rule(tcls.rules[random_range(tcls.n_rules)]);
1007
1008 cls_cursor_init(&cursor, &cls, &target->cls_rule);
1009 CLS_CURSOR_FOR_EACH_SAFE (rule, next_rule, cls_rule, &cursor) {
1010 classifier_remove(&cls, &rule->cls_rule);
1011 free_rule(rule);
1012 }
1013 tcls_delete_matches(&tcls, &target->cls_rule);
1014 compare_classifiers(&cls, &tcls);
1015 check_tables(&cls, -1, -1, -1);
1016 free_rule(target);
1017 }
1018
1019 fat_rwlock_unlock(&cls.rwlock);
1020 destroy_classifier(&cls);
1021 tcls_destroy(&tcls);
1022 }
1023 }
1024
1025 static void
1026 test_many_rules_in_two_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1027 {
1028 test_many_rules_in_n_tables(2);
1029 }
1030
1031 static void
1032 test_many_rules_in_five_tables(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1033 {
1034 test_many_rules_in_n_tables(5);
1035 }
1036 \f
1037 /* Miniflow tests. */
1038
1039 static uint32_t
1040 random_value(void)
1041 {
1042 static const uint32_t values[] =
1043 { 0xffffffff, 0xaaaaaaaa, 0x55555555, 0x80000000,
1044 0x00000001, 0xface0000, 0x00d00d1e, 0xdeadbeef };
1045
1046 return values[random_range(ARRAY_SIZE(values))];
1047 }
1048
1049 static bool
1050 choose(unsigned int n, unsigned int *idxp)
1051 {
1052 if (*idxp < n) {
1053 return true;
1054 } else {
1055 *idxp -= n;
1056 return false;
1057 }
1058 }
1059
1060 static bool
1061 init_consecutive_values(int n_consecutive, struct flow *flow,
1062 unsigned int *idxp)
1063 {
1064 uint32_t *flow_u32 = (uint32_t *) flow;
1065
1066 if (choose(FLOW_U32S - n_consecutive + 1, idxp)) {
1067 int i;
1068
1069 for (i = 0; i < n_consecutive; i++) {
1070 flow_u32[*idxp + i] = random_value();
1071 }
1072 return true;
1073 } else {
1074 return false;
1075 }
1076 }
1077
1078 static bool
1079 next_random_flow(struct flow *flow, unsigned int idx)
1080 {
1081 uint32_t *flow_u32 = (uint32_t *) flow;
1082 int i;
1083
1084 memset(flow, 0, sizeof *flow);
1085
1086 /* Empty flow. */
1087 if (choose(1, &idx)) {
1088 return true;
1089 }
1090
1091 /* All flows with a small number of consecutive nonzero values. */
1092 for (i = 1; i <= 4; i++) {
1093 if (init_consecutive_values(i, flow, &idx)) {
1094 return true;
1095 }
1096 }
1097
1098 /* All flows with a large number of consecutive nonzero values. */
1099 for (i = FLOW_U32S - 4; i <= FLOW_U32S; i++) {
1100 if (init_consecutive_values(i, flow, &idx)) {
1101 return true;
1102 }
1103 }
1104
1105 /* All flows with exactly two nonconsecutive nonzero values. */
1106 if (choose((FLOW_U32S - 1) * (FLOW_U32S - 2) / 2, &idx)) {
1107 int ofs1;
1108
1109 for (ofs1 = 0; ofs1 < FLOW_U32S - 2; ofs1++) {
1110 int ofs2;
1111
1112 for (ofs2 = ofs1 + 2; ofs2 < FLOW_U32S; ofs2++) {
1113 if (choose(1, &idx)) {
1114 flow_u32[ofs1] = random_value();
1115 flow_u32[ofs2] = random_value();
1116 return true;
1117 }
1118 }
1119 }
1120 OVS_NOT_REACHED();
1121 }
1122
1123 /* 16 randomly chosen flows with N >= 3 nonzero values. */
1124 if (choose(16 * (FLOW_U32S - 4), &idx)) {
1125 int n = idx / 16 + 3;
1126 int i;
1127
1128 for (i = 0; i < n; i++) {
1129 flow_u32[i] = random_value();
1130 }
1131 shuffle_u32s(flow_u32, FLOW_U32S);
1132
1133 return true;
1134 }
1135
1136 return false;
1137 }
1138
1139 static void
1140 any_random_flow(struct flow *flow)
1141 {
1142 static unsigned int max;
1143 if (!max) {
1144 while (next_random_flow(flow, max)) {
1145 max++;
1146 }
1147 }
1148
1149 next_random_flow(flow, random_range(max));
1150 }
1151
1152 static void
1153 toggle_masked_flow_bits(struct flow *flow, const struct flow_wildcards *mask)
1154 {
1155 const uint32_t *mask_u32 = (const uint32_t *) &mask->masks;
1156 uint32_t *flow_u32 = (uint32_t *) flow;
1157 int i;
1158
1159 for (i = 0; i < FLOW_U32S; i++) {
1160 if (mask_u32[i] != 0) {
1161 uint32_t bit;
1162
1163 do {
1164 bit = 1u << random_range(32);
1165 } while (!(bit & mask_u32[i]));
1166 flow_u32[i] ^= bit;
1167 }
1168 }
1169 }
1170
1171 static void
1172 wildcard_extra_bits(struct flow_wildcards *mask)
1173 {
1174 uint32_t *mask_u32 = (uint32_t *) &mask->masks;
1175 int i;
1176
1177 for (i = 0; i < FLOW_U32S; i++) {
1178 if (mask_u32[i] != 0) {
1179 uint32_t bit;
1180
1181 do {
1182 bit = 1u << random_range(32);
1183 } while (!(bit & mask_u32[i]));
1184 mask_u32[i] &= ~bit;
1185 }
1186 }
1187 }
1188
1189 static void
1190 test_miniflow(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1191 {
1192 struct flow flow;
1193 unsigned int idx;
1194
1195 random_set_seed(0xb3faca38);
1196 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1197 const uint32_t *flow_u32 = (const uint32_t *) &flow;
1198 struct miniflow miniflow, miniflow2, miniflow3;
1199 struct flow flow2, flow3;
1200 struct flow_wildcards mask;
1201 struct minimask minimask;
1202 int i;
1203
1204 /* Convert flow to miniflow. */
1205 miniflow_init(&miniflow, &flow);
1206
1207 /* Check that the flow equals its miniflow. */
1208 assert(miniflow_get_vid(&miniflow) == vlan_tci_to_vid(flow.vlan_tci));
1209 for (i = 0; i < FLOW_U32S; i++) {
1210 assert(MINIFLOW_GET_TYPE(&miniflow, uint32_t, i * 4)
1211 == flow_u32[i]);
1212 }
1213
1214 /* Check that the miniflow equals itself. */
1215 assert(miniflow_equal(&miniflow, &miniflow));
1216
1217 /* Convert miniflow back to flow and verify that it's the same. */
1218 miniflow_expand(&miniflow, &flow2);
1219 assert(flow_equal(&flow, &flow2));
1220
1221 /* Check that copying a miniflow works properly. */
1222 miniflow_clone(&miniflow2, &miniflow);
1223 assert(miniflow_equal(&miniflow, &miniflow2));
1224 assert(miniflow_hash(&miniflow, 0) == miniflow_hash(&miniflow2, 0));
1225 miniflow_expand(&miniflow2, &flow3);
1226 assert(flow_equal(&flow, &flow3));
1227
1228 /* Check that masked matches work as expected for identical flows and
1229 * miniflows. */
1230 do {
1231 next_random_flow(&mask.masks, 1);
1232 } while (flow_wildcards_is_catchall(&mask));
1233 minimask_init(&minimask, &mask);
1234 assert(minimask_is_catchall(&minimask)
1235 == flow_wildcards_is_catchall(&mask));
1236 assert(miniflow_equal_in_minimask(&miniflow, &miniflow2, &minimask));
1237 assert(miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1238 assert(miniflow_hash_in_minimask(&miniflow, &minimask, 0x12345678) ==
1239 flow_hash_in_minimask(&flow, &minimask, 0x12345678));
1240
1241 /* Check that masked matches work as expected for differing flows and
1242 * miniflows. */
1243 toggle_masked_flow_bits(&flow2, &mask);
1244 assert(!miniflow_equal_flow_in_minimask(&miniflow, &flow2, &minimask));
1245 miniflow_init(&miniflow3, &flow2);
1246 assert(!miniflow_equal_in_minimask(&miniflow, &miniflow3, &minimask));
1247
1248 /* Clean up. */
1249 miniflow_destroy(&miniflow);
1250 miniflow_destroy(&miniflow2);
1251 miniflow_destroy(&miniflow3);
1252 minimask_destroy(&minimask);
1253 }
1254 }
1255
1256 static void
1257 test_minimask_has_extra(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1258 {
1259 struct flow_wildcards catchall;
1260 struct minimask minicatchall;
1261 struct flow flow;
1262 unsigned int idx;
1263
1264 flow_wildcards_init_catchall(&catchall);
1265 minimask_init(&minicatchall, &catchall);
1266 assert(minimask_is_catchall(&minicatchall));
1267
1268 random_set_seed(0x2ec7905b);
1269 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1270 struct flow_wildcards mask;
1271 struct minimask minimask;
1272
1273 mask.masks = flow;
1274 minimask_init(&minimask, &mask);
1275 assert(!minimask_has_extra(&minimask, &minimask));
1276 assert(minimask_has_extra(&minicatchall, &minimask)
1277 == !minimask_is_catchall(&minimask));
1278 if (!minimask_is_catchall(&minimask)) {
1279 struct minimask minimask2;
1280
1281 wildcard_extra_bits(&mask);
1282 minimask_init(&minimask2, &mask);
1283 assert(minimask_has_extra(&minimask2, &minimask));
1284 assert(!minimask_has_extra(&minimask, &minimask2));
1285 minimask_destroy(&minimask2);
1286 }
1287
1288 minimask_destroy(&minimask);
1289 }
1290
1291 minimask_destroy(&minicatchall);
1292 }
1293
1294 static void
1295 test_minimask_combine(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
1296 {
1297 struct flow_wildcards catchall;
1298 struct minimask minicatchall;
1299 struct flow flow;
1300 unsigned int idx;
1301
1302 flow_wildcards_init_catchall(&catchall);
1303 minimask_init(&minicatchall, &catchall);
1304 assert(minimask_is_catchall(&minicatchall));
1305
1306 random_set_seed(0x181bf0cd);
1307 for (idx = 0; next_random_flow(&flow, idx); idx++) {
1308 struct minimask minimask, minimask2, minicombined;
1309 struct flow_wildcards mask, mask2, combined, combined2;
1310 uint32_t storage[FLOW_U32S];
1311 struct flow flow2;
1312
1313 mask.masks = flow;
1314 minimask_init(&minimask, &mask);
1315
1316 minimask_combine(&minicombined, &minimask, &minicatchall, storage);
1317 assert(minimask_is_catchall(&minicombined));
1318
1319 any_random_flow(&flow2);
1320 mask2.masks = flow2;
1321 minimask_init(&minimask2, &mask2);
1322
1323 minimask_combine(&minicombined, &minimask, &minimask2, storage);
1324 flow_wildcards_and(&combined, &mask, &mask2);
1325 minimask_expand(&minicombined, &combined2);
1326 assert(flow_wildcards_equal(&combined, &combined2));
1327
1328 minimask_destroy(&minimask);
1329 minimask_destroy(&minimask2);
1330 }
1331
1332 minimask_destroy(&minicatchall);
1333 }
1334 \f
1335 static const struct command commands[] = {
1336 /* Classifier tests. */
1337 {"empty", 0, 0, test_empty},
1338 {"destroy-null", 0, 0, test_destroy_null},
1339 {"single-rule", 0, 0, test_single_rule},
1340 {"rule-replacement", 0, 0, test_rule_replacement},
1341 {"many-rules-in-one-list", 0, 0, test_many_rules_in_one_list},
1342 {"many-rules-in-one-table", 0, 0, test_many_rules_in_one_table},
1343 {"many-rules-in-two-tables", 0, 0, test_many_rules_in_two_tables},
1344 {"many-rules-in-five-tables", 0, 0, test_many_rules_in_five_tables},
1345
1346 /* Miniflow and minimask tests. */
1347 {"miniflow", 0, 0, test_miniflow},
1348 {"minimask_has_extra", 0, 0, test_minimask_has_extra},
1349 {"minimask_combine", 0, 0, test_minimask_combine},
1350
1351 {NULL, 0, 0, NULL},
1352 };
1353
1354 static void
1355 test_classifier_main(int argc, char *argv[])
1356 {
1357 set_program_name(argv[0]);
1358 init_values();
1359 run_command(argc - 1, argv + 1, commands);
1360 }
1361
1362 OVSTEST_REGISTER("test-classifier", test_classifier_main);