]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - tools/include/uapi/linux/bpf.h
2d6a2e572f561ba8f0b7cb1969cb344e0ae10430
[mirror_ubuntu-hirsute-kernel.git] / tools / include / uapi / linux / bpf.h
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13
14 /* Extended instruction set based on top of classic BPF */
15
16 /* instruction classes */
17 #define BPF_JMP32 0x06 /* jmp mode in word width */
18 #define BPF_ALU64 0x07 /* alu mode in double word width */
19
20 /* ld/ldx fields */
21 #define BPF_DW 0x18 /* double word (64-bit) */
22 #define BPF_XADD 0xc0 /* exclusive add */
23
24 /* alu/jmp fields */
25 #define BPF_MOV 0xb0 /* mov reg to reg */
26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
27
28 /* change endianness of a register */
29 #define BPF_END 0xd0 /* flags for endianness conversion: */
30 #define BPF_TO_LE 0x00 /* convert to little-endian */
31 #define BPF_TO_BE 0x08 /* convert to big-endian */
32 #define BPF_FROM_LE BPF_TO_LE
33 #define BPF_FROM_BE BPF_TO_BE
34
35 /* jmp encodings */
36 #define BPF_JNE 0x50 /* jump != */
37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */
38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */
42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
43 #define BPF_CALL 0x80 /* function call */
44 #define BPF_EXIT 0x90 /* function return */
45
46 /* Register numbers */
47 enum {
48 BPF_REG_0 = 0,
49 BPF_REG_1,
50 BPF_REG_2,
51 BPF_REG_3,
52 BPF_REG_4,
53 BPF_REG_5,
54 BPF_REG_6,
55 BPF_REG_7,
56 BPF_REG_8,
57 BPF_REG_9,
58 BPF_REG_10,
59 __MAX_BPF_REG,
60 };
61
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG __MAX_BPF_REG
64
65 struct bpf_insn {
66 __u8 code; /* opcode */
67 __u8 dst_reg:4; /* dest register */
68 __u8 src_reg:4; /* source register */
69 __s16 off; /* signed offset */
70 __s32 imm; /* signed immediate constant */
71 };
72
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
76 __u8 data[0]; /* Arbitrary size */
77 };
78
79 struct bpf_cgroup_storage_key {
80 __u64 cgroup_inode_id; /* cgroup inode id */
81 __u32 attach_type; /* program attach type */
82 };
83
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 BPF_MAP_CREATE,
87 BPF_MAP_LOOKUP_ELEM,
88 BPF_MAP_UPDATE_ELEM,
89 BPF_MAP_DELETE_ELEM,
90 BPF_MAP_GET_NEXT_KEY,
91 BPF_PROG_LOAD,
92 BPF_OBJ_PIN,
93 BPF_OBJ_GET,
94 BPF_PROG_ATTACH,
95 BPF_PROG_DETACH,
96 BPF_PROG_TEST_RUN,
97 BPF_PROG_GET_NEXT_ID,
98 BPF_MAP_GET_NEXT_ID,
99 BPF_PROG_GET_FD_BY_ID,
100 BPF_MAP_GET_FD_BY_ID,
101 BPF_OBJ_GET_INFO_BY_FD,
102 BPF_PROG_QUERY,
103 BPF_RAW_TRACEPOINT_OPEN,
104 BPF_BTF_LOAD,
105 BPF_BTF_GET_FD_BY_ID,
106 BPF_TASK_FD_QUERY,
107 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 BPF_MAP_FREEZE,
109 BPF_BTF_GET_NEXT_ID,
110 };
111
112 enum bpf_map_type {
113 BPF_MAP_TYPE_UNSPEC,
114 BPF_MAP_TYPE_HASH,
115 BPF_MAP_TYPE_ARRAY,
116 BPF_MAP_TYPE_PROG_ARRAY,
117 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
118 BPF_MAP_TYPE_PERCPU_HASH,
119 BPF_MAP_TYPE_PERCPU_ARRAY,
120 BPF_MAP_TYPE_STACK_TRACE,
121 BPF_MAP_TYPE_CGROUP_ARRAY,
122 BPF_MAP_TYPE_LRU_HASH,
123 BPF_MAP_TYPE_LRU_PERCPU_HASH,
124 BPF_MAP_TYPE_LPM_TRIE,
125 BPF_MAP_TYPE_ARRAY_OF_MAPS,
126 BPF_MAP_TYPE_HASH_OF_MAPS,
127 BPF_MAP_TYPE_DEVMAP,
128 BPF_MAP_TYPE_SOCKMAP,
129 BPF_MAP_TYPE_CPUMAP,
130 BPF_MAP_TYPE_XSKMAP,
131 BPF_MAP_TYPE_SOCKHASH,
132 BPF_MAP_TYPE_CGROUP_STORAGE,
133 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
134 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
135 BPF_MAP_TYPE_QUEUE,
136 BPF_MAP_TYPE_STACK,
137 BPF_MAP_TYPE_SK_STORAGE,
138 BPF_MAP_TYPE_DEVMAP_HASH,
139 BPF_MAP_TYPE_STRUCT_OPS,
140 };
141
142 /* Note that tracing related programs such as
143 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
144 * are not subject to a stable API since kernel internal data
145 * structures can change from release to release and may
146 * therefore break existing tracing BPF programs. Tracing BPF
147 * programs correspond to /a/ specific kernel which is to be
148 * analyzed, and not /a/ specific kernel /and/ all future ones.
149 */
150 enum bpf_prog_type {
151 BPF_PROG_TYPE_UNSPEC,
152 BPF_PROG_TYPE_SOCKET_FILTER,
153 BPF_PROG_TYPE_KPROBE,
154 BPF_PROG_TYPE_SCHED_CLS,
155 BPF_PROG_TYPE_SCHED_ACT,
156 BPF_PROG_TYPE_TRACEPOINT,
157 BPF_PROG_TYPE_XDP,
158 BPF_PROG_TYPE_PERF_EVENT,
159 BPF_PROG_TYPE_CGROUP_SKB,
160 BPF_PROG_TYPE_CGROUP_SOCK,
161 BPF_PROG_TYPE_LWT_IN,
162 BPF_PROG_TYPE_LWT_OUT,
163 BPF_PROG_TYPE_LWT_XMIT,
164 BPF_PROG_TYPE_SOCK_OPS,
165 BPF_PROG_TYPE_SK_SKB,
166 BPF_PROG_TYPE_CGROUP_DEVICE,
167 BPF_PROG_TYPE_SK_MSG,
168 BPF_PROG_TYPE_RAW_TRACEPOINT,
169 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
170 BPF_PROG_TYPE_LWT_SEG6LOCAL,
171 BPF_PROG_TYPE_LIRC_MODE2,
172 BPF_PROG_TYPE_SK_REUSEPORT,
173 BPF_PROG_TYPE_FLOW_DISSECTOR,
174 BPF_PROG_TYPE_CGROUP_SYSCTL,
175 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
176 BPF_PROG_TYPE_CGROUP_SOCKOPT,
177 BPF_PROG_TYPE_TRACING,
178 BPF_PROG_TYPE_STRUCT_OPS,
179 };
180
181 enum bpf_attach_type {
182 BPF_CGROUP_INET_INGRESS,
183 BPF_CGROUP_INET_EGRESS,
184 BPF_CGROUP_INET_SOCK_CREATE,
185 BPF_CGROUP_SOCK_OPS,
186 BPF_SK_SKB_STREAM_PARSER,
187 BPF_SK_SKB_STREAM_VERDICT,
188 BPF_CGROUP_DEVICE,
189 BPF_SK_MSG_VERDICT,
190 BPF_CGROUP_INET4_BIND,
191 BPF_CGROUP_INET6_BIND,
192 BPF_CGROUP_INET4_CONNECT,
193 BPF_CGROUP_INET6_CONNECT,
194 BPF_CGROUP_INET4_POST_BIND,
195 BPF_CGROUP_INET6_POST_BIND,
196 BPF_CGROUP_UDP4_SENDMSG,
197 BPF_CGROUP_UDP6_SENDMSG,
198 BPF_LIRC_MODE2,
199 BPF_FLOW_DISSECTOR,
200 BPF_CGROUP_SYSCTL,
201 BPF_CGROUP_UDP4_RECVMSG,
202 BPF_CGROUP_UDP6_RECVMSG,
203 BPF_CGROUP_GETSOCKOPT,
204 BPF_CGROUP_SETSOCKOPT,
205 BPF_TRACE_RAW_TP,
206 BPF_TRACE_FENTRY,
207 BPF_TRACE_FEXIT,
208 __MAX_BPF_ATTACH_TYPE
209 };
210
211 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
212
213 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
214 *
215 * NONE(default): No further bpf programs allowed in the subtree.
216 *
217 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
218 * the program in this cgroup yields to sub-cgroup program.
219 *
220 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
221 * that cgroup program gets run in addition to the program in this cgroup.
222 *
223 * Only one program is allowed to be attached to a cgroup with
224 * NONE or BPF_F_ALLOW_OVERRIDE flag.
225 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
226 * release old program and attach the new one. Attach flags has to match.
227 *
228 * Multiple programs are allowed to be attached to a cgroup with
229 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
230 * (those that were attached first, run first)
231 * The programs of sub-cgroup are executed first, then programs of
232 * this cgroup and then programs of parent cgroup.
233 * When children program makes decision (like picking TCP CA or sock bind)
234 * parent program has a chance to override it.
235 *
236 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
237 * programs for a cgroup. Though it's possible to replace an old program at
238 * any position by also specifying BPF_F_REPLACE flag and position itself in
239 * replace_bpf_fd attribute. Old program at this position will be released.
240 *
241 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
242 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
243 * Ex1:
244 * cgrp1 (MULTI progs A, B) ->
245 * cgrp2 (OVERRIDE prog C) ->
246 * cgrp3 (MULTI prog D) ->
247 * cgrp4 (OVERRIDE prog E) ->
248 * cgrp5 (NONE prog F)
249 * the event in cgrp5 triggers execution of F,D,A,B in that order.
250 * if prog F is detached, the execution is E,D,A,B
251 * if prog F and D are detached, the execution is E,A,B
252 * if prog F, E and D are detached, the execution is C,A,B
253 *
254 * All eligible programs are executed regardless of return code from
255 * earlier programs.
256 */
257 #define BPF_F_ALLOW_OVERRIDE (1U << 0)
258 #define BPF_F_ALLOW_MULTI (1U << 1)
259 #define BPF_F_REPLACE (1U << 2)
260
261 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
262 * verifier will perform strict alignment checking as if the kernel
263 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
264 * and NET_IP_ALIGN defined to 2.
265 */
266 #define BPF_F_STRICT_ALIGNMENT (1U << 0)
267
268 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
269 * verifier will allow any alignment whatsoever. On platforms
270 * with strict alignment requirements for loads ands stores (such
271 * as sparc and mips) the verifier validates that all loads and
272 * stores provably follow this requirement. This flag turns that
273 * checking and enforcement off.
274 *
275 * It is mostly used for testing when we want to validate the
276 * context and memory access aspects of the verifier, but because
277 * of an unaligned access the alignment check would trigger before
278 * the one we are interested in.
279 */
280 #define BPF_F_ANY_ALIGNMENT (1U << 1)
281
282 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
283 * Verifier does sub-register def/use analysis and identifies instructions whose
284 * def only matters for low 32-bit, high 32-bit is never referenced later
285 * through implicit zero extension. Therefore verifier notifies JIT back-ends
286 * that it is safe to ignore clearing high 32-bit for these instructions. This
287 * saves some back-ends a lot of code-gen. However such optimization is not
288 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
289 * hence hasn't used verifier's analysis result. But, we really want to have a
290 * way to be able to verify the correctness of the described optimization on
291 * x86_64 on which testsuites are frequently exercised.
292 *
293 * So, this flag is introduced. Once it is set, verifier will randomize high
294 * 32-bit for those instructions who has been identified as safe to ignore them.
295 * Then, if verifier is not doing correct analysis, such randomization will
296 * regress tests to expose bugs.
297 */
298 #define BPF_F_TEST_RND_HI32 (1U << 2)
299
300 /* The verifier internal test flag. Behavior is undefined */
301 #define BPF_F_TEST_STATE_FREQ (1U << 3)
302
303 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
304 * two extensions:
305 *
306 * insn[0].src_reg: BPF_PSEUDO_MAP_FD BPF_PSEUDO_MAP_VALUE
307 * insn[0].imm: map fd map fd
308 * insn[1].imm: 0 offset into value
309 * insn[0].off: 0 0
310 * insn[1].off: 0 0
311 * ldimm64 rewrite: address of map address of map[0]+offset
312 * verifier type: CONST_PTR_TO_MAP PTR_TO_MAP_VALUE
313 */
314 #define BPF_PSEUDO_MAP_FD 1
315 #define BPF_PSEUDO_MAP_VALUE 2
316
317 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
318 * offset to another bpf function
319 */
320 #define BPF_PSEUDO_CALL 1
321
322 /* flags for BPF_MAP_UPDATE_ELEM command */
323 #define BPF_ANY 0 /* create new element or update existing */
324 #define BPF_NOEXIST 1 /* create new element if it didn't exist */
325 #define BPF_EXIST 2 /* update existing element */
326 #define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */
327
328 /* flags for BPF_MAP_CREATE command */
329 #define BPF_F_NO_PREALLOC (1U << 0)
330 /* Instead of having one common LRU list in the
331 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
332 * which can scale and perform better.
333 * Note, the LRU nodes (including free nodes) cannot be moved
334 * across different LRU lists.
335 */
336 #define BPF_F_NO_COMMON_LRU (1U << 1)
337 /* Specify numa node during map creation */
338 #define BPF_F_NUMA_NODE (1U << 2)
339
340 #define BPF_OBJ_NAME_LEN 16U
341
342 /* Flags for accessing BPF object from syscall side. */
343 #define BPF_F_RDONLY (1U << 3)
344 #define BPF_F_WRONLY (1U << 4)
345
346 /* Flag for stack_map, store build_id+offset instead of pointer */
347 #define BPF_F_STACK_BUILD_ID (1U << 5)
348
349 /* Zero-initialize hash function seed. This should only be used for testing. */
350 #define BPF_F_ZERO_SEED (1U << 6)
351
352 /* Flags for accessing BPF object from program side. */
353 #define BPF_F_RDONLY_PROG (1U << 7)
354 #define BPF_F_WRONLY_PROG (1U << 8)
355
356 /* Clone map from listener for newly accepted socket */
357 #define BPF_F_CLONE (1U << 9)
358
359 /* Enable memory-mapping BPF map */
360 #define BPF_F_MMAPABLE (1U << 10)
361
362 /* flags for BPF_PROG_QUERY */
363 #define BPF_F_QUERY_EFFECTIVE (1U << 0)
364
365 enum bpf_stack_build_id_status {
366 /* user space need an empty entry to identify end of a trace */
367 BPF_STACK_BUILD_ID_EMPTY = 0,
368 /* with valid build_id and offset */
369 BPF_STACK_BUILD_ID_VALID = 1,
370 /* couldn't get build_id, fallback to ip */
371 BPF_STACK_BUILD_ID_IP = 2,
372 };
373
374 #define BPF_BUILD_ID_SIZE 20
375 struct bpf_stack_build_id {
376 __s32 status;
377 unsigned char build_id[BPF_BUILD_ID_SIZE];
378 union {
379 __u64 offset;
380 __u64 ip;
381 };
382 };
383
384 union bpf_attr {
385 struct { /* anonymous struct used by BPF_MAP_CREATE command */
386 __u32 map_type; /* one of enum bpf_map_type */
387 __u32 key_size; /* size of key in bytes */
388 __u32 value_size; /* size of value in bytes */
389 __u32 max_entries; /* max number of entries in a map */
390 __u32 map_flags; /* BPF_MAP_CREATE related
391 * flags defined above.
392 */
393 __u32 inner_map_fd; /* fd pointing to the inner map */
394 __u32 numa_node; /* numa node (effective only if
395 * BPF_F_NUMA_NODE is set).
396 */
397 char map_name[BPF_OBJ_NAME_LEN];
398 __u32 map_ifindex; /* ifindex of netdev to create on */
399 __u32 btf_fd; /* fd pointing to a BTF type data */
400 __u32 btf_key_type_id; /* BTF type_id of the key */
401 __u32 btf_value_type_id; /* BTF type_id of the value */
402 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
403 * struct stored as the
404 * map value
405 */
406 };
407
408 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
409 __u32 map_fd;
410 __aligned_u64 key;
411 union {
412 __aligned_u64 value;
413 __aligned_u64 next_key;
414 };
415 __u64 flags;
416 };
417
418 struct { /* anonymous struct used by BPF_PROG_LOAD command */
419 __u32 prog_type; /* one of enum bpf_prog_type */
420 __u32 insn_cnt;
421 __aligned_u64 insns;
422 __aligned_u64 license;
423 __u32 log_level; /* verbosity level of verifier */
424 __u32 log_size; /* size of user buffer */
425 __aligned_u64 log_buf; /* user supplied buffer */
426 __u32 kern_version; /* not used */
427 __u32 prog_flags;
428 char prog_name[BPF_OBJ_NAME_LEN];
429 __u32 prog_ifindex; /* ifindex of netdev to prep for */
430 /* For some prog types expected attach type must be known at
431 * load time to verify attach type specific parts of prog
432 * (context accesses, allowed helpers, etc).
433 */
434 __u32 expected_attach_type;
435 __u32 prog_btf_fd; /* fd pointing to BTF type data */
436 __u32 func_info_rec_size; /* userspace bpf_func_info size */
437 __aligned_u64 func_info; /* func info */
438 __u32 func_info_cnt; /* number of bpf_func_info records */
439 __u32 line_info_rec_size; /* userspace bpf_line_info size */
440 __aligned_u64 line_info; /* line info */
441 __u32 line_info_cnt; /* number of bpf_line_info records */
442 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
443 __u32 attach_prog_fd; /* 0 to attach to vmlinux */
444 };
445
446 struct { /* anonymous struct used by BPF_OBJ_* commands */
447 __aligned_u64 pathname;
448 __u32 bpf_fd;
449 __u32 file_flags;
450 };
451
452 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
453 __u32 target_fd; /* container object to attach to */
454 __u32 attach_bpf_fd; /* eBPF program to attach */
455 __u32 attach_type;
456 __u32 attach_flags;
457 __u32 replace_bpf_fd; /* previously attached eBPF
458 * program to replace if
459 * BPF_F_REPLACE is used
460 */
461 };
462
463 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
464 __u32 prog_fd;
465 __u32 retval;
466 __u32 data_size_in; /* input: len of data_in */
467 __u32 data_size_out; /* input/output: len of data_out
468 * returns ENOSPC if data_out
469 * is too small.
470 */
471 __aligned_u64 data_in;
472 __aligned_u64 data_out;
473 __u32 repeat;
474 __u32 duration;
475 __u32 ctx_size_in; /* input: len of ctx_in */
476 __u32 ctx_size_out; /* input/output: len of ctx_out
477 * returns ENOSPC if ctx_out
478 * is too small.
479 */
480 __aligned_u64 ctx_in;
481 __aligned_u64 ctx_out;
482 } test;
483
484 struct { /* anonymous struct used by BPF_*_GET_*_ID */
485 union {
486 __u32 start_id;
487 __u32 prog_id;
488 __u32 map_id;
489 __u32 btf_id;
490 };
491 __u32 next_id;
492 __u32 open_flags;
493 };
494
495 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
496 __u32 bpf_fd;
497 __u32 info_len;
498 __aligned_u64 info;
499 } info;
500
501 struct { /* anonymous struct used by BPF_PROG_QUERY command */
502 __u32 target_fd; /* container object to query */
503 __u32 attach_type;
504 __u32 query_flags;
505 __u32 attach_flags;
506 __aligned_u64 prog_ids;
507 __u32 prog_cnt;
508 } query;
509
510 struct {
511 __u64 name;
512 __u32 prog_fd;
513 } raw_tracepoint;
514
515 struct { /* anonymous struct for BPF_BTF_LOAD */
516 __aligned_u64 btf;
517 __aligned_u64 btf_log_buf;
518 __u32 btf_size;
519 __u32 btf_log_size;
520 __u32 btf_log_level;
521 };
522
523 struct {
524 __u32 pid; /* input: pid */
525 __u32 fd; /* input: fd */
526 __u32 flags; /* input: flags */
527 __u32 buf_len; /* input/output: buf len */
528 __aligned_u64 buf; /* input/output:
529 * tp_name for tracepoint
530 * symbol for kprobe
531 * filename for uprobe
532 */
533 __u32 prog_id; /* output: prod_id */
534 __u32 fd_type; /* output: BPF_FD_TYPE_* */
535 __u64 probe_offset; /* output: probe_offset */
536 __u64 probe_addr; /* output: probe_addr */
537 } task_fd_query;
538 } __attribute__((aligned(8)));
539
540 /* The description below is an attempt at providing documentation to eBPF
541 * developers about the multiple available eBPF helper functions. It can be
542 * parsed and used to produce a manual page. The workflow is the following,
543 * and requires the rst2man utility:
544 *
545 * $ ./scripts/bpf_helpers_doc.py \
546 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
547 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
548 * $ man /tmp/bpf-helpers.7
549 *
550 * Note that in order to produce this external documentation, some RST
551 * formatting is used in the descriptions to get "bold" and "italics" in
552 * manual pages. Also note that the few trailing white spaces are
553 * intentional, removing them would break paragraphs for rst2man.
554 *
555 * Start of BPF helper function descriptions:
556 *
557 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
558 * Description
559 * Perform a lookup in *map* for an entry associated to *key*.
560 * Return
561 * Map value associated to *key*, or **NULL** if no entry was
562 * found.
563 *
564 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
565 * Description
566 * Add or update the value of the entry associated to *key* in
567 * *map* with *value*. *flags* is one of:
568 *
569 * **BPF_NOEXIST**
570 * The entry for *key* must not exist in the map.
571 * **BPF_EXIST**
572 * The entry for *key* must already exist in the map.
573 * **BPF_ANY**
574 * No condition on the existence of the entry for *key*.
575 *
576 * Flag value **BPF_NOEXIST** cannot be used for maps of types
577 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
578 * elements always exist), the helper would return an error.
579 * Return
580 * 0 on success, or a negative error in case of failure.
581 *
582 * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
583 * Description
584 * Delete entry with *key* from *map*.
585 * Return
586 * 0 on success, or a negative error in case of failure.
587 *
588 * int bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
589 * Description
590 * For tracing programs, safely attempt to read *size* bytes from
591 * kernel space address *unsafe_ptr* and store the data in *dst*.
592 *
593 * Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
594 * instead.
595 * Return
596 * 0 on success, or a negative error in case of failure.
597 *
598 * u64 bpf_ktime_get_ns(void)
599 * Description
600 * Return the time elapsed since system boot, in nanoseconds.
601 * Return
602 * Current *ktime*.
603 *
604 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
605 * Description
606 * This helper is a "printk()-like" facility for debugging. It
607 * prints a message defined by format *fmt* (of size *fmt_size*)
608 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
609 * available. It can take up to three additional **u64**
610 * arguments (as an eBPF helpers, the total number of arguments is
611 * limited to five).
612 *
613 * Each time the helper is called, it appends a line to the trace.
614 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
615 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
616 * The format of the trace is customizable, and the exact output
617 * one will get depends on the options set in
618 * *\/sys/kernel/debug/tracing/trace_options* (see also the
619 * *README* file under the same directory). However, it usually
620 * defaults to something like:
621 *
622 * ::
623 *
624 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
625 *
626 * In the above:
627 *
628 * * ``telnet`` is the name of the current task.
629 * * ``470`` is the PID of the current task.
630 * * ``001`` is the CPU number on which the task is
631 * running.
632 * * In ``.N..``, each character refers to a set of
633 * options (whether irqs are enabled, scheduling
634 * options, whether hard/softirqs are running, level of
635 * preempt_disabled respectively). **N** means that
636 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
637 * are set.
638 * * ``419421.045894`` is a timestamp.
639 * * ``0x00000001`` is a fake value used by BPF for the
640 * instruction pointer register.
641 * * ``<formatted msg>`` is the message formatted with
642 * *fmt*.
643 *
644 * The conversion specifiers supported by *fmt* are similar, but
645 * more limited than for printk(). They are **%d**, **%i**,
646 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
647 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
648 * of field, padding with zeroes, etc.) is available, and the
649 * helper will return **-EINVAL** (but print nothing) if it
650 * encounters an unknown specifier.
651 *
652 * Also, note that **bpf_trace_printk**\ () is slow, and should
653 * only be used for debugging purposes. For this reason, a notice
654 * bloc (spanning several lines) is printed to kernel logs and
655 * states that the helper should not be used "for production use"
656 * the first time this helper is used (or more precisely, when
657 * **trace_printk**\ () buffers are allocated). For passing values
658 * to user space, perf events should be preferred.
659 * Return
660 * The number of bytes written to the buffer, or a negative error
661 * in case of failure.
662 *
663 * u32 bpf_get_prandom_u32(void)
664 * Description
665 * Get a pseudo-random number.
666 *
667 * From a security point of view, this helper uses its own
668 * pseudo-random internal state, and cannot be used to infer the
669 * seed of other random functions in the kernel. However, it is
670 * essential to note that the generator used by the helper is not
671 * cryptographically secure.
672 * Return
673 * A random 32-bit unsigned value.
674 *
675 * u32 bpf_get_smp_processor_id(void)
676 * Description
677 * Get the SMP (symmetric multiprocessing) processor id. Note that
678 * all programs run with preemption disabled, which means that the
679 * SMP processor id is stable during all the execution of the
680 * program.
681 * Return
682 * The SMP id of the processor running the program.
683 *
684 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
685 * Description
686 * Store *len* bytes from address *from* into the packet
687 * associated to *skb*, at *offset*. *flags* are a combination of
688 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
689 * checksum for the packet after storing the bytes) and
690 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
691 * **->swhash** and *skb*\ **->l4hash** to 0).
692 *
693 * A call to this helper is susceptible to change the underlying
694 * packet buffer. Therefore, at load time, all checks on pointers
695 * previously done by the verifier are invalidated and must be
696 * performed again, if the helper is used in combination with
697 * direct packet access.
698 * Return
699 * 0 on success, or a negative error in case of failure.
700 *
701 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
702 * Description
703 * Recompute the layer 3 (e.g. IP) checksum for the packet
704 * associated to *skb*. Computation is incremental, so the helper
705 * must know the former value of the header field that was
706 * modified (*from*), the new value of this field (*to*), and the
707 * number of bytes (2 or 4) for this field, stored in *size*.
708 * Alternatively, it is possible to store the difference between
709 * the previous and the new values of the header field in *to*, by
710 * setting *from* and *size* to 0. For both methods, *offset*
711 * indicates the location of the IP checksum within the packet.
712 *
713 * This helper works in combination with **bpf_csum_diff**\ (),
714 * which does not update the checksum in-place, but offers more
715 * flexibility and can handle sizes larger than 2 or 4 for the
716 * checksum to update.
717 *
718 * A call to this helper is susceptible to change the underlying
719 * packet buffer. Therefore, at load time, all checks on pointers
720 * previously done by the verifier are invalidated and must be
721 * performed again, if the helper is used in combination with
722 * direct packet access.
723 * Return
724 * 0 on success, or a negative error in case of failure.
725 *
726 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
727 * Description
728 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
729 * packet associated to *skb*. Computation is incremental, so the
730 * helper must know the former value of the header field that was
731 * modified (*from*), the new value of this field (*to*), and the
732 * number of bytes (2 or 4) for this field, stored on the lowest
733 * four bits of *flags*. Alternatively, it is possible to store
734 * the difference between the previous and the new values of the
735 * header field in *to*, by setting *from* and the four lowest
736 * bits of *flags* to 0. For both methods, *offset* indicates the
737 * location of the IP checksum within the packet. In addition to
738 * the size of the field, *flags* can be added (bitwise OR) actual
739 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
740 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
741 * for updates resulting in a null checksum the value is set to
742 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
743 * the checksum is to be computed against a pseudo-header.
744 *
745 * This helper works in combination with **bpf_csum_diff**\ (),
746 * which does not update the checksum in-place, but offers more
747 * flexibility and can handle sizes larger than 2 or 4 for the
748 * checksum to update.
749 *
750 * A call to this helper is susceptible to change the underlying
751 * packet buffer. Therefore, at load time, all checks on pointers
752 * previously done by the verifier are invalidated and must be
753 * performed again, if the helper is used in combination with
754 * direct packet access.
755 * Return
756 * 0 on success, or a negative error in case of failure.
757 *
758 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
759 * Description
760 * This special helper is used to trigger a "tail call", or in
761 * other words, to jump into another eBPF program. The same stack
762 * frame is used (but values on stack and in registers for the
763 * caller are not accessible to the callee). This mechanism allows
764 * for program chaining, either for raising the maximum number of
765 * available eBPF instructions, or to execute given programs in
766 * conditional blocks. For security reasons, there is an upper
767 * limit to the number of successive tail calls that can be
768 * performed.
769 *
770 * Upon call of this helper, the program attempts to jump into a
771 * program referenced at index *index* in *prog_array_map*, a
772 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
773 * *ctx*, a pointer to the context.
774 *
775 * If the call succeeds, the kernel immediately runs the first
776 * instruction of the new program. This is not a function call,
777 * and it never returns to the previous program. If the call
778 * fails, then the helper has no effect, and the caller continues
779 * to run its subsequent instructions. A call can fail if the
780 * destination program for the jump does not exist (i.e. *index*
781 * is superior to the number of entries in *prog_array_map*), or
782 * if the maximum number of tail calls has been reached for this
783 * chain of programs. This limit is defined in the kernel by the
784 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
785 * which is currently set to 32.
786 * Return
787 * 0 on success, or a negative error in case of failure.
788 *
789 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
790 * Description
791 * Clone and redirect the packet associated to *skb* to another
792 * net device of index *ifindex*. Both ingress and egress
793 * interfaces can be used for redirection. The **BPF_F_INGRESS**
794 * value in *flags* is used to make the distinction (ingress path
795 * is selected if the flag is present, egress path otherwise).
796 * This is the only flag supported for now.
797 *
798 * In comparison with **bpf_redirect**\ () helper,
799 * **bpf_clone_redirect**\ () has the associated cost of
800 * duplicating the packet buffer, but this can be executed out of
801 * the eBPF program. Conversely, **bpf_redirect**\ () is more
802 * efficient, but it is handled through an action code where the
803 * redirection happens only after the eBPF program has returned.
804 *
805 * A call to this helper is susceptible to change the underlying
806 * packet buffer. Therefore, at load time, all checks on pointers
807 * previously done by the verifier are invalidated and must be
808 * performed again, if the helper is used in combination with
809 * direct packet access.
810 * Return
811 * 0 on success, or a negative error in case of failure.
812 *
813 * u64 bpf_get_current_pid_tgid(void)
814 * Return
815 * A 64-bit integer containing the current tgid and pid, and
816 * created as such:
817 * *current_task*\ **->tgid << 32 \|**
818 * *current_task*\ **->pid**.
819 *
820 * u64 bpf_get_current_uid_gid(void)
821 * Return
822 * A 64-bit integer containing the current GID and UID, and
823 * created as such: *current_gid* **<< 32 \|** *current_uid*.
824 *
825 * int bpf_get_current_comm(void *buf, u32 size_of_buf)
826 * Description
827 * Copy the **comm** attribute of the current task into *buf* of
828 * *size_of_buf*. The **comm** attribute contains the name of
829 * the executable (excluding the path) for the current task. The
830 * *size_of_buf* must be strictly positive. On success, the
831 * helper makes sure that the *buf* is NUL-terminated. On failure,
832 * it is filled with zeroes.
833 * Return
834 * 0 on success, or a negative error in case of failure.
835 *
836 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
837 * Description
838 * Retrieve the classid for the current task, i.e. for the net_cls
839 * cgroup to which *skb* belongs.
840 *
841 * This helper can be used on TC egress path, but not on ingress.
842 *
843 * The net_cls cgroup provides an interface to tag network packets
844 * based on a user-provided identifier for all traffic coming from
845 * the tasks belonging to the related cgroup. See also the related
846 * kernel documentation, available from the Linux sources in file
847 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
848 *
849 * The Linux kernel has two versions for cgroups: there are
850 * cgroups v1 and cgroups v2. Both are available to users, who can
851 * use a mixture of them, but note that the net_cls cgroup is for
852 * cgroup v1 only. This makes it incompatible with BPF programs
853 * run on cgroups, which is a cgroup-v2-only feature (a socket can
854 * only hold data for one version of cgroups at a time).
855 *
856 * This helper is only available is the kernel was compiled with
857 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
858 * "**y**" or to "**m**".
859 * Return
860 * The classid, or 0 for the default unconfigured classid.
861 *
862 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
863 * Description
864 * Push a *vlan_tci* (VLAN tag control information) of protocol
865 * *vlan_proto* to the packet associated to *skb*, then update
866 * the checksum. Note that if *vlan_proto* is different from
867 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
868 * be **ETH_P_8021Q**.
869 *
870 * A call to this helper is susceptible to change the underlying
871 * packet buffer. Therefore, at load time, all checks on pointers
872 * previously done by the verifier are invalidated and must be
873 * performed again, if the helper is used in combination with
874 * direct packet access.
875 * Return
876 * 0 on success, or a negative error in case of failure.
877 *
878 * int bpf_skb_vlan_pop(struct sk_buff *skb)
879 * Description
880 * Pop a VLAN header from the packet associated to *skb*.
881 *
882 * A call to this helper is susceptible to change the underlying
883 * packet buffer. Therefore, at load time, all checks on pointers
884 * previously done by the verifier are invalidated and must be
885 * performed again, if the helper is used in combination with
886 * direct packet access.
887 * Return
888 * 0 on success, or a negative error in case of failure.
889 *
890 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
891 * Description
892 * Get tunnel metadata. This helper takes a pointer *key* to an
893 * empty **struct bpf_tunnel_key** of **size**, that will be
894 * filled with tunnel metadata for the packet associated to *skb*.
895 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
896 * indicates that the tunnel is based on IPv6 protocol instead of
897 * IPv4.
898 *
899 * The **struct bpf_tunnel_key** is an object that generalizes the
900 * principal parameters used by various tunneling protocols into a
901 * single struct. This way, it can be used to easily make a
902 * decision based on the contents of the encapsulation header,
903 * "summarized" in this struct. In particular, it holds the IP
904 * address of the remote end (IPv4 or IPv6, depending on the case)
905 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
906 * this struct exposes the *key*\ **->tunnel_id**, which is
907 * generally mapped to a VNI (Virtual Network Identifier), making
908 * it programmable together with the **bpf_skb_set_tunnel_key**\
909 * () helper.
910 *
911 * Let's imagine that the following code is part of a program
912 * attached to the TC ingress interface, on one end of a GRE
913 * tunnel, and is supposed to filter out all messages coming from
914 * remote ends with IPv4 address other than 10.0.0.1:
915 *
916 * ::
917 *
918 * int ret;
919 * struct bpf_tunnel_key key = {};
920 *
921 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
922 * if (ret < 0)
923 * return TC_ACT_SHOT; // drop packet
924 *
925 * if (key.remote_ipv4 != 0x0a000001)
926 * return TC_ACT_SHOT; // drop packet
927 *
928 * return TC_ACT_OK; // accept packet
929 *
930 * This interface can also be used with all encapsulation devices
931 * that can operate in "collect metadata" mode: instead of having
932 * one network device per specific configuration, the "collect
933 * metadata" mode only requires a single device where the
934 * configuration can be extracted from this helper.
935 *
936 * This can be used together with various tunnels such as VXLan,
937 * Geneve, GRE or IP in IP (IPIP).
938 * Return
939 * 0 on success, or a negative error in case of failure.
940 *
941 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
942 * Description
943 * Populate tunnel metadata for packet associated to *skb.* The
944 * tunnel metadata is set to the contents of *key*, of *size*. The
945 * *flags* can be set to a combination of the following values:
946 *
947 * **BPF_F_TUNINFO_IPV6**
948 * Indicate that the tunnel is based on IPv6 protocol
949 * instead of IPv4.
950 * **BPF_F_ZERO_CSUM_TX**
951 * For IPv4 packets, add a flag to tunnel metadata
952 * indicating that checksum computation should be skipped
953 * and checksum set to zeroes.
954 * **BPF_F_DONT_FRAGMENT**
955 * Add a flag to tunnel metadata indicating that the
956 * packet should not be fragmented.
957 * **BPF_F_SEQ_NUMBER**
958 * Add a flag to tunnel metadata indicating that a
959 * sequence number should be added to tunnel header before
960 * sending the packet. This flag was added for GRE
961 * encapsulation, but might be used with other protocols
962 * as well in the future.
963 *
964 * Here is a typical usage on the transmit path:
965 *
966 * ::
967 *
968 * struct bpf_tunnel_key key;
969 * populate key ...
970 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
971 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
972 *
973 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
974 * helper for additional information.
975 * Return
976 * 0 on success, or a negative error in case of failure.
977 *
978 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
979 * Description
980 * Read the value of a perf event counter. This helper relies on a
981 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
982 * the perf event counter is selected when *map* is updated with
983 * perf event file descriptors. The *map* is an array whose size
984 * is the number of available CPUs, and each cell contains a value
985 * relative to one CPU. The value to retrieve is indicated by
986 * *flags*, that contains the index of the CPU to look up, masked
987 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
988 * **BPF_F_CURRENT_CPU** to indicate that the value for the
989 * current CPU should be retrieved.
990 *
991 * Note that before Linux 4.13, only hardware perf event can be
992 * retrieved.
993 *
994 * Also, be aware that the newer helper
995 * **bpf_perf_event_read_value**\ () is recommended over
996 * **bpf_perf_event_read**\ () in general. The latter has some ABI
997 * quirks where error and counter value are used as a return code
998 * (which is wrong to do since ranges may overlap). This issue is
999 * fixed with **bpf_perf_event_read_value**\ (), which at the same
1000 * time provides more features over the **bpf_perf_event_read**\
1001 * () interface. Please refer to the description of
1002 * **bpf_perf_event_read_value**\ () for details.
1003 * Return
1004 * The value of the perf event counter read from the map, or a
1005 * negative error code in case of failure.
1006 *
1007 * int bpf_redirect(u32 ifindex, u64 flags)
1008 * Description
1009 * Redirect the packet to another net device of index *ifindex*.
1010 * This helper is somewhat similar to **bpf_clone_redirect**\
1011 * (), except that the packet is not cloned, which provides
1012 * increased performance.
1013 *
1014 * Except for XDP, both ingress and egress interfaces can be used
1015 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
1016 * to make the distinction (ingress path is selected if the flag
1017 * is present, egress path otherwise). Currently, XDP only
1018 * supports redirection to the egress interface, and accepts no
1019 * flag at all.
1020 *
1021 * The same effect can be attained with the more generic
1022 * **bpf_redirect_map**\ (), which requires specific maps to be
1023 * used but offers better performance.
1024 * Return
1025 * For XDP, the helper returns **XDP_REDIRECT** on success or
1026 * **XDP_ABORTED** on error. For other program types, the values
1027 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1028 * error.
1029 *
1030 * u32 bpf_get_route_realm(struct sk_buff *skb)
1031 * Description
1032 * Retrieve the realm or the route, that is to say the
1033 * **tclassid** field of the destination for the *skb*. The
1034 * indentifier retrieved is a user-provided tag, similar to the
1035 * one used with the net_cls cgroup (see description for
1036 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
1037 * held by a route (a destination entry), not by a task.
1038 *
1039 * Retrieving this identifier works with the clsact TC egress hook
1040 * (see also **tc-bpf(8)**), or alternatively on conventional
1041 * classful egress qdiscs, but not on TC ingress path. In case of
1042 * clsact TC egress hook, this has the advantage that, internally,
1043 * the destination entry has not been dropped yet in the transmit
1044 * path. Therefore, the destination entry does not need to be
1045 * artificially held via **netif_keep_dst**\ () for a classful
1046 * qdisc until the *skb* is freed.
1047 *
1048 * This helper is available only if the kernel was compiled with
1049 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
1050 * Return
1051 * The realm of the route for the packet associated to *skb*, or 0
1052 * if none was found.
1053 *
1054 * int bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1055 * Description
1056 * Write raw *data* blob into a special BPF perf event held by
1057 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1058 * event must have the following attributes: **PERF_SAMPLE_RAW**
1059 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1060 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1061 *
1062 * The *flags* are used to indicate the index in *map* for which
1063 * the value must be put, masked with **BPF_F_INDEX_MASK**.
1064 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1065 * to indicate that the index of the current CPU core should be
1066 * used.
1067 *
1068 * The value to write, of *size*, is passed through eBPF stack and
1069 * pointed by *data*.
1070 *
1071 * The context of the program *ctx* needs also be passed to the
1072 * helper.
1073 *
1074 * On user space, a program willing to read the values needs to
1075 * call **perf_event_open**\ () on the perf event (either for
1076 * one or for all CPUs) and to store the file descriptor into the
1077 * *map*. This must be done before the eBPF program can send data
1078 * into it. An example is available in file
1079 * *samples/bpf/trace_output_user.c* in the Linux kernel source
1080 * tree (the eBPF program counterpart is in
1081 * *samples/bpf/trace_output_kern.c*).
1082 *
1083 * **bpf_perf_event_output**\ () achieves better performance
1084 * than **bpf_trace_printk**\ () for sharing data with user
1085 * space, and is much better suitable for streaming data from eBPF
1086 * programs.
1087 *
1088 * Note that this helper is not restricted to tracing use cases
1089 * and can be used with programs attached to TC or XDP as well,
1090 * where it allows for passing data to user space listeners. Data
1091 * can be:
1092 *
1093 * * Only custom structs,
1094 * * Only the packet payload, or
1095 * * A combination of both.
1096 * Return
1097 * 0 on success, or a negative error in case of failure.
1098 *
1099 * int bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1100 * Description
1101 * This helper was provided as an easy way to load data from a
1102 * packet. It can be used to load *len* bytes from *offset* from
1103 * the packet associated to *skb*, into the buffer pointed by
1104 * *to*.
1105 *
1106 * Since Linux 4.7, usage of this helper has mostly been replaced
1107 * by "direct packet access", enabling packet data to be
1108 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1109 * pointing respectively to the first byte of packet data and to
1110 * the byte after the last byte of packet data. However, it
1111 * remains useful if one wishes to read large quantities of data
1112 * at once from a packet into the eBPF stack.
1113 * Return
1114 * 0 on success, or a negative error in case of failure.
1115 *
1116 * int bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1117 * Description
1118 * Walk a user or a kernel stack and return its id. To achieve
1119 * this, the helper needs *ctx*, which is a pointer to the context
1120 * on which the tracing program is executed, and a pointer to a
1121 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1122 *
1123 * The last argument, *flags*, holds the number of stack frames to
1124 * skip (from 0 to 255), masked with
1125 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1126 * a combination of the following flags:
1127 *
1128 * **BPF_F_USER_STACK**
1129 * Collect a user space stack instead of a kernel stack.
1130 * **BPF_F_FAST_STACK_CMP**
1131 * Compare stacks by hash only.
1132 * **BPF_F_REUSE_STACKID**
1133 * If two different stacks hash into the same *stackid*,
1134 * discard the old one.
1135 *
1136 * The stack id retrieved is a 32 bit long integer handle which
1137 * can be further combined with other data (including other stack
1138 * ids) and used as a key into maps. This can be useful for
1139 * generating a variety of graphs (such as flame graphs or off-cpu
1140 * graphs).
1141 *
1142 * For walking a stack, this helper is an improvement over
1143 * **bpf_probe_read**\ (), which can be used with unrolled loops
1144 * but is not efficient and consumes a lot of eBPF instructions.
1145 * Instead, **bpf_get_stackid**\ () can collect up to
1146 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1147 * this limit can be controlled with the **sysctl** program, and
1148 * that it should be manually increased in order to profile long
1149 * user stacks (such as stacks for Java programs). To do so, use:
1150 *
1151 * ::
1152 *
1153 * # sysctl kernel.perf_event_max_stack=<new value>
1154 * Return
1155 * The positive or null stack id on success, or a negative error
1156 * in case of failure.
1157 *
1158 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1159 * Description
1160 * Compute a checksum difference, from the raw buffer pointed by
1161 * *from*, of length *from_size* (that must be a multiple of 4),
1162 * towards the raw buffer pointed by *to*, of size *to_size*
1163 * (same remark). An optional *seed* can be added to the value
1164 * (this can be cascaded, the seed may come from a previous call
1165 * to the helper).
1166 *
1167 * This is flexible enough to be used in several ways:
1168 *
1169 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
1170 * checksum, it can be used when pushing new data.
1171 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
1172 * checksum, it can be used when removing data from a packet.
1173 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1174 * can be used to compute a diff. Note that *from_size* and
1175 * *to_size* do not need to be equal.
1176 *
1177 * This helper can be used in combination with
1178 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1179 * which one can feed in the difference computed with
1180 * **bpf_csum_diff**\ ().
1181 * Return
1182 * The checksum result, or a negative error code in case of
1183 * failure.
1184 *
1185 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1186 * Description
1187 * Retrieve tunnel options metadata for the packet associated to
1188 * *skb*, and store the raw tunnel option data to the buffer *opt*
1189 * of *size*.
1190 *
1191 * This helper can be used with encapsulation devices that can
1192 * operate in "collect metadata" mode (please refer to the related
1193 * note in the description of **bpf_skb_get_tunnel_key**\ () for
1194 * more details). A particular example where this can be used is
1195 * in combination with the Geneve encapsulation protocol, where it
1196 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1197 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
1198 * the eBPF program. This allows for full customization of these
1199 * headers.
1200 * Return
1201 * The size of the option data retrieved.
1202 *
1203 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1204 * Description
1205 * Set tunnel options metadata for the packet associated to *skb*
1206 * to the option data contained in the raw buffer *opt* of *size*.
1207 *
1208 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1209 * helper for additional information.
1210 * Return
1211 * 0 on success, or a negative error in case of failure.
1212 *
1213 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1214 * Description
1215 * Change the protocol of the *skb* to *proto*. Currently
1216 * supported are transition from IPv4 to IPv6, and from IPv6 to
1217 * IPv4. The helper takes care of the groundwork for the
1218 * transition, including resizing the socket buffer. The eBPF
1219 * program is expected to fill the new headers, if any, via
1220 * **skb_store_bytes**\ () and to recompute the checksums with
1221 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1222 * (). The main case for this helper is to perform NAT64
1223 * operations out of an eBPF program.
1224 *
1225 * Internally, the GSO type is marked as dodgy so that headers are
1226 * checked and segments are recalculated by the GSO/GRO engine.
1227 * The size for GSO target is adapted as well.
1228 *
1229 * All values for *flags* are reserved for future usage, and must
1230 * be left at zero.
1231 *
1232 * A call to this helper is susceptible to change the underlying
1233 * packet buffer. Therefore, at load time, all checks on pointers
1234 * previously done by the verifier are invalidated and must be
1235 * performed again, if the helper is used in combination with
1236 * direct packet access.
1237 * Return
1238 * 0 on success, or a negative error in case of failure.
1239 *
1240 * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1241 * Description
1242 * Change the packet type for the packet associated to *skb*. This
1243 * comes down to setting *skb*\ **->pkt_type** to *type*, except
1244 * the eBPF program does not have a write access to *skb*\
1245 * **->pkt_type** beside this helper. Using a helper here allows
1246 * for graceful handling of errors.
1247 *
1248 * The major use case is to change incoming *skb*s to
1249 * **PACKET_HOST** in a programmatic way instead of having to
1250 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1251 * example.
1252 *
1253 * Note that *type* only allows certain values. At this time, they
1254 * are:
1255 *
1256 * **PACKET_HOST**
1257 * Packet is for us.
1258 * **PACKET_BROADCAST**
1259 * Send packet to all.
1260 * **PACKET_MULTICAST**
1261 * Send packet to group.
1262 * **PACKET_OTHERHOST**
1263 * Send packet to someone else.
1264 * Return
1265 * 0 on success, or a negative error in case of failure.
1266 *
1267 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1268 * Description
1269 * Check whether *skb* is a descendant of the cgroup2 held by
1270 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1271 * Return
1272 * The return value depends on the result of the test, and can be:
1273 *
1274 * * 0, if the *skb* failed the cgroup2 descendant test.
1275 * * 1, if the *skb* succeeded the cgroup2 descendant test.
1276 * * A negative error code, if an error occurred.
1277 *
1278 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1279 * Description
1280 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1281 * not set, in particular if the hash was cleared due to mangling,
1282 * recompute this hash. Later accesses to the hash can be done
1283 * directly with *skb*\ **->hash**.
1284 *
1285 * Calling **bpf_set_hash_invalid**\ (), changing a packet
1286 * prototype with **bpf_skb_change_proto**\ (), or calling
1287 * **bpf_skb_store_bytes**\ () with the
1288 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1289 * the hash and to trigger a new computation for the next call to
1290 * **bpf_get_hash_recalc**\ ().
1291 * Return
1292 * The 32-bit hash.
1293 *
1294 * u64 bpf_get_current_task(void)
1295 * Return
1296 * A pointer to the current task struct.
1297 *
1298 * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1299 * Description
1300 * Attempt in a safe way to write *len* bytes from the buffer
1301 * *src* to *dst* in memory. It only works for threads that are in
1302 * user context, and *dst* must be a valid user space address.
1303 *
1304 * This helper should not be used to implement any kind of
1305 * security mechanism because of TOC-TOU attacks, but rather to
1306 * debug, divert, and manipulate execution of semi-cooperative
1307 * processes.
1308 *
1309 * Keep in mind that this feature is meant for experiments, and it
1310 * has a risk of crashing the system and running programs.
1311 * Therefore, when an eBPF program using this helper is attached,
1312 * a warning including PID and process name is printed to kernel
1313 * logs.
1314 * Return
1315 * 0 on success, or a negative error in case of failure.
1316 *
1317 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1318 * Description
1319 * Check whether the probe is being run is the context of a given
1320 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1321 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1322 * Return
1323 * The return value depends on the result of the test, and can be:
1324 *
1325 * * 0, if the *skb* task belongs to the cgroup2.
1326 * * 1, if the *skb* task does not belong to the cgroup2.
1327 * * A negative error code, if an error occurred.
1328 *
1329 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1330 * Description
1331 * Resize (trim or grow) the packet associated to *skb* to the
1332 * new *len*. The *flags* are reserved for future usage, and must
1333 * be left at zero.
1334 *
1335 * The basic idea is that the helper performs the needed work to
1336 * change the size of the packet, then the eBPF program rewrites
1337 * the rest via helpers like **bpf_skb_store_bytes**\ (),
1338 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1339 * and others. This helper is a slow path utility intended for
1340 * replies with control messages. And because it is targeted for
1341 * slow path, the helper itself can afford to be slow: it
1342 * implicitly linearizes, unclones and drops offloads from the
1343 * *skb*.
1344 *
1345 * A call to this helper is susceptible to change the underlying
1346 * packet buffer. Therefore, at load time, all checks on pointers
1347 * previously done by the verifier are invalidated and must be
1348 * performed again, if the helper is used in combination with
1349 * direct packet access.
1350 * Return
1351 * 0 on success, or a negative error in case of failure.
1352 *
1353 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1354 * Description
1355 * Pull in non-linear data in case the *skb* is non-linear and not
1356 * all of *len* are part of the linear section. Make *len* bytes
1357 * from *skb* readable and writable. If a zero value is passed for
1358 * *len*, then the whole length of the *skb* is pulled.
1359 *
1360 * This helper is only needed for reading and writing with direct
1361 * packet access.
1362 *
1363 * For direct packet access, testing that offsets to access
1364 * are within packet boundaries (test on *skb*\ **->data_end**) is
1365 * susceptible to fail if offsets are invalid, or if the requested
1366 * data is in non-linear parts of the *skb*. On failure the
1367 * program can just bail out, or in the case of a non-linear
1368 * buffer, use a helper to make the data available. The
1369 * **bpf_skb_load_bytes**\ () helper is a first solution to access
1370 * the data. Another one consists in using **bpf_skb_pull_data**
1371 * to pull in once the non-linear parts, then retesting and
1372 * eventually access the data.
1373 *
1374 * At the same time, this also makes sure the *skb* is uncloned,
1375 * which is a necessary condition for direct write. As this needs
1376 * to be an invariant for the write part only, the verifier
1377 * detects writes and adds a prologue that is calling
1378 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
1379 * the very beginning in case it is indeed cloned.
1380 *
1381 * A call to this helper is susceptible to change the underlying
1382 * packet buffer. Therefore, at load time, all checks on pointers
1383 * previously done by the verifier are invalidated and must be
1384 * performed again, if the helper is used in combination with
1385 * direct packet access.
1386 * Return
1387 * 0 on success, or a negative error in case of failure.
1388 *
1389 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1390 * Description
1391 * Add the checksum *csum* into *skb*\ **->csum** in case the
1392 * driver has supplied a checksum for the entire packet into that
1393 * field. Return an error otherwise. This helper is intended to be
1394 * used in combination with **bpf_csum_diff**\ (), in particular
1395 * when the checksum needs to be updated after data has been
1396 * written into the packet through direct packet access.
1397 * Return
1398 * The checksum on success, or a negative error code in case of
1399 * failure.
1400 *
1401 * void bpf_set_hash_invalid(struct sk_buff *skb)
1402 * Description
1403 * Invalidate the current *skb*\ **->hash**. It can be used after
1404 * mangling on headers through direct packet access, in order to
1405 * indicate that the hash is outdated and to trigger a
1406 * recalculation the next time the kernel tries to access this
1407 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
1408 *
1409 * int bpf_get_numa_node_id(void)
1410 * Description
1411 * Return the id of the current NUMA node. The primary use case
1412 * for this helper is the selection of sockets for the local NUMA
1413 * node, when the program is attached to sockets using the
1414 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1415 * but the helper is also available to other eBPF program types,
1416 * similarly to **bpf_get_smp_processor_id**\ ().
1417 * Return
1418 * The id of current NUMA node.
1419 *
1420 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1421 * Description
1422 * Grows headroom of packet associated to *skb* and adjusts the
1423 * offset of the MAC header accordingly, adding *len* bytes of
1424 * space. It automatically extends and reallocates memory as
1425 * required.
1426 *
1427 * This helper can be used on a layer 3 *skb* to push a MAC header
1428 * for redirection into a layer 2 device.
1429 *
1430 * All values for *flags* are reserved for future usage, and must
1431 * be left at zero.
1432 *
1433 * A call to this helper is susceptible to change the underlying
1434 * packet buffer. Therefore, at load time, all checks on pointers
1435 * previously done by the verifier are invalidated and must be
1436 * performed again, if the helper is used in combination with
1437 * direct packet access.
1438 * Return
1439 * 0 on success, or a negative error in case of failure.
1440 *
1441 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1442 * Description
1443 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1444 * it is possible to use a negative value for *delta*. This helper
1445 * can be used to prepare the packet for pushing or popping
1446 * headers.
1447 *
1448 * A call to this helper is susceptible to change the underlying
1449 * packet buffer. Therefore, at load time, all checks on pointers
1450 * previously done by the verifier are invalidated and must be
1451 * performed again, if the helper is used in combination with
1452 * direct packet access.
1453 * Return
1454 * 0 on success, or a negative error in case of failure.
1455 *
1456 * int bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1457 * Description
1458 * Copy a NUL terminated string from an unsafe kernel address
1459 * *unsafe_ptr* to *dst*. See bpf_probe_read_kernel_str() for
1460 * more details.
1461 *
1462 * Generally, use bpf_probe_read_user_str() or bpf_probe_read_kernel_str()
1463 * instead.
1464 * Return
1465 * On success, the strictly positive length of the string,
1466 * including the trailing NUL character. On error, a negative
1467 * value.
1468 *
1469 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1470 * Description
1471 * If the **struct sk_buff** pointed by *skb* has a known socket,
1472 * retrieve the cookie (generated by the kernel) of this socket.
1473 * If no cookie has been set yet, generate a new cookie. Once
1474 * generated, the socket cookie remains stable for the life of the
1475 * socket. This helper can be useful for monitoring per socket
1476 * networking traffic statistics as it provides a global socket
1477 * identifier that can be assumed unique.
1478 * Return
1479 * A 8-byte long non-decreasing number on success, or 0 if the
1480 * socket field is missing inside *skb*.
1481 *
1482 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1483 * Description
1484 * Equivalent to bpf_get_socket_cookie() helper that accepts
1485 * *skb*, but gets socket from **struct bpf_sock_addr** context.
1486 * Return
1487 * A 8-byte long non-decreasing number.
1488 *
1489 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1490 * Description
1491 * Equivalent to bpf_get_socket_cookie() helper that accepts
1492 * *skb*, but gets socket from **struct bpf_sock_ops** context.
1493 * Return
1494 * A 8-byte long non-decreasing number.
1495 *
1496 * u32 bpf_get_socket_uid(struct sk_buff *skb)
1497 * Return
1498 * The owner UID of the socket associated to *skb*. If the socket
1499 * is **NULL**, or if it is not a full socket (i.e. if it is a
1500 * time-wait or a request socket instead), **overflowuid** value
1501 * is returned (note that **overflowuid** might also be the actual
1502 * UID value for the socket).
1503 *
1504 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1505 * Description
1506 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
1507 * to value *hash*.
1508 * Return
1509 * 0
1510 *
1511 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1512 * Description
1513 * Emulate a call to **setsockopt()** on the socket associated to
1514 * *bpf_socket*, which must be a full socket. The *level* at
1515 * which the option resides and the name *optname* of the option
1516 * must be specified, see **setsockopt(2)** for more information.
1517 * The option value of length *optlen* is pointed by *optval*.
1518 *
1519 * This helper actually implements a subset of **setsockopt()**.
1520 * It supports the following *level*\ s:
1521 *
1522 * * **SOL_SOCKET**, which supports the following *optname*\ s:
1523 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1524 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1525 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
1526 * **TCP_CONGESTION**, **TCP_BPF_IW**,
1527 * **TCP_BPF_SNDCWND_CLAMP**.
1528 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1529 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1530 * Return
1531 * 0 on success, or a negative error in case of failure.
1532 *
1533 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1534 * Description
1535 * Grow or shrink the room for data in the packet associated to
1536 * *skb* by *len_diff*, and according to the selected *mode*.
1537 *
1538 * There are two supported modes at this time:
1539 *
1540 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1541 * (room space is added or removed below the layer 2 header).
1542 *
1543 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1544 * (room space is added or removed below the layer 3 header).
1545 *
1546 * The following flags are supported at this time:
1547 *
1548 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1549 * Adjusting mss in this way is not allowed for datagrams.
1550 *
1551 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1552 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1553 * Any new space is reserved to hold a tunnel header.
1554 * Configure skb offsets and other fields accordingly.
1555 *
1556 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1557 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1558 * Use with ENCAP_L3 flags to further specify the tunnel type.
1559 *
1560 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1561 * Use with ENCAP_L3/L4 flags to further specify the tunnel
1562 * type; *len* is the length of the inner MAC header.
1563 *
1564 * A call to this helper is susceptible to change the underlying
1565 * packet buffer. Therefore, at load time, all checks on pointers
1566 * previously done by the verifier are invalidated and must be
1567 * performed again, if the helper is used in combination with
1568 * direct packet access.
1569 * Return
1570 * 0 on success, or a negative error in case of failure.
1571 *
1572 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1573 * Description
1574 * Redirect the packet to the endpoint referenced by *map* at
1575 * index *key*. Depending on its type, this *map* can contain
1576 * references to net devices (for forwarding packets through other
1577 * ports), or to CPUs (for redirecting XDP frames to another CPU;
1578 * but this is only implemented for native XDP (with driver
1579 * support) as of this writing).
1580 *
1581 * The lower two bits of *flags* are used as the return code if
1582 * the map lookup fails. This is so that the return value can be
1583 * one of the XDP program return codes up to XDP_TX, as chosen by
1584 * the caller. Any higher bits in the *flags* argument must be
1585 * unset.
1586 *
1587 * When used to redirect packets to net devices, this helper
1588 * provides a high performance increase over **bpf_redirect**\ ().
1589 * This is due to various implementation details of the underlying
1590 * mechanisms, one of which is the fact that **bpf_redirect_map**\
1591 * () tries to send packet as a "bulk" to the device.
1592 * Return
1593 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1594 *
1595 * int bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1596 * Description
1597 * Redirect the packet to the socket referenced by *map* (of type
1598 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1599 * egress interfaces can be used for redirection. The
1600 * **BPF_F_INGRESS** value in *flags* is used to make the
1601 * distinction (ingress path is selected if the flag is present,
1602 * egress path otherwise). This is the only flag supported for now.
1603 * Return
1604 * **SK_PASS** on success, or **SK_DROP** on error.
1605 *
1606 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1607 * Description
1608 * Add an entry to, or update a *map* referencing sockets. The
1609 * *skops* is used as a new value for the entry associated to
1610 * *key*. *flags* is one of:
1611 *
1612 * **BPF_NOEXIST**
1613 * The entry for *key* must not exist in the map.
1614 * **BPF_EXIST**
1615 * The entry for *key* must already exist in the map.
1616 * **BPF_ANY**
1617 * No condition on the existence of the entry for *key*.
1618 *
1619 * If the *map* has eBPF programs (parser and verdict), those will
1620 * be inherited by the socket being added. If the socket is
1621 * already attached to eBPF programs, this results in an error.
1622 * Return
1623 * 0 on success, or a negative error in case of failure.
1624 *
1625 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1626 * Description
1627 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
1628 * *delta* (which can be positive or negative). Note that this
1629 * operation modifies the address stored in *xdp_md*\ **->data**,
1630 * so the latter must be loaded only after the helper has been
1631 * called.
1632 *
1633 * The use of *xdp_md*\ **->data_meta** is optional and programs
1634 * are not required to use it. The rationale is that when the
1635 * packet is processed with XDP (e.g. as DoS filter), it is
1636 * possible to push further meta data along with it before passing
1637 * to the stack, and to give the guarantee that an ingress eBPF
1638 * program attached as a TC classifier on the same device can pick
1639 * this up for further post-processing. Since TC works with socket
1640 * buffers, it remains possible to set from XDP the **mark** or
1641 * **priority** pointers, or other pointers for the socket buffer.
1642 * Having this scratch space generic and programmable allows for
1643 * more flexibility as the user is free to store whatever meta
1644 * data they need.
1645 *
1646 * A call to this helper is susceptible to change the underlying
1647 * packet buffer. Therefore, at load time, all checks on pointers
1648 * previously done by the verifier are invalidated and must be
1649 * performed again, if the helper is used in combination with
1650 * direct packet access.
1651 * Return
1652 * 0 on success, or a negative error in case of failure.
1653 *
1654 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1655 * Description
1656 * Read the value of a perf event counter, and store it into *buf*
1657 * of size *buf_size*. This helper relies on a *map* of type
1658 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1659 * counter is selected when *map* is updated with perf event file
1660 * descriptors. The *map* is an array whose size is the number of
1661 * available CPUs, and each cell contains a value relative to one
1662 * CPU. The value to retrieve is indicated by *flags*, that
1663 * contains the index of the CPU to look up, masked with
1664 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1665 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1666 * current CPU should be retrieved.
1667 *
1668 * This helper behaves in a way close to
1669 * **bpf_perf_event_read**\ () helper, save that instead of
1670 * just returning the value observed, it fills the *buf*
1671 * structure. This allows for additional data to be retrieved: in
1672 * particular, the enabled and running times (in *buf*\
1673 * **->enabled** and *buf*\ **->running**, respectively) are
1674 * copied. In general, **bpf_perf_event_read_value**\ () is
1675 * recommended over **bpf_perf_event_read**\ (), which has some
1676 * ABI issues and provides fewer functionalities.
1677 *
1678 * These values are interesting, because hardware PMU (Performance
1679 * Monitoring Unit) counters are limited resources. When there are
1680 * more PMU based perf events opened than available counters,
1681 * kernel will multiplex these events so each event gets certain
1682 * percentage (but not all) of the PMU time. In case that
1683 * multiplexing happens, the number of samples or counter value
1684 * will not reflect the case compared to when no multiplexing
1685 * occurs. This makes comparison between different runs difficult.
1686 * Typically, the counter value should be normalized before
1687 * comparing to other experiments. The usual normalization is done
1688 * as follows.
1689 *
1690 * ::
1691 *
1692 * normalized_counter = counter * t_enabled / t_running
1693 *
1694 * Where t_enabled is the time enabled for event and t_running is
1695 * the time running for event since last normalization. The
1696 * enabled and running times are accumulated since the perf event
1697 * open. To achieve scaling factor between two invocations of an
1698 * eBPF program, users can can use CPU id as the key (which is
1699 * typical for perf array usage model) to remember the previous
1700 * value and do the calculation inside the eBPF program.
1701 * Return
1702 * 0 on success, or a negative error in case of failure.
1703 *
1704 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1705 * Description
1706 * For en eBPF program attached to a perf event, retrieve the
1707 * value of the event counter associated to *ctx* and store it in
1708 * the structure pointed by *buf* and of size *buf_size*. Enabled
1709 * and running times are also stored in the structure (see
1710 * description of helper **bpf_perf_event_read_value**\ () for
1711 * more details).
1712 * Return
1713 * 0 on success, or a negative error in case of failure.
1714 *
1715 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, void *optval, int optlen)
1716 * Description
1717 * Emulate a call to **getsockopt()** on the socket associated to
1718 * *bpf_socket*, which must be a full socket. The *level* at
1719 * which the option resides and the name *optname* of the option
1720 * must be specified, see **getsockopt(2)** for more information.
1721 * The retrieved value is stored in the structure pointed by
1722 * *opval* and of length *optlen*.
1723 *
1724 * This helper actually implements a subset of **getsockopt()**.
1725 * It supports the following *level*\ s:
1726 *
1727 * * **IPPROTO_TCP**, which supports *optname*
1728 * **TCP_CONGESTION**.
1729 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1730 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1731 * Return
1732 * 0 on success, or a negative error in case of failure.
1733 *
1734 * int bpf_override_return(struct pt_regs *regs, u64 rc)
1735 * Description
1736 * Used for error injection, this helper uses kprobes to override
1737 * the return value of the probed function, and to set it to *rc*.
1738 * The first argument is the context *regs* on which the kprobe
1739 * works.
1740 *
1741 * This helper works by setting setting the PC (program counter)
1742 * to an override function which is run in place of the original
1743 * probed function. This means the probed function is not run at
1744 * all. The replacement function just returns with the required
1745 * value.
1746 *
1747 * This helper has security implications, and thus is subject to
1748 * restrictions. It is only available if the kernel was compiled
1749 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1750 * option, and in this case it only works on functions tagged with
1751 * **ALLOW_ERROR_INJECTION** in the kernel code.
1752 *
1753 * Also, the helper is only available for the architectures having
1754 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1755 * x86 architecture is the only one to support this feature.
1756 * Return
1757 * 0
1758 *
1759 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1760 * Description
1761 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1762 * for the full TCP socket associated to *bpf_sock_ops* to
1763 * *argval*.
1764 *
1765 * The primary use of this field is to determine if there should
1766 * be calls to eBPF programs of type
1767 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1768 * code. A program of the same type can change its value, per
1769 * connection and as necessary, when the connection is
1770 * established. This field is directly accessible for reading, but
1771 * this helper must be used for updates in order to return an
1772 * error if an eBPF program tries to set a callback that is not
1773 * supported in the current kernel.
1774 *
1775 * *argval* is a flag array which can combine these flags:
1776 *
1777 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1778 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1779 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1780 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1781 *
1782 * Therefore, this function can be used to clear a callback flag by
1783 * setting the appropriate bit to zero. e.g. to disable the RTO
1784 * callback:
1785 *
1786 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
1787 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1788 *
1789 * Here are some examples of where one could call such eBPF
1790 * program:
1791 *
1792 * * When RTO fires.
1793 * * When a packet is retransmitted.
1794 * * When the connection terminates.
1795 * * When a packet is sent.
1796 * * When a packet is received.
1797 * Return
1798 * Code **-EINVAL** if the socket is not a full TCP socket;
1799 * otherwise, a positive number containing the bits that could not
1800 * be set is returned (which comes down to 0 if all bits were set
1801 * as required).
1802 *
1803 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1804 * Description
1805 * This helper is used in programs implementing policies at the
1806 * socket level. If the message *msg* is allowed to pass (i.e. if
1807 * the verdict eBPF program returns **SK_PASS**), redirect it to
1808 * the socket referenced by *map* (of type
1809 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1810 * egress interfaces can be used for redirection. The
1811 * **BPF_F_INGRESS** value in *flags* is used to make the
1812 * distinction (ingress path is selected if the flag is present,
1813 * egress path otherwise). This is the only flag supported for now.
1814 * Return
1815 * **SK_PASS** on success, or **SK_DROP** on error.
1816 *
1817 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1818 * Description
1819 * For socket policies, apply the verdict of the eBPF program to
1820 * the next *bytes* (number of bytes) of message *msg*.
1821 *
1822 * For example, this helper can be used in the following cases:
1823 *
1824 * * A single **sendmsg**\ () or **sendfile**\ () system call
1825 * contains multiple logical messages that the eBPF program is
1826 * supposed to read and for which it should apply a verdict.
1827 * * An eBPF program only cares to read the first *bytes* of a
1828 * *msg*. If the message has a large payload, then setting up
1829 * and calling the eBPF program repeatedly for all bytes, even
1830 * though the verdict is already known, would create unnecessary
1831 * overhead.
1832 *
1833 * When called from within an eBPF program, the helper sets a
1834 * counter internal to the BPF infrastructure, that is used to
1835 * apply the last verdict to the next *bytes*. If *bytes* is
1836 * smaller than the current data being processed from a
1837 * **sendmsg**\ () or **sendfile**\ () system call, the first
1838 * *bytes* will be sent and the eBPF program will be re-run with
1839 * the pointer for start of data pointing to byte number *bytes*
1840 * **+ 1**. If *bytes* is larger than the current data being
1841 * processed, then the eBPF verdict will be applied to multiple
1842 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1843 * consumed.
1844 *
1845 * Note that if a socket closes with the internal counter holding
1846 * a non-zero value, this is not a problem because data is not
1847 * being buffered for *bytes* and is sent as it is received.
1848 * Return
1849 * 0
1850 *
1851 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1852 * Description
1853 * For socket policies, prevent the execution of the verdict eBPF
1854 * program for message *msg* until *bytes* (byte number) have been
1855 * accumulated.
1856 *
1857 * This can be used when one needs a specific number of bytes
1858 * before a verdict can be assigned, even if the data spans
1859 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1860 * case would be a user calling **sendmsg**\ () repeatedly with
1861 * 1-byte long message segments. Obviously, this is bad for
1862 * performance, but it is still valid. If the eBPF program needs
1863 * *bytes* bytes to validate a header, this helper can be used to
1864 * prevent the eBPF program to be called again until *bytes* have
1865 * been accumulated.
1866 * Return
1867 * 0
1868 *
1869 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1870 * Description
1871 * For socket policies, pull in non-linear data from user space
1872 * for *msg* and set pointers *msg*\ **->data** and *msg*\
1873 * **->data_end** to *start* and *end* bytes offsets into *msg*,
1874 * respectively.
1875 *
1876 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1877 * *msg* it can only parse data that the (**data**, **data_end**)
1878 * pointers have already consumed. For **sendmsg**\ () hooks this
1879 * is likely the first scatterlist element. But for calls relying
1880 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1881 * be the range (**0**, **0**) because the data is shared with
1882 * user space and by default the objective is to avoid allowing
1883 * user space to modify data while (or after) eBPF verdict is
1884 * being decided. This helper can be used to pull in data and to
1885 * set the start and end pointer to given values. Data will be
1886 * copied if necessary (i.e. if data was not linear and if start
1887 * and end pointers do not point to the same chunk).
1888 *
1889 * A call to this helper is susceptible to change the underlying
1890 * packet buffer. Therefore, at load time, all checks on pointers
1891 * previously done by the verifier are invalidated and must be
1892 * performed again, if the helper is used in combination with
1893 * direct packet access.
1894 *
1895 * All values for *flags* are reserved for future usage, and must
1896 * be left at zero.
1897 * Return
1898 * 0 on success, or a negative error in case of failure.
1899 *
1900 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1901 * Description
1902 * Bind the socket associated to *ctx* to the address pointed by
1903 * *addr*, of length *addr_len*. This allows for making outgoing
1904 * connection from the desired IP address, which can be useful for
1905 * example when all processes inside a cgroup should use one
1906 * single IP address on a host that has multiple IP configured.
1907 *
1908 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1909 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1910 * **AF_INET6**). Looking for a free port to bind to can be
1911 * expensive, therefore binding to port is not permitted by the
1912 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1913 * must be set to zero.
1914 * Return
1915 * 0 on success, or a negative error in case of failure.
1916 *
1917 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1918 * Description
1919 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1920 * only possible to shrink the packet as of this writing,
1921 * therefore *delta* must be a negative integer.
1922 *
1923 * A call to this helper is susceptible to change the underlying
1924 * packet buffer. Therefore, at load time, all checks on pointers
1925 * previously done by the verifier are invalidated and must be
1926 * performed again, if the helper is used in combination with
1927 * direct packet access.
1928 * Return
1929 * 0 on success, or a negative error in case of failure.
1930 *
1931 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1932 * Description
1933 * Retrieve the XFRM state (IP transform framework, see also
1934 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1935 *
1936 * The retrieved value is stored in the **struct bpf_xfrm_state**
1937 * pointed by *xfrm_state* and of length *size*.
1938 *
1939 * All values for *flags* are reserved for future usage, and must
1940 * be left at zero.
1941 *
1942 * This helper is available only if the kernel was compiled with
1943 * **CONFIG_XFRM** configuration option.
1944 * Return
1945 * 0 on success, or a negative error in case of failure.
1946 *
1947 * int bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
1948 * Description
1949 * Return a user or a kernel stack in bpf program provided buffer.
1950 * To achieve this, the helper needs *ctx*, which is a pointer
1951 * to the context on which the tracing program is executed.
1952 * To store the stacktrace, the bpf program provides *buf* with
1953 * a nonnegative *size*.
1954 *
1955 * The last argument, *flags*, holds the number of stack frames to
1956 * skip (from 0 to 255), masked with
1957 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1958 * the following flags:
1959 *
1960 * **BPF_F_USER_STACK**
1961 * Collect a user space stack instead of a kernel stack.
1962 * **BPF_F_USER_BUILD_ID**
1963 * Collect buildid+offset instead of ips for user stack,
1964 * only valid if **BPF_F_USER_STACK** is also specified.
1965 *
1966 * **bpf_get_stack**\ () can collect up to
1967 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1968 * to sufficient large buffer size. Note that
1969 * this limit can be controlled with the **sysctl** program, and
1970 * that it should be manually increased in order to profile long
1971 * user stacks (such as stacks for Java programs). To do so, use:
1972 *
1973 * ::
1974 *
1975 * # sysctl kernel.perf_event_max_stack=<new value>
1976 * Return
1977 * A non-negative value equal to or less than *size* on success,
1978 * or a negative error in case of failure.
1979 *
1980 * int bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
1981 * Description
1982 * This helper is similar to **bpf_skb_load_bytes**\ () in that
1983 * it provides an easy way to load *len* bytes from *offset*
1984 * from the packet associated to *skb*, into the buffer pointed
1985 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1986 * a fifth argument *start_header* exists in order to select a
1987 * base offset to start from. *start_header* can be one of:
1988 *
1989 * **BPF_HDR_START_MAC**
1990 * Base offset to load data from is *skb*'s mac header.
1991 * **BPF_HDR_START_NET**
1992 * Base offset to load data from is *skb*'s network header.
1993 *
1994 * In general, "direct packet access" is the preferred method to
1995 * access packet data, however, this helper is in particular useful
1996 * in socket filters where *skb*\ **->data** does not always point
1997 * to the start of the mac header and where "direct packet access"
1998 * is not available.
1999 * Return
2000 * 0 on success, or a negative error in case of failure.
2001 *
2002 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2003 * Description
2004 * Do FIB lookup in kernel tables using parameters in *params*.
2005 * If lookup is successful and result shows packet is to be
2006 * forwarded, the neighbor tables are searched for the nexthop.
2007 * If successful (ie., FIB lookup shows forwarding and nexthop
2008 * is resolved), the nexthop address is returned in ipv4_dst
2009 * or ipv6_dst based on family, smac is set to mac address of
2010 * egress device, dmac is set to nexthop mac address, rt_metric
2011 * is set to metric from route (IPv4/IPv6 only), and ifindex
2012 * is set to the device index of the nexthop from the FIB lookup.
2013 *
2014 * *plen* argument is the size of the passed in struct.
2015 * *flags* argument can be a combination of one or more of the
2016 * following values:
2017 *
2018 * **BPF_FIB_LOOKUP_DIRECT**
2019 * Do a direct table lookup vs full lookup using FIB
2020 * rules.
2021 * **BPF_FIB_LOOKUP_OUTPUT**
2022 * Perform lookup from an egress perspective (default is
2023 * ingress).
2024 *
2025 * *ctx* is either **struct xdp_md** for XDP programs or
2026 * **struct sk_buff** tc cls_act programs.
2027 * Return
2028 * * < 0 if any input argument is invalid
2029 * * 0 on success (packet is forwarded, nexthop neighbor exists)
2030 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2031 * packet is not forwarded or needs assist from full stack
2032 *
2033 * int bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2034 * Description
2035 * Add an entry to, or update a sockhash *map* referencing sockets.
2036 * The *skops* is used as a new value for the entry associated to
2037 * *key*. *flags* is one of:
2038 *
2039 * **BPF_NOEXIST**
2040 * The entry for *key* must not exist in the map.
2041 * **BPF_EXIST**
2042 * The entry for *key* must already exist in the map.
2043 * **BPF_ANY**
2044 * No condition on the existence of the entry for *key*.
2045 *
2046 * If the *map* has eBPF programs (parser and verdict), those will
2047 * be inherited by the socket being added. If the socket is
2048 * already attached to eBPF programs, this results in an error.
2049 * Return
2050 * 0 on success, or a negative error in case of failure.
2051 *
2052 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2053 * Description
2054 * This helper is used in programs implementing policies at the
2055 * socket level. If the message *msg* is allowed to pass (i.e. if
2056 * the verdict eBPF program returns **SK_PASS**), redirect it to
2057 * the socket referenced by *map* (of type
2058 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2059 * egress interfaces can be used for redirection. The
2060 * **BPF_F_INGRESS** value in *flags* is used to make the
2061 * distinction (ingress path is selected if the flag is present,
2062 * egress path otherwise). This is the only flag supported for now.
2063 * Return
2064 * **SK_PASS** on success, or **SK_DROP** on error.
2065 *
2066 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2067 * Description
2068 * This helper is used in programs implementing policies at the
2069 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2070 * if the verdeict eBPF program returns **SK_PASS**), redirect it
2071 * to the socket referenced by *map* (of type
2072 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2073 * egress interfaces can be used for redirection. The
2074 * **BPF_F_INGRESS** value in *flags* is used to make the
2075 * distinction (ingress path is selected if the flag is present,
2076 * egress otherwise). This is the only flag supported for now.
2077 * Return
2078 * **SK_PASS** on success, or **SK_DROP** on error.
2079 *
2080 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2081 * Description
2082 * Encapsulate the packet associated to *skb* within a Layer 3
2083 * protocol header. This header is provided in the buffer at
2084 * address *hdr*, with *len* its size in bytes. *type* indicates
2085 * the protocol of the header and can be one of:
2086 *
2087 * **BPF_LWT_ENCAP_SEG6**
2088 * IPv6 encapsulation with Segment Routing Header
2089 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2090 * the IPv6 header is computed by the kernel.
2091 * **BPF_LWT_ENCAP_SEG6_INLINE**
2092 * Only works if *skb* contains an IPv6 packet. Insert a
2093 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
2094 * the IPv6 header.
2095 * **BPF_LWT_ENCAP_IP**
2096 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2097 * must be IPv4 or IPv6, followed by zero or more
2098 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
2099 * total bytes in all prepended headers. Please note that
2100 * if **skb_is_gso**\ (*skb*) is true, no more than two
2101 * headers can be prepended, and the inner header, if
2102 * present, should be either GRE or UDP/GUE.
2103 *
2104 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2105 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2106 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2107 * **BPF_PROG_TYPE_LWT_XMIT**.
2108 *
2109 * A call to this helper is susceptible to change the underlying
2110 * packet buffer. Therefore, at load time, all checks on pointers
2111 * previously done by the verifier are invalidated and must be
2112 * performed again, if the helper is used in combination with
2113 * direct packet access.
2114 * Return
2115 * 0 on success, or a negative error in case of failure.
2116 *
2117 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2118 * Description
2119 * Store *len* bytes from address *from* into the packet
2120 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
2121 * inside the outermost IPv6 Segment Routing Header can be
2122 * modified through this helper.
2123 *
2124 * A call to this helper is susceptible to change the underlying
2125 * packet buffer. Therefore, at load time, all checks on pointers
2126 * previously done by the verifier are invalidated and must be
2127 * performed again, if the helper is used in combination with
2128 * direct packet access.
2129 * Return
2130 * 0 on success, or a negative error in case of failure.
2131 *
2132 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2133 * Description
2134 * Adjust the size allocated to TLVs in the outermost IPv6
2135 * Segment Routing Header contained in the packet associated to
2136 * *skb*, at position *offset* by *delta* bytes. Only offsets
2137 * after the segments are accepted. *delta* can be as well
2138 * positive (growing) as negative (shrinking).
2139 *
2140 * A call to this helper is susceptible to change the underlying
2141 * packet buffer. Therefore, at load time, all checks on pointers
2142 * previously done by the verifier are invalidated and must be
2143 * performed again, if the helper is used in combination with
2144 * direct packet access.
2145 * Return
2146 * 0 on success, or a negative error in case of failure.
2147 *
2148 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2149 * Description
2150 * Apply an IPv6 Segment Routing action of type *action* to the
2151 * packet associated to *skb*. Each action takes a parameter
2152 * contained at address *param*, and of length *param_len* bytes.
2153 * *action* can be one of:
2154 *
2155 * **SEG6_LOCAL_ACTION_END_X**
2156 * End.X action: Endpoint with Layer-3 cross-connect.
2157 * Type of *param*: **struct in6_addr**.
2158 * **SEG6_LOCAL_ACTION_END_T**
2159 * End.T action: Endpoint with specific IPv6 table lookup.
2160 * Type of *param*: **int**.
2161 * **SEG6_LOCAL_ACTION_END_B6**
2162 * End.B6 action: Endpoint bound to an SRv6 policy.
2163 * Type of *param*: **struct ipv6_sr_hdr**.
2164 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
2165 * End.B6.Encap action: Endpoint bound to an SRv6
2166 * encapsulation policy.
2167 * Type of *param*: **struct ipv6_sr_hdr**.
2168 *
2169 * A call to this helper is susceptible to change the underlying
2170 * packet buffer. Therefore, at load time, all checks on pointers
2171 * previously done by the verifier are invalidated and must be
2172 * performed again, if the helper is used in combination with
2173 * direct packet access.
2174 * Return
2175 * 0 on success, or a negative error in case of failure.
2176 *
2177 * int bpf_rc_repeat(void *ctx)
2178 * Description
2179 * This helper is used in programs implementing IR decoding, to
2180 * report a successfully decoded repeat key message. This delays
2181 * the generation of a key up event for previously generated
2182 * key down event.
2183 *
2184 * Some IR protocols like NEC have a special IR message for
2185 * repeating last button, for when a button is held down.
2186 *
2187 * The *ctx* should point to the lirc sample as passed into
2188 * the program.
2189 *
2190 * This helper is only available is the kernel was compiled with
2191 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2192 * "**y**".
2193 * Return
2194 * 0
2195 *
2196 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2197 * Description
2198 * This helper is used in programs implementing IR decoding, to
2199 * report a successfully decoded key press with *scancode*,
2200 * *toggle* value in the given *protocol*. The scancode will be
2201 * translated to a keycode using the rc keymap, and reported as
2202 * an input key down event. After a period a key up event is
2203 * generated. This period can be extended by calling either
2204 * **bpf_rc_keydown**\ () again with the same values, or calling
2205 * **bpf_rc_repeat**\ ().
2206 *
2207 * Some protocols include a toggle bit, in case the button was
2208 * released and pressed again between consecutive scancodes.
2209 *
2210 * The *ctx* should point to the lirc sample as passed into
2211 * the program.
2212 *
2213 * The *protocol* is the decoded protocol number (see
2214 * **enum rc_proto** for some predefined values).
2215 *
2216 * This helper is only available is the kernel was compiled with
2217 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2218 * "**y**".
2219 * Return
2220 * 0
2221 *
2222 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2223 * Description
2224 * Return the cgroup v2 id of the socket associated with the *skb*.
2225 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2226 * helper for cgroup v1 by providing a tag resp. identifier that
2227 * can be matched on or used for map lookups e.g. to implement
2228 * policy. The cgroup v2 id of a given path in the hierarchy is
2229 * exposed in user space through the f_handle API in order to get
2230 * to the same 64-bit id.
2231 *
2232 * This helper can be used on TC egress path, but not on ingress,
2233 * and is available only if the kernel was compiled with the
2234 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
2235 * Return
2236 * The id is returned or 0 in case the id could not be retrieved.
2237 *
2238 * u64 bpf_get_current_cgroup_id(void)
2239 * Return
2240 * A 64-bit integer containing the current cgroup id based
2241 * on the cgroup within which the current task is running.
2242 *
2243 * void *bpf_get_local_storage(void *map, u64 flags)
2244 * Description
2245 * Get the pointer to the local storage area.
2246 * The type and the size of the local storage is defined
2247 * by the *map* argument.
2248 * The *flags* meaning is specific for each map type,
2249 * and has to be 0 for cgroup local storage.
2250 *
2251 * Depending on the BPF program type, a local storage area
2252 * can be shared between multiple instances of the BPF program,
2253 * running simultaneously.
2254 *
2255 * A user should care about the synchronization by himself.
2256 * For example, by using the **BPF_STX_XADD** instruction to alter
2257 * the shared data.
2258 * Return
2259 * A pointer to the local storage area.
2260 *
2261 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2262 * Description
2263 * Select a **SO_REUSEPORT** socket from a
2264 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2265 * It checks the selected socket is matching the incoming
2266 * request in the socket buffer.
2267 * Return
2268 * 0 on success, or a negative error in case of failure.
2269 *
2270 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2271 * Description
2272 * Return id of cgroup v2 that is ancestor of cgroup associated
2273 * with the *skb* at the *ancestor_level*. The root cgroup is at
2274 * *ancestor_level* zero and each step down the hierarchy
2275 * increments the level. If *ancestor_level* == level of cgroup
2276 * associated with *skb*, then return value will be same as that
2277 * of **bpf_skb_cgroup_id**\ ().
2278 *
2279 * The helper is useful to implement policies based on cgroups
2280 * that are upper in hierarchy than immediate cgroup associated
2281 * with *skb*.
2282 *
2283 * The format of returned id and helper limitations are same as in
2284 * **bpf_skb_cgroup_id**\ ().
2285 * Return
2286 * The id is returned or 0 in case the id could not be retrieved.
2287 *
2288 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2289 * Description
2290 * Look for TCP socket matching *tuple*, optionally in a child
2291 * network namespace *netns*. The return value must be checked,
2292 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2293 *
2294 * The *ctx* should point to the context of the program, such as
2295 * the skb or socket (depending on the hook in use). This is used
2296 * to determine the base network namespace for the lookup.
2297 *
2298 * *tuple_size* must be one of:
2299 *
2300 * **sizeof**\ (*tuple*\ **->ipv4**)
2301 * Look for an IPv4 socket.
2302 * **sizeof**\ (*tuple*\ **->ipv6**)
2303 * Look for an IPv6 socket.
2304 *
2305 * If the *netns* is a negative signed 32-bit integer, then the
2306 * socket lookup table in the netns associated with the *ctx* will
2307 * will be used. For the TC hooks, this is the netns of the device
2308 * in the skb. For socket hooks, this is the netns of the socket.
2309 * If *netns* is any other signed 32-bit value greater than or
2310 * equal to zero then it specifies the ID of the netns relative to
2311 * the netns associated with the *ctx*. *netns* values beyond the
2312 * range of 32-bit integers are reserved for future use.
2313 *
2314 * All values for *flags* are reserved for future usage, and must
2315 * be left at zero.
2316 *
2317 * This helper is available only if the kernel was compiled with
2318 * **CONFIG_NET** configuration option.
2319 * Return
2320 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2321 * For sockets with reuseport option, the **struct bpf_sock**
2322 * result is from *reuse*\ **->socks**\ [] using the hash of the
2323 * tuple.
2324 *
2325 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2326 * Description
2327 * Look for UDP socket matching *tuple*, optionally in a child
2328 * network namespace *netns*. The return value must be checked,
2329 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2330 *
2331 * The *ctx* should point to the context of the program, such as
2332 * the skb or socket (depending on the hook in use). This is used
2333 * to determine the base network namespace for the lookup.
2334 *
2335 * *tuple_size* must be one of:
2336 *
2337 * **sizeof**\ (*tuple*\ **->ipv4**)
2338 * Look for an IPv4 socket.
2339 * **sizeof**\ (*tuple*\ **->ipv6**)
2340 * Look for an IPv6 socket.
2341 *
2342 * If the *netns* is a negative signed 32-bit integer, then the
2343 * socket lookup table in the netns associated with the *ctx* will
2344 * will be used. For the TC hooks, this is the netns of the device
2345 * in the skb. For socket hooks, this is the netns of the socket.
2346 * If *netns* is any other signed 32-bit value greater than or
2347 * equal to zero then it specifies the ID of the netns relative to
2348 * the netns associated with the *ctx*. *netns* values beyond the
2349 * range of 32-bit integers are reserved for future use.
2350 *
2351 * All values for *flags* are reserved for future usage, and must
2352 * be left at zero.
2353 *
2354 * This helper is available only if the kernel was compiled with
2355 * **CONFIG_NET** configuration option.
2356 * Return
2357 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2358 * For sockets with reuseport option, the **struct bpf_sock**
2359 * result is from *reuse*\ **->socks**\ [] using the hash of the
2360 * tuple.
2361 *
2362 * int bpf_sk_release(struct bpf_sock *sock)
2363 * Description
2364 * Release the reference held by *sock*. *sock* must be a
2365 * non-**NULL** pointer that was returned from
2366 * **bpf_sk_lookup_xxx**\ ().
2367 * Return
2368 * 0 on success, or a negative error in case of failure.
2369 *
2370 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2371 * Description
2372 * Push an element *value* in *map*. *flags* is one of:
2373 *
2374 * **BPF_EXIST**
2375 * If the queue/stack is full, the oldest element is
2376 * removed to make room for this.
2377 * Return
2378 * 0 on success, or a negative error in case of failure.
2379 *
2380 * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2381 * Description
2382 * Pop an element from *map*.
2383 * Return
2384 * 0 on success, or a negative error in case of failure.
2385 *
2386 * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2387 * Description
2388 * Get an element from *map* without removing it.
2389 * Return
2390 * 0 on success, or a negative error in case of failure.
2391 *
2392 * int bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2393 * Description
2394 * For socket policies, insert *len* bytes into *msg* at offset
2395 * *start*.
2396 *
2397 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2398 * *msg* it may want to insert metadata or options into the *msg*.
2399 * This can later be read and used by any of the lower layer BPF
2400 * hooks.
2401 *
2402 * This helper may fail if under memory pressure (a malloc
2403 * fails) in these cases BPF programs will get an appropriate
2404 * error and BPF programs will need to handle them.
2405 * Return
2406 * 0 on success, or a negative error in case of failure.
2407 *
2408 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2409 * Description
2410 * Will remove *len* bytes from a *msg* starting at byte *start*.
2411 * This may result in **ENOMEM** errors under certain situations if
2412 * an allocation and copy are required due to a full ring buffer.
2413 * However, the helper will try to avoid doing the allocation
2414 * if possible. Other errors can occur if input parameters are
2415 * invalid either due to *start* byte not being valid part of *msg*
2416 * payload and/or *pop* value being to large.
2417 * Return
2418 * 0 on success, or a negative error in case of failure.
2419 *
2420 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2421 * Description
2422 * This helper is used in programs implementing IR decoding, to
2423 * report a successfully decoded pointer movement.
2424 *
2425 * The *ctx* should point to the lirc sample as passed into
2426 * the program.
2427 *
2428 * This helper is only available is the kernel was compiled with
2429 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2430 * "**y**".
2431 * Return
2432 * 0
2433 *
2434 * int bpf_spin_lock(struct bpf_spin_lock *lock)
2435 * Description
2436 * Acquire a spinlock represented by the pointer *lock*, which is
2437 * stored as part of a value of a map. Taking the lock allows to
2438 * safely update the rest of the fields in that value. The
2439 * spinlock can (and must) later be released with a call to
2440 * **bpf_spin_unlock**\ (\ *lock*\ ).
2441 *
2442 * Spinlocks in BPF programs come with a number of restrictions
2443 * and constraints:
2444 *
2445 * * **bpf_spin_lock** objects are only allowed inside maps of
2446 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2447 * list could be extended in the future).
2448 * * BTF description of the map is mandatory.
2449 * * The BPF program can take ONE lock at a time, since taking two
2450 * or more could cause dead locks.
2451 * * Only one **struct bpf_spin_lock** is allowed per map element.
2452 * * When the lock is taken, calls (either BPF to BPF or helpers)
2453 * are not allowed.
2454 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2455 * allowed inside a spinlock-ed region.
2456 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
2457 * the lock, on all execution paths, before it returns.
2458 * * The BPF program can access **struct bpf_spin_lock** only via
2459 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2460 * helpers. Loading or storing data into the **struct
2461 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2462 * * To use the **bpf_spin_lock**\ () helper, the BTF description
2463 * of the map value must be a struct and have **struct
2464 * bpf_spin_lock** *anyname*\ **;** field at the top level.
2465 * Nested lock inside another struct is not allowed.
2466 * * The **struct bpf_spin_lock** *lock* field in a map value must
2467 * be aligned on a multiple of 4 bytes in that value.
2468 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2469 * the **bpf_spin_lock** field to user space.
2470 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2471 * a BPF program, do not update the **bpf_spin_lock** field.
2472 * * **bpf_spin_lock** cannot be on the stack or inside a
2473 * networking packet (it can only be inside of a map values).
2474 * * **bpf_spin_lock** is available to root only.
2475 * * Tracing programs and socket filter programs cannot use
2476 * **bpf_spin_lock**\ () due to insufficient preemption checks
2477 * (but this may change in the future).
2478 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2479 * Return
2480 * 0
2481 *
2482 * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2483 * Description
2484 * Release the *lock* previously locked by a call to
2485 * **bpf_spin_lock**\ (\ *lock*\ ).
2486 * Return
2487 * 0
2488 *
2489 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2490 * Description
2491 * This helper gets a **struct bpf_sock** pointer such
2492 * that all the fields in this **bpf_sock** can be accessed.
2493 * Return
2494 * A **struct bpf_sock** pointer on success, or **NULL** in
2495 * case of failure.
2496 *
2497 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2498 * Description
2499 * This helper gets a **struct bpf_tcp_sock** pointer from a
2500 * **struct bpf_sock** pointer.
2501 * Return
2502 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2503 * case of failure.
2504 *
2505 * int bpf_skb_ecn_set_ce(struct sk_buff *skb)
2506 * Description
2507 * Set ECN (Explicit Congestion Notification) field of IP header
2508 * to **CE** (Congestion Encountered) if current value is **ECT**
2509 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2510 * and IPv4.
2511 * Return
2512 * 1 if the **CE** flag is set (either by the current helper call
2513 * or because it was already present), 0 if it is not set.
2514 *
2515 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2516 * Description
2517 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2518 * **bpf_sk_release**\ () is unnecessary and not allowed.
2519 * Return
2520 * A **struct bpf_sock** pointer on success, or **NULL** in
2521 * case of failure.
2522 *
2523 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2524 * Description
2525 * Look for TCP socket matching *tuple*, optionally in a child
2526 * network namespace *netns*. The return value must be checked,
2527 * and if non-**NULL**, released via **bpf_sk_release**\ ().
2528 *
2529 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
2530 * that it also returns timewait or request sockets. Use
2531 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2532 * full structure.
2533 *
2534 * This helper is available only if the kernel was compiled with
2535 * **CONFIG_NET** configuration option.
2536 * Return
2537 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2538 * For sockets with reuseport option, the **struct bpf_sock**
2539 * result is from *reuse*\ **->socks**\ [] using the hash of the
2540 * tuple.
2541 *
2542 * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2543 * Description
2544 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
2545 * the listening socket in *sk*.
2546 *
2547 * *iph* points to the start of the IPv4 or IPv6 header, while
2548 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
2549 * **sizeof**\ (**struct ip6hdr**).
2550 *
2551 * *th* points to the start of the TCP header, while *th_len*
2552 * contains **sizeof**\ (**struct tcphdr**).
2553 *
2554 * Return
2555 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2556 * error otherwise.
2557 *
2558 * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2559 * Description
2560 * Get name of sysctl in /proc/sys/ and copy it into provided by
2561 * program buffer *buf* of size *buf_len*.
2562 *
2563 * The buffer is always NUL terminated, unless it's zero-sized.
2564 *
2565 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2566 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2567 * only (e.g. "tcp_mem").
2568 * Return
2569 * Number of character copied (not including the trailing NUL).
2570 *
2571 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
2572 * truncated name in this case).
2573 *
2574 * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2575 * Description
2576 * Get current value of sysctl as it is presented in /proc/sys
2577 * (incl. newline, etc), and copy it as a string into provided
2578 * by program buffer *buf* of size *buf_len*.
2579 *
2580 * The whole value is copied, no matter what file position user
2581 * space issued e.g. sys_read at.
2582 *
2583 * The buffer is always NUL terminated, unless it's zero-sized.
2584 * Return
2585 * Number of character copied (not including the trailing NUL).
2586 *
2587 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
2588 * truncated name in this case).
2589 *
2590 * **-EINVAL** if current value was unavailable, e.g. because
2591 * sysctl is uninitialized and read returns -EIO for it.
2592 *
2593 * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2594 * Description
2595 * Get new value being written by user space to sysctl (before
2596 * the actual write happens) and copy it as a string into
2597 * provided by program buffer *buf* of size *buf_len*.
2598 *
2599 * User space may write new value at file position > 0.
2600 *
2601 * The buffer is always NUL terminated, unless it's zero-sized.
2602 * Return
2603 * Number of character copied (not including the trailing NUL).
2604 *
2605 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
2606 * truncated name in this case).
2607 *
2608 * **-EINVAL** if sysctl is being read.
2609 *
2610 * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2611 * Description
2612 * Override new value being written by user space to sysctl with
2613 * value provided by program in buffer *buf* of size *buf_len*.
2614 *
2615 * *buf* should contain a string in same form as provided by user
2616 * space on sysctl write.
2617 *
2618 * User space may write new value at file position > 0. To override
2619 * the whole sysctl value file position should be set to zero.
2620 * Return
2621 * 0 on success.
2622 *
2623 * **-E2BIG** if the *buf_len* is too big.
2624 *
2625 * **-EINVAL** if sysctl is being read.
2626 *
2627 * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2628 * Description
2629 * Convert the initial part of the string from buffer *buf* of
2630 * size *buf_len* to a long integer according to the given base
2631 * and save the result in *res*.
2632 *
2633 * The string may begin with an arbitrary amount of white space
2634 * (as determined by **isspace**\ (3)) followed by a single
2635 * optional '**-**' sign.
2636 *
2637 * Five least significant bits of *flags* encode base, other bits
2638 * are currently unused.
2639 *
2640 * Base must be either 8, 10, 16 or 0 to detect it automatically
2641 * similar to user space **strtol**\ (3).
2642 * Return
2643 * Number of characters consumed on success. Must be positive but
2644 * no more than *buf_len*.
2645 *
2646 * **-EINVAL** if no valid digits were found or unsupported base
2647 * was provided.
2648 *
2649 * **-ERANGE** if resulting value was out of range.
2650 *
2651 * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2652 * Description
2653 * Convert the initial part of the string from buffer *buf* of
2654 * size *buf_len* to an unsigned long integer according to the
2655 * given base and save the result in *res*.
2656 *
2657 * The string may begin with an arbitrary amount of white space
2658 * (as determined by **isspace**\ (3)).
2659 *
2660 * Five least significant bits of *flags* encode base, other bits
2661 * are currently unused.
2662 *
2663 * Base must be either 8, 10, 16 or 0 to detect it automatically
2664 * similar to user space **strtoul**\ (3).
2665 * Return
2666 * Number of characters consumed on success. Must be positive but
2667 * no more than *buf_len*.
2668 *
2669 * **-EINVAL** if no valid digits were found or unsupported base
2670 * was provided.
2671 *
2672 * **-ERANGE** if resulting value was out of range.
2673 *
2674 * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2675 * Description
2676 * Get a bpf-local-storage from a *sk*.
2677 *
2678 * Logically, it could be thought of getting the value from
2679 * a *map* with *sk* as the **key**. From this
2680 * perspective, the usage is not much different from
2681 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2682 * helper enforces the key must be a full socket and the map must
2683 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
2684 *
2685 * Underneath, the value is stored locally at *sk* instead of
2686 * the *map*. The *map* is used as the bpf-local-storage
2687 * "type". The bpf-local-storage "type" (i.e. the *map*) is
2688 * searched against all bpf-local-storages residing at *sk*.
2689 *
2690 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2691 * used such that a new bpf-local-storage will be
2692 * created if one does not exist. *value* can be used
2693 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2694 * the initial value of a bpf-local-storage. If *value* is
2695 * **NULL**, the new bpf-local-storage will be zero initialized.
2696 * Return
2697 * A bpf-local-storage pointer is returned on success.
2698 *
2699 * **NULL** if not found or there was an error in adding
2700 * a new bpf-local-storage.
2701 *
2702 * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2703 * Description
2704 * Delete a bpf-local-storage from a *sk*.
2705 * Return
2706 * 0 on success.
2707 *
2708 * **-ENOENT** if the bpf-local-storage cannot be found.
2709 *
2710 * int bpf_send_signal(u32 sig)
2711 * Description
2712 * Send signal *sig* to the current task.
2713 * Return
2714 * 0 on success or successfully queued.
2715 *
2716 * **-EBUSY** if work queue under nmi is full.
2717 *
2718 * **-EINVAL** if *sig* is invalid.
2719 *
2720 * **-EPERM** if no permission to send the *sig*.
2721 *
2722 * **-EAGAIN** if bpf program can try again.
2723 *
2724 * s64 bpf_tcp_gen_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2725 * Description
2726 * Try to issue a SYN cookie for the packet with corresponding
2727 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2728 *
2729 * *iph* points to the start of the IPv4 or IPv6 header, while
2730 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
2731 * **sizeof**\ (**struct ip6hdr**).
2732 *
2733 * *th* points to the start of the TCP header, while *th_len*
2734 * contains the length of the TCP header.
2735 *
2736 * Return
2737 * On success, lower 32 bits hold the generated SYN cookie in
2738 * followed by 16 bits which hold the MSS value for that cookie,
2739 * and the top 16 bits are unused.
2740 *
2741 * On failure, the returned value is one of the following:
2742 *
2743 * **-EINVAL** SYN cookie cannot be issued due to error
2744 *
2745 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
2746 *
2747 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2748 *
2749 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
2750 *
2751 * int bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2752 * Description
2753 * Write raw *data* blob into a special BPF perf event held by
2754 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2755 * event must have the following attributes: **PERF_SAMPLE_RAW**
2756 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2757 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2758 *
2759 * The *flags* are used to indicate the index in *map* for which
2760 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2761 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2762 * to indicate that the index of the current CPU core should be
2763 * used.
2764 *
2765 * The value to write, of *size*, is passed through eBPF stack and
2766 * pointed by *data*.
2767 *
2768 * *ctx* is a pointer to in-kernel struct sk_buff.
2769 *
2770 * This helper is similar to **bpf_perf_event_output**\ () but
2771 * restricted to raw_tracepoint bpf programs.
2772 * Return
2773 * 0 on success, or a negative error in case of failure.
2774 *
2775 * int bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2776 * Description
2777 * Safely attempt to read *size* bytes from user space address
2778 * *unsafe_ptr* and store the data in *dst*.
2779 * Return
2780 * 0 on success, or a negative error in case of failure.
2781 *
2782 * int bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2783 * Description
2784 * Safely attempt to read *size* bytes from kernel space address
2785 * *unsafe_ptr* and store the data in *dst*.
2786 * Return
2787 * 0 on success, or a negative error in case of failure.
2788 *
2789 * int bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
2790 * Description
2791 * Copy a NUL terminated string from an unsafe user address
2792 * *unsafe_ptr* to *dst*. The *size* should include the
2793 * terminating NUL byte. In case the string length is smaller than
2794 * *size*, the target is not padded with further NUL bytes. If the
2795 * string length is larger than *size*, just *size*-1 bytes are
2796 * copied and the last byte is set to NUL.
2797 *
2798 * On success, the length of the copied string is returned. This
2799 * makes this helper useful in tracing programs for reading
2800 * strings, and more importantly to get its length at runtime. See
2801 * the following snippet:
2802 *
2803 * ::
2804 *
2805 * SEC("kprobe/sys_open")
2806 * void bpf_sys_open(struct pt_regs *ctx)
2807 * {
2808 * char buf[PATHLEN]; // PATHLEN is defined to 256
2809 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
2810 * ctx->di);
2811 *
2812 * // Consume buf, for example push it to
2813 * // userspace via bpf_perf_event_output(); we
2814 * // can use res (the string length) as event
2815 * // size, after checking its boundaries.
2816 * }
2817 *
2818 * In comparison, using **bpf_probe_read_user()** helper here
2819 * instead to read the string would require to estimate the length
2820 * at compile time, and would often result in copying more memory
2821 * than necessary.
2822 *
2823 * Another useful use case is when parsing individual process
2824 * arguments or individual environment variables navigating
2825 * *current*\ **->mm->arg_start** and *current*\
2826 * **->mm->env_start**: using this helper and the return value,
2827 * one can quickly iterate at the right offset of the memory area.
2828 * Return
2829 * On success, the strictly positive length of the string,
2830 * including the trailing NUL character. On error, a negative
2831 * value.
2832 *
2833 * int bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
2834 * Description
2835 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
2836 * to *dst*. Same semantics as with bpf_probe_read_user_str() apply.
2837 * Return
2838 * On success, the strictly positive length of the string, including
2839 * the trailing NUL character. On error, a negative value.
2840 *
2841 * int bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
2842 * Description
2843 * Send out a tcp-ack. *tp* is the in-kernel struct tcp_sock.
2844 * *rcv_nxt* is the ack_seq to be sent out.
2845 * Return
2846 * 0 on success, or a negative error in case of failure.
2847 *
2848 */
2849 #define __BPF_FUNC_MAPPER(FN) \
2850 FN(unspec), \
2851 FN(map_lookup_elem), \
2852 FN(map_update_elem), \
2853 FN(map_delete_elem), \
2854 FN(probe_read), \
2855 FN(ktime_get_ns), \
2856 FN(trace_printk), \
2857 FN(get_prandom_u32), \
2858 FN(get_smp_processor_id), \
2859 FN(skb_store_bytes), \
2860 FN(l3_csum_replace), \
2861 FN(l4_csum_replace), \
2862 FN(tail_call), \
2863 FN(clone_redirect), \
2864 FN(get_current_pid_tgid), \
2865 FN(get_current_uid_gid), \
2866 FN(get_current_comm), \
2867 FN(get_cgroup_classid), \
2868 FN(skb_vlan_push), \
2869 FN(skb_vlan_pop), \
2870 FN(skb_get_tunnel_key), \
2871 FN(skb_set_tunnel_key), \
2872 FN(perf_event_read), \
2873 FN(redirect), \
2874 FN(get_route_realm), \
2875 FN(perf_event_output), \
2876 FN(skb_load_bytes), \
2877 FN(get_stackid), \
2878 FN(csum_diff), \
2879 FN(skb_get_tunnel_opt), \
2880 FN(skb_set_tunnel_opt), \
2881 FN(skb_change_proto), \
2882 FN(skb_change_type), \
2883 FN(skb_under_cgroup), \
2884 FN(get_hash_recalc), \
2885 FN(get_current_task), \
2886 FN(probe_write_user), \
2887 FN(current_task_under_cgroup), \
2888 FN(skb_change_tail), \
2889 FN(skb_pull_data), \
2890 FN(csum_update), \
2891 FN(set_hash_invalid), \
2892 FN(get_numa_node_id), \
2893 FN(skb_change_head), \
2894 FN(xdp_adjust_head), \
2895 FN(probe_read_str), \
2896 FN(get_socket_cookie), \
2897 FN(get_socket_uid), \
2898 FN(set_hash), \
2899 FN(setsockopt), \
2900 FN(skb_adjust_room), \
2901 FN(redirect_map), \
2902 FN(sk_redirect_map), \
2903 FN(sock_map_update), \
2904 FN(xdp_adjust_meta), \
2905 FN(perf_event_read_value), \
2906 FN(perf_prog_read_value), \
2907 FN(getsockopt), \
2908 FN(override_return), \
2909 FN(sock_ops_cb_flags_set), \
2910 FN(msg_redirect_map), \
2911 FN(msg_apply_bytes), \
2912 FN(msg_cork_bytes), \
2913 FN(msg_pull_data), \
2914 FN(bind), \
2915 FN(xdp_adjust_tail), \
2916 FN(skb_get_xfrm_state), \
2917 FN(get_stack), \
2918 FN(skb_load_bytes_relative), \
2919 FN(fib_lookup), \
2920 FN(sock_hash_update), \
2921 FN(msg_redirect_hash), \
2922 FN(sk_redirect_hash), \
2923 FN(lwt_push_encap), \
2924 FN(lwt_seg6_store_bytes), \
2925 FN(lwt_seg6_adjust_srh), \
2926 FN(lwt_seg6_action), \
2927 FN(rc_repeat), \
2928 FN(rc_keydown), \
2929 FN(skb_cgroup_id), \
2930 FN(get_current_cgroup_id), \
2931 FN(get_local_storage), \
2932 FN(sk_select_reuseport), \
2933 FN(skb_ancestor_cgroup_id), \
2934 FN(sk_lookup_tcp), \
2935 FN(sk_lookup_udp), \
2936 FN(sk_release), \
2937 FN(map_push_elem), \
2938 FN(map_pop_elem), \
2939 FN(map_peek_elem), \
2940 FN(msg_push_data), \
2941 FN(msg_pop_data), \
2942 FN(rc_pointer_rel), \
2943 FN(spin_lock), \
2944 FN(spin_unlock), \
2945 FN(sk_fullsock), \
2946 FN(tcp_sock), \
2947 FN(skb_ecn_set_ce), \
2948 FN(get_listener_sock), \
2949 FN(skc_lookup_tcp), \
2950 FN(tcp_check_syncookie), \
2951 FN(sysctl_get_name), \
2952 FN(sysctl_get_current_value), \
2953 FN(sysctl_get_new_value), \
2954 FN(sysctl_set_new_value), \
2955 FN(strtol), \
2956 FN(strtoul), \
2957 FN(sk_storage_get), \
2958 FN(sk_storage_delete), \
2959 FN(send_signal), \
2960 FN(tcp_gen_syncookie), \
2961 FN(skb_output), \
2962 FN(probe_read_user), \
2963 FN(probe_read_kernel), \
2964 FN(probe_read_user_str), \
2965 FN(probe_read_kernel_str), \
2966 FN(tcp_send_ack),
2967
2968 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2969 * function eBPF program intends to call
2970 */
2971 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2972 enum bpf_func_id {
2973 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2974 __BPF_FUNC_MAX_ID,
2975 };
2976 #undef __BPF_ENUM_FN
2977
2978 /* All flags used by eBPF helper functions, placed here. */
2979
2980 /* BPF_FUNC_skb_store_bytes flags. */
2981 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0)
2982 #define BPF_F_INVALIDATE_HASH (1ULL << 1)
2983
2984 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2985 * First 4 bits are for passing the header field size.
2986 */
2987 #define BPF_F_HDR_FIELD_MASK 0xfULL
2988
2989 /* BPF_FUNC_l4_csum_replace flags. */
2990 #define BPF_F_PSEUDO_HDR (1ULL << 4)
2991 #define BPF_F_MARK_MANGLED_0 (1ULL << 5)
2992 #define BPF_F_MARK_ENFORCE (1ULL << 6)
2993
2994 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2995 #define BPF_F_INGRESS (1ULL << 0)
2996
2997 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2998 #define BPF_F_TUNINFO_IPV6 (1ULL << 0)
2999
3000 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
3001 #define BPF_F_SKIP_FIELD_MASK 0xffULL
3002 #define BPF_F_USER_STACK (1ULL << 8)
3003 /* flags used by BPF_FUNC_get_stackid only. */
3004 #define BPF_F_FAST_STACK_CMP (1ULL << 9)
3005 #define BPF_F_REUSE_STACKID (1ULL << 10)
3006 /* flags used by BPF_FUNC_get_stack only. */
3007 #define BPF_F_USER_BUILD_ID (1ULL << 11)
3008
3009 /* BPF_FUNC_skb_set_tunnel_key flags. */
3010 #define BPF_F_ZERO_CSUM_TX (1ULL << 1)
3011 #define BPF_F_DONT_FRAGMENT (1ULL << 2)
3012 #define BPF_F_SEQ_NUMBER (1ULL << 3)
3013
3014 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
3015 * BPF_FUNC_perf_event_read_value flags.
3016 */
3017 #define BPF_F_INDEX_MASK 0xffffffffULL
3018 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK
3019 /* BPF_FUNC_perf_event_output for sk_buff input context. */
3020 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32)
3021
3022 /* Current network namespace */
3023 #define BPF_F_CURRENT_NETNS (-1L)
3024
3025 /* BPF_FUNC_skb_adjust_room flags. */
3026 #define BPF_F_ADJ_ROOM_FIXED_GSO (1ULL << 0)
3027
3028 #define BPF_ADJ_ROOM_ENCAP_L2_MASK 0xff
3029 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT 56
3030
3031 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 (1ULL << 1)
3032 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 (1ULL << 2)
3033 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE (1ULL << 3)
3034 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP (1ULL << 4)
3035 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
3036 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
3037 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
3038
3039 /* BPF_FUNC_sysctl_get_name flags. */
3040 #define BPF_F_SYSCTL_BASE_NAME (1ULL << 0)
3041
3042 /* BPF_FUNC_sk_storage_get flags */
3043 #define BPF_SK_STORAGE_GET_F_CREATE (1ULL << 0)
3044
3045 /* Mode for BPF_FUNC_skb_adjust_room helper. */
3046 enum bpf_adj_room_mode {
3047 BPF_ADJ_ROOM_NET,
3048 BPF_ADJ_ROOM_MAC,
3049 };
3050
3051 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
3052 enum bpf_hdr_start_off {
3053 BPF_HDR_START_MAC,
3054 BPF_HDR_START_NET,
3055 };
3056
3057 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
3058 enum bpf_lwt_encap_mode {
3059 BPF_LWT_ENCAP_SEG6,
3060 BPF_LWT_ENCAP_SEG6_INLINE,
3061 BPF_LWT_ENCAP_IP,
3062 };
3063
3064 #define __bpf_md_ptr(type, name) \
3065 union { \
3066 type name; \
3067 __u64 :64; \
3068 } __attribute__((aligned(8)))
3069
3070 /* user accessible mirror of in-kernel sk_buff.
3071 * new fields can only be added to the end of this structure
3072 */
3073 struct __sk_buff {
3074 __u32 len;
3075 __u32 pkt_type;
3076 __u32 mark;
3077 __u32 queue_mapping;
3078 __u32 protocol;
3079 __u32 vlan_present;
3080 __u32 vlan_tci;
3081 __u32 vlan_proto;
3082 __u32 priority;
3083 __u32 ingress_ifindex;
3084 __u32 ifindex;
3085 __u32 tc_index;
3086 __u32 cb[5];
3087 __u32 hash;
3088 __u32 tc_classid;
3089 __u32 data;
3090 __u32 data_end;
3091 __u32 napi_id;
3092
3093 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
3094 __u32 family;
3095 __u32 remote_ip4; /* Stored in network byte order */
3096 __u32 local_ip4; /* Stored in network byte order */
3097 __u32 remote_ip6[4]; /* Stored in network byte order */
3098 __u32 local_ip6[4]; /* Stored in network byte order */
3099 __u32 remote_port; /* Stored in network byte order */
3100 __u32 local_port; /* stored in host byte order */
3101 /* ... here. */
3102
3103 __u32 data_meta;
3104 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
3105 __u64 tstamp;
3106 __u32 wire_len;
3107 __u32 gso_segs;
3108 __bpf_md_ptr(struct bpf_sock *, sk);
3109 };
3110
3111 struct bpf_tunnel_key {
3112 __u32 tunnel_id;
3113 union {
3114 __u32 remote_ipv4;
3115 __u32 remote_ipv6[4];
3116 };
3117 __u8 tunnel_tos;
3118 __u8 tunnel_ttl;
3119 __u16 tunnel_ext; /* Padding, future use. */
3120 __u32 tunnel_label;
3121 };
3122
3123 /* user accessible mirror of in-kernel xfrm_state.
3124 * new fields can only be added to the end of this structure
3125 */
3126 struct bpf_xfrm_state {
3127 __u32 reqid;
3128 __u32 spi; /* Stored in network byte order */
3129 __u16 family;
3130 __u16 ext; /* Padding, future use. */
3131 union {
3132 __u32 remote_ipv4; /* Stored in network byte order */
3133 __u32 remote_ipv6[4]; /* Stored in network byte order */
3134 };
3135 };
3136
3137 /* Generic BPF return codes which all BPF program types may support.
3138 * The values are binary compatible with their TC_ACT_* counter-part to
3139 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
3140 * programs.
3141 *
3142 * XDP is handled seprately, see XDP_*.
3143 */
3144 enum bpf_ret_code {
3145 BPF_OK = 0,
3146 /* 1 reserved */
3147 BPF_DROP = 2,
3148 /* 3-6 reserved */
3149 BPF_REDIRECT = 7,
3150 /* >127 are reserved for prog type specific return codes.
3151 *
3152 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
3153 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
3154 * changed and should be routed based on its new L3 header.
3155 * (This is an L3 redirect, as opposed to L2 redirect
3156 * represented by BPF_REDIRECT above).
3157 */
3158 BPF_LWT_REROUTE = 128,
3159 };
3160
3161 struct bpf_sock {
3162 __u32 bound_dev_if;
3163 __u32 family;
3164 __u32 type;
3165 __u32 protocol;
3166 __u32 mark;
3167 __u32 priority;
3168 /* IP address also allows 1 and 2 bytes access */
3169 __u32 src_ip4;
3170 __u32 src_ip6[4];
3171 __u32 src_port; /* host byte order */
3172 __u32 dst_port; /* network byte order */
3173 __u32 dst_ip4;
3174 __u32 dst_ip6[4];
3175 __u32 state;
3176 };
3177
3178 struct bpf_tcp_sock {
3179 __u32 snd_cwnd; /* Sending congestion window */
3180 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
3181 __u32 rtt_min;
3182 __u32 snd_ssthresh; /* Slow start size threshold */
3183 __u32 rcv_nxt; /* What we want to receive next */
3184 __u32 snd_nxt; /* Next sequence we send */
3185 __u32 snd_una; /* First byte we want an ack for */
3186 __u32 mss_cache; /* Cached effective mss, not including SACKS */
3187 __u32 ecn_flags; /* ECN status bits. */
3188 __u32 rate_delivered; /* saved rate sample: packets delivered */
3189 __u32 rate_interval_us; /* saved rate sample: time elapsed */
3190 __u32 packets_out; /* Packets which are "in flight" */
3191 __u32 retrans_out; /* Retransmitted packets out */
3192 __u32 total_retrans; /* Total retransmits for entire connection */
3193 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
3194 * total number of segments in.
3195 */
3196 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
3197 * total number of data segments in.
3198 */
3199 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
3200 * The total number of segments sent.
3201 */
3202 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
3203 * total number of data segments sent.
3204 */
3205 __u32 lost_out; /* Lost packets */
3206 __u32 sacked_out; /* SACK'd packets */
3207 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
3208 * sum(delta(rcv_nxt)), or how many bytes
3209 * were acked.
3210 */
3211 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
3212 * sum(delta(snd_una)), or how many bytes
3213 * were acked.
3214 */
3215 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
3216 * total number of DSACK blocks received
3217 */
3218 __u32 delivered; /* Total data packets delivered incl. rexmits */
3219 __u32 delivered_ce; /* Like the above but only ECE marked packets */
3220 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
3221 };
3222
3223 struct bpf_sock_tuple {
3224 union {
3225 struct {
3226 __be32 saddr;
3227 __be32 daddr;
3228 __be16 sport;
3229 __be16 dport;
3230 } ipv4;
3231 struct {
3232 __be32 saddr[4];
3233 __be32 daddr[4];
3234 __be16 sport;
3235 __be16 dport;
3236 } ipv6;
3237 };
3238 };
3239
3240 struct bpf_xdp_sock {
3241 __u32 queue_id;
3242 };
3243
3244 #define XDP_PACKET_HEADROOM 256
3245
3246 /* User return codes for XDP prog type.
3247 * A valid XDP program must return one of these defined values. All other
3248 * return codes are reserved for future use. Unknown return codes will
3249 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3250 */
3251 enum xdp_action {
3252 XDP_ABORTED = 0,
3253 XDP_DROP,
3254 XDP_PASS,
3255 XDP_TX,
3256 XDP_REDIRECT,
3257 };
3258
3259 /* user accessible metadata for XDP packet hook
3260 * new fields must be added to the end of this structure
3261 */
3262 struct xdp_md {
3263 __u32 data;
3264 __u32 data_end;
3265 __u32 data_meta;
3266 /* Below access go through struct xdp_rxq_info */
3267 __u32 ingress_ifindex; /* rxq->dev->ifindex */
3268 __u32 rx_queue_index; /* rxq->queue_index */
3269 };
3270
3271 enum sk_action {
3272 SK_DROP = 0,
3273 SK_PASS,
3274 };
3275
3276 /* user accessible metadata for SK_MSG packet hook, new fields must
3277 * be added to the end of this structure
3278 */
3279 struct sk_msg_md {
3280 __bpf_md_ptr(void *, data);
3281 __bpf_md_ptr(void *, data_end);
3282
3283 __u32 family;
3284 __u32 remote_ip4; /* Stored in network byte order */
3285 __u32 local_ip4; /* Stored in network byte order */
3286 __u32 remote_ip6[4]; /* Stored in network byte order */
3287 __u32 local_ip6[4]; /* Stored in network byte order */
3288 __u32 remote_port; /* Stored in network byte order */
3289 __u32 local_port; /* stored in host byte order */
3290 __u32 size; /* Total size of sk_msg */
3291 };
3292
3293 struct sk_reuseport_md {
3294 /*
3295 * Start of directly accessible data. It begins from
3296 * the tcp/udp header.
3297 */
3298 __bpf_md_ptr(void *, data);
3299 /* End of directly accessible data */
3300 __bpf_md_ptr(void *, data_end);
3301 /*
3302 * Total length of packet (starting from the tcp/udp header).
3303 * Note that the directly accessible bytes (data_end - data)
3304 * could be less than this "len". Those bytes could be
3305 * indirectly read by a helper "bpf_skb_load_bytes()".
3306 */
3307 __u32 len;
3308 /*
3309 * Eth protocol in the mac header (network byte order). e.g.
3310 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3311 */
3312 __u32 eth_protocol;
3313 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3314 __u32 bind_inany; /* Is sock bound to an INANY address? */
3315 __u32 hash; /* A hash of the packet 4 tuples */
3316 };
3317
3318 #define BPF_TAG_SIZE 8
3319
3320 struct bpf_prog_info {
3321 __u32 type;
3322 __u32 id;
3323 __u8 tag[BPF_TAG_SIZE];
3324 __u32 jited_prog_len;
3325 __u32 xlated_prog_len;
3326 __aligned_u64 jited_prog_insns;
3327 __aligned_u64 xlated_prog_insns;
3328 __u64 load_time; /* ns since boottime */
3329 __u32 created_by_uid;
3330 __u32 nr_map_ids;
3331 __aligned_u64 map_ids;
3332 char name[BPF_OBJ_NAME_LEN];
3333 __u32 ifindex;
3334 __u32 gpl_compatible:1;
3335 __u32 :31; /* alignment pad */
3336 __u64 netns_dev;
3337 __u64 netns_ino;
3338 __u32 nr_jited_ksyms;
3339 __u32 nr_jited_func_lens;
3340 __aligned_u64 jited_ksyms;
3341 __aligned_u64 jited_func_lens;
3342 __u32 btf_id;
3343 __u32 func_info_rec_size;
3344 __aligned_u64 func_info;
3345 __u32 nr_func_info;
3346 __u32 nr_line_info;
3347 __aligned_u64 line_info;
3348 __aligned_u64 jited_line_info;
3349 __u32 nr_jited_line_info;
3350 __u32 line_info_rec_size;
3351 __u32 jited_line_info_rec_size;
3352 __u32 nr_prog_tags;
3353 __aligned_u64 prog_tags;
3354 __u64 run_time_ns;
3355 __u64 run_cnt;
3356 } __attribute__((aligned(8)));
3357
3358 struct bpf_map_info {
3359 __u32 type;
3360 __u32 id;
3361 __u32 key_size;
3362 __u32 value_size;
3363 __u32 max_entries;
3364 __u32 map_flags;
3365 char name[BPF_OBJ_NAME_LEN];
3366 __u32 ifindex;
3367 __u32 btf_vmlinux_value_type_id;
3368 __u64 netns_dev;
3369 __u64 netns_ino;
3370 __u32 btf_id;
3371 __u32 btf_key_type_id;
3372 __u32 btf_value_type_id;
3373 } __attribute__((aligned(8)));
3374
3375 struct bpf_btf_info {
3376 __aligned_u64 btf;
3377 __u32 btf_size;
3378 __u32 id;
3379 } __attribute__((aligned(8)));
3380
3381 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
3382 * by user and intended to be used by socket (e.g. to bind to, depends on
3383 * attach attach type).
3384 */
3385 struct bpf_sock_addr {
3386 __u32 user_family; /* Allows 4-byte read, but no write. */
3387 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
3388 * Stored in network byte order.
3389 */
3390 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
3391 * Stored in network byte order.
3392 */
3393 __u32 user_port; /* Allows 4-byte read and write.
3394 * Stored in network byte order
3395 */
3396 __u32 family; /* Allows 4-byte read, but no write */
3397 __u32 type; /* Allows 4-byte read, but no write */
3398 __u32 protocol; /* Allows 4-byte read, but no write */
3399 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
3400 * Stored in network byte order.
3401 */
3402 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
3403 * Stored in network byte order.
3404 */
3405 __bpf_md_ptr(struct bpf_sock *, sk);
3406 };
3407
3408 /* User bpf_sock_ops struct to access socket values and specify request ops
3409 * and their replies.
3410 * Some of this fields are in network (bigendian) byte order and may need
3411 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3412 * New fields can only be added at the end of this structure
3413 */
3414 struct bpf_sock_ops {
3415 __u32 op;
3416 union {
3417 __u32 args[4]; /* Optionally passed to bpf program */
3418 __u32 reply; /* Returned by bpf program */
3419 __u32 replylong[4]; /* Optionally returned by bpf prog */
3420 };
3421 __u32 family;
3422 __u32 remote_ip4; /* Stored in network byte order */
3423 __u32 local_ip4; /* Stored in network byte order */
3424 __u32 remote_ip6[4]; /* Stored in network byte order */
3425 __u32 local_ip6[4]; /* Stored in network byte order */
3426 __u32 remote_port; /* Stored in network byte order */
3427 __u32 local_port; /* stored in host byte order */
3428 __u32 is_fullsock; /* Some TCP fields are only valid if
3429 * there is a full socket. If not, the
3430 * fields read as zero.
3431 */
3432 __u32 snd_cwnd;
3433 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
3434 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3435 __u32 state;
3436 __u32 rtt_min;
3437 __u32 snd_ssthresh;
3438 __u32 rcv_nxt;
3439 __u32 snd_nxt;
3440 __u32 snd_una;
3441 __u32 mss_cache;
3442 __u32 ecn_flags;
3443 __u32 rate_delivered;
3444 __u32 rate_interval_us;
3445 __u32 packets_out;
3446 __u32 retrans_out;
3447 __u32 total_retrans;
3448 __u32 segs_in;
3449 __u32 data_segs_in;
3450 __u32 segs_out;
3451 __u32 data_segs_out;
3452 __u32 lost_out;
3453 __u32 sacked_out;
3454 __u32 sk_txhash;
3455 __u64 bytes_received;
3456 __u64 bytes_acked;
3457 __bpf_md_ptr(struct bpf_sock *, sk);
3458 };
3459
3460 /* Definitions for bpf_sock_ops_cb_flags */
3461 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0)
3462 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1)
3463 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2)
3464 #define BPF_SOCK_OPS_RTT_CB_FLAG (1<<3)
3465 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0xF /* Mask of all currently
3466 * supported cb flags
3467 */
3468
3469 /* List of known BPF sock_ops operators.
3470 * New entries can only be added at the end
3471 */
3472 enum {
3473 BPF_SOCK_OPS_VOID,
3474 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
3475 * -1 if default value should be used
3476 */
3477 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
3478 * window (in packets) or -1 if default
3479 * value should be used
3480 */
3481 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
3482 * active connection is initialized
3483 */
3484 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
3485 * active connection is
3486 * established
3487 */
3488 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
3489 * passive connection is
3490 * established
3491 */
3492 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
3493 * needs ECN
3494 */
3495 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
3496 * based on the path and may be
3497 * dependent on the congestion control
3498 * algorithm. In general it indicates
3499 * a congestion threshold. RTTs above
3500 * this indicate congestion
3501 */
3502 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
3503 * Arg1: value of icsk_retransmits
3504 * Arg2: value of icsk_rto
3505 * Arg3: whether RTO has expired
3506 */
3507 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
3508 * Arg1: sequence number of 1st byte
3509 * Arg2: # segments
3510 * Arg3: return value of
3511 * tcp_transmit_skb (0 => success)
3512 */
3513 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
3514 * Arg1: old_state
3515 * Arg2: new_state
3516 */
3517 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
3518 * socket transition to LISTEN state.
3519 */
3520 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
3521 */
3522 };
3523
3524 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3525 * changes between the TCP and BPF versions. Ideally this should never happen.
3526 * If it does, we need to add code to convert them before calling
3527 * the BPF sock_ops function.
3528 */
3529 enum {
3530 BPF_TCP_ESTABLISHED = 1,
3531 BPF_TCP_SYN_SENT,
3532 BPF_TCP_SYN_RECV,
3533 BPF_TCP_FIN_WAIT1,
3534 BPF_TCP_FIN_WAIT2,
3535 BPF_TCP_TIME_WAIT,
3536 BPF_TCP_CLOSE,
3537 BPF_TCP_CLOSE_WAIT,
3538 BPF_TCP_LAST_ACK,
3539 BPF_TCP_LISTEN,
3540 BPF_TCP_CLOSING, /* Now a valid state */
3541 BPF_TCP_NEW_SYN_RECV,
3542
3543 BPF_TCP_MAX_STATES /* Leave at the end! */
3544 };
3545
3546 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */
3547 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */
3548
3549 struct bpf_perf_event_value {
3550 __u64 counter;
3551 __u64 enabled;
3552 __u64 running;
3553 };
3554
3555 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0)
3556 #define BPF_DEVCG_ACC_READ (1ULL << 1)
3557 #define BPF_DEVCG_ACC_WRITE (1ULL << 2)
3558
3559 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0)
3560 #define BPF_DEVCG_DEV_CHAR (1ULL << 1)
3561
3562 struct bpf_cgroup_dev_ctx {
3563 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3564 __u32 access_type;
3565 __u32 major;
3566 __u32 minor;
3567 };
3568
3569 struct bpf_raw_tracepoint_args {
3570 __u64 args[0];
3571 };
3572
3573 /* DIRECT: Skip the FIB rules and go to FIB table associated with device
3574 * OUTPUT: Do lookup from egress perspective; default is ingress
3575 */
3576 #define BPF_FIB_LOOKUP_DIRECT (1U << 0)
3577 #define BPF_FIB_LOOKUP_OUTPUT (1U << 1)
3578
3579 enum {
3580 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
3581 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
3582 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
3583 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
3584 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
3585 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3586 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
3587 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
3588 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
3589 };
3590
3591 struct bpf_fib_lookup {
3592 /* input: network family for lookup (AF_INET, AF_INET6)
3593 * output: network family of egress nexthop
3594 */
3595 __u8 family;
3596
3597 /* set if lookup is to consider L4 data - e.g., FIB rules */
3598 __u8 l4_protocol;
3599 __be16 sport;
3600 __be16 dport;
3601
3602 /* total length of packet from network header - used for MTU check */
3603 __u16 tot_len;
3604
3605 /* input: L3 device index for lookup
3606 * output: device index from FIB lookup
3607 */
3608 __u32 ifindex;
3609
3610 union {
3611 /* inputs to lookup */
3612 __u8 tos; /* AF_INET */
3613 __be32 flowinfo; /* AF_INET6, flow_label + priority */
3614
3615 /* output: metric of fib result (IPv4/IPv6 only) */
3616 __u32 rt_metric;
3617 };
3618
3619 union {
3620 __be32 ipv4_src;
3621 __u32 ipv6_src[4]; /* in6_addr; network order */
3622 };
3623
3624 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3625 * network header. output: bpf_fib_lookup sets to gateway address
3626 * if FIB lookup returns gateway route
3627 */
3628 union {
3629 __be32 ipv4_dst;
3630 __u32 ipv6_dst[4]; /* in6_addr; network order */
3631 };
3632
3633 /* output */
3634 __be16 h_vlan_proto;
3635 __be16 h_vlan_TCI;
3636 __u8 smac[6]; /* ETH_ALEN */
3637 __u8 dmac[6]; /* ETH_ALEN */
3638 };
3639
3640 enum bpf_task_fd_type {
3641 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
3642 BPF_FD_TYPE_TRACEPOINT, /* tp name */
3643 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
3644 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
3645 BPF_FD_TYPE_UPROBE, /* filename + offset */
3646 BPF_FD_TYPE_URETPROBE, /* filename + offset */
3647 };
3648
3649 #define BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG (1U << 0)
3650 #define BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL (1U << 1)
3651 #define BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP (1U << 2)
3652
3653 struct bpf_flow_keys {
3654 __u16 nhoff;
3655 __u16 thoff;
3656 __u16 addr_proto; /* ETH_P_* of valid addrs */
3657 __u8 is_frag;
3658 __u8 is_first_frag;
3659 __u8 is_encap;
3660 __u8 ip_proto;
3661 __be16 n_proto;
3662 __be16 sport;
3663 __be16 dport;
3664 union {
3665 struct {
3666 __be32 ipv4_src;
3667 __be32 ipv4_dst;
3668 };
3669 struct {
3670 __u32 ipv6_src[4]; /* in6_addr; network order */
3671 __u32 ipv6_dst[4]; /* in6_addr; network order */
3672 };
3673 };
3674 __u32 flags;
3675 __be32 flow_label;
3676 };
3677
3678 struct bpf_func_info {
3679 __u32 insn_off;
3680 __u32 type_id;
3681 };
3682
3683 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
3684 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
3685
3686 struct bpf_line_info {
3687 __u32 insn_off;
3688 __u32 file_name_off;
3689 __u32 line_off;
3690 __u32 line_col;
3691 };
3692
3693 struct bpf_spin_lock {
3694 __u32 val;
3695 };
3696
3697 struct bpf_sysctl {
3698 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
3699 * Allows 1,2,4-byte read, but no write.
3700 */
3701 __u32 file_pos; /* Sysctl file position to read from, write to.
3702 * Allows 1,2,4-byte read an 4-byte write.
3703 */
3704 };
3705
3706 struct bpf_sockopt {
3707 __bpf_md_ptr(struct bpf_sock *, sk);
3708 __bpf_md_ptr(void *, optval);
3709 __bpf_md_ptr(void *, optval_end);
3710
3711 __s32 level;
3712 __s32 optname;
3713 __s32 optlen;
3714 __s32 retval;
3715 };
3716
3717 #endif /* _UAPI__LINUX_BPF_H__ */