]> git.proxmox.com Git - mirror_qemu.git/blob - tests/test-visitor-serialization.c
Merge remote-tracking branch 'remotes/agraf/tags/signed-ppc-for-upstream' into staging
[mirror_qemu.git] / tests / test-visitor-serialization.c
1 /*
2 * Unit-tests for visitor-based serialization
3 *
4 * Copyright (C) 2014-2015 Red Hat, Inc.
5 * Copyright IBM, Corp. 2012
6 *
7 * Authors:
8 * Michael Roth <mdroth@linux.vnet.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 */
13
14 #include <glib.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <float.h>
18
19 #include "qemu-common.h"
20 #include "test-qapi-types.h"
21 #include "test-qapi-visit.h"
22 #include "qapi/qmp/types.h"
23 #include "qapi/qmp-input-visitor.h"
24 #include "qapi/qmp-output-visitor.h"
25 #include "qapi/string-input-visitor.h"
26 #include "qapi/string-output-visitor.h"
27 #include "qapi-types.h"
28 #include "qapi-visit.h"
29 #include "qapi/dealloc-visitor.h"
30
31 enum PrimitiveTypeKind {
32 PTYPE_STRING = 0,
33 PTYPE_BOOLEAN,
34 PTYPE_NUMBER,
35 PTYPE_INTEGER,
36 PTYPE_U8,
37 PTYPE_U16,
38 PTYPE_U32,
39 PTYPE_U64,
40 PTYPE_S8,
41 PTYPE_S16,
42 PTYPE_S32,
43 PTYPE_S64,
44 PTYPE_EOL,
45 };
46
47 typedef struct PrimitiveType {
48 union {
49 const char *string;
50 bool boolean;
51 double number;
52 int64_t integer;
53 uint8_t u8;
54 uint16_t u16;
55 uint32_t u32;
56 uint64_t u64;
57 int8_t s8;
58 int16_t s16;
59 int32_t s32;
60 int64_t s64;
61 intmax_t max;
62 } value;
63 enum PrimitiveTypeKind type;
64 const char *description;
65 } PrimitiveType;
66
67 typedef struct PrimitiveList {
68 union {
69 strList *strings;
70 boolList *booleans;
71 numberList *numbers;
72 intList *integers;
73 int8List *s8_integers;
74 int16List *s16_integers;
75 int32List *s32_integers;
76 int64List *s64_integers;
77 uint8List *u8_integers;
78 uint16List *u16_integers;
79 uint32List *u32_integers;
80 uint64List *u64_integers;
81 } value;
82 enum PrimitiveTypeKind type;
83 const char *description;
84 } PrimitiveList;
85
86 /* test helpers */
87
88 typedef void (*VisitorFunc)(Visitor *v, void **native, Error **errp);
89
90 static void dealloc_helper(void *native_in, VisitorFunc visit, Error **errp)
91 {
92 QapiDeallocVisitor *qdv = qapi_dealloc_visitor_new();
93
94 visit(qapi_dealloc_get_visitor(qdv), &native_in, errp);
95
96 qapi_dealloc_visitor_cleanup(qdv);
97 }
98
99 static void visit_primitive_type(Visitor *v, void **native, Error **errp)
100 {
101 PrimitiveType *pt = *native;
102 switch(pt->type) {
103 case PTYPE_STRING:
104 visit_type_str(v, (char **)&pt->value.string, NULL, errp);
105 break;
106 case PTYPE_BOOLEAN:
107 visit_type_bool(v, &pt->value.boolean, NULL, errp);
108 break;
109 case PTYPE_NUMBER:
110 visit_type_number(v, &pt->value.number, NULL, errp);
111 break;
112 case PTYPE_INTEGER:
113 visit_type_int(v, &pt->value.integer, NULL, errp);
114 break;
115 case PTYPE_U8:
116 visit_type_uint8(v, &pt->value.u8, NULL, errp);
117 break;
118 case PTYPE_U16:
119 visit_type_uint16(v, &pt->value.u16, NULL, errp);
120 break;
121 case PTYPE_U32:
122 visit_type_uint32(v, &pt->value.u32, NULL, errp);
123 break;
124 case PTYPE_U64:
125 visit_type_uint64(v, &pt->value.u64, NULL, errp);
126 break;
127 case PTYPE_S8:
128 visit_type_int8(v, &pt->value.s8, NULL, errp);
129 break;
130 case PTYPE_S16:
131 visit_type_int16(v, &pt->value.s16, NULL, errp);
132 break;
133 case PTYPE_S32:
134 visit_type_int32(v, &pt->value.s32, NULL, errp);
135 break;
136 case PTYPE_S64:
137 visit_type_int64(v, &pt->value.s64, NULL, errp);
138 break;
139 case PTYPE_EOL:
140 g_assert_not_reached();
141 }
142 }
143
144 static void visit_primitive_list(Visitor *v, void **native, Error **errp)
145 {
146 PrimitiveList *pl = *native;
147 switch (pl->type) {
148 case PTYPE_STRING:
149 visit_type_strList(v, &pl->value.strings, NULL, errp);
150 break;
151 case PTYPE_BOOLEAN:
152 visit_type_boolList(v, &pl->value.booleans, NULL, errp);
153 break;
154 case PTYPE_NUMBER:
155 visit_type_numberList(v, &pl->value.numbers, NULL, errp);
156 break;
157 case PTYPE_INTEGER:
158 visit_type_intList(v, &pl->value.integers, NULL, errp);
159 break;
160 case PTYPE_S8:
161 visit_type_int8List(v, &pl->value.s8_integers, NULL, errp);
162 break;
163 case PTYPE_S16:
164 visit_type_int16List(v, &pl->value.s16_integers, NULL, errp);
165 break;
166 case PTYPE_S32:
167 visit_type_int32List(v, &pl->value.s32_integers, NULL, errp);
168 break;
169 case PTYPE_S64:
170 visit_type_int64List(v, &pl->value.s64_integers, NULL, errp);
171 break;
172 case PTYPE_U8:
173 visit_type_uint8List(v, &pl->value.u8_integers, NULL, errp);
174 break;
175 case PTYPE_U16:
176 visit_type_uint16List(v, &pl->value.u16_integers, NULL, errp);
177 break;
178 case PTYPE_U32:
179 visit_type_uint32List(v, &pl->value.u32_integers, NULL, errp);
180 break;
181 case PTYPE_U64:
182 visit_type_uint64List(v, &pl->value.u64_integers, NULL, errp);
183 break;
184 default:
185 g_assert_not_reached();
186 }
187 }
188
189 typedef struct TestStruct
190 {
191 int64_t integer;
192 bool boolean;
193 char *string;
194 } TestStruct;
195
196 static void visit_type_TestStruct(Visitor *v, TestStruct **obj,
197 const char *name, Error **errp)
198 {
199 Error *err = NULL;
200
201 visit_start_struct(v, (void **)obj, NULL, name, sizeof(TestStruct), &err);
202 if (err) {
203 goto out;
204 }
205
206 visit_type_int(v, &(*obj)->integer, "integer", &err);
207 if (err) {
208 goto out_end;
209 }
210 visit_type_bool(v, &(*obj)->boolean, "boolean", &err);
211 if (err) {
212 goto out_end;
213 }
214 visit_type_str(v, &(*obj)->string, "string", &err);
215
216 out_end:
217 error_propagate(errp, err);
218 err = NULL;
219 visit_end_struct(v, &err);
220 out:
221 error_propagate(errp, err);
222 }
223
224 static TestStruct *struct_create(void)
225 {
226 TestStruct *ts = g_malloc0(sizeof(*ts));
227 ts->integer = -42;
228 ts->boolean = true;
229 ts->string = strdup("test string");
230 return ts;
231 }
232
233 static void struct_compare(TestStruct *ts1, TestStruct *ts2)
234 {
235 g_assert(ts1);
236 g_assert(ts2);
237 g_assert_cmpint(ts1->integer, ==, ts2->integer);
238 g_assert(ts1->boolean == ts2->boolean);
239 g_assert_cmpstr(ts1->string, ==, ts2->string);
240 }
241
242 static void struct_cleanup(TestStruct *ts)
243 {
244 g_free(ts->string);
245 g_free(ts);
246 }
247
248 static void visit_struct(Visitor *v, void **native, Error **errp)
249 {
250 visit_type_TestStruct(v, (TestStruct **)native, NULL, errp);
251 }
252
253 static UserDefTwo *nested_struct_create(void)
254 {
255 UserDefTwo *udnp = g_malloc0(sizeof(*udnp));
256 udnp->string0 = strdup("test_string0");
257 udnp->dict1 = g_malloc0(sizeof(*udnp->dict1));
258 udnp->dict1->string1 = strdup("test_string1");
259 udnp->dict1->dict2 = g_malloc0(sizeof(*udnp->dict1->dict2));
260 udnp->dict1->dict2->userdef = g_new0(UserDefOne, 1);
261 udnp->dict1->dict2->userdef->base = g_new0(UserDefZero, 1);
262 udnp->dict1->dict2->userdef->base->integer = 42;
263 udnp->dict1->dict2->userdef->string = strdup("test_string");
264 udnp->dict1->dict2->string = strdup("test_string2");
265 udnp->dict1->dict3 = g_malloc0(sizeof(*udnp->dict1->dict3));
266 udnp->dict1->has_dict3 = true;
267 udnp->dict1->dict3->userdef = g_new0(UserDefOne, 1);
268 udnp->dict1->dict3->userdef->base = g_new0(UserDefZero, 1);
269 udnp->dict1->dict3->userdef->base->integer = 43;
270 udnp->dict1->dict3->userdef->string = strdup("test_string");
271 udnp->dict1->dict3->string = strdup("test_string3");
272 return udnp;
273 }
274
275 static void nested_struct_compare(UserDefTwo *udnp1, UserDefTwo *udnp2)
276 {
277 g_assert(udnp1);
278 g_assert(udnp2);
279 g_assert_cmpstr(udnp1->string0, ==, udnp2->string0);
280 g_assert_cmpstr(udnp1->dict1->string1, ==, udnp2->dict1->string1);
281 g_assert_cmpint(udnp1->dict1->dict2->userdef->base->integer, ==,
282 udnp2->dict1->dict2->userdef->base->integer);
283 g_assert_cmpstr(udnp1->dict1->dict2->userdef->string, ==,
284 udnp2->dict1->dict2->userdef->string);
285 g_assert_cmpstr(udnp1->dict1->dict2->string, ==,
286 udnp2->dict1->dict2->string);
287 g_assert(udnp1->dict1->has_dict3 == udnp2->dict1->has_dict3);
288 g_assert_cmpint(udnp1->dict1->dict3->userdef->base->integer, ==,
289 udnp2->dict1->dict3->userdef->base->integer);
290 g_assert_cmpstr(udnp1->dict1->dict3->userdef->string, ==,
291 udnp2->dict1->dict3->userdef->string);
292 g_assert_cmpstr(udnp1->dict1->dict3->string, ==,
293 udnp2->dict1->dict3->string);
294 }
295
296 static void nested_struct_cleanup(UserDefTwo *udnp)
297 {
298 qapi_free_UserDefTwo(udnp);
299 }
300
301 static void visit_nested_struct(Visitor *v, void **native, Error **errp)
302 {
303 visit_type_UserDefTwo(v, (UserDefTwo **)native, NULL, errp);
304 }
305
306 static void visit_nested_struct_list(Visitor *v, void **native, Error **errp)
307 {
308 visit_type_UserDefTwoList(v, (UserDefTwoList **)native, NULL, errp);
309 }
310
311 /* test cases */
312
313 typedef enum VisitorCapabilities {
314 VCAP_PRIMITIVES = 1,
315 VCAP_STRUCTURES = 2,
316 VCAP_LISTS = 4,
317 VCAP_PRIMITIVE_LISTS = 8,
318 } VisitorCapabilities;
319
320 typedef struct SerializeOps {
321 void (*serialize)(void *native_in, void **datap,
322 VisitorFunc visit, Error **errp);
323 void (*deserialize)(void **native_out, void *datap,
324 VisitorFunc visit, Error **errp);
325 void (*cleanup)(void *datap);
326 const char *type;
327 VisitorCapabilities caps;
328 } SerializeOps;
329
330 typedef struct TestArgs {
331 const SerializeOps *ops;
332 void *test_data;
333 } TestArgs;
334
335 static void test_primitives(gconstpointer opaque)
336 {
337 TestArgs *args = (TestArgs *) opaque;
338 const SerializeOps *ops = args->ops;
339 PrimitiveType *pt = args->test_data;
340 PrimitiveType *pt_copy = g_malloc0(sizeof(*pt_copy));
341 Error *err = NULL;
342 void *serialize_data;
343
344 pt_copy->type = pt->type;
345 ops->serialize(pt, &serialize_data, visit_primitive_type, &err);
346 ops->deserialize((void **)&pt_copy, serialize_data, visit_primitive_type, &err);
347
348 g_assert(err == NULL);
349 g_assert(pt_copy != NULL);
350 if (pt->type == PTYPE_STRING) {
351 g_assert_cmpstr(pt->value.string, ==, pt_copy->value.string);
352 g_free((char *)pt_copy->value.string);
353 } else if (pt->type == PTYPE_NUMBER) {
354 GString *double_expected = g_string_new("");
355 GString *double_actual = g_string_new("");
356 /* we serialize with %f for our reference visitors, so rather than fuzzy
357 * floating math to test "equality", just compare the formatted values
358 */
359 g_string_printf(double_expected, "%.6f", pt->value.number);
360 g_string_printf(double_actual, "%.6f", pt_copy->value.number);
361 g_assert_cmpstr(double_actual->str, ==, double_expected->str);
362
363 g_string_free(double_expected, true);
364 g_string_free(double_actual, true);
365 } else if (pt->type == PTYPE_BOOLEAN) {
366 g_assert_cmpint(!!pt->value.max, ==, !!pt->value.max);
367 } else {
368 g_assert_cmpint(pt->value.max, ==, pt_copy->value.max);
369 }
370
371 ops->cleanup(serialize_data);
372 g_free(args);
373 g_free(pt_copy);
374 }
375
376 static void test_primitive_lists(gconstpointer opaque)
377 {
378 TestArgs *args = (TestArgs *) opaque;
379 const SerializeOps *ops = args->ops;
380 PrimitiveType *pt = args->test_data;
381 PrimitiveList pl = { .value = { NULL } };
382 PrimitiveList pl_copy = { .value = { NULL } };
383 PrimitiveList *pl_copy_ptr = &pl_copy;
384 Error *err = NULL;
385 void *serialize_data;
386 void *cur_head = NULL;
387 int i;
388
389 pl.type = pl_copy.type = pt->type;
390
391 /* build up our list of primitive types */
392 for (i = 0; i < 32; i++) {
393 switch (pl.type) {
394 case PTYPE_STRING: {
395 strList *tmp = g_new0(strList, 1);
396 tmp->value = g_strdup(pt->value.string);
397 if (pl.value.strings == NULL) {
398 pl.value.strings = tmp;
399 } else {
400 tmp->next = pl.value.strings;
401 pl.value.strings = tmp;
402 }
403 break;
404 }
405 case PTYPE_INTEGER: {
406 intList *tmp = g_new0(intList, 1);
407 tmp->value = pt->value.integer;
408 if (pl.value.integers == NULL) {
409 pl.value.integers = tmp;
410 } else {
411 tmp->next = pl.value.integers;
412 pl.value.integers = tmp;
413 }
414 break;
415 }
416 case PTYPE_S8: {
417 int8List *tmp = g_new0(int8List, 1);
418 tmp->value = pt->value.s8;
419 if (pl.value.s8_integers == NULL) {
420 pl.value.s8_integers = tmp;
421 } else {
422 tmp->next = pl.value.s8_integers;
423 pl.value.s8_integers = tmp;
424 }
425 break;
426 }
427 case PTYPE_S16: {
428 int16List *tmp = g_new0(int16List, 1);
429 tmp->value = pt->value.s16;
430 if (pl.value.s16_integers == NULL) {
431 pl.value.s16_integers = tmp;
432 } else {
433 tmp->next = pl.value.s16_integers;
434 pl.value.s16_integers = tmp;
435 }
436 break;
437 }
438 case PTYPE_S32: {
439 int32List *tmp = g_new0(int32List, 1);
440 tmp->value = pt->value.s32;
441 if (pl.value.s32_integers == NULL) {
442 pl.value.s32_integers = tmp;
443 } else {
444 tmp->next = pl.value.s32_integers;
445 pl.value.s32_integers = tmp;
446 }
447 break;
448 }
449 case PTYPE_S64: {
450 int64List *tmp = g_new0(int64List, 1);
451 tmp->value = pt->value.s64;
452 if (pl.value.s64_integers == NULL) {
453 pl.value.s64_integers = tmp;
454 } else {
455 tmp->next = pl.value.s64_integers;
456 pl.value.s64_integers = tmp;
457 }
458 break;
459 }
460 case PTYPE_U8: {
461 uint8List *tmp = g_new0(uint8List, 1);
462 tmp->value = pt->value.u8;
463 if (pl.value.u8_integers == NULL) {
464 pl.value.u8_integers = tmp;
465 } else {
466 tmp->next = pl.value.u8_integers;
467 pl.value.u8_integers = tmp;
468 }
469 break;
470 }
471 case PTYPE_U16: {
472 uint16List *tmp = g_new0(uint16List, 1);
473 tmp->value = pt->value.u16;
474 if (pl.value.u16_integers == NULL) {
475 pl.value.u16_integers = tmp;
476 } else {
477 tmp->next = pl.value.u16_integers;
478 pl.value.u16_integers = tmp;
479 }
480 break;
481 }
482 case PTYPE_U32: {
483 uint32List *tmp = g_new0(uint32List, 1);
484 tmp->value = pt->value.u32;
485 if (pl.value.u32_integers == NULL) {
486 pl.value.u32_integers = tmp;
487 } else {
488 tmp->next = pl.value.u32_integers;
489 pl.value.u32_integers = tmp;
490 }
491 break;
492 }
493 case PTYPE_U64: {
494 uint64List *tmp = g_new0(uint64List, 1);
495 tmp->value = pt->value.u64;
496 if (pl.value.u64_integers == NULL) {
497 pl.value.u64_integers = tmp;
498 } else {
499 tmp->next = pl.value.u64_integers;
500 pl.value.u64_integers = tmp;
501 }
502 break;
503 }
504 case PTYPE_NUMBER: {
505 numberList *tmp = g_new0(numberList, 1);
506 tmp->value = pt->value.number;
507 if (pl.value.numbers == NULL) {
508 pl.value.numbers = tmp;
509 } else {
510 tmp->next = pl.value.numbers;
511 pl.value.numbers = tmp;
512 }
513 break;
514 }
515 case PTYPE_BOOLEAN: {
516 boolList *tmp = g_new0(boolList, 1);
517 tmp->value = pt->value.boolean;
518 if (pl.value.booleans == NULL) {
519 pl.value.booleans = tmp;
520 } else {
521 tmp->next = pl.value.booleans;
522 pl.value.booleans = tmp;
523 }
524 break;
525 }
526 default:
527 g_assert_not_reached();
528 }
529 }
530
531 ops->serialize((void **)&pl, &serialize_data, visit_primitive_list, &err);
532 ops->deserialize((void **)&pl_copy_ptr, serialize_data, visit_primitive_list, &err);
533
534 g_assert(err == NULL);
535 i = 0;
536
537 /* compare our deserialized list of primitives to the original */
538 do {
539 switch (pl_copy.type) {
540 case PTYPE_STRING: {
541 strList *ptr;
542 if (cur_head) {
543 ptr = cur_head;
544 cur_head = ptr->next;
545 } else {
546 cur_head = ptr = pl_copy.value.strings;
547 }
548 g_assert_cmpstr(pt->value.string, ==, ptr->value);
549 break;
550 }
551 case PTYPE_INTEGER: {
552 intList *ptr;
553 if (cur_head) {
554 ptr = cur_head;
555 cur_head = ptr->next;
556 } else {
557 cur_head = ptr = pl_copy.value.integers;
558 }
559 g_assert_cmpint(pt->value.integer, ==, ptr->value);
560 break;
561 }
562 case PTYPE_S8: {
563 int8List *ptr;
564 if (cur_head) {
565 ptr = cur_head;
566 cur_head = ptr->next;
567 } else {
568 cur_head = ptr = pl_copy.value.s8_integers;
569 }
570 g_assert_cmpint(pt->value.s8, ==, ptr->value);
571 break;
572 }
573 case PTYPE_S16: {
574 int16List *ptr;
575 if (cur_head) {
576 ptr = cur_head;
577 cur_head = ptr->next;
578 } else {
579 cur_head = ptr = pl_copy.value.s16_integers;
580 }
581 g_assert_cmpint(pt->value.s16, ==, ptr->value);
582 break;
583 }
584 case PTYPE_S32: {
585 int32List *ptr;
586 if (cur_head) {
587 ptr = cur_head;
588 cur_head = ptr->next;
589 } else {
590 cur_head = ptr = pl_copy.value.s32_integers;
591 }
592 g_assert_cmpint(pt->value.s32, ==, ptr->value);
593 break;
594 }
595 case PTYPE_S64: {
596 int64List *ptr;
597 if (cur_head) {
598 ptr = cur_head;
599 cur_head = ptr->next;
600 } else {
601 cur_head = ptr = pl_copy.value.s64_integers;
602 }
603 g_assert_cmpint(pt->value.s64, ==, ptr->value);
604 break;
605 }
606 case PTYPE_U8: {
607 uint8List *ptr;
608 if (cur_head) {
609 ptr = cur_head;
610 cur_head = ptr->next;
611 } else {
612 cur_head = ptr = pl_copy.value.u8_integers;
613 }
614 g_assert_cmpint(pt->value.u8, ==, ptr->value);
615 break;
616 }
617 case PTYPE_U16: {
618 uint16List *ptr;
619 if (cur_head) {
620 ptr = cur_head;
621 cur_head = ptr->next;
622 } else {
623 cur_head = ptr = pl_copy.value.u16_integers;
624 }
625 g_assert_cmpint(pt->value.u16, ==, ptr->value);
626 break;
627 }
628 case PTYPE_U32: {
629 uint32List *ptr;
630 if (cur_head) {
631 ptr = cur_head;
632 cur_head = ptr->next;
633 } else {
634 cur_head = ptr = pl_copy.value.u32_integers;
635 }
636 g_assert_cmpint(pt->value.u32, ==, ptr->value);
637 break;
638 }
639 case PTYPE_U64: {
640 uint64List *ptr;
641 if (cur_head) {
642 ptr = cur_head;
643 cur_head = ptr->next;
644 } else {
645 cur_head = ptr = pl_copy.value.u64_integers;
646 }
647 g_assert_cmpint(pt->value.u64, ==, ptr->value);
648 break;
649 }
650 case PTYPE_NUMBER: {
651 numberList *ptr;
652 GString *double_expected = g_string_new("");
653 GString *double_actual = g_string_new("");
654 if (cur_head) {
655 ptr = cur_head;
656 cur_head = ptr->next;
657 } else {
658 cur_head = ptr = pl_copy.value.numbers;
659 }
660 /* we serialize with %f for our reference visitors, so rather than
661 * fuzzy floating math to test "equality", just compare the
662 * formatted values
663 */
664 g_string_printf(double_expected, "%.6f", pt->value.number);
665 g_string_printf(double_actual, "%.6f", ptr->value);
666 g_assert_cmpstr(double_actual->str, ==, double_expected->str);
667 g_string_free(double_expected, true);
668 g_string_free(double_actual, true);
669 break;
670 }
671 case PTYPE_BOOLEAN: {
672 boolList *ptr;
673 if (cur_head) {
674 ptr = cur_head;
675 cur_head = ptr->next;
676 } else {
677 cur_head = ptr = pl_copy.value.booleans;
678 }
679 g_assert_cmpint(!!pt->value.boolean, ==, !!ptr->value);
680 break;
681 }
682 default:
683 g_assert_not_reached();
684 }
685 i++;
686 } while (cur_head);
687
688 g_assert_cmpint(i, ==, 33);
689
690 ops->cleanup(serialize_data);
691 dealloc_helper(&pl, visit_primitive_list, &err);
692 g_assert(!err);
693 dealloc_helper(&pl_copy, visit_primitive_list, &err);
694 g_assert(!err);
695 g_free(args);
696 }
697
698 static void test_struct(gconstpointer opaque)
699 {
700 TestArgs *args = (TestArgs *) opaque;
701 const SerializeOps *ops = args->ops;
702 TestStruct *ts = struct_create();
703 TestStruct *ts_copy = NULL;
704 Error *err = NULL;
705 void *serialize_data;
706
707 ops->serialize(ts, &serialize_data, visit_struct, &err);
708 ops->deserialize((void **)&ts_copy, serialize_data, visit_struct, &err);
709
710 g_assert(err == NULL);
711 struct_compare(ts, ts_copy);
712
713 struct_cleanup(ts);
714 struct_cleanup(ts_copy);
715
716 ops->cleanup(serialize_data);
717 g_free(args);
718 }
719
720 static void test_nested_struct(gconstpointer opaque)
721 {
722 TestArgs *args = (TestArgs *) opaque;
723 const SerializeOps *ops = args->ops;
724 UserDefTwo *udnp = nested_struct_create();
725 UserDefTwo *udnp_copy = NULL;
726 Error *err = NULL;
727 void *serialize_data;
728
729 ops->serialize(udnp, &serialize_data, visit_nested_struct, &err);
730 ops->deserialize((void **)&udnp_copy, serialize_data, visit_nested_struct,
731 &err);
732
733 g_assert(err == NULL);
734 nested_struct_compare(udnp, udnp_copy);
735
736 nested_struct_cleanup(udnp);
737 nested_struct_cleanup(udnp_copy);
738
739 ops->cleanup(serialize_data);
740 g_free(args);
741 }
742
743 static void test_nested_struct_list(gconstpointer opaque)
744 {
745 TestArgs *args = (TestArgs *) opaque;
746 const SerializeOps *ops = args->ops;
747 UserDefTwoList *listp = NULL, *tmp, *tmp_copy, *listp_copy = NULL;
748 Error *err = NULL;
749 void *serialize_data;
750 int i = 0;
751
752 for (i = 0; i < 8; i++) {
753 tmp = g_new0(UserDefTwoList, 1);
754 tmp->value = nested_struct_create();
755 tmp->next = listp;
756 listp = tmp;
757 }
758
759 ops->serialize(listp, &serialize_data, visit_nested_struct_list, &err);
760 ops->deserialize((void **)&listp_copy, serialize_data,
761 visit_nested_struct_list, &err);
762
763 g_assert(err == NULL);
764
765 tmp = listp;
766 tmp_copy = listp_copy;
767 while (listp_copy) {
768 g_assert(listp);
769 nested_struct_compare(listp->value, listp_copy->value);
770 listp = listp->next;
771 listp_copy = listp_copy->next;
772 }
773
774 qapi_free_UserDefTwoList(tmp);
775 qapi_free_UserDefTwoList(tmp_copy);
776
777 ops->cleanup(serialize_data);
778 g_free(args);
779 }
780
781 static PrimitiveType pt_values[] = {
782 /* string tests */
783 {
784 .description = "string_empty",
785 .type = PTYPE_STRING,
786 .value.string = "",
787 },
788 {
789 .description = "string_whitespace",
790 .type = PTYPE_STRING,
791 .value.string = "a b c\td",
792 },
793 {
794 .description = "string_newlines",
795 .type = PTYPE_STRING,
796 .value.string = "a\nb\n",
797 },
798 {
799 .description = "string_commas",
800 .type = PTYPE_STRING,
801 .value.string = "a,b, c,d",
802 },
803 {
804 .description = "string_single_quoted",
805 .type = PTYPE_STRING,
806 .value.string = "'a b',cd",
807 },
808 {
809 .description = "string_double_quoted",
810 .type = PTYPE_STRING,
811 .value.string = "\"a b\",cd",
812 },
813 /* boolean tests */
814 {
815 .description = "boolean_true1",
816 .type = PTYPE_BOOLEAN,
817 .value.boolean = true,
818 },
819 {
820 .description = "boolean_true2",
821 .type = PTYPE_BOOLEAN,
822 .value.boolean = 8,
823 },
824 {
825 .description = "boolean_true3",
826 .type = PTYPE_BOOLEAN,
827 .value.boolean = -1,
828 },
829 {
830 .description = "boolean_false1",
831 .type = PTYPE_BOOLEAN,
832 .value.boolean = false,
833 },
834 {
835 .description = "boolean_false2",
836 .type = PTYPE_BOOLEAN,
837 .value.boolean = 0,
838 },
839 /* number tests (double) */
840 /* note: we format these to %.6f before comparing, since that's how
841 * we serialize them and it doesn't make sense to check precision
842 * beyond that.
843 */
844 {
845 .description = "number_sanity1",
846 .type = PTYPE_NUMBER,
847 .value.number = -1,
848 },
849 {
850 .description = "number_sanity2",
851 .type = PTYPE_NUMBER,
852 .value.number = 3.14159265,
853 },
854 {
855 .description = "number_min",
856 .type = PTYPE_NUMBER,
857 .value.number = DBL_MIN,
858 },
859 {
860 .description = "number_max",
861 .type = PTYPE_NUMBER,
862 .value.number = DBL_MAX,
863 },
864 /* integer tests (int64) */
865 {
866 .description = "integer_sanity1",
867 .type = PTYPE_INTEGER,
868 .value.integer = -1,
869 },
870 {
871 .description = "integer_sanity2",
872 .type = PTYPE_INTEGER,
873 .value.integer = INT64_MAX / 2 + 1,
874 },
875 {
876 .description = "integer_min",
877 .type = PTYPE_INTEGER,
878 .value.integer = INT64_MIN,
879 },
880 {
881 .description = "integer_max",
882 .type = PTYPE_INTEGER,
883 .value.integer = INT64_MAX,
884 },
885 /* uint8 tests */
886 {
887 .description = "uint8_sanity1",
888 .type = PTYPE_U8,
889 .value.u8 = 1,
890 },
891 {
892 .description = "uint8_sanity2",
893 .type = PTYPE_U8,
894 .value.u8 = UINT8_MAX / 2 + 1,
895 },
896 {
897 .description = "uint8_min",
898 .type = PTYPE_U8,
899 .value.u8 = 0,
900 },
901 {
902 .description = "uint8_max",
903 .type = PTYPE_U8,
904 .value.u8 = UINT8_MAX,
905 },
906 /* uint16 tests */
907 {
908 .description = "uint16_sanity1",
909 .type = PTYPE_U16,
910 .value.u16 = 1,
911 },
912 {
913 .description = "uint16_sanity2",
914 .type = PTYPE_U16,
915 .value.u16 = UINT16_MAX / 2 + 1,
916 },
917 {
918 .description = "uint16_min",
919 .type = PTYPE_U16,
920 .value.u16 = 0,
921 },
922 {
923 .description = "uint16_max",
924 .type = PTYPE_U16,
925 .value.u16 = UINT16_MAX,
926 },
927 /* uint32 tests */
928 {
929 .description = "uint32_sanity1",
930 .type = PTYPE_U32,
931 .value.u32 = 1,
932 },
933 {
934 .description = "uint32_sanity2",
935 .type = PTYPE_U32,
936 .value.u32 = UINT32_MAX / 2 + 1,
937 },
938 {
939 .description = "uint32_min",
940 .type = PTYPE_U32,
941 .value.u32 = 0,
942 },
943 {
944 .description = "uint32_max",
945 .type = PTYPE_U32,
946 .value.u32 = UINT32_MAX,
947 },
948 /* uint64 tests */
949 {
950 .description = "uint64_sanity1",
951 .type = PTYPE_U64,
952 .value.u64 = 1,
953 },
954 {
955 .description = "uint64_sanity2",
956 .type = PTYPE_U64,
957 .value.u64 = UINT64_MAX / 2 + 1,
958 },
959 {
960 .description = "uint64_min",
961 .type = PTYPE_U64,
962 .value.u64 = 0,
963 },
964 {
965 .description = "uint64_max",
966 .type = PTYPE_U64,
967 .value.u64 = UINT64_MAX,
968 },
969 /* int8 tests */
970 {
971 .description = "int8_sanity1",
972 .type = PTYPE_S8,
973 .value.s8 = -1,
974 },
975 {
976 .description = "int8_sanity2",
977 .type = PTYPE_S8,
978 .value.s8 = INT8_MAX / 2 + 1,
979 },
980 {
981 .description = "int8_min",
982 .type = PTYPE_S8,
983 .value.s8 = INT8_MIN,
984 },
985 {
986 .description = "int8_max",
987 .type = PTYPE_S8,
988 .value.s8 = INT8_MAX,
989 },
990 /* int16 tests */
991 {
992 .description = "int16_sanity1",
993 .type = PTYPE_S16,
994 .value.s16 = -1,
995 },
996 {
997 .description = "int16_sanity2",
998 .type = PTYPE_S16,
999 .value.s16 = INT16_MAX / 2 + 1,
1000 },
1001 {
1002 .description = "int16_min",
1003 .type = PTYPE_S16,
1004 .value.s16 = INT16_MIN,
1005 },
1006 {
1007 .description = "int16_max",
1008 .type = PTYPE_S16,
1009 .value.s16 = INT16_MAX,
1010 },
1011 /* int32 tests */
1012 {
1013 .description = "int32_sanity1",
1014 .type = PTYPE_S32,
1015 .value.s32 = -1,
1016 },
1017 {
1018 .description = "int32_sanity2",
1019 .type = PTYPE_S32,
1020 .value.s32 = INT32_MAX / 2 + 1,
1021 },
1022 {
1023 .description = "int32_min",
1024 .type = PTYPE_S32,
1025 .value.s32 = INT32_MIN,
1026 },
1027 {
1028 .description = "int32_max",
1029 .type = PTYPE_S32,
1030 .value.s32 = INT32_MAX,
1031 },
1032 /* int64 tests */
1033 {
1034 .description = "int64_sanity1",
1035 .type = PTYPE_S64,
1036 .value.s64 = -1,
1037 },
1038 {
1039 .description = "int64_sanity2",
1040 .type = PTYPE_S64,
1041 .value.s64 = INT64_MAX / 2 + 1,
1042 },
1043 {
1044 .description = "int64_min",
1045 .type = PTYPE_S64,
1046 .value.s64 = INT64_MIN,
1047 },
1048 {
1049 .description = "int64_max",
1050 .type = PTYPE_S64,
1051 .value.s64 = INT64_MAX,
1052 },
1053 { .type = PTYPE_EOL }
1054 };
1055
1056 /* visitor-specific op implementations */
1057
1058 typedef struct QmpSerializeData {
1059 QmpOutputVisitor *qov;
1060 QmpInputVisitor *qiv;
1061 } QmpSerializeData;
1062
1063 static void qmp_serialize(void *native_in, void **datap,
1064 VisitorFunc visit, Error **errp)
1065 {
1066 QmpSerializeData *d = g_malloc0(sizeof(*d));
1067
1068 d->qov = qmp_output_visitor_new();
1069 visit(qmp_output_get_visitor(d->qov), &native_in, errp);
1070 *datap = d;
1071 }
1072
1073 static void qmp_deserialize(void **native_out, void *datap,
1074 VisitorFunc visit, Error **errp)
1075 {
1076 QmpSerializeData *d = datap;
1077 QString *output_json;
1078 QObject *obj_orig, *obj;
1079
1080 obj_orig = qmp_output_get_qobject(d->qov);
1081 output_json = qobject_to_json(obj_orig);
1082 obj = qobject_from_json(qstring_get_str(output_json));
1083
1084 QDECREF(output_json);
1085 d->qiv = qmp_input_visitor_new(obj);
1086 qobject_decref(obj_orig);
1087 qobject_decref(obj);
1088 visit(qmp_input_get_visitor(d->qiv), native_out, errp);
1089 }
1090
1091 static void qmp_cleanup(void *datap)
1092 {
1093 QmpSerializeData *d = datap;
1094 qmp_output_visitor_cleanup(d->qov);
1095 qmp_input_visitor_cleanup(d->qiv);
1096
1097 g_free(d);
1098 }
1099
1100 typedef struct StringSerializeData {
1101 char *string;
1102 StringOutputVisitor *sov;
1103 StringInputVisitor *siv;
1104 } StringSerializeData;
1105
1106 static void string_serialize(void *native_in, void **datap,
1107 VisitorFunc visit, Error **errp)
1108 {
1109 StringSerializeData *d = g_malloc0(sizeof(*d));
1110
1111 d->sov = string_output_visitor_new(false);
1112 visit(string_output_get_visitor(d->sov), &native_in, errp);
1113 *datap = d;
1114 }
1115
1116 static void string_deserialize(void **native_out, void *datap,
1117 VisitorFunc visit, Error **errp)
1118 {
1119 StringSerializeData *d = datap;
1120
1121 d->string = string_output_get_string(d->sov);
1122 d->siv = string_input_visitor_new(d->string);
1123 visit(string_input_get_visitor(d->siv), native_out, errp);
1124 }
1125
1126 static void string_cleanup(void *datap)
1127 {
1128 StringSerializeData *d = datap;
1129
1130 string_output_visitor_cleanup(d->sov);
1131 string_input_visitor_cleanup(d->siv);
1132 g_free(d->string);
1133 g_free(d);
1134 }
1135
1136 /* visitor registration, test harness */
1137
1138 /* note: to function interchangeably as a serialization mechanism your
1139 * visitor test implementation should pass the test cases for all visitor
1140 * capabilities: primitives, structures, and lists
1141 */
1142 static const SerializeOps visitors[] = {
1143 {
1144 .type = "QMP",
1145 .serialize = qmp_serialize,
1146 .deserialize = qmp_deserialize,
1147 .cleanup = qmp_cleanup,
1148 .caps = VCAP_PRIMITIVES | VCAP_STRUCTURES | VCAP_LISTS |
1149 VCAP_PRIMITIVE_LISTS
1150 },
1151 {
1152 .type = "String",
1153 .serialize = string_serialize,
1154 .deserialize = string_deserialize,
1155 .cleanup = string_cleanup,
1156 .caps = VCAP_PRIMITIVES
1157 },
1158 { NULL }
1159 };
1160
1161 static void add_visitor_type(const SerializeOps *ops)
1162 {
1163 char testname_prefix[128];
1164 char testname[128];
1165 TestArgs *args;
1166 int i = 0;
1167
1168 sprintf(testname_prefix, "/visitor/serialization/%s", ops->type);
1169
1170 if (ops->caps & VCAP_PRIMITIVES) {
1171 while (pt_values[i].type != PTYPE_EOL) {
1172 sprintf(testname, "%s/primitives/%s", testname_prefix,
1173 pt_values[i].description);
1174 args = g_malloc0(sizeof(*args));
1175 args->ops = ops;
1176 args->test_data = &pt_values[i];
1177 g_test_add_data_func(testname, args, test_primitives);
1178 i++;
1179 }
1180 }
1181
1182 if (ops->caps & VCAP_STRUCTURES) {
1183 sprintf(testname, "%s/struct", testname_prefix);
1184 args = g_malloc0(sizeof(*args));
1185 args->ops = ops;
1186 args->test_data = NULL;
1187 g_test_add_data_func(testname, args, test_struct);
1188
1189 sprintf(testname, "%s/nested_struct", testname_prefix);
1190 args = g_malloc0(sizeof(*args));
1191 args->ops = ops;
1192 args->test_data = NULL;
1193 g_test_add_data_func(testname, args, test_nested_struct);
1194 }
1195
1196 if (ops->caps & VCAP_LISTS) {
1197 sprintf(testname, "%s/nested_struct_list", testname_prefix);
1198 args = g_malloc0(sizeof(*args));
1199 args->ops = ops;
1200 args->test_data = NULL;
1201 g_test_add_data_func(testname, args, test_nested_struct_list);
1202 }
1203
1204 if (ops->caps & VCAP_PRIMITIVE_LISTS) {
1205 i = 0;
1206 while (pt_values[i].type != PTYPE_EOL) {
1207 sprintf(testname, "%s/primitive_list/%s", testname_prefix,
1208 pt_values[i].description);
1209 args = g_malloc0(sizeof(*args));
1210 args->ops = ops;
1211 args->test_data = &pt_values[i];
1212 g_test_add_data_func(testname, args, test_primitive_lists);
1213 i++;
1214 }
1215 }
1216 }
1217
1218 int main(int argc, char **argv)
1219 {
1220 int i = 0;
1221
1222 g_test_init(&argc, &argv, NULL);
1223
1224 while (visitors[i].type != NULL) {
1225 add_visitor_type(&visitors[i]);
1226 i++;
1227 }
1228
1229 g_test_run();
1230
1231 return 0;
1232 }