]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/lguest/lguest.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / tools / lguest / lguest.c
1 /*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <assert.h>
38 #include <sched.h>
39 #include <limits.h>
40 #include <stddef.h>
41 #include <signal.h>
42 #include <pwd.h>
43 #include <grp.h>
44 #include <sys/user.h>
45 #include <linux/pci_regs.h>
46
47 #ifndef VIRTIO_F_ANY_LAYOUT
48 #define VIRTIO_F_ANY_LAYOUT 27
49 #endif
50
51 /*L:110
52 * We can ignore the 43 include files we need for this program, but I do want
53 * to draw attention to the use of kernel-style types.
54 *
55 * As Linus said, "C is a Spartan language, and so should your naming be." I
56 * like these abbreviations, so we define them here. Note that u64 is always
57 * unsigned long long, which works on all Linux systems: this means that we can
58 * use %llu in printf for any u64.
59 */
60 typedef unsigned long long u64;
61 typedef uint32_t u32;
62 typedef uint16_t u16;
63 typedef uint8_t u8;
64 /*:*/
65
66 #define VIRTIO_CONFIG_NO_LEGACY
67 #define VIRTIO_PCI_NO_LEGACY
68 #define VIRTIO_BLK_NO_LEGACY
69 #define VIRTIO_NET_NO_LEGACY
70
71 /* Use in-kernel ones, which defines VIRTIO_F_VERSION_1 */
72 #include "../../include/uapi/linux/virtio_config.h"
73 #include "../../include/uapi/linux/virtio_net.h"
74 #include "../../include/uapi/linux/virtio_blk.h"
75 #include "../../include/uapi/linux/virtio_console.h"
76 #include "../../include/uapi/linux/virtio_rng.h"
77 #include <linux/virtio_ring.h>
78 #include "../../include/uapi/linux/virtio_pci.h"
79 #include <asm/bootparam.h>
80 #include "../../include/linux/lguest_launcher.h"
81
82 #define BRIDGE_PFX "bridge:"
83 #ifndef SIOCBRADDIF
84 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
85 #endif
86 /* We can have up to 256 pages for devices. */
87 #define DEVICE_PAGES 256
88 /* This will occupy 3 pages: it must be a power of 2. */
89 #define VIRTQUEUE_NUM 256
90
91 /*L:120
92 * verbose is both a global flag and a macro. The C preprocessor allows
93 * this, and although I wouldn't recommend it, it works quite nicely here.
94 */
95 static bool verbose;
96 #define verbose(args...) \
97 do { if (verbose) printf(args); } while(0)
98 /*:*/
99
100 /* The pointer to the start of guest memory. */
101 static void *guest_base;
102 /* The maximum guest physical address allowed, and maximum possible. */
103 static unsigned long guest_limit, guest_max, guest_mmio;
104 /* The /dev/lguest file descriptor. */
105 static int lguest_fd;
106
107 /* a per-cpu variable indicating whose vcpu is currently running */
108 static unsigned int __thread cpu_id;
109
110 /* 5 bit device number in the PCI_CONFIG_ADDR => 32 only */
111 #define MAX_PCI_DEVICES 32
112
113 /* This is our list of devices. */
114 struct device_list {
115 /* Counter to assign interrupt numbers. */
116 unsigned int next_irq;
117
118 /* Counter to print out convenient device numbers. */
119 unsigned int device_num;
120
121 /* PCI devices. */
122 struct device *pci[MAX_PCI_DEVICES];
123 };
124
125 /* The list of Guest devices, based on command line arguments. */
126 static struct device_list devices;
127
128 struct virtio_pci_cfg_cap {
129 struct virtio_pci_cap cap;
130 u32 pci_cfg_data; /* Data for BAR access. */
131 };
132
133 struct virtio_pci_mmio {
134 struct virtio_pci_common_cfg cfg;
135 u16 notify;
136 u8 isr;
137 u8 padding;
138 /* Device-specific configuration follows this. */
139 };
140
141 /* This is the layout (little-endian) of the PCI config space. */
142 struct pci_config {
143 u16 vendor_id, device_id;
144 u16 command, status;
145 u8 revid, prog_if, subclass, class;
146 u8 cacheline_size, lat_timer, header_type, bist;
147 u32 bar[6];
148 u32 cardbus_cis_ptr;
149 u16 subsystem_vendor_id, subsystem_device_id;
150 u32 expansion_rom_addr;
151 u8 capabilities, reserved1[3];
152 u32 reserved2;
153 u8 irq_line, irq_pin, min_grant, max_latency;
154
155 /* Now, this is the linked capability list. */
156 struct virtio_pci_cap common;
157 struct virtio_pci_notify_cap notify;
158 struct virtio_pci_cap isr;
159 struct virtio_pci_cap device;
160 struct virtio_pci_cfg_cap cfg_access;
161 };
162
163 /* The device structure describes a single device. */
164 struct device {
165 /* The name of this device, for --verbose. */
166 const char *name;
167
168 /* Any queues attached to this device */
169 struct virtqueue *vq;
170
171 /* Is it operational */
172 bool running;
173
174 /* Has it written FEATURES_OK but not re-checked it? */
175 bool wrote_features_ok;
176
177 /* PCI configuration */
178 union {
179 struct pci_config config;
180 u32 config_words[sizeof(struct pci_config) / sizeof(u32)];
181 };
182
183 /* Features we offer, and those accepted. */
184 u64 features, features_accepted;
185
186 /* Device-specific config hangs off the end of this. */
187 struct virtio_pci_mmio *mmio;
188
189 /* PCI MMIO resources (all in BAR0) */
190 size_t mmio_size;
191 u32 mmio_addr;
192
193 /* Device-specific data. */
194 void *priv;
195 };
196
197 /* The virtqueue structure describes a queue attached to a device. */
198 struct virtqueue {
199 struct virtqueue *next;
200
201 /* Which device owns me. */
202 struct device *dev;
203
204 /* Name for printing errors. */
205 const char *name;
206
207 /* The actual ring of buffers. */
208 struct vring vring;
209
210 /* The information about this virtqueue (we only use queue_size on) */
211 struct virtio_pci_common_cfg pci_config;
212
213 /* Last available index we saw. */
214 u16 last_avail_idx;
215
216 /* How many are used since we sent last irq? */
217 unsigned int pending_used;
218
219 /* Eventfd where Guest notifications arrive. */
220 int eventfd;
221
222 /* Function for the thread which is servicing this virtqueue. */
223 void (*service)(struct virtqueue *vq);
224 pid_t thread;
225 };
226
227 /* Remember the arguments to the program so we can "reboot" */
228 static char **main_args;
229
230 /* The original tty settings to restore on exit. */
231 static struct termios orig_term;
232
233 /*
234 * We have to be careful with barriers: our devices are all run in separate
235 * threads and so we need to make sure that changes visible to the Guest happen
236 * in precise order.
237 */
238 #define wmb() __asm__ __volatile__("" : : : "memory")
239 #define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
240 #define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
241
242 /* Wrapper for the last available index. Makes it easier to change. */
243 #define lg_last_avail(vq) ((vq)->last_avail_idx)
244
245 /*
246 * The virtio configuration space is defined to be little-endian. x86 is
247 * little-endian too, but it's nice to be explicit so we have these helpers.
248 */
249 #define cpu_to_le16(v16) (v16)
250 #define cpu_to_le32(v32) (v32)
251 #define cpu_to_le64(v64) (v64)
252 #define le16_to_cpu(v16) (v16)
253 #define le32_to_cpu(v32) (v32)
254 #define le64_to_cpu(v64) (v64)
255
256 /*
257 * A real device would ignore weird/non-compliant driver behaviour. We
258 * stop and flag it, to help debugging Linux problems.
259 */
260 #define bad_driver(d, fmt, ...) \
261 errx(1, "%s: bad driver: " fmt, (d)->name, ## __VA_ARGS__)
262 #define bad_driver_vq(vq, fmt, ...) \
263 errx(1, "%s vq %s: bad driver: " fmt, (vq)->dev->name, \
264 vq->name, ## __VA_ARGS__)
265
266 /* Is this iovec empty? */
267 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
268 {
269 unsigned int i;
270
271 for (i = 0; i < num_iov; i++)
272 if (iov[i].iov_len)
273 return false;
274 return true;
275 }
276
277 /* Take len bytes from the front of this iovec. */
278 static void iov_consume(struct device *d,
279 struct iovec iov[], unsigned num_iov,
280 void *dest, unsigned len)
281 {
282 unsigned int i;
283
284 for (i = 0; i < num_iov; i++) {
285 unsigned int used;
286
287 used = iov[i].iov_len < len ? iov[i].iov_len : len;
288 if (dest) {
289 memcpy(dest, iov[i].iov_base, used);
290 dest += used;
291 }
292 iov[i].iov_base += used;
293 iov[i].iov_len -= used;
294 len -= used;
295 }
296 if (len != 0)
297 bad_driver(d, "iovec too short!");
298 }
299
300 /*L:100
301 * The Launcher code itself takes us out into userspace, that scary place where
302 * pointers run wild and free! Unfortunately, like most userspace programs,
303 * it's quite boring (which is why everyone likes to hack on the kernel!).
304 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
305 * you through this section. Or, maybe not.
306 *
307 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
308 * memory and stores it in "guest_base". In other words, Guest physical ==
309 * Launcher virtual with an offset.
310 *
311 * This can be tough to get your head around, but usually it just means that we
312 * use these trivial conversion functions when the Guest gives us its
313 * "physical" addresses:
314 */
315 static void *from_guest_phys(unsigned long addr)
316 {
317 return guest_base + addr;
318 }
319
320 static unsigned long to_guest_phys(const void *addr)
321 {
322 return (addr - guest_base);
323 }
324
325 /*L:130
326 * Loading the Kernel.
327 *
328 * We start with couple of simple helper routines. open_or_die() avoids
329 * error-checking code cluttering the callers:
330 */
331 static int open_or_die(const char *name, int flags)
332 {
333 int fd = open(name, flags);
334 if (fd < 0)
335 err(1, "Failed to open %s", name);
336 return fd;
337 }
338
339 /* map_zeroed_pages() takes a number of pages. */
340 static void *map_zeroed_pages(unsigned int num)
341 {
342 int fd = open_or_die("/dev/zero", O_RDONLY);
343 void *addr;
344
345 /*
346 * We use a private mapping (ie. if we write to the page, it will be
347 * copied). We allocate an extra two pages PROT_NONE to act as guard
348 * pages against read/write attempts that exceed allocated space.
349 */
350 addr = mmap(NULL, getpagesize() * (num+2),
351 PROT_NONE, MAP_PRIVATE, fd, 0);
352
353 if (addr == MAP_FAILED)
354 err(1, "Mmapping %u pages of /dev/zero", num);
355
356 if (mprotect(addr + getpagesize(), getpagesize() * num,
357 PROT_READ|PROT_WRITE) == -1)
358 err(1, "mprotect rw %u pages failed", num);
359
360 /*
361 * One neat mmap feature is that you can close the fd, and it
362 * stays mapped.
363 */
364 close(fd);
365
366 /* Return address after PROT_NONE page */
367 return addr + getpagesize();
368 }
369
370 /* Get some bytes which won't be mapped into the guest. */
371 static unsigned long get_mmio_region(size_t size)
372 {
373 unsigned long addr = guest_mmio;
374 size_t i;
375
376 if (!size)
377 return addr;
378
379 /* Size has to be a power of 2 (and multiple of 16) */
380 for (i = 1; i < size; i <<= 1);
381
382 guest_mmio += i;
383
384 return addr;
385 }
386
387 /*
388 * This routine is used to load the kernel or initrd. It tries mmap, but if
389 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
390 * it falls back to reading the memory in.
391 */
392 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
393 {
394 ssize_t r;
395
396 /*
397 * We map writable even though for some segments are marked read-only.
398 * The kernel really wants to be writable: it patches its own
399 * instructions.
400 *
401 * MAP_PRIVATE means that the page won't be copied until a write is
402 * done to it. This allows us to share untouched memory between
403 * Guests.
404 */
405 if (mmap(addr, len, PROT_READ|PROT_WRITE,
406 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
407 return;
408
409 /* pread does a seek and a read in one shot: saves a few lines. */
410 r = pread(fd, addr, len, offset);
411 if (r != len)
412 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
413 }
414
415 /*
416 * This routine takes an open vmlinux image, which is in ELF, and maps it into
417 * the Guest memory. ELF = Embedded Linking Format, which is the format used
418 * by all modern binaries on Linux including the kernel.
419 *
420 * The ELF headers give *two* addresses: a physical address, and a virtual
421 * address. We use the physical address; the Guest will map itself to the
422 * virtual address.
423 *
424 * We return the starting address.
425 */
426 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
427 {
428 Elf32_Phdr phdr[ehdr->e_phnum];
429 unsigned int i;
430
431 /*
432 * Sanity checks on the main ELF header: an x86 executable with a
433 * reasonable number of correctly-sized program headers.
434 */
435 if (ehdr->e_type != ET_EXEC
436 || ehdr->e_machine != EM_386
437 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
438 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
439 errx(1, "Malformed elf header");
440
441 /*
442 * An ELF executable contains an ELF header and a number of "program"
443 * headers which indicate which parts ("segments") of the program to
444 * load where.
445 */
446
447 /* We read in all the program headers at once: */
448 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
449 err(1, "Seeking to program headers");
450 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
451 err(1, "Reading program headers");
452
453 /*
454 * Try all the headers: there are usually only three. A read-only one,
455 * a read-write one, and a "note" section which we don't load.
456 */
457 for (i = 0; i < ehdr->e_phnum; i++) {
458 /* If this isn't a loadable segment, we ignore it */
459 if (phdr[i].p_type != PT_LOAD)
460 continue;
461
462 verbose("Section %i: size %i addr %p\n",
463 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
464
465 /* We map this section of the file at its physical address. */
466 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
467 phdr[i].p_offset, phdr[i].p_filesz);
468 }
469
470 /* The entry point is given in the ELF header. */
471 return ehdr->e_entry;
472 }
473
474 /*L:150
475 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
476 * to jump into it and it will unpack itself. We used to have to perform some
477 * hairy magic because the unpacking code scared me.
478 *
479 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
480 * a small patch to jump over the tricky bits in the Guest, so now we just read
481 * the funky header so we know where in the file to load, and away we go!
482 */
483 static unsigned long load_bzimage(int fd)
484 {
485 struct boot_params boot;
486 int r;
487 /* Modern bzImages get loaded at 1M. */
488 void *p = from_guest_phys(0x100000);
489
490 /*
491 * Go back to the start of the file and read the header. It should be
492 * a Linux boot header (see Documentation/x86/boot.txt)
493 */
494 lseek(fd, 0, SEEK_SET);
495 read(fd, &boot, sizeof(boot));
496
497 /* Inside the setup_hdr, we expect the magic "HdrS" */
498 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
499 errx(1, "This doesn't look like a bzImage to me");
500
501 /* Skip over the extra sectors of the header. */
502 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
503
504 /* Now read everything into memory. in nice big chunks. */
505 while ((r = read(fd, p, 65536)) > 0)
506 p += r;
507
508 /* Finally, code32_start tells us where to enter the kernel. */
509 return boot.hdr.code32_start;
510 }
511
512 /*L:140
513 * Loading the kernel is easy when it's a "vmlinux", but most kernels
514 * come wrapped up in the self-decompressing "bzImage" format. With a little
515 * work, we can load those, too.
516 */
517 static unsigned long load_kernel(int fd)
518 {
519 Elf32_Ehdr hdr;
520
521 /* Read in the first few bytes. */
522 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
523 err(1, "Reading kernel");
524
525 /* If it's an ELF file, it starts with "\177ELF" */
526 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
527 return map_elf(fd, &hdr);
528
529 /* Otherwise we assume it's a bzImage, and try to load it. */
530 return load_bzimage(fd);
531 }
532
533 /*
534 * This is a trivial little helper to align pages. Andi Kleen hated it because
535 * it calls getpagesize() twice: "it's dumb code."
536 *
537 * Kernel guys get really het up about optimization, even when it's not
538 * necessary. I leave this code as a reaction against that.
539 */
540 static inline unsigned long page_align(unsigned long addr)
541 {
542 /* Add upwards and truncate downwards. */
543 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
544 }
545
546 /*L:180
547 * An "initial ram disk" is a disk image loaded into memory along with the
548 * kernel which the kernel can use to boot from without needing any drivers.
549 * Most distributions now use this as standard: the initrd contains the code to
550 * load the appropriate driver modules for the current machine.
551 *
552 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
553 * kernels. He sent me this (and tells me when I break it).
554 */
555 static unsigned long load_initrd(const char *name, unsigned long mem)
556 {
557 int ifd;
558 struct stat st;
559 unsigned long len;
560
561 ifd = open_or_die(name, O_RDONLY);
562 /* fstat() is needed to get the file size. */
563 if (fstat(ifd, &st) < 0)
564 err(1, "fstat() on initrd '%s'", name);
565
566 /*
567 * We map the initrd at the top of memory, but mmap wants it to be
568 * page-aligned, so we round the size up for that.
569 */
570 len = page_align(st.st_size);
571 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
572 /*
573 * Once a file is mapped, you can close the file descriptor. It's a
574 * little odd, but quite useful.
575 */
576 close(ifd);
577 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
578
579 /* We return the initrd size. */
580 return len;
581 }
582 /*:*/
583
584 /*
585 * Simple routine to roll all the commandline arguments together with spaces
586 * between them.
587 */
588 static void concat(char *dst, char *args[])
589 {
590 unsigned int i, len = 0;
591
592 for (i = 0; args[i]; i++) {
593 if (i) {
594 strcat(dst+len, " ");
595 len++;
596 }
597 strcpy(dst+len, args[i]);
598 len += strlen(args[i]);
599 }
600 /* In case it's empty. */
601 dst[len] = '\0';
602 }
603
604 /*L:185
605 * This is where we actually tell the kernel to initialize the Guest. We
606 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
607 * the base of Guest "physical" memory, the top physical page to allow and the
608 * entry point for the Guest.
609 */
610 static void tell_kernel(unsigned long start)
611 {
612 unsigned long args[] = { LHREQ_INITIALIZE,
613 (unsigned long)guest_base,
614 guest_limit / getpagesize(), start,
615 (guest_mmio+getpagesize()-1) / getpagesize() };
616 verbose("Guest: %p - %p (%#lx, MMIO %#lx)\n",
617 guest_base, guest_base + guest_limit,
618 guest_limit, guest_mmio);
619 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
620 if (write(lguest_fd, args, sizeof(args)) < 0)
621 err(1, "Writing to /dev/lguest");
622 }
623 /*:*/
624
625 /*L:200
626 * Device Handling.
627 *
628 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
629 * We need to make sure it's not trying to reach into the Launcher itself, so
630 * we have a convenient routine which checks it and exits with an error message
631 * if something funny is going on:
632 */
633 static void *_check_pointer(struct device *d,
634 unsigned long addr, unsigned int size,
635 unsigned int line)
636 {
637 /*
638 * Check if the requested address and size exceeds the allocated memory,
639 * or addr + size wraps around.
640 */
641 if ((addr + size) > guest_limit || (addr + size) < addr)
642 bad_driver(d, "%s:%i: Invalid address %#lx",
643 __FILE__, line, addr);
644 /*
645 * We return a pointer for the caller's convenience, now we know it's
646 * safe to use.
647 */
648 return from_guest_phys(addr);
649 }
650 /* A macro which transparently hands the line number to the real function. */
651 #define check_pointer(d,addr,size) _check_pointer(d, addr, size, __LINE__)
652
653 /*
654 * Each buffer in the virtqueues is actually a chain of descriptors. This
655 * function returns the next descriptor in the chain, or vq->vring.num if we're
656 * at the end.
657 */
658 static unsigned next_desc(struct device *d, struct vring_desc *desc,
659 unsigned int i, unsigned int max)
660 {
661 unsigned int next;
662
663 /* If this descriptor says it doesn't chain, we're done. */
664 if (!(desc[i].flags & VRING_DESC_F_NEXT))
665 return max;
666
667 /* Check they're not leading us off end of descriptors. */
668 next = desc[i].next;
669 /* Make sure compiler knows to grab that: we don't want it changing! */
670 wmb();
671
672 if (next >= max)
673 bad_driver(d, "Desc next is %u", next);
674
675 return next;
676 }
677
678 /*
679 * This actually sends the interrupt for this virtqueue, if we've used a
680 * buffer.
681 */
682 static void trigger_irq(struct virtqueue *vq)
683 {
684 unsigned long buf[] = { LHREQ_IRQ, vq->dev->config.irq_line };
685
686 /* Don't inform them if nothing used. */
687 if (!vq->pending_used)
688 return;
689 vq->pending_used = 0;
690
691 /*
692 * 2.4.7.1:
693 *
694 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
695 * The driver MUST set flags to 0 or 1.
696 */
697 if (vq->vring.avail->flags > 1)
698 bad_driver_vq(vq, "avail->flags = %u\n", vq->vring.avail->flags);
699
700 /*
701 * 2.4.7.2:
702 *
703 * If the VIRTIO_F_EVENT_IDX feature bit is not negotiated:
704 *
705 * - The device MUST ignore the used_event value.
706 * - After the device writes a descriptor index into the used ring:
707 * - If flags is 1, the device SHOULD NOT send an interrupt.
708 * - If flags is 0, the device MUST send an interrupt.
709 */
710 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
711 return;
712 }
713
714 /*
715 * 4.1.4.5.1:
716 *
717 * If MSI-X capability is disabled, the device MUST set the Queue
718 * Interrupt bit in ISR status before sending a virtqueue notification
719 * to the driver.
720 */
721 vq->dev->mmio->isr = 0x1;
722
723 /* Send the Guest an interrupt tell them we used something up. */
724 if (write(lguest_fd, buf, sizeof(buf)) != 0)
725 err(1, "Triggering irq %i", vq->dev->config.irq_line);
726 }
727
728 /*
729 * This looks in the virtqueue for the first available buffer, and converts
730 * it to an iovec for convenient access. Since descriptors consist of some
731 * number of output then some number of input descriptors, it's actually two
732 * iovecs, but we pack them into one and note how many of each there were.
733 *
734 * This function waits if necessary, and returns the descriptor number found.
735 */
736 static unsigned wait_for_vq_desc(struct virtqueue *vq,
737 struct iovec iov[],
738 unsigned int *out_num, unsigned int *in_num)
739 {
740 unsigned int i, head, max;
741 struct vring_desc *desc;
742 u16 last_avail = lg_last_avail(vq);
743
744 /*
745 * 2.4.7.1:
746 *
747 * The driver MUST handle spurious interrupts from the device.
748 *
749 * That's why this is a while loop.
750 */
751
752 /* There's nothing available? */
753 while (last_avail == vq->vring.avail->idx) {
754 u64 event;
755
756 /*
757 * Since we're about to sleep, now is a good time to tell the
758 * Guest about what we've used up to now.
759 */
760 trigger_irq(vq);
761
762 /* OK, now we need to know about added descriptors. */
763 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
764
765 /*
766 * They could have slipped one in as we were doing that: make
767 * sure it's written, then check again.
768 */
769 mb();
770 if (last_avail != vq->vring.avail->idx) {
771 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
772 break;
773 }
774
775 /* Nothing new? Wait for eventfd to tell us they refilled. */
776 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
777 errx(1, "Event read failed?");
778
779 /* We don't need to be notified again. */
780 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
781 }
782
783 /* Check it isn't doing very strange things with descriptor numbers. */
784 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
785 bad_driver_vq(vq, "Guest moved used index from %u to %u",
786 last_avail, vq->vring.avail->idx);
787
788 /*
789 * Make sure we read the descriptor number *after* we read the ring
790 * update; don't let the cpu or compiler change the order.
791 */
792 rmb();
793
794 /*
795 * Grab the next descriptor number they're advertising, and increment
796 * the index we've seen.
797 */
798 head = vq->vring.avail->ring[last_avail % vq->vring.num];
799 lg_last_avail(vq)++;
800
801 /* If their number is silly, that's a fatal mistake. */
802 if (head >= vq->vring.num)
803 bad_driver_vq(vq, "Guest says index %u is available", head);
804
805 /* When we start there are none of either input nor output. */
806 *out_num = *in_num = 0;
807
808 max = vq->vring.num;
809 desc = vq->vring.desc;
810 i = head;
811
812 /*
813 * We have to read the descriptor after we read the descriptor number,
814 * but there's a data dependency there so the CPU shouldn't reorder
815 * that: no rmb() required.
816 */
817
818 do {
819 /*
820 * If this is an indirect entry, then this buffer contains a
821 * descriptor table which we handle as if it's any normal
822 * descriptor chain.
823 */
824 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
825 /* 2.4.5.3.1:
826 *
827 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
828 * flag unless the VIRTIO_F_INDIRECT_DESC feature was
829 * negotiated.
830 */
831 if (!(vq->dev->features_accepted &
832 (1<<VIRTIO_RING_F_INDIRECT_DESC)))
833 bad_driver_vq(vq, "vq indirect not negotiated");
834
835 /*
836 * 2.4.5.3.1:
837 *
838 * The driver MUST NOT set the VIRTQ_DESC_F_INDIRECT
839 * flag within an indirect descriptor (ie. only one
840 * table per descriptor).
841 */
842 if (desc != vq->vring.desc)
843 bad_driver_vq(vq, "Indirect within indirect");
844
845 /*
846 * Proposed update VIRTIO-134 spells this out:
847 *
848 * A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT
849 * and VIRTQ_DESC_F_NEXT in flags.
850 */
851 if (desc[i].flags & VRING_DESC_F_NEXT)
852 bad_driver_vq(vq, "indirect and next together");
853
854 if (desc[i].len % sizeof(struct vring_desc))
855 bad_driver_vq(vq,
856 "Invalid size for indirect table");
857 /*
858 * 2.4.5.3.2:
859 *
860 * The device MUST ignore the write-only flag
861 * (flags&VIRTQ_DESC_F_WRITE) in the descriptor that
862 * refers to an indirect table.
863 *
864 * We ignore it here: :)
865 */
866
867 max = desc[i].len / sizeof(struct vring_desc);
868 desc = check_pointer(vq->dev, desc[i].addr, desc[i].len);
869 i = 0;
870
871 /* 2.4.5.3.1:
872 *
873 * A driver MUST NOT create a descriptor chain longer
874 * than the Queue Size of the device.
875 */
876 if (max > vq->pci_config.queue_size)
877 bad_driver_vq(vq,
878 "indirect has too many entries");
879 }
880
881 /* Grab the first descriptor, and check it's OK. */
882 iov[*out_num + *in_num].iov_len = desc[i].len;
883 iov[*out_num + *in_num].iov_base
884 = check_pointer(vq->dev, desc[i].addr, desc[i].len);
885 /* If this is an input descriptor, increment that count. */
886 if (desc[i].flags & VRING_DESC_F_WRITE)
887 (*in_num)++;
888 else {
889 /*
890 * If it's an output descriptor, they're all supposed
891 * to come before any input descriptors.
892 */
893 if (*in_num)
894 bad_driver_vq(vq,
895 "Descriptor has out after in");
896 (*out_num)++;
897 }
898
899 /* If we've got too many, that implies a descriptor loop. */
900 if (*out_num + *in_num > max)
901 bad_driver_vq(vq, "Looped descriptor");
902 } while ((i = next_desc(vq->dev, desc, i, max)) != max);
903
904 return head;
905 }
906
907 /*
908 * After we've used one of their buffers, we tell the Guest about it. Sometime
909 * later we'll want to send them an interrupt using trigger_irq(); note that
910 * wait_for_vq_desc() does that for us if it has to wait.
911 */
912 static void add_used(struct virtqueue *vq, unsigned int head, int len)
913 {
914 struct vring_used_elem *used;
915
916 /*
917 * The virtqueue contains a ring of used buffers. Get a pointer to the
918 * next entry in that used ring.
919 */
920 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
921 used->id = head;
922 used->len = len;
923 /* Make sure buffer is written before we update index. */
924 wmb();
925 vq->vring.used->idx++;
926 vq->pending_used++;
927 }
928
929 /* And here's the combo meal deal. Supersize me! */
930 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
931 {
932 add_used(vq, head, len);
933 trigger_irq(vq);
934 }
935
936 /*
937 * The Console
938 *
939 * We associate some data with the console for our exit hack.
940 */
941 struct console_abort {
942 /* How many times have they hit ^C? */
943 int count;
944 /* When did they start? */
945 struct timeval start;
946 };
947
948 /* This is the routine which handles console input (ie. stdin). */
949 static void console_input(struct virtqueue *vq)
950 {
951 int len;
952 unsigned int head, in_num, out_num;
953 struct console_abort *abort = vq->dev->priv;
954 struct iovec iov[vq->vring.num];
955
956 /* Make sure there's a descriptor available. */
957 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
958 if (out_num)
959 bad_driver_vq(vq, "Output buffers in console in queue?");
960
961 /* Read into it. This is where we usually wait. */
962 len = readv(STDIN_FILENO, iov, in_num);
963 if (len <= 0) {
964 /* Ran out of input? */
965 warnx("Failed to get console input, ignoring console.");
966 /*
967 * For simplicity, dying threads kill the whole Launcher. So
968 * just nap here.
969 */
970 for (;;)
971 pause();
972 }
973
974 /* Tell the Guest we used a buffer. */
975 add_used_and_trigger(vq, head, len);
976
977 /*
978 * Three ^C within one second? Exit.
979 *
980 * This is such a hack, but works surprisingly well. Each ^C has to
981 * be in a buffer by itself, so they can't be too fast. But we check
982 * that we get three within about a second, so they can't be too
983 * slow.
984 */
985 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
986 abort->count = 0;
987 return;
988 }
989
990 abort->count++;
991 if (abort->count == 1)
992 gettimeofday(&abort->start, NULL);
993 else if (abort->count == 3) {
994 struct timeval now;
995 gettimeofday(&now, NULL);
996 /* Kill all Launcher processes with SIGINT, like normal ^C */
997 if (now.tv_sec <= abort->start.tv_sec+1)
998 kill(0, SIGINT);
999 abort->count = 0;
1000 }
1001 }
1002
1003 /* This is the routine which handles console output (ie. stdout). */
1004 static void console_output(struct virtqueue *vq)
1005 {
1006 unsigned int head, out, in;
1007 struct iovec iov[vq->vring.num];
1008
1009 /* We usually wait in here, for the Guest to give us something. */
1010 head = wait_for_vq_desc(vq, iov, &out, &in);
1011 if (in)
1012 bad_driver_vq(vq, "Input buffers in console output queue?");
1013
1014 /* writev can return a partial write, so we loop here. */
1015 while (!iov_empty(iov, out)) {
1016 int len = writev(STDOUT_FILENO, iov, out);
1017 if (len <= 0) {
1018 warn("Write to stdout gave %i (%d)", len, errno);
1019 break;
1020 }
1021 iov_consume(vq->dev, iov, out, NULL, len);
1022 }
1023
1024 /*
1025 * We're finished with that buffer: if we're going to sleep,
1026 * wait_for_vq_desc() will prod the Guest with an interrupt.
1027 */
1028 add_used(vq, head, 0);
1029 }
1030
1031 /*
1032 * The Network
1033 *
1034 * Handling output for network is also simple: we get all the output buffers
1035 * and write them to /dev/net/tun.
1036 */
1037 struct net_info {
1038 int tunfd;
1039 };
1040
1041 static void net_output(struct virtqueue *vq)
1042 {
1043 struct net_info *net_info = vq->dev->priv;
1044 unsigned int head, out, in;
1045 struct iovec iov[vq->vring.num];
1046
1047 /* We usually wait in here for the Guest to give us a packet. */
1048 head = wait_for_vq_desc(vq, iov, &out, &in);
1049 if (in)
1050 bad_driver_vq(vq, "Input buffers in net output queue?");
1051 /*
1052 * Send the whole thing through to /dev/net/tun. It expects the exact
1053 * same format: what a coincidence!
1054 */
1055 if (writev(net_info->tunfd, iov, out) < 0)
1056 warnx("Write to tun failed (%d)?", errno);
1057
1058 /*
1059 * Done with that one; wait_for_vq_desc() will send the interrupt if
1060 * all packets are processed.
1061 */
1062 add_used(vq, head, 0);
1063 }
1064
1065 /*
1066 * Handling network input is a bit trickier, because I've tried to optimize it.
1067 *
1068 * First we have a helper routine which tells is if from this file descriptor
1069 * (ie. the /dev/net/tun device) will block:
1070 */
1071 static bool will_block(int fd)
1072 {
1073 fd_set fdset;
1074 struct timeval zero = { 0, 0 };
1075 FD_ZERO(&fdset);
1076 FD_SET(fd, &fdset);
1077 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
1078 }
1079
1080 /*
1081 * This handles packets coming in from the tun device to our Guest. Like all
1082 * service routines, it gets called again as soon as it returns, so you don't
1083 * see a while(1) loop here.
1084 */
1085 static void net_input(struct virtqueue *vq)
1086 {
1087 int len;
1088 unsigned int head, out, in;
1089 struct iovec iov[vq->vring.num];
1090 struct net_info *net_info = vq->dev->priv;
1091
1092 /*
1093 * Get a descriptor to write an incoming packet into. This will also
1094 * send an interrupt if they're out of descriptors.
1095 */
1096 head = wait_for_vq_desc(vq, iov, &out, &in);
1097 if (out)
1098 bad_driver_vq(vq, "Output buffers in net input queue?");
1099
1100 /*
1101 * If it looks like we'll block reading from the tun device, send them
1102 * an interrupt.
1103 */
1104 if (vq->pending_used && will_block(net_info->tunfd))
1105 trigger_irq(vq);
1106
1107 /*
1108 * Read in the packet. This is where we normally wait (when there's no
1109 * incoming network traffic).
1110 */
1111 len = readv(net_info->tunfd, iov, in);
1112 if (len <= 0)
1113 warn("Failed to read from tun (%d).", errno);
1114
1115 /*
1116 * Mark that packet buffer as used, but don't interrupt here. We want
1117 * to wait until we've done as much work as we can.
1118 */
1119 add_used(vq, head, len);
1120 }
1121 /*:*/
1122
1123 /* This is the helper to create threads: run the service routine in a loop. */
1124 static int do_thread(void *_vq)
1125 {
1126 struct virtqueue *vq = _vq;
1127
1128 for (;;)
1129 vq->service(vq);
1130 return 0;
1131 }
1132
1133 /*
1134 * When a child dies, we kill our entire process group with SIGTERM. This
1135 * also has the side effect that the shell restores the console for us!
1136 */
1137 static void kill_launcher(int signal)
1138 {
1139 kill(0, SIGTERM);
1140 }
1141
1142 static void reset_vq_pci_config(struct virtqueue *vq)
1143 {
1144 vq->pci_config.queue_size = VIRTQUEUE_NUM;
1145 vq->pci_config.queue_enable = 0;
1146 }
1147
1148 static void reset_device(struct device *dev)
1149 {
1150 struct virtqueue *vq;
1151
1152 verbose("Resetting device %s\n", dev->name);
1153
1154 /* Clear any features they've acked. */
1155 dev->features_accepted = 0;
1156
1157 /* We're going to be explicitly killing threads, so ignore them. */
1158 signal(SIGCHLD, SIG_IGN);
1159
1160 /*
1161 * 4.1.4.3.1:
1162 *
1163 * The device MUST present a 0 in queue_enable on reset.
1164 *
1165 * This means we set it here, and reset the saved ones in every vq.
1166 */
1167 dev->mmio->cfg.queue_enable = 0;
1168
1169 /* Get rid of the virtqueue threads */
1170 for (vq = dev->vq; vq; vq = vq->next) {
1171 vq->last_avail_idx = 0;
1172 reset_vq_pci_config(vq);
1173 if (vq->thread != (pid_t)-1) {
1174 kill(vq->thread, SIGTERM);
1175 waitpid(vq->thread, NULL, 0);
1176 vq->thread = (pid_t)-1;
1177 }
1178 }
1179 dev->running = false;
1180 dev->wrote_features_ok = false;
1181
1182 /* Now we care if threads die. */
1183 signal(SIGCHLD, (void *)kill_launcher);
1184 }
1185
1186 static void cleanup_devices(void)
1187 {
1188 unsigned int i;
1189
1190 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1191 struct device *d = devices.pci[i];
1192 if (!d)
1193 continue;
1194 reset_device(d);
1195 }
1196
1197 /* If we saved off the original terminal settings, restore them now. */
1198 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1199 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1200 }
1201
1202 /*L:217
1203 * We do PCI. This is mainly done to let us test the kernel virtio PCI
1204 * code.
1205 */
1206
1207 /* Linux expects a PCI host bridge: ours is a dummy, and first on the bus. */
1208 static struct device pci_host_bridge;
1209
1210 static void init_pci_host_bridge(void)
1211 {
1212 pci_host_bridge.name = "PCI Host Bridge";
1213 pci_host_bridge.config.class = 0x06; /* bridge */
1214 pci_host_bridge.config.subclass = 0; /* host bridge */
1215 devices.pci[0] = &pci_host_bridge;
1216 }
1217
1218 /* The IO ports used to read the PCI config space. */
1219 #define PCI_CONFIG_ADDR 0xCF8
1220 #define PCI_CONFIG_DATA 0xCFC
1221
1222 /*
1223 * Not really portable, but does help readability: this is what the Guest
1224 * writes to the PCI_CONFIG_ADDR IO port.
1225 */
1226 union pci_config_addr {
1227 struct {
1228 unsigned mbz: 2;
1229 unsigned offset: 6;
1230 unsigned funcnum: 3;
1231 unsigned devnum: 5;
1232 unsigned busnum: 8;
1233 unsigned reserved: 7;
1234 unsigned enabled : 1;
1235 } bits;
1236 u32 val;
1237 };
1238
1239 /*
1240 * We cache what they wrote to the address port, so we know what they're
1241 * talking about when they access the data port.
1242 */
1243 static union pci_config_addr pci_config_addr;
1244
1245 static struct device *find_pci_device(unsigned int index)
1246 {
1247 return devices.pci[index];
1248 }
1249
1250 /* PCI can do 1, 2 and 4 byte reads; we handle that here. */
1251 static void ioread(u16 off, u32 v, u32 mask, u32 *val)
1252 {
1253 assert(off < 4);
1254 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1255 *val = (v >> (off * 8)) & mask;
1256 }
1257
1258 /* PCI can do 1, 2 and 4 byte writes; we handle that here. */
1259 static void iowrite(u16 off, u32 v, u32 mask, u32 *dst)
1260 {
1261 assert(off < 4);
1262 assert(mask == 0xFF || mask == 0xFFFF || mask == 0xFFFFFFFF);
1263 *dst &= ~(mask << (off * 8));
1264 *dst |= (v & mask) << (off * 8);
1265 }
1266
1267 /*
1268 * Where PCI_CONFIG_DATA accesses depends on the previous write to
1269 * PCI_CONFIG_ADDR.
1270 */
1271 static struct device *dev_and_reg(u32 *reg)
1272 {
1273 if (!pci_config_addr.bits.enabled)
1274 return NULL;
1275
1276 if (pci_config_addr.bits.funcnum != 0)
1277 return NULL;
1278
1279 if (pci_config_addr.bits.busnum != 0)
1280 return NULL;
1281
1282 if (pci_config_addr.bits.offset * 4 >= sizeof(struct pci_config))
1283 return NULL;
1284
1285 *reg = pci_config_addr.bits.offset;
1286 return find_pci_device(pci_config_addr.bits.devnum);
1287 }
1288
1289 /*
1290 * We can get invalid combinations of values while they're writing, so we
1291 * only fault if they try to write with some invalid bar/offset/length.
1292 */
1293 static bool valid_bar_access(struct device *d,
1294 struct virtio_pci_cfg_cap *cfg_access)
1295 {
1296 /* We only have 1 bar (BAR0) */
1297 if (cfg_access->cap.bar != 0)
1298 return false;
1299
1300 /* Check it's within BAR0. */
1301 if (cfg_access->cap.offset >= d->mmio_size
1302 || cfg_access->cap.offset + cfg_access->cap.length > d->mmio_size)
1303 return false;
1304
1305 /* Check length is 1, 2 or 4. */
1306 if (cfg_access->cap.length != 1
1307 && cfg_access->cap.length != 2
1308 && cfg_access->cap.length != 4)
1309 return false;
1310
1311 /*
1312 * 4.1.4.7.2:
1313 *
1314 * The driver MUST NOT write a cap.offset which is not a multiple of
1315 * cap.length (ie. all accesses MUST be aligned).
1316 */
1317 if (cfg_access->cap.offset % cfg_access->cap.length != 0)
1318 return false;
1319
1320 /* Return pointer into word in BAR0. */
1321 return true;
1322 }
1323
1324 /* Is this accessing the PCI config address port?. */
1325 static bool is_pci_addr_port(u16 port)
1326 {
1327 return port >= PCI_CONFIG_ADDR && port < PCI_CONFIG_ADDR + 4;
1328 }
1329
1330 static bool pci_addr_iowrite(u16 port, u32 mask, u32 val)
1331 {
1332 iowrite(port - PCI_CONFIG_ADDR, val, mask,
1333 &pci_config_addr.val);
1334 verbose("PCI%s: %#x/%x: bus %u dev %u func %u reg %u\n",
1335 pci_config_addr.bits.enabled ? "" : " DISABLED",
1336 val, mask,
1337 pci_config_addr.bits.busnum,
1338 pci_config_addr.bits.devnum,
1339 pci_config_addr.bits.funcnum,
1340 pci_config_addr.bits.offset);
1341 return true;
1342 }
1343
1344 static void pci_addr_ioread(u16 port, u32 mask, u32 *val)
1345 {
1346 ioread(port - PCI_CONFIG_ADDR, pci_config_addr.val, mask, val);
1347 }
1348
1349 /* Is this accessing the PCI config data port?. */
1350 static bool is_pci_data_port(u16 port)
1351 {
1352 return port >= PCI_CONFIG_DATA && port < PCI_CONFIG_DATA + 4;
1353 }
1354
1355 static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask);
1356
1357 static bool pci_data_iowrite(u16 port, u32 mask, u32 val)
1358 {
1359 u32 reg, portoff;
1360 struct device *d = dev_and_reg(&reg);
1361
1362 /* Complain if they don't belong to a device. */
1363 if (!d)
1364 return false;
1365
1366 /* They can do 1 byte writes, etc. */
1367 portoff = port - PCI_CONFIG_DATA;
1368
1369 /*
1370 * PCI uses a weird way to determine the BAR size: the OS
1371 * writes all 1's, and sees which ones stick.
1372 */
1373 if (&d->config_words[reg] == &d->config.bar[0]) {
1374 int i;
1375
1376 iowrite(portoff, val, mask, &d->config.bar[0]);
1377 for (i = 0; (1 << i) < d->mmio_size; i++)
1378 d->config.bar[0] &= ~(1 << i);
1379 return true;
1380 } else if ((&d->config_words[reg] > &d->config.bar[0]
1381 && &d->config_words[reg] <= &d->config.bar[6])
1382 || &d->config_words[reg] == &d->config.expansion_rom_addr) {
1383 /* Allow writing to any other BAR, or expansion ROM */
1384 iowrite(portoff, val, mask, &d->config_words[reg]);
1385 return true;
1386 /* We let them overide latency timer and cacheline size */
1387 } else if (&d->config_words[reg] == (void *)&d->config.cacheline_size) {
1388 /* Only let them change the first two fields. */
1389 if (mask == 0xFFFFFFFF)
1390 mask = 0xFFFF;
1391 iowrite(portoff, val, mask, &d->config_words[reg]);
1392 return true;
1393 } else if (&d->config_words[reg] == (void *)&d->config.command
1394 && mask == 0xFFFF) {
1395 /* Ignore command writes. */
1396 return true;
1397 } else if (&d->config_words[reg]
1398 == (void *)&d->config.cfg_access.cap.bar
1399 || &d->config_words[reg]
1400 == &d->config.cfg_access.cap.length
1401 || &d->config_words[reg]
1402 == &d->config.cfg_access.cap.offset) {
1403
1404 /*
1405 * The VIRTIO_PCI_CAP_PCI_CFG capability
1406 * provides a backdoor to access the MMIO
1407 * regions without mapping them. Weird, but
1408 * useful.
1409 */
1410 iowrite(portoff, val, mask, &d->config_words[reg]);
1411 return true;
1412 } else if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) {
1413 u32 write_mask;
1414
1415 /*
1416 * 4.1.4.7.1:
1417 *
1418 * Upon detecting driver write access to pci_cfg_data, the
1419 * device MUST execute a write access at offset cap.offset at
1420 * BAR selected by cap.bar using the first cap.length bytes
1421 * from pci_cfg_data.
1422 */
1423
1424 /* Must be bar 0 */
1425 if (!valid_bar_access(d, &d->config.cfg_access))
1426 return false;
1427
1428 iowrite(portoff, val, mask, &d->config.cfg_access.pci_cfg_data);
1429
1430 /*
1431 * Now emulate a write. The mask we use is set by
1432 * len, *not* this write!
1433 */
1434 write_mask = (1ULL<<(8*d->config.cfg_access.cap.length)) - 1;
1435 verbose("Window writing %#x/%#x to bar %u, offset %u len %u\n",
1436 d->config.cfg_access.pci_cfg_data, write_mask,
1437 d->config.cfg_access.cap.bar,
1438 d->config.cfg_access.cap.offset,
1439 d->config.cfg_access.cap.length);
1440
1441 emulate_mmio_write(d, d->config.cfg_access.cap.offset,
1442 d->config.cfg_access.pci_cfg_data,
1443 write_mask);
1444 return true;
1445 }
1446
1447 /*
1448 * 4.1.4.1:
1449 *
1450 * The driver MUST NOT write into any field of the capability
1451 * structure, with the exception of those with cap_type
1452 * VIRTIO_PCI_CAP_PCI_CFG...
1453 */
1454 return false;
1455 }
1456
1457 static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask);
1458
1459 static void pci_data_ioread(u16 port, u32 mask, u32 *val)
1460 {
1461 u32 reg;
1462 struct device *d = dev_and_reg(&reg);
1463
1464 if (!d)
1465 return;
1466
1467 /* Read through the PCI MMIO access window is special */
1468 if (&d->config_words[reg] == &d->config.cfg_access.pci_cfg_data) {
1469 u32 read_mask;
1470
1471 /*
1472 * 4.1.4.7.1:
1473 *
1474 * Upon detecting driver read access to pci_cfg_data, the
1475 * device MUST execute a read access of length cap.length at
1476 * offset cap.offset at BAR selected by cap.bar and store the
1477 * first cap.length bytes in pci_cfg_data.
1478 */
1479 /* Must be bar 0 */
1480 if (!valid_bar_access(d, &d->config.cfg_access))
1481 bad_driver(d,
1482 "Invalid cfg_access to bar%u, offset %u len %u",
1483 d->config.cfg_access.cap.bar,
1484 d->config.cfg_access.cap.offset,
1485 d->config.cfg_access.cap.length);
1486
1487 /*
1488 * Read into the window. The mask we use is set by
1489 * len, *not* this read!
1490 */
1491 read_mask = (1ULL<<(8*d->config.cfg_access.cap.length))-1;
1492 d->config.cfg_access.pci_cfg_data
1493 = emulate_mmio_read(d,
1494 d->config.cfg_access.cap.offset,
1495 read_mask);
1496 verbose("Window read %#x/%#x from bar %u, offset %u len %u\n",
1497 d->config.cfg_access.pci_cfg_data, read_mask,
1498 d->config.cfg_access.cap.bar,
1499 d->config.cfg_access.cap.offset,
1500 d->config.cfg_access.cap.length);
1501 }
1502 ioread(port - PCI_CONFIG_DATA, d->config_words[reg], mask, val);
1503 }
1504
1505 /*L:216
1506 * This is where we emulate a handful of Guest instructions. It's ugly
1507 * and we used to do it in the kernel but it grew over time.
1508 */
1509
1510 /*
1511 * We use the ptrace syscall's pt_regs struct to talk about registers
1512 * to lguest: these macros convert the names to the offsets.
1513 */
1514 #define getreg(name) getreg_off(offsetof(struct user_regs_struct, name))
1515 #define setreg(name, val) \
1516 setreg_off(offsetof(struct user_regs_struct, name), (val))
1517
1518 static u32 getreg_off(size_t offset)
1519 {
1520 u32 r;
1521 unsigned long args[] = { LHREQ_GETREG, offset };
1522
1523 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1524 err(1, "Getting register %u", offset);
1525 if (pread(lguest_fd, &r, sizeof(r), cpu_id) != sizeof(r))
1526 err(1, "Reading register %u", offset);
1527
1528 return r;
1529 }
1530
1531 static void setreg_off(size_t offset, u32 val)
1532 {
1533 unsigned long args[] = { LHREQ_SETREG, offset, val };
1534
1535 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1536 err(1, "Setting register %u", offset);
1537 }
1538
1539 /* Get register by instruction encoding */
1540 static u32 getreg_num(unsigned regnum, u32 mask)
1541 {
1542 /* 8 bit ops use regnums 4-7 for high parts of word */
1543 if (mask == 0xFF && (regnum & 0x4))
1544 return getreg_num(regnum & 0x3, 0xFFFF) >> 8;
1545
1546 switch (regnum) {
1547 case 0: return getreg(eax) & mask;
1548 case 1: return getreg(ecx) & mask;
1549 case 2: return getreg(edx) & mask;
1550 case 3: return getreg(ebx) & mask;
1551 case 4: return getreg(esp) & mask;
1552 case 5: return getreg(ebp) & mask;
1553 case 6: return getreg(esi) & mask;
1554 case 7: return getreg(edi) & mask;
1555 }
1556 abort();
1557 }
1558
1559 /* Set register by instruction encoding */
1560 static void setreg_num(unsigned regnum, u32 val, u32 mask)
1561 {
1562 /* Don't try to set bits out of range */
1563 assert(~(val & ~mask));
1564
1565 /* 8 bit ops use regnums 4-7 for high parts of word */
1566 if (mask == 0xFF && (regnum & 0x4)) {
1567 /* Construct the 16 bits we want. */
1568 val = (val << 8) | getreg_num(regnum & 0x3, 0xFF);
1569 setreg_num(regnum & 0x3, val, 0xFFFF);
1570 return;
1571 }
1572
1573 switch (regnum) {
1574 case 0: setreg(eax, val | (getreg(eax) & ~mask)); return;
1575 case 1: setreg(ecx, val | (getreg(ecx) & ~mask)); return;
1576 case 2: setreg(edx, val | (getreg(edx) & ~mask)); return;
1577 case 3: setreg(ebx, val | (getreg(ebx) & ~mask)); return;
1578 case 4: setreg(esp, val | (getreg(esp) & ~mask)); return;
1579 case 5: setreg(ebp, val | (getreg(ebp) & ~mask)); return;
1580 case 6: setreg(esi, val | (getreg(esi) & ~mask)); return;
1581 case 7: setreg(edi, val | (getreg(edi) & ~mask)); return;
1582 }
1583 abort();
1584 }
1585
1586 /* Get bytes of displacement appended to instruction, from r/m encoding */
1587 static u32 insn_displacement_len(u8 mod_reg_rm)
1588 {
1589 /* Switch on the mod bits */
1590 switch (mod_reg_rm >> 6) {
1591 case 0:
1592 /* If mod == 0, and r/m == 101, 16-bit displacement follows */
1593 if ((mod_reg_rm & 0x7) == 0x5)
1594 return 2;
1595 /* Normally, mod == 0 means no literal displacement */
1596 return 0;
1597 case 1:
1598 /* One byte displacement */
1599 return 1;
1600 case 2:
1601 /* Four byte displacement */
1602 return 4;
1603 case 3:
1604 /* Register mode */
1605 return 0;
1606 }
1607 abort();
1608 }
1609
1610 static void emulate_insn(const u8 insn[])
1611 {
1612 unsigned long args[] = { LHREQ_TRAP, 13 };
1613 unsigned int insnlen = 0, in = 0, small_operand = 0, byte_access;
1614 unsigned int eax, port, mask;
1615 /*
1616 * Default is to return all-ones on IO port reads, which traditionally
1617 * means "there's nothing there".
1618 */
1619 u32 val = 0xFFFFFFFF;
1620
1621 /*
1622 * This must be the Guest kernel trying to do something, not userspace!
1623 * The bottom two bits of the CS segment register are the privilege
1624 * level.
1625 */
1626 if ((getreg(xcs) & 3) != 0x1)
1627 goto no_emulate;
1628
1629 /* Decoding x86 instructions is icky. */
1630
1631 /*
1632 * Around 2.6.33, the kernel started using an emulation for the
1633 * cmpxchg8b instruction in early boot on many configurations. This
1634 * code isn't paravirtualized, and it tries to disable interrupts.
1635 * Ignore it, which will Mostly Work.
1636 */
1637 if (insn[insnlen] == 0xfa) {
1638 /* "cli", or Clear Interrupt Enable instruction. Skip it. */
1639 insnlen = 1;
1640 goto skip_insn;
1641 }
1642
1643 /*
1644 * 0x66 is an "operand prefix". It means a 16, not 32 bit in/out.
1645 */
1646 if (insn[insnlen] == 0x66) {
1647 small_operand = 1;
1648 /* The instruction is 1 byte so far, read the next byte. */
1649 insnlen = 1;
1650 }
1651
1652 /* If the lower bit isn't set, it's a single byte access */
1653 byte_access = !(insn[insnlen] & 1);
1654
1655 /*
1656 * Now we can ignore the lower bit and decode the 4 opcodes
1657 * we need to emulate.
1658 */
1659 switch (insn[insnlen] & 0xFE) {
1660 case 0xE4: /* in <next byte>,%al */
1661 port = insn[insnlen+1];
1662 insnlen += 2;
1663 in = 1;
1664 break;
1665 case 0xEC: /* in (%dx),%al */
1666 port = getreg(edx) & 0xFFFF;
1667 insnlen += 1;
1668 in = 1;
1669 break;
1670 case 0xE6: /* out %al,<next byte> */
1671 port = insn[insnlen+1];
1672 insnlen += 2;
1673 break;
1674 case 0xEE: /* out %al,(%dx) */
1675 port = getreg(edx) & 0xFFFF;
1676 insnlen += 1;
1677 break;
1678 default:
1679 /* OK, we don't know what this is, can't emulate. */
1680 goto no_emulate;
1681 }
1682
1683 /* Set a mask of the 1, 2 or 4 bytes, depending on size of IO */
1684 if (byte_access)
1685 mask = 0xFF;
1686 else if (small_operand)
1687 mask = 0xFFFF;
1688 else
1689 mask = 0xFFFFFFFF;
1690
1691 /*
1692 * If it was an "IN" instruction, they expect the result to be read
1693 * into %eax, so we change %eax.
1694 */
1695 eax = getreg(eax);
1696
1697 if (in) {
1698 /* This is the PS/2 keyboard status; 1 means ready for output */
1699 if (port == 0x64)
1700 val = 1;
1701 else if (is_pci_addr_port(port))
1702 pci_addr_ioread(port, mask, &val);
1703 else if (is_pci_data_port(port))
1704 pci_data_ioread(port, mask, &val);
1705
1706 /* Clear the bits we're about to read */
1707 eax &= ~mask;
1708 /* Copy bits in from val. */
1709 eax |= val & mask;
1710 /* Now update the register. */
1711 setreg(eax, eax);
1712 } else {
1713 if (is_pci_addr_port(port)) {
1714 if (!pci_addr_iowrite(port, mask, eax))
1715 goto bad_io;
1716 } else if (is_pci_data_port(port)) {
1717 if (!pci_data_iowrite(port, mask, eax))
1718 goto bad_io;
1719 }
1720 /* There are many other ports, eg. CMOS clock, serial
1721 * and parallel ports, so we ignore them all. */
1722 }
1723
1724 verbose("IO %s of %x to %u: %#08x\n",
1725 in ? "IN" : "OUT", mask, port, eax);
1726 skip_insn:
1727 /* Finally, we've "done" the instruction, so move past it. */
1728 setreg(eip, getreg(eip) + insnlen);
1729 return;
1730
1731 bad_io:
1732 warnx("Attempt to %s port %u (%#x mask)",
1733 in ? "read from" : "write to", port, mask);
1734
1735 no_emulate:
1736 /* Inject trap into Guest. */
1737 if (write(lguest_fd, args, sizeof(args)) < 0)
1738 err(1, "Reinjecting trap 13 for fault at %#x", getreg(eip));
1739 }
1740
1741 static struct device *find_mmio_region(unsigned long paddr, u32 *off)
1742 {
1743 unsigned int i;
1744
1745 for (i = 1; i < MAX_PCI_DEVICES; i++) {
1746 struct device *d = devices.pci[i];
1747
1748 if (!d)
1749 continue;
1750 if (paddr < d->mmio_addr)
1751 continue;
1752 if (paddr >= d->mmio_addr + d->mmio_size)
1753 continue;
1754 *off = paddr - d->mmio_addr;
1755 return d;
1756 }
1757 return NULL;
1758 }
1759
1760 /* FIXME: Use vq array. */
1761 static struct virtqueue *vq_by_num(struct device *d, u32 num)
1762 {
1763 struct virtqueue *vq = d->vq;
1764
1765 while (num-- && vq)
1766 vq = vq->next;
1767
1768 return vq;
1769 }
1770
1771 static void save_vq_config(const struct virtio_pci_common_cfg *cfg,
1772 struct virtqueue *vq)
1773 {
1774 vq->pci_config = *cfg;
1775 }
1776
1777 static void restore_vq_config(struct virtio_pci_common_cfg *cfg,
1778 struct virtqueue *vq)
1779 {
1780 /* Only restore the per-vq part */
1781 size_t off = offsetof(struct virtio_pci_common_cfg, queue_size);
1782
1783 memcpy((void *)cfg + off, (void *)&vq->pci_config + off,
1784 sizeof(*cfg) - off);
1785 }
1786
1787 /*
1788 * 4.1.4.3.2:
1789 *
1790 * The driver MUST configure the other virtqueue fields before
1791 * enabling the virtqueue with queue_enable.
1792 *
1793 * When they enable the virtqueue, we check that their setup is valid.
1794 */
1795 static void check_virtqueue(struct device *d, struct virtqueue *vq)
1796 {
1797 /* Because lguest is 32 bit, all the descriptor high bits must be 0 */
1798 if (vq->pci_config.queue_desc_hi
1799 || vq->pci_config.queue_avail_hi
1800 || vq->pci_config.queue_used_hi)
1801 bad_driver_vq(vq, "invalid 64-bit queue address");
1802
1803 /*
1804 * 2.4.1:
1805 *
1806 * The driver MUST ensure that the physical address of the first byte
1807 * of each virtqueue part is a multiple of the specified alignment
1808 * value in the above table.
1809 */
1810 if (vq->pci_config.queue_desc_lo % 16
1811 || vq->pci_config.queue_avail_lo % 2
1812 || vq->pci_config.queue_used_lo % 4)
1813 bad_driver_vq(vq, "invalid alignment in queue addresses");
1814
1815 /* Initialize the virtqueue and check they're all in range. */
1816 vq->vring.num = vq->pci_config.queue_size;
1817 vq->vring.desc = check_pointer(vq->dev,
1818 vq->pci_config.queue_desc_lo,
1819 sizeof(*vq->vring.desc) * vq->vring.num);
1820 vq->vring.avail = check_pointer(vq->dev,
1821 vq->pci_config.queue_avail_lo,
1822 sizeof(*vq->vring.avail)
1823 + (sizeof(vq->vring.avail->ring[0])
1824 * vq->vring.num));
1825 vq->vring.used = check_pointer(vq->dev,
1826 vq->pci_config.queue_used_lo,
1827 sizeof(*vq->vring.used)
1828 + (sizeof(vq->vring.used->ring[0])
1829 * vq->vring.num));
1830
1831 /*
1832 * 2.4.9.1:
1833 *
1834 * The driver MUST initialize flags in the used ring to 0
1835 * when allocating the used ring.
1836 */
1837 if (vq->vring.used->flags != 0)
1838 bad_driver_vq(vq, "invalid initial used.flags %#x",
1839 vq->vring.used->flags);
1840 }
1841
1842 static void start_virtqueue(struct virtqueue *vq)
1843 {
1844 /*
1845 * Create stack for thread. Since the stack grows upwards, we point
1846 * the stack pointer to the end of this region.
1847 */
1848 char *stack = malloc(32768);
1849
1850 /* Create a zero-initialized eventfd. */
1851 vq->eventfd = eventfd(0, 0);
1852 if (vq->eventfd < 0)
1853 err(1, "Creating eventfd");
1854
1855 /*
1856 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1857 * we get a signal if it dies.
1858 */
1859 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1860 if (vq->thread == (pid_t)-1)
1861 err(1, "Creating clone");
1862 }
1863
1864 static void start_virtqueues(struct device *d)
1865 {
1866 struct virtqueue *vq;
1867
1868 for (vq = d->vq; vq; vq = vq->next) {
1869 if (vq->pci_config.queue_enable)
1870 start_virtqueue(vq);
1871 }
1872 }
1873
1874 static void emulate_mmio_write(struct device *d, u32 off, u32 val, u32 mask)
1875 {
1876 struct virtqueue *vq;
1877
1878 switch (off) {
1879 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
1880 /*
1881 * 4.1.4.3.1:
1882 *
1883 * The device MUST present the feature bits it is offering in
1884 * device_feature, starting at bit device_feature_select ∗ 32
1885 * for any device_feature_select written by the driver
1886 */
1887 if (val == 0)
1888 d->mmio->cfg.device_feature = d->features;
1889 else if (val == 1)
1890 d->mmio->cfg.device_feature = (d->features >> 32);
1891 else
1892 d->mmio->cfg.device_feature = 0;
1893 goto feature_write_through32;
1894 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
1895 if (val > 1)
1896 bad_driver(d, "Unexpected driver select %u", val);
1897 goto feature_write_through32;
1898 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
1899 if (d->mmio->cfg.guest_feature_select == 0) {
1900 d->features_accepted &= ~((u64)0xFFFFFFFF);
1901 d->features_accepted |= val;
1902 } else {
1903 assert(d->mmio->cfg.guest_feature_select == 1);
1904 d->features_accepted &= 0xFFFFFFFF;
1905 d->features_accepted |= ((u64)val) << 32;
1906 }
1907 /*
1908 * 2.2.1:
1909 *
1910 * The driver MUST NOT accept a feature which the device did
1911 * not offer
1912 */
1913 if (d->features_accepted & ~d->features)
1914 bad_driver(d, "over-accepted features %#llx of %#llx",
1915 d->features_accepted, d->features);
1916 goto feature_write_through32;
1917 case offsetof(struct virtio_pci_mmio, cfg.device_status): {
1918 u8 prev;
1919
1920 verbose("%s: device status -> %#x\n", d->name, val);
1921 /*
1922 * 4.1.4.3.1:
1923 *
1924 * The device MUST reset when 0 is written to device_status,
1925 * and present a 0 in device_status once that is done.
1926 */
1927 if (val == 0) {
1928 reset_device(d);
1929 goto write_through8;
1930 }
1931
1932 /* 2.1.1: The driver MUST NOT clear a device status bit. */
1933 if (d->mmio->cfg.device_status & ~val)
1934 bad_driver(d, "unset of device status bit %#x -> %#x",
1935 d->mmio->cfg.device_status, val);
1936
1937 /*
1938 * 2.1.2:
1939 *
1940 * The device MUST NOT consume buffers or notify the driver
1941 * before DRIVER_OK.
1942 */
1943 if (val & VIRTIO_CONFIG_S_DRIVER_OK
1944 && !(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK))
1945 start_virtqueues(d);
1946
1947 /*
1948 * 3.1.1:
1949 *
1950 * The driver MUST follow this sequence to initialize a device:
1951 * - Reset the device.
1952 * - Set the ACKNOWLEDGE status bit: the guest OS has
1953 * notice the device.
1954 * - Set the DRIVER status bit: the guest OS knows how
1955 * to drive the device.
1956 * - Read device feature bits, and write the subset
1957 * of feature bits understood by the OS and driver
1958 * to the device. During this step the driver MAY
1959 * read (but MUST NOT write) the device-specific
1960 * configuration fields to check that it can
1961 * support the device before accepting it.
1962 * - Set the FEATURES_OK status bit. The driver
1963 * MUST not accept new feature bits after this
1964 * step.
1965 * - Re-read device status to ensure the FEATURES_OK
1966 * bit is still set: otherwise, the device does
1967 * not support our subset of features and the
1968 * device is unusable.
1969 * - Perform device-specific setup, including
1970 * discovery of virtqueues for the device,
1971 * optional per-bus setup, reading and possibly
1972 * writing the device’s virtio configuration
1973 * space, and population of virtqueues.
1974 * - Set the DRIVER_OK status bit. At this point the
1975 * device is “live”.
1976 */
1977 prev = 0;
1978 switch (val & ~d->mmio->cfg.device_status) {
1979 case VIRTIO_CONFIG_S_DRIVER_OK:
1980 prev |= VIRTIO_CONFIG_S_FEATURES_OK; /* fall thru */
1981 case VIRTIO_CONFIG_S_FEATURES_OK:
1982 prev |= VIRTIO_CONFIG_S_DRIVER; /* fall thru */
1983 case VIRTIO_CONFIG_S_DRIVER:
1984 prev |= VIRTIO_CONFIG_S_ACKNOWLEDGE; /* fall thru */
1985 case VIRTIO_CONFIG_S_ACKNOWLEDGE:
1986 break;
1987 default:
1988 bad_driver(d, "unknown device status bit %#x -> %#x",
1989 d->mmio->cfg.device_status, val);
1990 }
1991 if (d->mmio->cfg.device_status != prev)
1992 bad_driver(d, "unexpected status transition %#x -> %#x",
1993 d->mmio->cfg.device_status, val);
1994
1995 /* If they just wrote FEATURES_OK, we make sure they read */
1996 switch (val & ~d->mmio->cfg.device_status) {
1997 case VIRTIO_CONFIG_S_FEATURES_OK:
1998 d->wrote_features_ok = true;
1999 break;
2000 case VIRTIO_CONFIG_S_DRIVER_OK:
2001 if (d->wrote_features_ok)
2002 bad_driver(d, "did not re-read FEATURES_OK");
2003 break;
2004 }
2005 goto write_through8;
2006 }
2007 case offsetof(struct virtio_pci_mmio, cfg.queue_select):
2008 vq = vq_by_num(d, val);
2009 /*
2010 * 4.1.4.3.1:
2011 *
2012 * The device MUST present a 0 in queue_size if the virtqueue
2013 * corresponding to the current queue_select is unavailable.
2014 */
2015 if (!vq) {
2016 d->mmio->cfg.queue_size = 0;
2017 goto write_through16;
2018 }
2019 /* Save registers for old vq, if it was a valid vq */
2020 if (d->mmio->cfg.queue_size)
2021 save_vq_config(&d->mmio->cfg,
2022 vq_by_num(d, d->mmio->cfg.queue_select));
2023 /* Restore the registers for the queue they asked for */
2024 restore_vq_config(&d->mmio->cfg, vq);
2025 goto write_through16;
2026 case offsetof(struct virtio_pci_mmio, cfg.queue_size):
2027 /*
2028 * 4.1.4.3.2:
2029 *
2030 * The driver MUST NOT write a value which is not a power of 2
2031 * to queue_size.
2032 */
2033 if (val & (val-1))
2034 bad_driver(d, "invalid queue size %u", val);
2035 if (d->mmio->cfg.queue_enable)
2036 bad_driver(d, "changing queue size on live device");
2037 goto write_through16;
2038 case offsetof(struct virtio_pci_mmio, cfg.queue_msix_vector):
2039 bad_driver(d, "attempt to set MSIX vector to %u", val);
2040 case offsetof(struct virtio_pci_mmio, cfg.queue_enable): {
2041 struct virtqueue *vq = vq_by_num(d, d->mmio->cfg.queue_select);
2042
2043 /*
2044 * 4.1.4.3.2:
2045 *
2046 * The driver MUST NOT write a 0 to queue_enable.
2047 */
2048 if (val != 1)
2049 bad_driver(d, "setting queue_enable to %u", val);
2050
2051 /*
2052 * 3.1.1:
2053 *
2054 * 7. Perform device-specific setup, including discovery of
2055 * virtqueues for the device, optional per-bus setup,
2056 * reading and possibly writing the device’s virtio
2057 * configuration space, and population of virtqueues.
2058 * 8. Set the DRIVER_OK status bit.
2059 *
2060 * All our devices require all virtqueues to be enabled, so
2061 * they should have done that before setting DRIVER_OK.
2062 */
2063 if (d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK)
2064 bad_driver(d, "enabling vq after DRIVER_OK");
2065
2066 d->mmio->cfg.queue_enable = val;
2067 save_vq_config(&d->mmio->cfg, vq);
2068 check_virtqueue(d, vq);
2069 goto write_through16;
2070 }
2071 case offsetof(struct virtio_pci_mmio, cfg.queue_notify_off):
2072 bad_driver(d, "attempt to write to queue_notify_off");
2073 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_lo):
2074 case offsetof(struct virtio_pci_mmio, cfg.queue_desc_hi):
2075 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_lo):
2076 case offsetof(struct virtio_pci_mmio, cfg.queue_avail_hi):
2077 case offsetof(struct virtio_pci_mmio, cfg.queue_used_lo):
2078 case offsetof(struct virtio_pci_mmio, cfg.queue_used_hi):
2079 /*
2080 * 4.1.4.3.2:
2081 *
2082 * The driver MUST configure the other virtqueue fields before
2083 * enabling the virtqueue with queue_enable.
2084 */
2085 if (d->mmio->cfg.queue_enable)
2086 bad_driver(d, "changing queue on live device");
2087
2088 /*
2089 * 3.1.1:
2090 *
2091 * The driver MUST follow this sequence to initialize a device:
2092 *...
2093 * 5. Set the FEATURES_OK status bit. The driver MUST not
2094 * accept new feature bits after this step.
2095 */
2096 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_FEATURES_OK))
2097 bad_driver(d, "setting up vq before FEATURES_OK");
2098
2099 /*
2100 * 6. Re-read device status to ensure the FEATURES_OK bit is
2101 * still set...
2102 */
2103 if (d->wrote_features_ok)
2104 bad_driver(d, "didn't re-read FEATURES_OK before setup");
2105
2106 goto write_through32;
2107 case offsetof(struct virtio_pci_mmio, notify):
2108 vq = vq_by_num(d, val);
2109 if (!vq)
2110 bad_driver(d, "Invalid vq notification on %u", val);
2111 /* Notify the process handling this vq by adding 1 to eventfd */
2112 write(vq->eventfd, "\1\0\0\0\0\0\0\0", 8);
2113 goto write_through16;
2114 case offsetof(struct virtio_pci_mmio, isr):
2115 bad_driver(d, "Unexpected write to isr");
2116 /* Weird corner case: write to emerg_wr of console */
2117 case sizeof(struct virtio_pci_mmio)
2118 + offsetof(struct virtio_console_config, emerg_wr):
2119 if (strcmp(d->name, "console") == 0) {
2120 char c = val;
2121 write(STDOUT_FILENO, &c, 1);
2122 goto write_through32;
2123 }
2124 /* Fall through... */
2125 default:
2126 /*
2127 * 4.1.4.3.2:
2128 *
2129 * The driver MUST NOT write to device_feature, num_queues,
2130 * config_generation or queue_notify_off.
2131 */
2132 bad_driver(d, "Unexpected write to offset %u", off);
2133 }
2134
2135 feature_write_through32:
2136 /*
2137 * 3.1.1:
2138 *
2139 * The driver MUST follow this sequence to initialize a device:
2140 *...
2141 * - Set the DRIVER status bit: the guest OS knows how
2142 * to drive the device.
2143 * - Read device feature bits, and write the subset
2144 * of feature bits understood by the OS and driver
2145 * to the device.
2146 *...
2147 * - Set the FEATURES_OK status bit. The driver MUST not
2148 * accept new feature bits after this step.
2149 */
2150 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER))
2151 bad_driver(d, "feature write before VIRTIO_CONFIG_S_DRIVER");
2152 if (d->mmio->cfg.device_status & VIRTIO_CONFIG_S_FEATURES_OK)
2153 bad_driver(d, "feature write after VIRTIO_CONFIG_S_FEATURES_OK");
2154
2155 /*
2156 * 4.1.3.1:
2157 *
2158 * The driver MUST access each field using the “natural” access
2159 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2160 * 16-bit fields and 8-bit accesses for 8-bit fields.
2161 */
2162 write_through32:
2163 if (mask != 0xFFFFFFFF) {
2164 bad_driver(d, "non-32-bit write to offset %u (%#x)",
2165 off, getreg(eip));
2166 return;
2167 }
2168 memcpy((char *)d->mmio + off, &val, 4);
2169 return;
2170
2171 write_through16:
2172 if (mask != 0xFFFF)
2173 bad_driver(d, "non-16-bit write to offset %u (%#x)",
2174 off, getreg(eip));
2175 memcpy((char *)d->mmio + off, &val, 2);
2176 return;
2177
2178 write_through8:
2179 if (mask != 0xFF)
2180 bad_driver(d, "non-8-bit write to offset %u (%#x)",
2181 off, getreg(eip));
2182 memcpy((char *)d->mmio + off, &val, 1);
2183 return;
2184 }
2185
2186 static u32 emulate_mmio_read(struct device *d, u32 off, u32 mask)
2187 {
2188 u8 isr;
2189 u32 val = 0;
2190
2191 switch (off) {
2192 case offsetof(struct virtio_pci_mmio, cfg.device_feature_select):
2193 case offsetof(struct virtio_pci_mmio, cfg.device_feature):
2194 case offsetof(struct virtio_pci_mmio, cfg.guest_feature_select):
2195 case offsetof(struct virtio_pci_mmio, cfg.guest_feature):
2196 /*
2197 * 3.1.1:
2198 *
2199 * The driver MUST follow this sequence to initialize a device:
2200 *...
2201 * - Set the DRIVER status bit: the guest OS knows how
2202 * to drive the device.
2203 * - Read device feature bits, and write the subset
2204 * of feature bits understood by the OS and driver
2205 * to the device.
2206 */
2207 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER))
2208 bad_driver(d,
2209 "feature read before VIRTIO_CONFIG_S_DRIVER");
2210 goto read_through32;
2211 case offsetof(struct virtio_pci_mmio, cfg.msix_config):
2212 bad_driver(d, "read of msix_config");
2213 case offsetof(struct virtio_pci_mmio, cfg.num_queues):
2214 goto read_through16;
2215 case offsetof(struct virtio_pci_mmio, cfg.device_status):
2216 /* As they did read, any write of FEATURES_OK is now fine. */
2217 d->wrote_features_ok = false;
2218 goto read_through8;
2219 case offsetof(struct virtio_pci_mmio, cfg.config_generation):
2220 /*
2221 * 4.1.4.3.1:
2222 *
2223 * The device MUST present a changed config_generation after
2224 * the driver has read a device-specific configuration value
2225 * which has changed since any part of the device-specific
2226 * configuration was last read.
2227 *
2228 * This is simple: none of our devices change config, so this
2229 * is always 0.
2230 */
2231 goto read_through8;
2232 case offsetof(struct virtio_pci_mmio, notify):
2233 /*
2234 * 3.1.1:
2235 *
2236 * The driver MUST NOT notify the device before setting
2237 * DRIVER_OK.
2238 */
2239 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER_OK))
2240 bad_driver(d, "notify before VIRTIO_CONFIG_S_DRIVER_OK");
2241 goto read_through16;
2242 case offsetof(struct virtio_pci_mmio, isr):
2243 if (mask != 0xFF)
2244 bad_driver(d, "non-8-bit read from offset %u (%#x)",
2245 off, getreg(eip));
2246 isr = d->mmio->isr;
2247 /*
2248 * 4.1.4.5.1:
2249 *
2250 * The device MUST reset ISR status to 0 on driver read.
2251 */
2252 d->mmio->isr = 0;
2253 return isr;
2254 case offsetof(struct virtio_pci_mmio, padding):
2255 bad_driver(d, "read from padding (%#x)", getreg(eip));
2256 default:
2257 /* Read from device config space, beware unaligned overflow */
2258 if (off > d->mmio_size - 4)
2259 bad_driver(d, "read past end (%#x)", getreg(eip));
2260
2261 /*
2262 * 3.1.1:
2263 * The driver MUST follow this sequence to initialize a device:
2264 *...
2265 * 3. Set the DRIVER status bit: the guest OS knows how to
2266 * drive the device.
2267 * 4. Read device feature bits, and write the subset of
2268 * feature bits understood by the OS and driver to the
2269 * device. During this step the driver MAY read (but MUST NOT
2270 * write) the device-specific configuration fields to check
2271 * that it can support the device before accepting it.
2272 */
2273 if (!(d->mmio->cfg.device_status & VIRTIO_CONFIG_S_DRIVER))
2274 bad_driver(d,
2275 "config read before VIRTIO_CONFIG_S_DRIVER");
2276
2277 if (mask == 0xFFFFFFFF)
2278 goto read_through32;
2279 else if (mask == 0xFFFF)
2280 goto read_through16;
2281 else
2282 goto read_through8;
2283 }
2284
2285 /*
2286 * 4.1.3.1:
2287 *
2288 * The driver MUST access each field using the “natural” access
2289 * method, i.e. 32-bit accesses for 32-bit fields, 16-bit accesses for
2290 * 16-bit fields and 8-bit accesses for 8-bit fields.
2291 */
2292 read_through32:
2293 if (mask != 0xFFFFFFFF)
2294 bad_driver(d, "non-32-bit read to offset %u (%#x)",
2295 off, getreg(eip));
2296 memcpy(&val, (char *)d->mmio + off, 4);
2297 return val;
2298
2299 read_through16:
2300 if (mask != 0xFFFF)
2301 bad_driver(d, "non-16-bit read to offset %u (%#x)",
2302 off, getreg(eip));
2303 memcpy(&val, (char *)d->mmio + off, 2);
2304 return val;
2305
2306 read_through8:
2307 if (mask != 0xFF)
2308 bad_driver(d, "non-8-bit read to offset %u (%#x)",
2309 off, getreg(eip));
2310 memcpy(&val, (char *)d->mmio + off, 1);
2311 return val;
2312 }
2313
2314 static void emulate_mmio(unsigned long paddr, const u8 *insn)
2315 {
2316 u32 val, off, mask = 0xFFFFFFFF, insnlen = 0;
2317 struct device *d = find_mmio_region(paddr, &off);
2318 unsigned long args[] = { LHREQ_TRAP, 14 };
2319
2320 if (!d) {
2321 warnx("MMIO touching %#08lx (not a device)", paddr);
2322 goto reinject;
2323 }
2324
2325 /* Prefix makes it a 16 bit op */
2326 if (insn[0] == 0x66) {
2327 mask = 0xFFFF;
2328 insnlen++;
2329 }
2330
2331 /* iowrite */
2332 if (insn[insnlen] == 0x89) {
2333 /* Next byte is r/m byte: bits 3-5 are register. */
2334 val = getreg_num((insn[insnlen+1] >> 3) & 0x7, mask);
2335 emulate_mmio_write(d, off, val, mask);
2336 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
2337 } else if (insn[insnlen] == 0x8b) { /* ioread */
2338 /* Next byte is r/m byte: bits 3-5 are register. */
2339 val = emulate_mmio_read(d, off, mask);
2340 setreg_num((insn[insnlen+1] >> 3) & 0x7, val, mask);
2341 insnlen += 2 + insn_displacement_len(insn[insnlen+1]);
2342 } else if (insn[0] == 0x88) { /* 8-bit iowrite */
2343 mask = 0xff;
2344 /* Next byte is r/m byte: bits 3-5 are register. */
2345 val = getreg_num((insn[1] >> 3) & 0x7, mask);
2346 emulate_mmio_write(d, off, val, mask);
2347 insnlen = 2 + insn_displacement_len(insn[1]);
2348 } else if (insn[0] == 0x8a) { /* 8-bit ioread */
2349 mask = 0xff;
2350 val = emulate_mmio_read(d, off, mask);
2351 setreg_num((insn[1] >> 3) & 0x7, val, mask);
2352 insnlen = 2 + insn_displacement_len(insn[1]);
2353 } else {
2354 warnx("Unknown MMIO instruction touching %#08lx:"
2355 " %02x %02x %02x %02x at %u",
2356 paddr, insn[0], insn[1], insn[2], insn[3], getreg(eip));
2357 reinject:
2358 /* Inject trap into Guest. */
2359 if (write(lguest_fd, args, sizeof(args)) < 0)
2360 err(1, "Reinjecting trap 14 for fault at %#x",
2361 getreg(eip));
2362 return;
2363 }
2364
2365 /* Finally, we've "done" the instruction, so move past it. */
2366 setreg(eip, getreg(eip) + insnlen);
2367 }
2368
2369 /*L:190
2370 * Device Setup
2371 *
2372 * All devices need a descriptor so the Guest knows it exists, and a "struct
2373 * device" so the Launcher can keep track of it. We have common helper
2374 * routines to allocate and manage them.
2375 */
2376 static void add_pci_virtqueue(struct device *dev,
2377 void (*service)(struct virtqueue *),
2378 const char *name)
2379 {
2380 struct virtqueue **i, *vq = malloc(sizeof(*vq));
2381
2382 /* Initialize the virtqueue */
2383 vq->next = NULL;
2384 vq->last_avail_idx = 0;
2385 vq->dev = dev;
2386 vq->name = name;
2387
2388 /*
2389 * This is the routine the service thread will run, and its Process ID
2390 * once it's running.
2391 */
2392 vq->service = service;
2393 vq->thread = (pid_t)-1;
2394
2395 /* Initialize the configuration. */
2396 reset_vq_pci_config(vq);
2397 vq->pci_config.queue_notify_off = 0;
2398
2399 /* Add one to the number of queues */
2400 vq->dev->mmio->cfg.num_queues++;
2401
2402 /*
2403 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
2404 * second.
2405 */
2406 for (i = &dev->vq; *i; i = &(*i)->next);
2407 *i = vq;
2408 }
2409
2410 /* The Guest accesses the feature bits via the PCI common config MMIO region */
2411 static void add_pci_feature(struct device *dev, unsigned bit)
2412 {
2413 dev->features |= (1ULL << bit);
2414 }
2415
2416 /* For devices with no config. */
2417 static void no_device_config(struct device *dev)
2418 {
2419 dev->mmio_addr = get_mmio_region(dev->mmio_size);
2420
2421 dev->config.bar[0] = dev->mmio_addr;
2422 /* Bottom 4 bits must be zero */
2423 assert(~(dev->config.bar[0] & 0xF));
2424 }
2425
2426 /* This puts the device config into BAR0 */
2427 static void set_device_config(struct device *dev, const void *conf, size_t len)
2428 {
2429 /* Set up BAR 0 */
2430 dev->mmio_size += len;
2431 dev->mmio = realloc(dev->mmio, dev->mmio_size);
2432 memcpy(dev->mmio + 1, conf, len);
2433
2434 /*
2435 * 4.1.4.6:
2436 *
2437 * The device MUST present at least one VIRTIO_PCI_CAP_DEVICE_CFG
2438 * capability for any device type which has a device-specific
2439 * configuration.
2440 */
2441 /* Hook up device cfg */
2442 dev->config.cfg_access.cap.cap_next
2443 = offsetof(struct pci_config, device);
2444
2445 /*
2446 * 4.1.4.6.1:
2447 *
2448 * The offset for the device-specific configuration MUST be 4-byte
2449 * aligned.
2450 */
2451 assert(dev->config.cfg_access.cap.cap_next % 4 == 0);
2452
2453 /* Fix up device cfg field length. */
2454 dev->config.device.length = len;
2455
2456 /* The rest is the same as the no-config case */
2457 no_device_config(dev);
2458 }
2459
2460 static void init_cap(struct virtio_pci_cap *cap, size_t caplen, int type,
2461 size_t bar_offset, size_t bar_bytes, u8 next)
2462 {
2463 cap->cap_vndr = PCI_CAP_ID_VNDR;
2464 cap->cap_next = next;
2465 cap->cap_len = caplen;
2466 cap->cfg_type = type;
2467 cap->bar = 0;
2468 memset(cap->padding, 0, sizeof(cap->padding));
2469 cap->offset = bar_offset;
2470 cap->length = bar_bytes;
2471 }
2472
2473 /*
2474 * This sets up the pci_config structure, as defined in the virtio 1.0
2475 * standard (and PCI standard).
2476 */
2477 static void init_pci_config(struct pci_config *pci, u16 type,
2478 u8 class, u8 subclass)
2479 {
2480 size_t bar_offset, bar_len;
2481
2482 /*
2483 * 4.1.4.4.1:
2484 *
2485 * The device MUST either present notify_off_multiplier as an even
2486 * power of 2, or present notify_off_multiplier as 0.
2487 *
2488 * 2.1.2:
2489 *
2490 * The device MUST initialize device status to 0 upon reset.
2491 */
2492 memset(pci, 0, sizeof(*pci));
2493
2494 /* 4.1.2.1: Devices MUST have the PCI Vendor ID 0x1AF4 */
2495 pci->vendor_id = 0x1AF4;
2496 /* 4.1.2.1: ... PCI Device ID calculated by adding 0x1040 ... */
2497 pci->device_id = 0x1040 + type;
2498
2499 /*
2500 * PCI have specific codes for different types of devices.
2501 * Linux doesn't care, but it's a good clue for people looking
2502 * at the device.
2503 */
2504 pci->class = class;
2505 pci->subclass = subclass;
2506
2507 /*
2508 * 4.1.2.1:
2509 *
2510 * Non-transitional devices SHOULD have a PCI Revision ID of 1 or
2511 * higher
2512 */
2513 pci->revid = 1;
2514
2515 /*
2516 * 4.1.2.1:
2517 *
2518 * Non-transitional devices SHOULD have a PCI Subsystem Device ID of
2519 * 0x40 or higher.
2520 */
2521 pci->subsystem_device_id = 0x40;
2522
2523 /* We use our dummy interrupt controller, and irq_line is the irq */
2524 pci->irq_line = devices.next_irq++;
2525 pci->irq_pin = 0;
2526
2527 /* Support for extended capabilities. */
2528 pci->status = (1 << 4);
2529
2530 /* Link them in. */
2531 /*
2532 * 4.1.4.3.1:
2533 *
2534 * The device MUST present at least one common configuration
2535 * capability.
2536 */
2537 pci->capabilities = offsetof(struct pci_config, common);
2538
2539 /* 4.1.4.3.1 ... offset MUST be 4-byte aligned. */
2540 assert(pci->capabilities % 4 == 0);
2541
2542 bar_offset = offsetof(struct virtio_pci_mmio, cfg);
2543 bar_len = sizeof(((struct virtio_pci_mmio *)0)->cfg);
2544 init_cap(&pci->common, sizeof(pci->common), VIRTIO_PCI_CAP_COMMON_CFG,
2545 bar_offset, bar_len,
2546 offsetof(struct pci_config, notify));
2547
2548 /*
2549 * 4.1.4.4.1:
2550 *
2551 * The device MUST present at least one notification capability.
2552 */
2553 bar_offset += bar_len;
2554 bar_len = sizeof(((struct virtio_pci_mmio *)0)->notify);
2555
2556 /*
2557 * 4.1.4.4.1:
2558 *
2559 * The cap.offset MUST be 2-byte aligned.
2560 */
2561 assert(pci->common.cap_next % 2 == 0);
2562
2563 /* FIXME: Use a non-zero notify_off, for per-queue notification? */
2564 /*
2565 * 4.1.4.4.1:
2566 *
2567 * The value cap.length presented by the device MUST be at least 2 and
2568 * MUST be large enough to support queue notification offsets for all
2569 * supported queues in all possible configurations.
2570 */
2571 assert(bar_len >= 2);
2572
2573 init_cap(&pci->notify.cap, sizeof(pci->notify),
2574 VIRTIO_PCI_CAP_NOTIFY_CFG,
2575 bar_offset, bar_len,
2576 offsetof(struct pci_config, isr));
2577
2578 bar_offset += bar_len;
2579 bar_len = sizeof(((struct virtio_pci_mmio *)0)->isr);
2580 /*
2581 * 4.1.4.5.1:
2582 *
2583 * The device MUST present at least one VIRTIO_PCI_CAP_ISR_CFG
2584 * capability.
2585 */
2586 init_cap(&pci->isr, sizeof(pci->isr),
2587 VIRTIO_PCI_CAP_ISR_CFG,
2588 bar_offset, bar_len,
2589 offsetof(struct pci_config, cfg_access));
2590
2591 /*
2592 * 4.1.4.7.1:
2593 *
2594 * The device MUST present at least one VIRTIO_PCI_CAP_PCI_CFG
2595 * capability.
2596 */
2597 /* This doesn't have any presence in the BAR */
2598 init_cap(&pci->cfg_access.cap, sizeof(pci->cfg_access),
2599 VIRTIO_PCI_CAP_PCI_CFG,
2600 0, 0, 0);
2601
2602 bar_offset += bar_len + sizeof(((struct virtio_pci_mmio *)0)->padding);
2603 assert(bar_offset == sizeof(struct virtio_pci_mmio));
2604
2605 /*
2606 * This gets sewn in and length set in set_device_config().
2607 * Some devices don't have a device configuration interface, so
2608 * we never expose this if we don't call set_device_config().
2609 */
2610 init_cap(&pci->device, sizeof(pci->device), VIRTIO_PCI_CAP_DEVICE_CFG,
2611 bar_offset, 0, 0);
2612 }
2613
2614 /*
2615 * This routine does all the creation and setup of a new device, but we don't
2616 * actually place the MMIO region until we know the size (if any) of the
2617 * device-specific config. And we don't actually start the service threads
2618 * until later.
2619 *
2620 * See what I mean about userspace being boring?
2621 */
2622 static struct device *new_pci_device(const char *name, u16 type,
2623 u8 class, u8 subclass)
2624 {
2625 struct device *dev = malloc(sizeof(*dev));
2626
2627 /* Now we populate the fields one at a time. */
2628 dev->name = name;
2629 dev->vq = NULL;
2630 dev->running = false;
2631 dev->wrote_features_ok = false;
2632 dev->mmio_size = sizeof(struct virtio_pci_mmio);
2633 dev->mmio = calloc(1, dev->mmio_size);
2634 dev->features = (u64)1 << VIRTIO_F_VERSION_1;
2635 dev->features_accepted = 0;
2636
2637 if (devices.device_num + 1 >= MAX_PCI_DEVICES)
2638 errx(1, "Can only handle 31 PCI devices");
2639
2640 init_pci_config(&dev->config, type, class, subclass);
2641 assert(!devices.pci[devices.device_num+1]);
2642 devices.pci[++devices.device_num] = dev;
2643
2644 return dev;
2645 }
2646
2647 /*
2648 * Our first setup routine is the console. It's a fairly simple device, but
2649 * UNIX tty handling makes it uglier than it could be.
2650 */
2651 static void setup_console(void)
2652 {
2653 struct device *dev;
2654 struct virtio_console_config conf;
2655
2656 /* If we can save the initial standard input settings... */
2657 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
2658 struct termios term = orig_term;
2659 /*
2660 * Then we turn off echo, line buffering and ^C etc: We want a
2661 * raw input stream to the Guest.
2662 */
2663 term.c_lflag &= ~(ISIG|ICANON|ECHO);
2664 tcsetattr(STDIN_FILENO, TCSANOW, &term);
2665 }
2666
2667 dev = new_pci_device("console", VIRTIO_ID_CONSOLE, 0x07, 0x00);
2668
2669 /* We store the console state in dev->priv, and initialize it. */
2670 dev->priv = malloc(sizeof(struct console_abort));
2671 ((struct console_abort *)dev->priv)->count = 0;
2672
2673 /*
2674 * The console needs two virtqueues: the input then the output. When
2675 * they put something the input queue, we make sure we're listening to
2676 * stdin. When they put something in the output queue, we write it to
2677 * stdout.
2678 */
2679 add_pci_virtqueue(dev, console_input, "input");
2680 add_pci_virtqueue(dev, console_output, "output");
2681
2682 /* We need a configuration area for the emerg_wr early writes. */
2683 add_pci_feature(dev, VIRTIO_CONSOLE_F_EMERG_WRITE);
2684 set_device_config(dev, &conf, sizeof(conf));
2685
2686 verbose("device %u: console\n", devices.device_num);
2687 }
2688 /*:*/
2689
2690 /*M:010
2691 * Inter-guest networking is an interesting area. Simplest is to have a
2692 * --sharenet=<name> option which opens or creates a named pipe. This can be
2693 * used to send packets to another guest in a 1:1 manner.
2694 *
2695 * More sophisticated is to use one of the tools developed for project like UML
2696 * to do networking.
2697 *
2698 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
2699 * completely generic ("here's my vring, attach to your vring") and would work
2700 * for any traffic. Of course, namespace and permissions issues need to be
2701 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
2702 * multiple inter-guest channels behind one interface, although it would
2703 * require some manner of hotplugging new virtio channels.
2704 *
2705 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2706 :*/
2707
2708 static u32 str2ip(const char *ipaddr)
2709 {
2710 unsigned int b[4];
2711
2712 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
2713 errx(1, "Failed to parse IP address '%s'", ipaddr);
2714 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
2715 }
2716
2717 static void str2mac(const char *macaddr, unsigned char mac[6])
2718 {
2719 unsigned int m[6];
2720 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
2721 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
2722 errx(1, "Failed to parse mac address '%s'", macaddr);
2723 mac[0] = m[0];
2724 mac[1] = m[1];
2725 mac[2] = m[2];
2726 mac[3] = m[3];
2727 mac[4] = m[4];
2728 mac[5] = m[5];
2729 }
2730
2731 /*
2732 * This code is "adapted" from libbridge: it attaches the Host end of the
2733 * network device to the bridge device specified by the command line.
2734 *
2735 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2736 * dislike bridging), and I just try not to break it.
2737 */
2738 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
2739 {
2740 int ifidx;
2741 struct ifreq ifr;
2742
2743 if (!*br_name)
2744 errx(1, "must specify bridge name");
2745
2746 ifidx = if_nametoindex(if_name);
2747 if (!ifidx)
2748 errx(1, "interface %s does not exist!", if_name);
2749
2750 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
2751 ifr.ifr_name[IFNAMSIZ-1] = '\0';
2752 ifr.ifr_ifindex = ifidx;
2753 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
2754 err(1, "can't add %s to bridge %s", if_name, br_name);
2755 }
2756
2757 /*
2758 * This sets up the Host end of the network device with an IP address, brings
2759 * it up so packets will flow, the copies the MAC address into the hwaddr
2760 * pointer.
2761 */
2762 static void configure_device(int fd, const char *tapif, u32 ipaddr)
2763 {
2764 struct ifreq ifr;
2765 struct sockaddr_in sin;
2766
2767 memset(&ifr, 0, sizeof(ifr));
2768 strcpy(ifr.ifr_name, tapif);
2769
2770 /* Don't read these incantations. Just cut & paste them like I did! */
2771 sin.sin_family = AF_INET;
2772 sin.sin_addr.s_addr = htonl(ipaddr);
2773 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
2774 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
2775 err(1, "Setting %s interface address", tapif);
2776 ifr.ifr_flags = IFF_UP;
2777 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
2778 err(1, "Bringing interface %s up", tapif);
2779 }
2780
2781 static int get_tun_device(char tapif[IFNAMSIZ])
2782 {
2783 struct ifreq ifr;
2784 int vnet_hdr_sz;
2785 int netfd;
2786
2787 /* Start with this zeroed. Messy but sure. */
2788 memset(&ifr, 0, sizeof(ifr));
2789
2790 /*
2791 * We open the /dev/net/tun device and tell it we want a tap device. A
2792 * tap device is like a tun device, only somehow different. To tell
2793 * the truth, I completely blundered my way through this code, but it
2794 * works now!
2795 */
2796 netfd = open_or_die("/dev/net/tun", O_RDWR);
2797 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
2798 strcpy(ifr.ifr_name, "tap%d");
2799 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
2800 err(1, "configuring /dev/net/tun");
2801
2802 if (ioctl(netfd, TUNSETOFFLOAD,
2803 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
2804 err(1, "Could not set features for tun device");
2805
2806 /*
2807 * We don't need checksums calculated for packets coming in this
2808 * device: trust us!
2809 */
2810 ioctl(netfd, TUNSETNOCSUM, 1);
2811
2812 /*
2813 * In virtio before 1.0 (aka legacy virtio), we added a 16-bit
2814 * field at the end of the network header iff
2815 * VIRTIO_NET_F_MRG_RXBUF was negotiated. For virtio 1.0,
2816 * that became the norm, but we need to tell the tun device
2817 * about our expanded header (which is called
2818 * virtio_net_hdr_mrg_rxbuf in the legacy system).
2819 */
2820 vnet_hdr_sz = sizeof(struct virtio_net_hdr_v1);
2821 if (ioctl(netfd, TUNSETVNETHDRSZ, &vnet_hdr_sz) != 0)
2822 err(1, "Setting tun header size to %u", vnet_hdr_sz);
2823
2824 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
2825 return netfd;
2826 }
2827
2828 /*L:195
2829 * Our network is a Host<->Guest network. This can either use bridging or
2830 * routing, but the principle is the same: it uses the "tun" device to inject
2831 * packets into the Host as if they came in from a normal network card. We
2832 * just shunt packets between the Guest and the tun device.
2833 */
2834 static void setup_tun_net(char *arg)
2835 {
2836 struct device *dev;
2837 struct net_info *net_info = malloc(sizeof(*net_info));
2838 int ipfd;
2839 u32 ip = INADDR_ANY;
2840 bool bridging = false;
2841 char tapif[IFNAMSIZ], *p;
2842 struct virtio_net_config conf;
2843
2844 net_info->tunfd = get_tun_device(tapif);
2845
2846 /* First we create a new network device. */
2847 dev = new_pci_device("net", VIRTIO_ID_NET, 0x02, 0x00);
2848 dev->priv = net_info;
2849
2850 /* Network devices need a recv and a send queue, just like console. */
2851 add_pci_virtqueue(dev, net_input, "rx");
2852 add_pci_virtqueue(dev, net_output, "tx");
2853
2854 /*
2855 * We need a socket to perform the magic network ioctls to bring up the
2856 * tap interface, connect to the bridge etc. Any socket will do!
2857 */
2858 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
2859 if (ipfd < 0)
2860 err(1, "opening IP socket");
2861
2862 /* If the command line was --tunnet=bridge:<name> do bridging. */
2863 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
2864 arg += strlen(BRIDGE_PFX);
2865 bridging = true;
2866 }
2867
2868 /* A mac address may follow the bridge name or IP address */
2869 p = strchr(arg, ':');
2870 if (p) {
2871 str2mac(p+1, conf.mac);
2872 add_pci_feature(dev, VIRTIO_NET_F_MAC);
2873 *p = '\0';
2874 }
2875
2876 /* arg is now either an IP address or a bridge name */
2877 if (bridging)
2878 add_to_bridge(ipfd, tapif, arg);
2879 else
2880 ip = str2ip(arg);
2881
2882 /* Set up the tun device. */
2883 configure_device(ipfd, tapif, ip);
2884
2885 /* Expect Guest to handle everything except UFO */
2886 add_pci_feature(dev, VIRTIO_NET_F_CSUM);
2887 add_pci_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
2888 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
2889 add_pci_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
2890 add_pci_feature(dev, VIRTIO_NET_F_GUEST_ECN);
2891 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO4);
2892 add_pci_feature(dev, VIRTIO_NET_F_HOST_TSO6);
2893 add_pci_feature(dev, VIRTIO_NET_F_HOST_ECN);
2894 /* We handle indirect ring entries */
2895 add_pci_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
2896 set_device_config(dev, &conf, sizeof(conf));
2897
2898 /* We don't need the socket any more; setup is done. */
2899 close(ipfd);
2900
2901 if (bridging)
2902 verbose("device %u: tun %s attached to bridge: %s\n",
2903 devices.device_num, tapif, arg);
2904 else
2905 verbose("device %u: tun %s: %s\n",
2906 devices.device_num, tapif, arg);
2907 }
2908 /*:*/
2909
2910 /* This hangs off device->priv. */
2911 struct vblk_info {
2912 /* The size of the file. */
2913 off64_t len;
2914
2915 /* The file descriptor for the file. */
2916 int fd;
2917
2918 };
2919
2920 /*L:210
2921 * The Disk
2922 *
2923 * The disk only has one virtqueue, so it only has one thread. It is really
2924 * simple: the Guest asks for a block number and we read or write that position
2925 * in the file.
2926 *
2927 * Before we serviced each virtqueue in a separate thread, that was unacceptably
2928 * slow: the Guest waits until the read is finished before running anything
2929 * else, even if it could have been doing useful work.
2930 *
2931 * We could have used async I/O, except it's reputed to suck so hard that
2932 * characters actually go missing from your code when you try to use it.
2933 */
2934 static void blk_request(struct virtqueue *vq)
2935 {
2936 struct vblk_info *vblk = vq->dev->priv;
2937 unsigned int head, out_num, in_num, wlen;
2938 int ret, i;
2939 u8 *in;
2940 struct virtio_blk_outhdr out;
2941 struct iovec iov[vq->vring.num];
2942 off64_t off;
2943
2944 /*
2945 * Get the next request, where we normally wait. It triggers the
2946 * interrupt to acknowledge previously serviced requests (if any).
2947 */
2948 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
2949
2950 /* Copy the output header from the front of the iov (adjusts iov) */
2951 iov_consume(vq->dev, iov, out_num, &out, sizeof(out));
2952
2953 /* Find and trim end of iov input array, for our status byte. */
2954 in = NULL;
2955 for (i = out_num + in_num - 1; i >= out_num; i--) {
2956 if (iov[i].iov_len > 0) {
2957 in = iov[i].iov_base + iov[i].iov_len - 1;
2958 iov[i].iov_len--;
2959 break;
2960 }
2961 }
2962 if (!in)
2963 bad_driver_vq(vq, "Bad virtblk cmd with no room for status");
2964
2965 /*
2966 * For historical reasons, block operations are expressed in 512 byte
2967 * "sectors".
2968 */
2969 off = out.sector * 512;
2970
2971 if (out.type & VIRTIO_BLK_T_OUT) {
2972 /*
2973 * Write
2974 *
2975 * Move to the right location in the block file. This can fail
2976 * if they try to write past end.
2977 */
2978 if (lseek64(vblk->fd, off, SEEK_SET) != off)
2979 err(1, "Bad seek to sector %llu", out.sector);
2980
2981 ret = writev(vblk->fd, iov, out_num);
2982 verbose("WRITE to sector %llu: %i\n", out.sector, ret);
2983
2984 /*
2985 * Grr... Now we know how long the descriptor they sent was, we
2986 * make sure they didn't try to write over the end of the block
2987 * file (possibly extending it).
2988 */
2989 if (ret > 0 && off + ret > vblk->len) {
2990 /* Trim it back to the correct length */
2991 ftruncate64(vblk->fd, vblk->len);
2992 /* Die, bad Guest, die. */
2993 bad_driver_vq(vq, "Write past end %llu+%u", off, ret);
2994 }
2995
2996 wlen = sizeof(*in);
2997 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
2998 } else if (out.type & VIRTIO_BLK_T_FLUSH) {
2999 /* Flush */
3000 ret = fdatasync(vblk->fd);
3001 verbose("FLUSH fdatasync: %i\n", ret);
3002 wlen = sizeof(*in);
3003 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
3004 } else {
3005 /*
3006 * Read
3007 *
3008 * Move to the right location in the block file. This can fail
3009 * if they try to read past end.
3010 */
3011 if (lseek64(vblk->fd, off, SEEK_SET) != off)
3012 err(1, "Bad seek to sector %llu", out.sector);
3013
3014 ret = readv(vblk->fd, iov + out_num, in_num);
3015 if (ret >= 0) {
3016 wlen = sizeof(*in) + ret;
3017 *in = VIRTIO_BLK_S_OK;
3018 } else {
3019 wlen = sizeof(*in);
3020 *in = VIRTIO_BLK_S_IOERR;
3021 }
3022 }
3023
3024 /* Finished that request. */
3025 add_used(vq, head, wlen);
3026 }
3027
3028 /*L:198 This actually sets up a virtual block device. */
3029 static void setup_block_file(const char *filename)
3030 {
3031 struct device *dev;
3032 struct vblk_info *vblk;
3033 struct virtio_blk_config conf;
3034
3035 /* Create the device. */
3036 dev = new_pci_device("block", VIRTIO_ID_BLOCK, 0x01, 0x80);
3037
3038 /* The device has one virtqueue, where the Guest places requests. */
3039 add_pci_virtqueue(dev, blk_request, "request");
3040
3041 /* Allocate the room for our own bookkeeping */
3042 vblk = dev->priv = malloc(sizeof(*vblk));
3043
3044 /* First we open the file and store the length. */
3045 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
3046 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
3047
3048 /* Tell Guest how many sectors this device has. */
3049 conf.capacity = cpu_to_le64(vblk->len / 512);
3050
3051 /*
3052 * Tell Guest not to put in too many descriptors at once: two are used
3053 * for the in and out elements.
3054 */
3055 add_pci_feature(dev, VIRTIO_BLK_F_SEG_MAX);
3056 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
3057
3058 set_device_config(dev, &conf, sizeof(struct virtio_blk_config));
3059
3060 verbose("device %u: virtblock %llu sectors\n",
3061 devices.device_num, le64_to_cpu(conf.capacity));
3062 }
3063
3064 /*L:211
3065 * Our random number generator device reads from /dev/urandom into the Guest's
3066 * input buffers. The usual case is that the Guest doesn't want random numbers
3067 * and so has no buffers although /dev/urandom is still readable, whereas
3068 * console is the reverse.
3069 *
3070 * The same logic applies, however.
3071 */
3072 struct rng_info {
3073 int rfd;
3074 };
3075
3076 static void rng_input(struct virtqueue *vq)
3077 {
3078 int len;
3079 unsigned int head, in_num, out_num, totlen = 0;
3080 struct rng_info *rng_info = vq->dev->priv;
3081 struct iovec iov[vq->vring.num];
3082
3083 /* First we need a buffer from the Guests's virtqueue. */
3084 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
3085 if (out_num)
3086 bad_driver_vq(vq, "Output buffers in rng?");
3087
3088 /*
3089 * Just like the console write, we loop to cover the whole iovec.
3090 * In this case, short reads actually happen quite a bit.
3091 */
3092 while (!iov_empty(iov, in_num)) {
3093 len = readv(rng_info->rfd, iov, in_num);
3094 if (len <= 0)
3095 err(1, "Read from /dev/urandom gave %i", len);
3096 iov_consume(vq->dev, iov, in_num, NULL, len);
3097 totlen += len;
3098 }
3099
3100 /* Tell the Guest about the new input. */
3101 add_used(vq, head, totlen);
3102 }
3103
3104 /*L:199
3105 * This creates a "hardware" random number device for the Guest.
3106 */
3107 static void setup_rng(void)
3108 {
3109 struct device *dev;
3110 struct rng_info *rng_info = malloc(sizeof(*rng_info));
3111
3112 /* Our device's private info simply contains the /dev/urandom fd. */
3113 rng_info->rfd = open_or_die("/dev/urandom", O_RDONLY);
3114
3115 /* Create the new device. */
3116 dev = new_pci_device("rng", VIRTIO_ID_RNG, 0xff, 0);
3117 dev->priv = rng_info;
3118
3119 /* The device has one virtqueue, where the Guest places inbufs. */
3120 add_pci_virtqueue(dev, rng_input, "input");
3121
3122 /* We don't have any configuration space */
3123 no_device_config(dev);
3124
3125 verbose("device %u: rng\n", devices.device_num);
3126 }
3127 /* That's the end of device setup. */
3128
3129 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
3130 static void __attribute__((noreturn)) restart_guest(void)
3131 {
3132 unsigned int i;
3133
3134 /*
3135 * Since we don't track all open fds, we simply close everything beyond
3136 * stderr.
3137 */
3138 for (i = 3; i < FD_SETSIZE; i++)
3139 close(i);
3140
3141 /* Reset all the devices (kills all threads). */
3142 cleanup_devices();
3143
3144 execv(main_args[0], main_args);
3145 err(1, "Could not exec %s", main_args[0]);
3146 }
3147
3148 /*L:220
3149 * Finally we reach the core of the Launcher which runs the Guest, serves
3150 * its input and output, and finally, lays it to rest.
3151 */
3152 static void __attribute__((noreturn)) run_guest(void)
3153 {
3154 for (;;) {
3155 struct lguest_pending notify;
3156 int readval;
3157
3158 /* We read from the /dev/lguest device to run the Guest. */
3159 readval = pread(lguest_fd, &notify, sizeof(notify), cpu_id);
3160 if (readval == sizeof(notify)) {
3161 if (notify.trap == 13) {
3162 verbose("Emulating instruction at %#x\n",
3163 getreg(eip));
3164 emulate_insn(notify.insn);
3165 } else if (notify.trap == 14) {
3166 verbose("Emulating MMIO at %#x\n",
3167 getreg(eip));
3168 emulate_mmio(notify.addr, notify.insn);
3169 } else
3170 errx(1, "Unknown trap %i addr %#08x\n",
3171 notify.trap, notify.addr);
3172 /* ENOENT means the Guest died. Reading tells us why. */
3173 } else if (errno == ENOENT) {
3174 char reason[1024] = { 0 };
3175 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
3176 errx(1, "%s", reason);
3177 /* ERESTART means that we need to reboot the guest */
3178 } else if (errno == ERESTART) {
3179 restart_guest();
3180 /* Anything else means a bug or incompatible change. */
3181 } else
3182 err(1, "Running guest failed");
3183 }
3184 }
3185 /*L:240
3186 * This is the end of the Launcher. The good news: we are over halfway
3187 * through! The bad news: the most fiendish part of the code still lies ahead
3188 * of us.
3189 *
3190 * Are you ready? Take a deep breath and join me in the core of the Host, in
3191 * "make Host".
3192 :*/
3193
3194 static struct option opts[] = {
3195 { "verbose", 0, NULL, 'v' },
3196 { "tunnet", 1, NULL, 't' },
3197 { "block", 1, NULL, 'b' },
3198 { "rng", 0, NULL, 'r' },
3199 { "initrd", 1, NULL, 'i' },
3200 { "username", 1, NULL, 'u' },
3201 { "chroot", 1, NULL, 'c' },
3202 { NULL },
3203 };
3204 static void usage(void)
3205 {
3206 errx(1, "Usage: lguest [--verbose] "
3207 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
3208 "|--block=<filename>|--initrd=<filename>]...\n"
3209 "<mem-in-mb> vmlinux [args...]");
3210 }
3211
3212 /*L:105 The main routine is where the real work begins: */
3213 int main(int argc, char *argv[])
3214 {
3215 /* Memory, code startpoint and size of the (optional) initrd. */
3216 unsigned long mem = 0, start, initrd_size = 0;
3217 /* Two temporaries. */
3218 int i, c;
3219 /* The boot information for the Guest. */
3220 struct boot_params *boot;
3221 /* If they specify an initrd file to load. */
3222 const char *initrd_name = NULL;
3223
3224 /* Password structure for initgroups/setres[gu]id */
3225 struct passwd *user_details = NULL;
3226
3227 /* Directory to chroot to */
3228 char *chroot_path = NULL;
3229
3230 /* Save the args: we "reboot" by execing ourselves again. */
3231 main_args = argv;
3232
3233 /*
3234 * First we initialize the device list. We remember next interrupt
3235 * number to use for devices (1: remember that 0 is used by the timer).
3236 */
3237 devices.next_irq = 1;
3238
3239 /* We're CPU 0. In fact, that's the only CPU possible right now. */
3240 cpu_id = 0;
3241
3242 /*
3243 * We need to know how much memory so we can set up the device
3244 * descriptor and memory pages for the devices as we parse the command
3245 * line. So we quickly look through the arguments to find the amount
3246 * of memory now.
3247 */
3248 for (i = 1; i < argc; i++) {
3249 if (argv[i][0] != '-') {
3250 mem = atoi(argv[i]) * 1024 * 1024;
3251 /*
3252 * We start by mapping anonymous pages over all of
3253 * guest-physical memory range. This fills it with 0,
3254 * and ensures that the Guest won't be killed when it
3255 * tries to access it.
3256 */
3257 guest_base = map_zeroed_pages(mem / getpagesize()
3258 + DEVICE_PAGES);
3259 guest_limit = mem;
3260 guest_max = guest_mmio = mem + DEVICE_PAGES*getpagesize();
3261 break;
3262 }
3263 }
3264
3265 /* We always have a console device, and it's always device 1. */
3266 setup_console();
3267
3268 /* The options are fairly straight-forward */
3269 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
3270 switch (c) {
3271 case 'v':
3272 verbose = true;
3273 break;
3274 case 't':
3275 setup_tun_net(optarg);
3276 break;
3277 case 'b':
3278 setup_block_file(optarg);
3279 break;
3280 case 'r':
3281 setup_rng();
3282 break;
3283 case 'i':
3284 initrd_name = optarg;
3285 break;
3286 case 'u':
3287 user_details = getpwnam(optarg);
3288 if (!user_details)
3289 err(1, "getpwnam failed, incorrect username?");
3290 break;
3291 case 'c':
3292 chroot_path = optarg;
3293 break;
3294 default:
3295 warnx("Unknown argument %s", argv[optind]);
3296 usage();
3297 }
3298 }
3299 /*
3300 * After the other arguments we expect memory and kernel image name,
3301 * followed by command line arguments for the kernel.
3302 */
3303 if (optind + 2 > argc)
3304 usage();
3305
3306 verbose("Guest base is at %p\n", guest_base);
3307
3308 /* Initialize the (fake) PCI host bridge device. */
3309 init_pci_host_bridge();
3310
3311 /* Now we load the kernel */
3312 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
3313
3314 /* Boot information is stashed at physical address 0 */
3315 boot = from_guest_phys(0);
3316
3317 /* Map the initrd image if requested (at top of physical memory) */
3318 if (initrd_name) {
3319 initrd_size = load_initrd(initrd_name, mem);
3320 /*
3321 * These are the location in the Linux boot header where the
3322 * start and size of the initrd are expected to be found.
3323 */
3324 boot->hdr.ramdisk_image = mem - initrd_size;
3325 boot->hdr.ramdisk_size = initrd_size;
3326 /* The bootloader type 0xFF means "unknown"; that's OK. */
3327 boot->hdr.type_of_loader = 0xFF;
3328 }
3329
3330 /*
3331 * The Linux boot header contains an "E820" memory map: ours is a
3332 * simple, single region.
3333 */
3334 boot->e820_entries = 1;
3335 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
3336 /*
3337 * The boot header contains a command line pointer: we put the command
3338 * line after the boot header.
3339 */
3340 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
3341 /* We use a simple helper to copy the arguments separated by spaces. */
3342 concat((char *)(boot + 1), argv+optind+2);
3343
3344 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
3345 boot->hdr.kernel_alignment = 0x1000000;
3346
3347 /* Boot protocol version: 2.07 supports the fields for lguest. */
3348 boot->hdr.version = 0x207;
3349
3350 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
3351 boot->hdr.hardware_subarch = 1;
3352
3353 /* Tell the entry path not to try to reload segment registers. */
3354 boot->hdr.loadflags |= KEEP_SEGMENTS;
3355
3356 /* We tell the kernel to initialize the Guest. */
3357 tell_kernel(start);
3358
3359 /* Ensure that we terminate if a device-servicing child dies. */
3360 signal(SIGCHLD, kill_launcher);
3361
3362 /* If we exit via err(), this kills all the threads, restores tty. */
3363 atexit(cleanup_devices);
3364
3365 /* If requested, chroot to a directory */
3366 if (chroot_path) {
3367 if (chroot(chroot_path) != 0)
3368 err(1, "chroot(\"%s\") failed", chroot_path);
3369
3370 if (chdir("/") != 0)
3371 err(1, "chdir(\"/\") failed");
3372
3373 verbose("chroot done\n");
3374 }
3375
3376 /* If requested, drop privileges */
3377 if (user_details) {
3378 uid_t u;
3379 gid_t g;
3380
3381 u = user_details->pw_uid;
3382 g = user_details->pw_gid;
3383
3384 if (initgroups(user_details->pw_name, g) != 0)
3385 err(1, "initgroups failed");
3386
3387 if (setresgid(g, g, g) != 0)
3388 err(1, "setresgid failed");
3389
3390 if (setresuid(u, u, u) != 0)
3391 err(1, "setresuid failed");
3392
3393 verbose("Dropping privileges completed\n");
3394 }
3395
3396 /* Finally, run the Guest. This doesn't return. */
3397 run_guest();
3398 }
3399 /*:*/
3400
3401 /*M:999
3402 * Mastery is done: you now know everything I do.
3403 *
3404 * But surely you have seen code, features and bugs in your wanderings which
3405 * you now yearn to attack? That is the real game, and I look forward to you
3406 * patching and forking lguest into the Your-Name-Here-visor.
3407 *
3408 * Farewell, and good coding!
3409 * Rusty Russell.
3410 */