]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - tools/perf/builtin-sched.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-zesty-kernel.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 #include "util/stat.h"
17 #include "util/callchain.h"
18 #include "util/time-utils.h"
19
20 #include <subcmd/parse-options.h>
21 #include "util/trace-event.h"
22
23 #include "util/debug.h"
24
25 #include <linux/log2.h>
26 #include <sys/prctl.h>
27 #include <sys/resource.h>
28
29 #include <semaphore.h>
30 #include <pthread.h>
31 #include <math.h>
32 #include <api/fs/fs.h>
33 #include <linux/time64.h>
34
35 #define PR_SET_NAME 15 /* Set process name */
36 #define MAX_CPUS 4096
37 #define COMM_LEN 20
38 #define SYM_LEN 129
39 #define MAX_PID 1024000
40
41 struct sched_atom;
42
43 struct task_desc {
44 unsigned long nr;
45 unsigned long pid;
46 char comm[COMM_LEN];
47
48 unsigned long nr_events;
49 unsigned long curr_event;
50 struct sched_atom **atoms;
51
52 pthread_t thread;
53 sem_t sleep_sem;
54
55 sem_t ready_for_work;
56 sem_t work_done_sem;
57
58 u64 cpu_usage;
59 };
60
61 enum sched_event_type {
62 SCHED_EVENT_RUN,
63 SCHED_EVENT_SLEEP,
64 SCHED_EVENT_WAKEUP,
65 SCHED_EVENT_MIGRATION,
66 };
67
68 struct sched_atom {
69 enum sched_event_type type;
70 int specific_wait;
71 u64 timestamp;
72 u64 duration;
73 unsigned long nr;
74 sem_t *wait_sem;
75 struct task_desc *wakee;
76 };
77
78 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
79
80 enum thread_state {
81 THREAD_SLEEPING = 0,
82 THREAD_WAIT_CPU,
83 THREAD_SCHED_IN,
84 THREAD_IGNORE
85 };
86
87 struct work_atom {
88 struct list_head list;
89 enum thread_state state;
90 u64 sched_out_time;
91 u64 wake_up_time;
92 u64 sched_in_time;
93 u64 runtime;
94 };
95
96 struct work_atoms {
97 struct list_head work_list;
98 struct thread *thread;
99 struct rb_node node;
100 u64 max_lat;
101 u64 max_lat_at;
102 u64 total_lat;
103 u64 nb_atoms;
104 u64 total_runtime;
105 int num_merged;
106 };
107
108 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
109
110 struct perf_sched;
111
112 struct trace_sched_handler {
113 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
114 struct perf_sample *sample, struct machine *machine);
115
116 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
117 struct perf_sample *sample, struct machine *machine);
118
119 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
120 struct perf_sample *sample, struct machine *machine);
121
122 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
123 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
124 struct machine *machine);
125
126 int (*migrate_task_event)(struct perf_sched *sched,
127 struct perf_evsel *evsel,
128 struct perf_sample *sample,
129 struct machine *machine);
130 };
131
132 #define COLOR_PIDS PERF_COLOR_BLUE
133 #define COLOR_CPUS PERF_COLOR_BG_RED
134
135 struct perf_sched_map {
136 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
137 int *comp_cpus;
138 bool comp;
139 struct thread_map *color_pids;
140 const char *color_pids_str;
141 struct cpu_map *color_cpus;
142 const char *color_cpus_str;
143 struct cpu_map *cpus;
144 const char *cpus_str;
145 };
146
147 struct perf_sched {
148 struct perf_tool tool;
149 const char *sort_order;
150 unsigned long nr_tasks;
151 struct task_desc **pid_to_task;
152 struct task_desc **tasks;
153 const struct trace_sched_handler *tp_handler;
154 pthread_mutex_t start_work_mutex;
155 pthread_mutex_t work_done_wait_mutex;
156 int profile_cpu;
157 /*
158 * Track the current task - that way we can know whether there's any
159 * weird events, such as a task being switched away that is not current.
160 */
161 int max_cpu;
162 u32 curr_pid[MAX_CPUS];
163 struct thread *curr_thread[MAX_CPUS];
164 char next_shortname1;
165 char next_shortname2;
166 unsigned int replay_repeat;
167 unsigned long nr_run_events;
168 unsigned long nr_sleep_events;
169 unsigned long nr_wakeup_events;
170 unsigned long nr_sleep_corrections;
171 unsigned long nr_run_events_optimized;
172 unsigned long targetless_wakeups;
173 unsigned long multitarget_wakeups;
174 unsigned long nr_runs;
175 unsigned long nr_timestamps;
176 unsigned long nr_unordered_timestamps;
177 unsigned long nr_context_switch_bugs;
178 unsigned long nr_events;
179 unsigned long nr_lost_chunks;
180 unsigned long nr_lost_events;
181 u64 run_measurement_overhead;
182 u64 sleep_measurement_overhead;
183 u64 start_time;
184 u64 cpu_usage;
185 u64 runavg_cpu_usage;
186 u64 parent_cpu_usage;
187 u64 runavg_parent_cpu_usage;
188 u64 sum_runtime;
189 u64 sum_fluct;
190 u64 run_avg;
191 u64 all_runtime;
192 u64 all_count;
193 u64 cpu_last_switched[MAX_CPUS];
194 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
195 struct list_head sort_list, cmp_pid;
196 bool force;
197 bool skip_merge;
198 struct perf_sched_map map;
199
200 /* options for timehist command */
201 bool summary;
202 bool summary_only;
203 bool idle_hist;
204 bool show_callchain;
205 unsigned int max_stack;
206 bool show_cpu_visual;
207 bool show_wakeups;
208 bool show_migrations;
209 u64 skipped_samples;
210 const char *time_str;
211 struct perf_time_interval ptime;
212 struct perf_time_interval hist_time;
213 };
214
215 /* per thread run time data */
216 struct thread_runtime {
217 u64 last_time; /* time of previous sched in/out event */
218 u64 dt_run; /* run time */
219 u64 dt_wait; /* time between CPU access (off cpu) */
220 u64 dt_delay; /* time between wakeup and sched-in */
221 u64 ready_to_run; /* time of wakeup */
222
223 struct stats run_stats;
224 u64 total_run_time;
225
226 u64 migrations;
227 };
228
229 /* per event run time data */
230 struct evsel_runtime {
231 u64 *last_time; /* time this event was last seen per cpu */
232 u32 ncpu; /* highest cpu slot allocated */
233 };
234
235 /* per cpu idle time data */
236 struct idle_thread_runtime {
237 struct thread_runtime tr;
238 struct thread *last_thread;
239 struct rb_root sorted_root;
240 struct callchain_root callchain;
241 struct callchain_cursor cursor;
242 };
243
244 /* track idle times per cpu */
245 static struct thread **idle_threads;
246 static int idle_max_cpu;
247 static char idle_comm[] = "<idle>";
248
249 static u64 get_nsecs(void)
250 {
251 struct timespec ts;
252
253 clock_gettime(CLOCK_MONOTONIC, &ts);
254
255 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
256 }
257
258 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
259 {
260 u64 T0 = get_nsecs(), T1;
261
262 do {
263 T1 = get_nsecs();
264 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
265 }
266
267 static void sleep_nsecs(u64 nsecs)
268 {
269 struct timespec ts;
270
271 ts.tv_nsec = nsecs % 999999999;
272 ts.tv_sec = nsecs / 999999999;
273
274 nanosleep(&ts, NULL);
275 }
276
277 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
278 {
279 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
280 int i;
281
282 for (i = 0; i < 10; i++) {
283 T0 = get_nsecs();
284 burn_nsecs(sched, 0);
285 T1 = get_nsecs();
286 delta = T1-T0;
287 min_delta = min(min_delta, delta);
288 }
289 sched->run_measurement_overhead = min_delta;
290
291 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
292 }
293
294 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
295 {
296 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
297 int i;
298
299 for (i = 0; i < 10; i++) {
300 T0 = get_nsecs();
301 sleep_nsecs(10000);
302 T1 = get_nsecs();
303 delta = T1-T0;
304 min_delta = min(min_delta, delta);
305 }
306 min_delta -= 10000;
307 sched->sleep_measurement_overhead = min_delta;
308
309 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
310 }
311
312 static struct sched_atom *
313 get_new_event(struct task_desc *task, u64 timestamp)
314 {
315 struct sched_atom *event = zalloc(sizeof(*event));
316 unsigned long idx = task->nr_events;
317 size_t size;
318
319 event->timestamp = timestamp;
320 event->nr = idx;
321
322 task->nr_events++;
323 size = sizeof(struct sched_atom *) * task->nr_events;
324 task->atoms = realloc(task->atoms, size);
325 BUG_ON(!task->atoms);
326
327 task->atoms[idx] = event;
328
329 return event;
330 }
331
332 static struct sched_atom *last_event(struct task_desc *task)
333 {
334 if (!task->nr_events)
335 return NULL;
336
337 return task->atoms[task->nr_events - 1];
338 }
339
340 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
341 u64 timestamp, u64 duration)
342 {
343 struct sched_atom *event, *curr_event = last_event(task);
344
345 /*
346 * optimize an existing RUN event by merging this one
347 * to it:
348 */
349 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
350 sched->nr_run_events_optimized++;
351 curr_event->duration += duration;
352 return;
353 }
354
355 event = get_new_event(task, timestamp);
356
357 event->type = SCHED_EVENT_RUN;
358 event->duration = duration;
359
360 sched->nr_run_events++;
361 }
362
363 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
364 u64 timestamp, struct task_desc *wakee)
365 {
366 struct sched_atom *event, *wakee_event;
367
368 event = get_new_event(task, timestamp);
369 event->type = SCHED_EVENT_WAKEUP;
370 event->wakee = wakee;
371
372 wakee_event = last_event(wakee);
373 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
374 sched->targetless_wakeups++;
375 return;
376 }
377 if (wakee_event->wait_sem) {
378 sched->multitarget_wakeups++;
379 return;
380 }
381
382 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
383 sem_init(wakee_event->wait_sem, 0, 0);
384 wakee_event->specific_wait = 1;
385 event->wait_sem = wakee_event->wait_sem;
386
387 sched->nr_wakeup_events++;
388 }
389
390 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
391 u64 timestamp, u64 task_state __maybe_unused)
392 {
393 struct sched_atom *event = get_new_event(task, timestamp);
394
395 event->type = SCHED_EVENT_SLEEP;
396
397 sched->nr_sleep_events++;
398 }
399
400 static struct task_desc *register_pid(struct perf_sched *sched,
401 unsigned long pid, const char *comm)
402 {
403 struct task_desc *task;
404 static int pid_max;
405
406 if (sched->pid_to_task == NULL) {
407 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
408 pid_max = MAX_PID;
409 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
410 }
411 if (pid >= (unsigned long)pid_max) {
412 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
413 sizeof(struct task_desc *))) == NULL);
414 while (pid >= (unsigned long)pid_max)
415 sched->pid_to_task[pid_max++] = NULL;
416 }
417
418 task = sched->pid_to_task[pid];
419
420 if (task)
421 return task;
422
423 task = zalloc(sizeof(*task));
424 task->pid = pid;
425 task->nr = sched->nr_tasks;
426 strcpy(task->comm, comm);
427 /*
428 * every task starts in sleeping state - this gets ignored
429 * if there's no wakeup pointing to this sleep state:
430 */
431 add_sched_event_sleep(sched, task, 0, 0);
432
433 sched->pid_to_task[pid] = task;
434 sched->nr_tasks++;
435 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
436 BUG_ON(!sched->tasks);
437 sched->tasks[task->nr] = task;
438
439 if (verbose)
440 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
441
442 return task;
443 }
444
445
446 static void print_task_traces(struct perf_sched *sched)
447 {
448 struct task_desc *task;
449 unsigned long i;
450
451 for (i = 0; i < sched->nr_tasks; i++) {
452 task = sched->tasks[i];
453 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
454 task->nr, task->comm, task->pid, task->nr_events);
455 }
456 }
457
458 static void add_cross_task_wakeups(struct perf_sched *sched)
459 {
460 struct task_desc *task1, *task2;
461 unsigned long i, j;
462
463 for (i = 0; i < sched->nr_tasks; i++) {
464 task1 = sched->tasks[i];
465 j = i + 1;
466 if (j == sched->nr_tasks)
467 j = 0;
468 task2 = sched->tasks[j];
469 add_sched_event_wakeup(sched, task1, 0, task2);
470 }
471 }
472
473 static void perf_sched__process_event(struct perf_sched *sched,
474 struct sched_atom *atom)
475 {
476 int ret = 0;
477
478 switch (atom->type) {
479 case SCHED_EVENT_RUN:
480 burn_nsecs(sched, atom->duration);
481 break;
482 case SCHED_EVENT_SLEEP:
483 if (atom->wait_sem)
484 ret = sem_wait(atom->wait_sem);
485 BUG_ON(ret);
486 break;
487 case SCHED_EVENT_WAKEUP:
488 if (atom->wait_sem)
489 ret = sem_post(atom->wait_sem);
490 BUG_ON(ret);
491 break;
492 case SCHED_EVENT_MIGRATION:
493 break;
494 default:
495 BUG_ON(1);
496 }
497 }
498
499 static u64 get_cpu_usage_nsec_parent(void)
500 {
501 struct rusage ru;
502 u64 sum;
503 int err;
504
505 err = getrusage(RUSAGE_SELF, &ru);
506 BUG_ON(err);
507
508 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
509 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
510
511 return sum;
512 }
513
514 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
515 {
516 struct perf_event_attr attr;
517 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
518 int fd;
519 struct rlimit limit;
520 bool need_privilege = false;
521
522 memset(&attr, 0, sizeof(attr));
523
524 attr.type = PERF_TYPE_SOFTWARE;
525 attr.config = PERF_COUNT_SW_TASK_CLOCK;
526
527 force_again:
528 fd = sys_perf_event_open(&attr, 0, -1, -1,
529 perf_event_open_cloexec_flag());
530
531 if (fd < 0) {
532 if (errno == EMFILE) {
533 if (sched->force) {
534 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
535 limit.rlim_cur += sched->nr_tasks - cur_task;
536 if (limit.rlim_cur > limit.rlim_max) {
537 limit.rlim_max = limit.rlim_cur;
538 need_privilege = true;
539 }
540 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
541 if (need_privilege && errno == EPERM)
542 strcpy(info, "Need privilege\n");
543 } else
544 goto force_again;
545 } else
546 strcpy(info, "Have a try with -f option\n");
547 }
548 pr_err("Error: sys_perf_event_open() syscall returned "
549 "with %d (%s)\n%s", fd,
550 str_error_r(errno, sbuf, sizeof(sbuf)), info);
551 exit(EXIT_FAILURE);
552 }
553 return fd;
554 }
555
556 static u64 get_cpu_usage_nsec_self(int fd)
557 {
558 u64 runtime;
559 int ret;
560
561 ret = read(fd, &runtime, sizeof(runtime));
562 BUG_ON(ret != sizeof(runtime));
563
564 return runtime;
565 }
566
567 struct sched_thread_parms {
568 struct task_desc *task;
569 struct perf_sched *sched;
570 int fd;
571 };
572
573 static void *thread_func(void *ctx)
574 {
575 struct sched_thread_parms *parms = ctx;
576 struct task_desc *this_task = parms->task;
577 struct perf_sched *sched = parms->sched;
578 u64 cpu_usage_0, cpu_usage_1;
579 unsigned long i, ret;
580 char comm2[22];
581 int fd = parms->fd;
582
583 zfree(&parms);
584
585 sprintf(comm2, ":%s", this_task->comm);
586 prctl(PR_SET_NAME, comm2);
587 if (fd < 0)
588 return NULL;
589 again:
590 ret = sem_post(&this_task->ready_for_work);
591 BUG_ON(ret);
592 ret = pthread_mutex_lock(&sched->start_work_mutex);
593 BUG_ON(ret);
594 ret = pthread_mutex_unlock(&sched->start_work_mutex);
595 BUG_ON(ret);
596
597 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
598
599 for (i = 0; i < this_task->nr_events; i++) {
600 this_task->curr_event = i;
601 perf_sched__process_event(sched, this_task->atoms[i]);
602 }
603
604 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
605 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
606 ret = sem_post(&this_task->work_done_sem);
607 BUG_ON(ret);
608
609 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
610 BUG_ON(ret);
611 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
612 BUG_ON(ret);
613
614 goto again;
615 }
616
617 static void create_tasks(struct perf_sched *sched)
618 {
619 struct task_desc *task;
620 pthread_attr_t attr;
621 unsigned long i;
622 int err;
623
624 err = pthread_attr_init(&attr);
625 BUG_ON(err);
626 err = pthread_attr_setstacksize(&attr,
627 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
628 BUG_ON(err);
629 err = pthread_mutex_lock(&sched->start_work_mutex);
630 BUG_ON(err);
631 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
632 BUG_ON(err);
633 for (i = 0; i < sched->nr_tasks; i++) {
634 struct sched_thread_parms *parms = malloc(sizeof(*parms));
635 BUG_ON(parms == NULL);
636 parms->task = task = sched->tasks[i];
637 parms->sched = sched;
638 parms->fd = self_open_counters(sched, i);
639 sem_init(&task->sleep_sem, 0, 0);
640 sem_init(&task->ready_for_work, 0, 0);
641 sem_init(&task->work_done_sem, 0, 0);
642 task->curr_event = 0;
643 err = pthread_create(&task->thread, &attr, thread_func, parms);
644 BUG_ON(err);
645 }
646 }
647
648 static void wait_for_tasks(struct perf_sched *sched)
649 {
650 u64 cpu_usage_0, cpu_usage_1;
651 struct task_desc *task;
652 unsigned long i, ret;
653
654 sched->start_time = get_nsecs();
655 sched->cpu_usage = 0;
656 pthread_mutex_unlock(&sched->work_done_wait_mutex);
657
658 for (i = 0; i < sched->nr_tasks; i++) {
659 task = sched->tasks[i];
660 ret = sem_wait(&task->ready_for_work);
661 BUG_ON(ret);
662 sem_init(&task->ready_for_work, 0, 0);
663 }
664 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
665 BUG_ON(ret);
666
667 cpu_usage_0 = get_cpu_usage_nsec_parent();
668
669 pthread_mutex_unlock(&sched->start_work_mutex);
670
671 for (i = 0; i < sched->nr_tasks; i++) {
672 task = sched->tasks[i];
673 ret = sem_wait(&task->work_done_sem);
674 BUG_ON(ret);
675 sem_init(&task->work_done_sem, 0, 0);
676 sched->cpu_usage += task->cpu_usage;
677 task->cpu_usage = 0;
678 }
679
680 cpu_usage_1 = get_cpu_usage_nsec_parent();
681 if (!sched->runavg_cpu_usage)
682 sched->runavg_cpu_usage = sched->cpu_usage;
683 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
684
685 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
686 if (!sched->runavg_parent_cpu_usage)
687 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
688 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
689 sched->parent_cpu_usage)/sched->replay_repeat;
690
691 ret = pthread_mutex_lock(&sched->start_work_mutex);
692 BUG_ON(ret);
693
694 for (i = 0; i < sched->nr_tasks; i++) {
695 task = sched->tasks[i];
696 sem_init(&task->sleep_sem, 0, 0);
697 task->curr_event = 0;
698 }
699 }
700
701 static void run_one_test(struct perf_sched *sched)
702 {
703 u64 T0, T1, delta, avg_delta, fluct;
704
705 T0 = get_nsecs();
706 wait_for_tasks(sched);
707 T1 = get_nsecs();
708
709 delta = T1 - T0;
710 sched->sum_runtime += delta;
711 sched->nr_runs++;
712
713 avg_delta = sched->sum_runtime / sched->nr_runs;
714 if (delta < avg_delta)
715 fluct = avg_delta - delta;
716 else
717 fluct = delta - avg_delta;
718 sched->sum_fluct += fluct;
719 if (!sched->run_avg)
720 sched->run_avg = delta;
721 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
722
723 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
724
725 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
726
727 printf("cpu: %0.2f / %0.2f",
728 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
729
730 #if 0
731 /*
732 * rusage statistics done by the parent, these are less
733 * accurate than the sched->sum_exec_runtime based statistics:
734 */
735 printf(" [%0.2f / %0.2f]",
736 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
737 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
738 #endif
739
740 printf("\n");
741
742 if (sched->nr_sleep_corrections)
743 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
744 sched->nr_sleep_corrections = 0;
745 }
746
747 static void test_calibrations(struct perf_sched *sched)
748 {
749 u64 T0, T1;
750
751 T0 = get_nsecs();
752 burn_nsecs(sched, NSEC_PER_MSEC);
753 T1 = get_nsecs();
754
755 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
756
757 T0 = get_nsecs();
758 sleep_nsecs(NSEC_PER_MSEC);
759 T1 = get_nsecs();
760
761 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
762 }
763
764 static int
765 replay_wakeup_event(struct perf_sched *sched,
766 struct perf_evsel *evsel, struct perf_sample *sample,
767 struct machine *machine __maybe_unused)
768 {
769 const char *comm = perf_evsel__strval(evsel, sample, "comm");
770 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
771 struct task_desc *waker, *wakee;
772
773 if (verbose) {
774 printf("sched_wakeup event %p\n", evsel);
775
776 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
777 }
778
779 waker = register_pid(sched, sample->tid, "<unknown>");
780 wakee = register_pid(sched, pid, comm);
781
782 add_sched_event_wakeup(sched, waker, sample->time, wakee);
783 return 0;
784 }
785
786 static int replay_switch_event(struct perf_sched *sched,
787 struct perf_evsel *evsel,
788 struct perf_sample *sample,
789 struct machine *machine __maybe_unused)
790 {
791 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
792 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
793 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
794 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
795 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
796 struct task_desc *prev, __maybe_unused *next;
797 u64 timestamp0, timestamp = sample->time;
798 int cpu = sample->cpu;
799 s64 delta;
800
801 if (verbose)
802 printf("sched_switch event %p\n", evsel);
803
804 if (cpu >= MAX_CPUS || cpu < 0)
805 return 0;
806
807 timestamp0 = sched->cpu_last_switched[cpu];
808 if (timestamp0)
809 delta = timestamp - timestamp0;
810 else
811 delta = 0;
812
813 if (delta < 0) {
814 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
815 return -1;
816 }
817
818 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
819 prev_comm, prev_pid, next_comm, next_pid, delta);
820
821 prev = register_pid(sched, prev_pid, prev_comm);
822 next = register_pid(sched, next_pid, next_comm);
823
824 sched->cpu_last_switched[cpu] = timestamp;
825
826 add_sched_event_run(sched, prev, timestamp, delta);
827 add_sched_event_sleep(sched, prev, timestamp, prev_state);
828
829 return 0;
830 }
831
832 static int replay_fork_event(struct perf_sched *sched,
833 union perf_event *event,
834 struct machine *machine)
835 {
836 struct thread *child, *parent;
837
838 child = machine__findnew_thread(machine, event->fork.pid,
839 event->fork.tid);
840 parent = machine__findnew_thread(machine, event->fork.ppid,
841 event->fork.ptid);
842
843 if (child == NULL || parent == NULL) {
844 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
845 child, parent);
846 goto out_put;
847 }
848
849 if (verbose) {
850 printf("fork event\n");
851 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
852 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
853 }
854
855 register_pid(sched, parent->tid, thread__comm_str(parent));
856 register_pid(sched, child->tid, thread__comm_str(child));
857 out_put:
858 thread__put(child);
859 thread__put(parent);
860 return 0;
861 }
862
863 struct sort_dimension {
864 const char *name;
865 sort_fn_t cmp;
866 struct list_head list;
867 };
868
869 static int
870 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
871 {
872 struct sort_dimension *sort;
873 int ret = 0;
874
875 BUG_ON(list_empty(list));
876
877 list_for_each_entry(sort, list, list) {
878 ret = sort->cmp(l, r);
879 if (ret)
880 return ret;
881 }
882
883 return ret;
884 }
885
886 static struct work_atoms *
887 thread_atoms_search(struct rb_root *root, struct thread *thread,
888 struct list_head *sort_list)
889 {
890 struct rb_node *node = root->rb_node;
891 struct work_atoms key = { .thread = thread };
892
893 while (node) {
894 struct work_atoms *atoms;
895 int cmp;
896
897 atoms = container_of(node, struct work_atoms, node);
898
899 cmp = thread_lat_cmp(sort_list, &key, atoms);
900 if (cmp > 0)
901 node = node->rb_left;
902 else if (cmp < 0)
903 node = node->rb_right;
904 else {
905 BUG_ON(thread != atoms->thread);
906 return atoms;
907 }
908 }
909 return NULL;
910 }
911
912 static void
913 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
914 struct list_head *sort_list)
915 {
916 struct rb_node **new = &(root->rb_node), *parent = NULL;
917
918 while (*new) {
919 struct work_atoms *this;
920 int cmp;
921
922 this = container_of(*new, struct work_atoms, node);
923 parent = *new;
924
925 cmp = thread_lat_cmp(sort_list, data, this);
926
927 if (cmp > 0)
928 new = &((*new)->rb_left);
929 else
930 new = &((*new)->rb_right);
931 }
932
933 rb_link_node(&data->node, parent, new);
934 rb_insert_color(&data->node, root);
935 }
936
937 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
938 {
939 struct work_atoms *atoms = zalloc(sizeof(*atoms));
940 if (!atoms) {
941 pr_err("No memory at %s\n", __func__);
942 return -1;
943 }
944
945 atoms->thread = thread__get(thread);
946 INIT_LIST_HEAD(&atoms->work_list);
947 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
948 return 0;
949 }
950
951 static char sched_out_state(u64 prev_state)
952 {
953 const char *str = TASK_STATE_TO_CHAR_STR;
954
955 return str[prev_state];
956 }
957
958 static int
959 add_sched_out_event(struct work_atoms *atoms,
960 char run_state,
961 u64 timestamp)
962 {
963 struct work_atom *atom = zalloc(sizeof(*atom));
964 if (!atom) {
965 pr_err("Non memory at %s", __func__);
966 return -1;
967 }
968
969 atom->sched_out_time = timestamp;
970
971 if (run_state == 'R') {
972 atom->state = THREAD_WAIT_CPU;
973 atom->wake_up_time = atom->sched_out_time;
974 }
975
976 list_add_tail(&atom->list, &atoms->work_list);
977 return 0;
978 }
979
980 static void
981 add_runtime_event(struct work_atoms *atoms, u64 delta,
982 u64 timestamp __maybe_unused)
983 {
984 struct work_atom *atom;
985
986 BUG_ON(list_empty(&atoms->work_list));
987
988 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
989
990 atom->runtime += delta;
991 atoms->total_runtime += delta;
992 }
993
994 static void
995 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
996 {
997 struct work_atom *atom;
998 u64 delta;
999
1000 if (list_empty(&atoms->work_list))
1001 return;
1002
1003 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1004
1005 if (atom->state != THREAD_WAIT_CPU)
1006 return;
1007
1008 if (timestamp < atom->wake_up_time) {
1009 atom->state = THREAD_IGNORE;
1010 return;
1011 }
1012
1013 atom->state = THREAD_SCHED_IN;
1014 atom->sched_in_time = timestamp;
1015
1016 delta = atom->sched_in_time - atom->wake_up_time;
1017 atoms->total_lat += delta;
1018 if (delta > atoms->max_lat) {
1019 atoms->max_lat = delta;
1020 atoms->max_lat_at = timestamp;
1021 }
1022 atoms->nb_atoms++;
1023 }
1024
1025 static int latency_switch_event(struct perf_sched *sched,
1026 struct perf_evsel *evsel,
1027 struct perf_sample *sample,
1028 struct machine *machine)
1029 {
1030 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1031 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1032 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1033 struct work_atoms *out_events, *in_events;
1034 struct thread *sched_out, *sched_in;
1035 u64 timestamp0, timestamp = sample->time;
1036 int cpu = sample->cpu, err = -1;
1037 s64 delta;
1038
1039 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041 timestamp0 = sched->cpu_last_switched[cpu];
1042 sched->cpu_last_switched[cpu] = timestamp;
1043 if (timestamp0)
1044 delta = timestamp - timestamp0;
1045 else
1046 delta = 0;
1047
1048 if (delta < 0) {
1049 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050 return -1;
1051 }
1052
1053 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1054 sched_in = machine__findnew_thread(machine, -1, next_pid);
1055 if (sched_out == NULL || sched_in == NULL)
1056 goto out_put;
1057
1058 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1059 if (!out_events) {
1060 if (thread_atoms_insert(sched, sched_out))
1061 goto out_put;
1062 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1063 if (!out_events) {
1064 pr_err("out-event: Internal tree error");
1065 goto out_put;
1066 }
1067 }
1068 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1069 return -1;
1070
1071 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1072 if (!in_events) {
1073 if (thread_atoms_insert(sched, sched_in))
1074 goto out_put;
1075 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1076 if (!in_events) {
1077 pr_err("in-event: Internal tree error");
1078 goto out_put;
1079 }
1080 /*
1081 * Take came in we have not heard about yet,
1082 * add in an initial atom in runnable state:
1083 */
1084 if (add_sched_out_event(in_events, 'R', timestamp))
1085 goto out_put;
1086 }
1087 add_sched_in_event(in_events, timestamp);
1088 err = 0;
1089 out_put:
1090 thread__put(sched_out);
1091 thread__put(sched_in);
1092 return err;
1093 }
1094
1095 static int latency_runtime_event(struct perf_sched *sched,
1096 struct perf_evsel *evsel,
1097 struct perf_sample *sample,
1098 struct machine *machine)
1099 {
1100 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1101 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1102 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1103 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1104 u64 timestamp = sample->time;
1105 int cpu = sample->cpu, err = -1;
1106
1107 if (thread == NULL)
1108 return -1;
1109
1110 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1111 if (!atoms) {
1112 if (thread_atoms_insert(sched, thread))
1113 goto out_put;
1114 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1115 if (!atoms) {
1116 pr_err("in-event: Internal tree error");
1117 goto out_put;
1118 }
1119 if (add_sched_out_event(atoms, 'R', timestamp))
1120 goto out_put;
1121 }
1122
1123 add_runtime_event(atoms, runtime, timestamp);
1124 err = 0;
1125 out_put:
1126 thread__put(thread);
1127 return err;
1128 }
1129
1130 static int latency_wakeup_event(struct perf_sched *sched,
1131 struct perf_evsel *evsel,
1132 struct perf_sample *sample,
1133 struct machine *machine)
1134 {
1135 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1136 struct work_atoms *atoms;
1137 struct work_atom *atom;
1138 struct thread *wakee;
1139 u64 timestamp = sample->time;
1140 int err = -1;
1141
1142 wakee = machine__findnew_thread(machine, -1, pid);
1143 if (wakee == NULL)
1144 return -1;
1145 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1146 if (!atoms) {
1147 if (thread_atoms_insert(sched, wakee))
1148 goto out_put;
1149 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1150 if (!atoms) {
1151 pr_err("wakeup-event: Internal tree error");
1152 goto out_put;
1153 }
1154 if (add_sched_out_event(atoms, 'S', timestamp))
1155 goto out_put;
1156 }
1157
1158 BUG_ON(list_empty(&atoms->work_list));
1159
1160 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1161
1162 /*
1163 * As we do not guarantee the wakeup event happens when
1164 * task is out of run queue, also may happen when task is
1165 * on run queue and wakeup only change ->state to TASK_RUNNING,
1166 * then we should not set the ->wake_up_time when wake up a
1167 * task which is on run queue.
1168 *
1169 * You WILL be missing events if you've recorded only
1170 * one CPU, or are only looking at only one, so don't
1171 * skip in this case.
1172 */
1173 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174 goto out_ok;
1175
1176 sched->nr_timestamps++;
1177 if (atom->sched_out_time > timestamp) {
1178 sched->nr_unordered_timestamps++;
1179 goto out_ok;
1180 }
1181
1182 atom->state = THREAD_WAIT_CPU;
1183 atom->wake_up_time = timestamp;
1184 out_ok:
1185 err = 0;
1186 out_put:
1187 thread__put(wakee);
1188 return err;
1189 }
1190
1191 static int latency_migrate_task_event(struct perf_sched *sched,
1192 struct perf_evsel *evsel,
1193 struct perf_sample *sample,
1194 struct machine *machine)
1195 {
1196 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1197 u64 timestamp = sample->time;
1198 struct work_atoms *atoms;
1199 struct work_atom *atom;
1200 struct thread *migrant;
1201 int err = -1;
1202
1203 /*
1204 * Only need to worry about migration when profiling one CPU.
1205 */
1206 if (sched->profile_cpu == -1)
1207 return 0;
1208
1209 migrant = machine__findnew_thread(machine, -1, pid);
1210 if (migrant == NULL)
1211 return -1;
1212 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1213 if (!atoms) {
1214 if (thread_atoms_insert(sched, migrant))
1215 goto out_put;
1216 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1217 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1218 if (!atoms) {
1219 pr_err("migration-event: Internal tree error");
1220 goto out_put;
1221 }
1222 if (add_sched_out_event(atoms, 'R', timestamp))
1223 goto out_put;
1224 }
1225
1226 BUG_ON(list_empty(&atoms->work_list));
1227
1228 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1229 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1230
1231 sched->nr_timestamps++;
1232
1233 if (atom->sched_out_time > timestamp)
1234 sched->nr_unordered_timestamps++;
1235 err = 0;
1236 out_put:
1237 thread__put(migrant);
1238 return err;
1239 }
1240
1241 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1242 {
1243 int i;
1244 int ret;
1245 u64 avg;
1246 char max_lat_at[32];
1247
1248 if (!work_list->nb_atoms)
1249 return;
1250 /*
1251 * Ignore idle threads:
1252 */
1253 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1254 return;
1255
1256 sched->all_runtime += work_list->total_runtime;
1257 sched->all_count += work_list->nb_atoms;
1258
1259 if (work_list->num_merged > 1)
1260 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1261 else
1262 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1263
1264 for (i = 0; i < 24 - ret; i++)
1265 printf(" ");
1266
1267 avg = work_list->total_lat / work_list->nb_atoms;
1268 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1269
1270 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1271 (double)work_list->total_runtime / NSEC_PER_MSEC,
1272 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1273 (double)work_list->max_lat / NSEC_PER_MSEC,
1274 max_lat_at);
1275 }
1276
1277 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1278 {
1279 if (l->thread == r->thread)
1280 return 0;
1281 if (l->thread->tid < r->thread->tid)
1282 return -1;
1283 if (l->thread->tid > r->thread->tid)
1284 return 1;
1285 return (int)(l->thread - r->thread);
1286 }
1287
1288 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1289 {
1290 u64 avgl, avgr;
1291
1292 if (!l->nb_atoms)
1293 return -1;
1294
1295 if (!r->nb_atoms)
1296 return 1;
1297
1298 avgl = l->total_lat / l->nb_atoms;
1299 avgr = r->total_lat / r->nb_atoms;
1300
1301 if (avgl < avgr)
1302 return -1;
1303 if (avgl > avgr)
1304 return 1;
1305
1306 return 0;
1307 }
1308
1309 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1310 {
1311 if (l->max_lat < r->max_lat)
1312 return -1;
1313 if (l->max_lat > r->max_lat)
1314 return 1;
1315
1316 return 0;
1317 }
1318
1319 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1320 {
1321 if (l->nb_atoms < r->nb_atoms)
1322 return -1;
1323 if (l->nb_atoms > r->nb_atoms)
1324 return 1;
1325
1326 return 0;
1327 }
1328
1329 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1330 {
1331 if (l->total_runtime < r->total_runtime)
1332 return -1;
1333 if (l->total_runtime > r->total_runtime)
1334 return 1;
1335
1336 return 0;
1337 }
1338
1339 static int sort_dimension__add(const char *tok, struct list_head *list)
1340 {
1341 size_t i;
1342 static struct sort_dimension avg_sort_dimension = {
1343 .name = "avg",
1344 .cmp = avg_cmp,
1345 };
1346 static struct sort_dimension max_sort_dimension = {
1347 .name = "max",
1348 .cmp = max_cmp,
1349 };
1350 static struct sort_dimension pid_sort_dimension = {
1351 .name = "pid",
1352 .cmp = pid_cmp,
1353 };
1354 static struct sort_dimension runtime_sort_dimension = {
1355 .name = "runtime",
1356 .cmp = runtime_cmp,
1357 };
1358 static struct sort_dimension switch_sort_dimension = {
1359 .name = "switch",
1360 .cmp = switch_cmp,
1361 };
1362 struct sort_dimension *available_sorts[] = {
1363 &pid_sort_dimension,
1364 &avg_sort_dimension,
1365 &max_sort_dimension,
1366 &switch_sort_dimension,
1367 &runtime_sort_dimension,
1368 };
1369
1370 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1371 if (!strcmp(available_sorts[i]->name, tok)) {
1372 list_add_tail(&available_sorts[i]->list, list);
1373
1374 return 0;
1375 }
1376 }
1377
1378 return -1;
1379 }
1380
1381 static void perf_sched__sort_lat(struct perf_sched *sched)
1382 {
1383 struct rb_node *node;
1384 struct rb_root *root = &sched->atom_root;
1385 again:
1386 for (;;) {
1387 struct work_atoms *data;
1388 node = rb_first(root);
1389 if (!node)
1390 break;
1391
1392 rb_erase(node, root);
1393 data = rb_entry(node, struct work_atoms, node);
1394 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1395 }
1396 if (root == &sched->atom_root) {
1397 root = &sched->merged_atom_root;
1398 goto again;
1399 }
1400 }
1401
1402 static int process_sched_wakeup_event(struct perf_tool *tool,
1403 struct perf_evsel *evsel,
1404 struct perf_sample *sample,
1405 struct machine *machine)
1406 {
1407 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1408
1409 if (sched->tp_handler->wakeup_event)
1410 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1411
1412 return 0;
1413 }
1414
1415 union map_priv {
1416 void *ptr;
1417 bool color;
1418 };
1419
1420 static bool thread__has_color(struct thread *thread)
1421 {
1422 union map_priv priv = {
1423 .ptr = thread__priv(thread),
1424 };
1425
1426 return priv.color;
1427 }
1428
1429 static struct thread*
1430 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1431 {
1432 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1433 union map_priv priv = {
1434 .color = false,
1435 };
1436
1437 if (!sched->map.color_pids || !thread || thread__priv(thread))
1438 return thread;
1439
1440 if (thread_map__has(sched->map.color_pids, tid))
1441 priv.color = true;
1442
1443 thread__set_priv(thread, priv.ptr);
1444 return thread;
1445 }
1446
1447 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1448 struct perf_sample *sample, struct machine *machine)
1449 {
1450 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1451 struct thread *sched_in;
1452 int new_shortname;
1453 u64 timestamp0, timestamp = sample->time;
1454 s64 delta;
1455 int i, this_cpu = sample->cpu;
1456 int cpus_nr;
1457 bool new_cpu = false;
1458 const char *color = PERF_COLOR_NORMAL;
1459 char stimestamp[32];
1460
1461 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1462
1463 if (this_cpu > sched->max_cpu)
1464 sched->max_cpu = this_cpu;
1465
1466 if (sched->map.comp) {
1467 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1468 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1469 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1470 new_cpu = true;
1471 }
1472 } else
1473 cpus_nr = sched->max_cpu;
1474
1475 timestamp0 = sched->cpu_last_switched[this_cpu];
1476 sched->cpu_last_switched[this_cpu] = timestamp;
1477 if (timestamp0)
1478 delta = timestamp - timestamp0;
1479 else
1480 delta = 0;
1481
1482 if (delta < 0) {
1483 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1484 return -1;
1485 }
1486
1487 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1488 if (sched_in == NULL)
1489 return -1;
1490
1491 sched->curr_thread[this_cpu] = thread__get(sched_in);
1492
1493 printf(" ");
1494
1495 new_shortname = 0;
1496 if (!sched_in->shortname[0]) {
1497 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1498 /*
1499 * Don't allocate a letter-number for swapper:0
1500 * as a shortname. Instead, we use '.' for it.
1501 */
1502 sched_in->shortname[0] = '.';
1503 sched_in->shortname[1] = ' ';
1504 } else {
1505 sched_in->shortname[0] = sched->next_shortname1;
1506 sched_in->shortname[1] = sched->next_shortname2;
1507
1508 if (sched->next_shortname1 < 'Z') {
1509 sched->next_shortname1++;
1510 } else {
1511 sched->next_shortname1 = 'A';
1512 if (sched->next_shortname2 < '9')
1513 sched->next_shortname2++;
1514 else
1515 sched->next_shortname2 = '0';
1516 }
1517 }
1518 new_shortname = 1;
1519 }
1520
1521 for (i = 0; i < cpus_nr; i++) {
1522 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1523 struct thread *curr_thread = sched->curr_thread[cpu];
1524 const char *pid_color = color;
1525 const char *cpu_color = color;
1526
1527 if (curr_thread && thread__has_color(curr_thread))
1528 pid_color = COLOR_PIDS;
1529
1530 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1531 continue;
1532
1533 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1534 cpu_color = COLOR_CPUS;
1535
1536 if (cpu != this_cpu)
1537 color_fprintf(stdout, color, " ");
1538 else
1539 color_fprintf(stdout, cpu_color, "*");
1540
1541 if (sched->curr_thread[cpu])
1542 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1543 else
1544 color_fprintf(stdout, color, " ");
1545 }
1546
1547 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1548 goto out;
1549
1550 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1551 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1552 if (new_shortname || (verbose && sched_in->tid)) {
1553 const char *pid_color = color;
1554
1555 if (thread__has_color(sched_in))
1556 pid_color = COLOR_PIDS;
1557
1558 color_fprintf(stdout, pid_color, "%s => %s:%d",
1559 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1560 }
1561
1562 if (sched->map.comp && new_cpu)
1563 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1564
1565 out:
1566 color_fprintf(stdout, color, "\n");
1567
1568 thread__put(sched_in);
1569
1570 return 0;
1571 }
1572
1573 static int process_sched_switch_event(struct perf_tool *tool,
1574 struct perf_evsel *evsel,
1575 struct perf_sample *sample,
1576 struct machine *machine)
1577 {
1578 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579 int this_cpu = sample->cpu, err = 0;
1580 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1581 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1582
1583 if (sched->curr_pid[this_cpu] != (u32)-1) {
1584 /*
1585 * Are we trying to switch away a PID that is
1586 * not current?
1587 */
1588 if (sched->curr_pid[this_cpu] != prev_pid)
1589 sched->nr_context_switch_bugs++;
1590 }
1591
1592 if (sched->tp_handler->switch_event)
1593 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1594
1595 sched->curr_pid[this_cpu] = next_pid;
1596 return err;
1597 }
1598
1599 static int process_sched_runtime_event(struct perf_tool *tool,
1600 struct perf_evsel *evsel,
1601 struct perf_sample *sample,
1602 struct machine *machine)
1603 {
1604 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1605
1606 if (sched->tp_handler->runtime_event)
1607 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1608
1609 return 0;
1610 }
1611
1612 static int perf_sched__process_fork_event(struct perf_tool *tool,
1613 union perf_event *event,
1614 struct perf_sample *sample,
1615 struct machine *machine)
1616 {
1617 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1618
1619 /* run the fork event through the perf machineruy */
1620 perf_event__process_fork(tool, event, sample, machine);
1621
1622 /* and then run additional processing needed for this command */
1623 if (sched->tp_handler->fork_event)
1624 return sched->tp_handler->fork_event(sched, event, machine);
1625
1626 return 0;
1627 }
1628
1629 static int process_sched_migrate_task_event(struct perf_tool *tool,
1630 struct perf_evsel *evsel,
1631 struct perf_sample *sample,
1632 struct machine *machine)
1633 {
1634 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1635
1636 if (sched->tp_handler->migrate_task_event)
1637 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1638
1639 return 0;
1640 }
1641
1642 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1643 struct perf_evsel *evsel,
1644 struct perf_sample *sample,
1645 struct machine *machine);
1646
1647 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1648 union perf_event *event __maybe_unused,
1649 struct perf_sample *sample,
1650 struct perf_evsel *evsel,
1651 struct machine *machine)
1652 {
1653 int err = 0;
1654
1655 if (evsel->handler != NULL) {
1656 tracepoint_handler f = evsel->handler;
1657 err = f(tool, evsel, sample, machine);
1658 }
1659
1660 return err;
1661 }
1662
1663 static int perf_sched__read_events(struct perf_sched *sched)
1664 {
1665 const struct perf_evsel_str_handler handlers[] = {
1666 { "sched:sched_switch", process_sched_switch_event, },
1667 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1668 { "sched:sched_wakeup", process_sched_wakeup_event, },
1669 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1670 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1671 };
1672 struct perf_session *session;
1673 struct perf_data_file file = {
1674 .path = input_name,
1675 .mode = PERF_DATA_MODE_READ,
1676 .force = sched->force,
1677 };
1678 int rc = -1;
1679
1680 session = perf_session__new(&file, false, &sched->tool);
1681 if (session == NULL) {
1682 pr_debug("No Memory for session\n");
1683 return -1;
1684 }
1685
1686 symbol__init(&session->header.env);
1687
1688 if (perf_session__set_tracepoints_handlers(session, handlers))
1689 goto out_delete;
1690
1691 if (perf_session__has_traces(session, "record -R")) {
1692 int err = perf_session__process_events(session);
1693 if (err) {
1694 pr_err("Failed to process events, error %d", err);
1695 goto out_delete;
1696 }
1697
1698 sched->nr_events = session->evlist->stats.nr_events[0];
1699 sched->nr_lost_events = session->evlist->stats.total_lost;
1700 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1701 }
1702
1703 rc = 0;
1704 out_delete:
1705 perf_session__delete(session);
1706 return rc;
1707 }
1708
1709 /*
1710 * scheduling times are printed as msec.usec
1711 */
1712 static inline void print_sched_time(unsigned long long nsecs, int width)
1713 {
1714 unsigned long msecs;
1715 unsigned long usecs;
1716
1717 msecs = nsecs / NSEC_PER_MSEC;
1718 nsecs -= msecs * NSEC_PER_MSEC;
1719 usecs = nsecs / NSEC_PER_USEC;
1720 printf("%*lu.%03lu ", width, msecs, usecs);
1721 }
1722
1723 /*
1724 * returns runtime data for event, allocating memory for it the
1725 * first time it is used.
1726 */
1727 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1728 {
1729 struct evsel_runtime *r = evsel->priv;
1730
1731 if (r == NULL) {
1732 r = zalloc(sizeof(struct evsel_runtime));
1733 evsel->priv = r;
1734 }
1735
1736 return r;
1737 }
1738
1739 /*
1740 * save last time event was seen per cpu
1741 */
1742 static void perf_evsel__save_time(struct perf_evsel *evsel,
1743 u64 timestamp, u32 cpu)
1744 {
1745 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1746
1747 if (r == NULL)
1748 return;
1749
1750 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1751 int i, n = __roundup_pow_of_two(cpu+1);
1752 void *p = r->last_time;
1753
1754 p = realloc(r->last_time, n * sizeof(u64));
1755 if (!p)
1756 return;
1757
1758 r->last_time = p;
1759 for (i = r->ncpu; i < n; ++i)
1760 r->last_time[i] = (u64) 0;
1761
1762 r->ncpu = n;
1763 }
1764
1765 r->last_time[cpu] = timestamp;
1766 }
1767
1768 /* returns last time this event was seen on the given cpu */
1769 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1770 {
1771 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1772
1773 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1774 return 0;
1775
1776 return r->last_time[cpu];
1777 }
1778
1779 static int comm_width = 30;
1780
1781 static char *timehist_get_commstr(struct thread *thread)
1782 {
1783 static char str[32];
1784 const char *comm = thread__comm_str(thread);
1785 pid_t tid = thread->tid;
1786 pid_t pid = thread->pid_;
1787 int n;
1788
1789 if (pid == 0)
1790 n = scnprintf(str, sizeof(str), "%s", comm);
1791
1792 else if (tid != pid)
1793 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1794
1795 else
1796 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1797
1798 if (n > comm_width)
1799 comm_width = n;
1800
1801 return str;
1802 }
1803
1804 static void timehist_header(struct perf_sched *sched)
1805 {
1806 u32 ncpus = sched->max_cpu + 1;
1807 u32 i, j;
1808
1809 printf("%15s %6s ", "time", "cpu");
1810
1811 if (sched->show_cpu_visual) {
1812 printf(" ");
1813 for (i = 0, j = 0; i < ncpus; ++i) {
1814 printf("%x", j++);
1815 if (j > 15)
1816 j = 0;
1817 }
1818 printf(" ");
1819 }
1820
1821 printf(" %-*s %9s %9s %9s", comm_width,
1822 "task name", "wait time", "sch delay", "run time");
1823
1824 printf("\n");
1825
1826 /*
1827 * units row
1828 */
1829 printf("%15s %-6s ", "", "");
1830
1831 if (sched->show_cpu_visual)
1832 printf(" %*s ", ncpus, "");
1833
1834 printf(" %-*s %9s %9s %9s\n", comm_width,
1835 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1836
1837 /*
1838 * separator
1839 */
1840 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1841
1842 if (sched->show_cpu_visual)
1843 printf(" %.*s ", ncpus, graph_dotted_line);
1844
1845 printf(" %.*s %.9s %.9s %.9s", comm_width,
1846 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1847 graph_dotted_line);
1848
1849 printf("\n");
1850 }
1851
1852 static void timehist_print_sample(struct perf_sched *sched,
1853 struct perf_sample *sample,
1854 struct addr_location *al,
1855 struct thread *thread,
1856 u64 t)
1857 {
1858 struct thread_runtime *tr = thread__priv(thread);
1859 u32 max_cpus = sched->max_cpu + 1;
1860 char tstr[64];
1861
1862 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1863 printf("%15s [%04d] ", tstr, sample->cpu);
1864
1865 if (sched->show_cpu_visual) {
1866 u32 i;
1867 char c;
1868
1869 printf(" ");
1870 for (i = 0; i < max_cpus; ++i) {
1871 /* flag idle times with 'i'; others are sched events */
1872 if (i == sample->cpu)
1873 c = (thread->tid == 0) ? 'i' : 's';
1874 else
1875 c = ' ';
1876 printf("%c", c);
1877 }
1878 printf(" ");
1879 }
1880
1881 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1882
1883 print_sched_time(tr->dt_wait, 6);
1884 print_sched_time(tr->dt_delay, 6);
1885 print_sched_time(tr->dt_run, 6);
1886
1887 if (sched->show_wakeups)
1888 printf(" %-*s", comm_width, "");
1889
1890 if (thread->tid == 0)
1891 goto out;
1892
1893 if (sched->show_callchain)
1894 printf(" ");
1895
1896 sample__fprintf_sym(sample, al, 0,
1897 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1898 EVSEL__PRINT_CALLCHAIN_ARROW |
1899 EVSEL__PRINT_SKIP_IGNORED,
1900 &callchain_cursor, stdout);
1901
1902 out:
1903 printf("\n");
1904 }
1905
1906 /*
1907 * Explanation of delta-time stats:
1908 *
1909 * t = time of current schedule out event
1910 * tprev = time of previous sched out event
1911 * also time of schedule-in event for current task
1912 * last_time = time of last sched change event for current task
1913 * (i.e, time process was last scheduled out)
1914 * ready_to_run = time of wakeup for current task
1915 *
1916 * -----|------------|------------|------------|------
1917 * last ready tprev t
1918 * time to run
1919 *
1920 * |-------- dt_wait --------|
1921 * |- dt_delay -|-- dt_run --|
1922 *
1923 * dt_run = run time of current task
1924 * dt_wait = time between last schedule out event for task and tprev
1925 * represents time spent off the cpu
1926 * dt_delay = time between wakeup and schedule-in of task
1927 */
1928
1929 static void timehist_update_runtime_stats(struct thread_runtime *r,
1930 u64 t, u64 tprev)
1931 {
1932 r->dt_delay = 0;
1933 r->dt_wait = 0;
1934 r->dt_run = 0;
1935 if (tprev) {
1936 r->dt_run = t - tprev;
1937 if (r->ready_to_run) {
1938 if (r->ready_to_run > tprev)
1939 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
1940 else
1941 r->dt_delay = tprev - r->ready_to_run;
1942 }
1943
1944 if (r->last_time > tprev)
1945 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
1946 else if (r->last_time)
1947 r->dt_wait = tprev - r->last_time;
1948 }
1949
1950 update_stats(&r->run_stats, r->dt_run);
1951 r->total_run_time += r->dt_run;
1952 }
1953
1954 static bool is_idle_sample(struct perf_sample *sample,
1955 struct perf_evsel *evsel)
1956 {
1957 /* pid 0 == swapper == idle task */
1958 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
1959 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
1960
1961 return sample->pid == 0;
1962 }
1963
1964 static void save_task_callchain(struct perf_sched *sched,
1965 struct perf_sample *sample,
1966 struct perf_evsel *evsel,
1967 struct machine *machine)
1968 {
1969 struct callchain_cursor *cursor = &callchain_cursor;
1970 struct thread *thread;
1971
1972 /* want main thread for process - has maps */
1973 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
1974 if (thread == NULL) {
1975 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
1976 return;
1977 }
1978
1979 if (!symbol_conf.use_callchain || sample->callchain == NULL)
1980 return;
1981
1982 if (thread__resolve_callchain(thread, cursor, evsel, sample,
1983 NULL, NULL, sched->max_stack + 2) != 0) {
1984 if (verbose)
1985 error("Failed to resolve callchain. Skipping\n");
1986
1987 return;
1988 }
1989
1990 callchain_cursor_commit(cursor);
1991
1992 while (true) {
1993 struct callchain_cursor_node *node;
1994 struct symbol *sym;
1995
1996 node = callchain_cursor_current(cursor);
1997 if (node == NULL)
1998 break;
1999
2000 sym = node->sym;
2001 if (sym && sym->name) {
2002 if (!strcmp(sym->name, "schedule") ||
2003 !strcmp(sym->name, "__schedule") ||
2004 !strcmp(sym->name, "preempt_schedule"))
2005 sym->ignore = 1;
2006 }
2007
2008 callchain_cursor_advance(cursor);
2009 }
2010 }
2011
2012 static int init_idle_thread(struct thread *thread)
2013 {
2014 struct idle_thread_runtime *itr;
2015
2016 thread__set_comm(thread, idle_comm, 0);
2017
2018 itr = zalloc(sizeof(*itr));
2019 if (itr == NULL)
2020 return -ENOMEM;
2021
2022 init_stats(&itr->tr.run_stats);
2023 callchain_init(&itr->callchain);
2024 callchain_cursor_reset(&itr->cursor);
2025 thread__set_priv(thread, itr);
2026
2027 return 0;
2028 }
2029
2030 /*
2031 * Track idle stats per cpu by maintaining a local thread
2032 * struct for the idle task on each cpu.
2033 */
2034 static int init_idle_threads(int ncpu)
2035 {
2036 int i, ret;
2037
2038 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2039 if (!idle_threads)
2040 return -ENOMEM;
2041
2042 idle_max_cpu = ncpu;
2043
2044 /* allocate the actual thread struct if needed */
2045 for (i = 0; i < ncpu; ++i) {
2046 idle_threads[i] = thread__new(0, 0);
2047 if (idle_threads[i] == NULL)
2048 return -ENOMEM;
2049
2050 ret = init_idle_thread(idle_threads[i]);
2051 if (ret < 0)
2052 return ret;
2053 }
2054
2055 return 0;
2056 }
2057
2058 static void free_idle_threads(void)
2059 {
2060 int i;
2061
2062 if (idle_threads == NULL)
2063 return;
2064
2065 for (i = 0; i < idle_max_cpu; ++i) {
2066 if ((idle_threads[i]))
2067 thread__delete(idle_threads[i]);
2068 }
2069
2070 free(idle_threads);
2071 }
2072
2073 static struct thread *get_idle_thread(int cpu)
2074 {
2075 /*
2076 * expand/allocate array of pointers to local thread
2077 * structs if needed
2078 */
2079 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2080 int i, j = __roundup_pow_of_two(cpu+1);
2081 void *p;
2082
2083 p = realloc(idle_threads, j * sizeof(struct thread *));
2084 if (!p)
2085 return NULL;
2086
2087 idle_threads = (struct thread **) p;
2088 for (i = idle_max_cpu; i < j; ++i)
2089 idle_threads[i] = NULL;
2090
2091 idle_max_cpu = j;
2092 }
2093
2094 /* allocate a new thread struct if needed */
2095 if (idle_threads[cpu] == NULL) {
2096 idle_threads[cpu] = thread__new(0, 0);
2097
2098 if (idle_threads[cpu]) {
2099 if (init_idle_thread(idle_threads[cpu]) < 0)
2100 return NULL;
2101 }
2102 }
2103
2104 return idle_threads[cpu];
2105 }
2106
2107 static void save_idle_callchain(struct idle_thread_runtime *itr,
2108 struct perf_sample *sample)
2109 {
2110 if (!symbol_conf.use_callchain || sample->callchain == NULL)
2111 return;
2112
2113 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2114 }
2115
2116 /*
2117 * handle runtime stats saved per thread
2118 */
2119 static struct thread_runtime *thread__init_runtime(struct thread *thread)
2120 {
2121 struct thread_runtime *r;
2122
2123 r = zalloc(sizeof(struct thread_runtime));
2124 if (!r)
2125 return NULL;
2126
2127 init_stats(&r->run_stats);
2128 thread__set_priv(thread, r);
2129
2130 return r;
2131 }
2132
2133 static struct thread_runtime *thread__get_runtime(struct thread *thread)
2134 {
2135 struct thread_runtime *tr;
2136
2137 tr = thread__priv(thread);
2138 if (tr == NULL) {
2139 tr = thread__init_runtime(thread);
2140 if (tr == NULL)
2141 pr_debug("Failed to malloc memory for runtime data.\n");
2142 }
2143
2144 return tr;
2145 }
2146
2147 static struct thread *timehist_get_thread(struct perf_sched *sched,
2148 struct perf_sample *sample,
2149 struct machine *machine,
2150 struct perf_evsel *evsel)
2151 {
2152 struct thread *thread;
2153
2154 if (is_idle_sample(sample, evsel)) {
2155 thread = get_idle_thread(sample->cpu);
2156 if (thread == NULL)
2157 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2158
2159 } else {
2160 /* there were samples with tid 0 but non-zero pid */
2161 thread = machine__findnew_thread(machine, sample->pid,
2162 sample->tid ?: sample->pid);
2163 if (thread == NULL) {
2164 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2165 sample->tid);
2166 }
2167
2168 save_task_callchain(sched, sample, evsel, machine);
2169 if (sched->idle_hist) {
2170 struct thread *idle;
2171 struct idle_thread_runtime *itr;
2172
2173 idle = get_idle_thread(sample->cpu);
2174 if (idle == NULL) {
2175 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2176 return NULL;
2177 }
2178
2179 itr = thread__priv(idle);
2180 if (itr == NULL)
2181 return NULL;
2182
2183 itr->last_thread = thread;
2184
2185 /* copy task callchain when entering to idle */
2186 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2187 save_idle_callchain(itr, sample);
2188 }
2189 }
2190
2191 return thread;
2192 }
2193
2194 static bool timehist_skip_sample(struct perf_sched *sched,
2195 struct thread *thread,
2196 struct perf_evsel *evsel,
2197 struct perf_sample *sample)
2198 {
2199 bool rc = false;
2200
2201 if (thread__is_filtered(thread)) {
2202 rc = true;
2203 sched->skipped_samples++;
2204 }
2205
2206 if (sched->idle_hist) {
2207 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2208 rc = true;
2209 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2210 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2211 rc = true;
2212 }
2213
2214 return rc;
2215 }
2216
2217 static void timehist_print_wakeup_event(struct perf_sched *sched,
2218 struct perf_evsel *evsel,
2219 struct perf_sample *sample,
2220 struct machine *machine,
2221 struct thread *awakened)
2222 {
2223 struct thread *thread;
2224 char tstr[64];
2225
2226 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2227 if (thread == NULL)
2228 return;
2229
2230 /* show wakeup unless both awakee and awaker are filtered */
2231 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2232 timehist_skip_sample(sched, awakened, evsel, sample)) {
2233 return;
2234 }
2235
2236 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2237 printf("%15s [%04d] ", tstr, sample->cpu);
2238 if (sched->show_cpu_visual)
2239 printf(" %*s ", sched->max_cpu + 1, "");
2240
2241 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2242
2243 /* dt spacer */
2244 printf(" %9s %9s %9s ", "", "", "");
2245
2246 printf("awakened: %s", timehist_get_commstr(awakened));
2247
2248 printf("\n");
2249 }
2250
2251 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2252 union perf_event *event __maybe_unused,
2253 struct perf_evsel *evsel,
2254 struct perf_sample *sample,
2255 struct machine *machine)
2256 {
2257 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2258 struct thread *thread;
2259 struct thread_runtime *tr = NULL;
2260 /* want pid of awakened task not pid in sample */
2261 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2262
2263 thread = machine__findnew_thread(machine, 0, pid);
2264 if (thread == NULL)
2265 return -1;
2266
2267 tr = thread__get_runtime(thread);
2268 if (tr == NULL)
2269 return -1;
2270
2271 if (tr->ready_to_run == 0)
2272 tr->ready_to_run = sample->time;
2273
2274 /* show wakeups if requested */
2275 if (sched->show_wakeups &&
2276 !perf_time__skip_sample(&sched->ptime, sample->time))
2277 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2278
2279 return 0;
2280 }
2281
2282 static void timehist_print_migration_event(struct perf_sched *sched,
2283 struct perf_evsel *evsel,
2284 struct perf_sample *sample,
2285 struct machine *machine,
2286 struct thread *migrated)
2287 {
2288 struct thread *thread;
2289 char tstr[64];
2290 u32 max_cpus = sched->max_cpu + 1;
2291 u32 ocpu, dcpu;
2292
2293 if (sched->summary_only)
2294 return;
2295
2296 max_cpus = sched->max_cpu + 1;
2297 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2298 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2299
2300 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2301 if (thread == NULL)
2302 return;
2303
2304 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2305 timehist_skip_sample(sched, migrated, evsel, sample)) {
2306 return;
2307 }
2308
2309 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2310 printf("%15s [%04d] ", tstr, sample->cpu);
2311
2312 if (sched->show_cpu_visual) {
2313 u32 i;
2314 char c;
2315
2316 printf(" ");
2317 for (i = 0; i < max_cpus; ++i) {
2318 c = (i == sample->cpu) ? 'm' : ' ';
2319 printf("%c", c);
2320 }
2321 printf(" ");
2322 }
2323
2324 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2325
2326 /* dt spacer */
2327 printf(" %9s %9s %9s ", "", "", "");
2328
2329 printf("migrated: %s", timehist_get_commstr(migrated));
2330 printf(" cpu %d => %d", ocpu, dcpu);
2331
2332 printf("\n");
2333 }
2334
2335 static int timehist_migrate_task_event(struct perf_tool *tool,
2336 union perf_event *event __maybe_unused,
2337 struct perf_evsel *evsel,
2338 struct perf_sample *sample,
2339 struct machine *machine)
2340 {
2341 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2342 struct thread *thread;
2343 struct thread_runtime *tr = NULL;
2344 /* want pid of migrated task not pid in sample */
2345 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2346
2347 thread = machine__findnew_thread(machine, 0, pid);
2348 if (thread == NULL)
2349 return -1;
2350
2351 tr = thread__get_runtime(thread);
2352 if (tr == NULL)
2353 return -1;
2354
2355 tr->migrations++;
2356
2357 /* show migrations if requested */
2358 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2359
2360 return 0;
2361 }
2362
2363 static int timehist_sched_change_event(struct perf_tool *tool,
2364 union perf_event *event,
2365 struct perf_evsel *evsel,
2366 struct perf_sample *sample,
2367 struct machine *machine)
2368 {
2369 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2370 struct perf_time_interval *ptime = &sched->ptime;
2371 struct addr_location al;
2372 struct thread *thread;
2373 struct thread_runtime *tr = NULL;
2374 u64 tprev, t = sample->time;
2375 int rc = 0;
2376
2377 if (machine__resolve(machine, &al, sample) < 0) {
2378 pr_err("problem processing %d event. skipping it\n",
2379 event->header.type);
2380 rc = -1;
2381 goto out;
2382 }
2383
2384 thread = timehist_get_thread(sched, sample, machine, evsel);
2385 if (thread == NULL) {
2386 rc = -1;
2387 goto out;
2388 }
2389
2390 if (timehist_skip_sample(sched, thread, evsel, sample))
2391 goto out;
2392
2393 tr = thread__get_runtime(thread);
2394 if (tr == NULL) {
2395 rc = -1;
2396 goto out;
2397 }
2398
2399 tprev = perf_evsel__get_time(evsel, sample->cpu);
2400
2401 /*
2402 * If start time given:
2403 * - sample time is under window user cares about - skip sample
2404 * - tprev is under window user cares about - reset to start of window
2405 */
2406 if (ptime->start && ptime->start > t)
2407 goto out;
2408
2409 if (tprev && ptime->start > tprev)
2410 tprev = ptime->start;
2411
2412 /*
2413 * If end time given:
2414 * - previous sched event is out of window - we are done
2415 * - sample time is beyond window user cares about - reset it
2416 * to close out stats for time window interest
2417 */
2418 if (ptime->end) {
2419 if (tprev > ptime->end)
2420 goto out;
2421
2422 if (t > ptime->end)
2423 t = ptime->end;
2424 }
2425
2426 if (!sched->idle_hist || thread->tid == 0) {
2427 timehist_update_runtime_stats(tr, t, tprev);
2428
2429 if (sched->idle_hist) {
2430 struct idle_thread_runtime *itr = (void *)tr;
2431 struct thread_runtime *last_tr;
2432
2433 BUG_ON(thread->tid != 0);
2434
2435 if (itr->last_thread == NULL)
2436 goto out;
2437
2438 /* add current idle time as last thread's runtime */
2439 last_tr = thread__get_runtime(itr->last_thread);
2440 if (last_tr == NULL)
2441 goto out;
2442
2443 timehist_update_runtime_stats(last_tr, t, tprev);
2444 /*
2445 * remove delta time of last thread as it's not updated
2446 * and otherwise it will show an invalid value next
2447 * time. we only care total run time and run stat.
2448 */
2449 last_tr->dt_run = 0;
2450 last_tr->dt_wait = 0;
2451 last_tr->dt_delay = 0;
2452
2453 if (itr->cursor.nr)
2454 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2455
2456 itr->last_thread = NULL;
2457 }
2458 }
2459
2460 if (!sched->summary_only)
2461 timehist_print_sample(sched, sample, &al, thread, t);
2462
2463 out:
2464 if (sched->hist_time.start == 0 && t >= ptime->start)
2465 sched->hist_time.start = t;
2466 if (ptime->end == 0 || t <= ptime->end)
2467 sched->hist_time.end = t;
2468
2469 if (tr) {
2470 /* time of this sched_switch event becomes last time task seen */
2471 tr->last_time = sample->time;
2472
2473 /* sched out event for task so reset ready to run time */
2474 tr->ready_to_run = 0;
2475 }
2476
2477 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2478
2479 return rc;
2480 }
2481
2482 static int timehist_sched_switch_event(struct perf_tool *tool,
2483 union perf_event *event,
2484 struct perf_evsel *evsel,
2485 struct perf_sample *sample,
2486 struct machine *machine __maybe_unused)
2487 {
2488 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2489 }
2490
2491 static int process_lost(struct perf_tool *tool __maybe_unused,
2492 union perf_event *event,
2493 struct perf_sample *sample,
2494 struct machine *machine __maybe_unused)
2495 {
2496 char tstr[64];
2497
2498 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499 printf("%15s ", tstr);
2500 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2501
2502 return 0;
2503 }
2504
2505
2506 static void print_thread_runtime(struct thread *t,
2507 struct thread_runtime *r)
2508 {
2509 double mean = avg_stats(&r->run_stats);
2510 float stddev;
2511
2512 printf("%*s %5d %9" PRIu64 " ",
2513 comm_width, timehist_get_commstr(t), t->ppid,
2514 (u64) r->run_stats.n);
2515
2516 print_sched_time(r->total_run_time, 8);
2517 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2518 print_sched_time(r->run_stats.min, 6);
2519 printf(" ");
2520 print_sched_time((u64) mean, 6);
2521 printf(" ");
2522 print_sched_time(r->run_stats.max, 6);
2523 printf(" ");
2524 printf("%5.2f", stddev);
2525 printf(" %5" PRIu64, r->migrations);
2526 printf("\n");
2527 }
2528
2529 struct total_run_stats {
2530 u64 sched_count;
2531 u64 task_count;
2532 u64 total_run_time;
2533 };
2534
2535 static int __show_thread_runtime(struct thread *t, void *priv)
2536 {
2537 struct total_run_stats *stats = priv;
2538 struct thread_runtime *r;
2539
2540 if (thread__is_filtered(t))
2541 return 0;
2542
2543 r = thread__priv(t);
2544 if (r && r->run_stats.n) {
2545 stats->task_count++;
2546 stats->sched_count += r->run_stats.n;
2547 stats->total_run_time += r->total_run_time;
2548 print_thread_runtime(t, r);
2549 }
2550
2551 return 0;
2552 }
2553
2554 static int show_thread_runtime(struct thread *t, void *priv)
2555 {
2556 if (t->dead)
2557 return 0;
2558
2559 return __show_thread_runtime(t, priv);
2560 }
2561
2562 static int show_deadthread_runtime(struct thread *t, void *priv)
2563 {
2564 if (!t->dead)
2565 return 0;
2566
2567 return __show_thread_runtime(t, priv);
2568 }
2569
2570 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2571 {
2572 const char *sep = " <- ";
2573 struct callchain_list *chain;
2574 size_t ret = 0;
2575 char bf[1024];
2576 bool first;
2577
2578 if (node == NULL)
2579 return 0;
2580
2581 ret = callchain__fprintf_folded(fp, node->parent);
2582 first = (ret == 0);
2583
2584 list_for_each_entry(chain, &node->val, list) {
2585 if (chain->ip >= PERF_CONTEXT_MAX)
2586 continue;
2587 if (chain->ms.sym && chain->ms.sym->ignore)
2588 continue;
2589 ret += fprintf(fp, "%s%s", first ? "" : sep,
2590 callchain_list__sym_name(chain, bf, sizeof(bf),
2591 false));
2592 first = false;
2593 }
2594
2595 return ret;
2596 }
2597
2598 static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2599 {
2600 size_t ret = 0;
2601 FILE *fp = stdout;
2602 struct callchain_node *chain;
2603 struct rb_node *rb_node = rb_first(root);
2604
2605 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2606 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2607 graph_dotted_line);
2608
2609 while (rb_node) {
2610 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2611 rb_node = rb_next(rb_node);
2612
2613 ret += fprintf(fp, " ");
2614 print_sched_time(chain->hit, 12);
2615 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2616 ret += fprintf(fp, " %8d ", chain->count);
2617 ret += callchain__fprintf_folded(fp, chain);
2618 ret += fprintf(fp, "\n");
2619 }
2620
2621 return ret;
2622 }
2623
2624 static void timehist_print_summary(struct perf_sched *sched,
2625 struct perf_session *session)
2626 {
2627 struct machine *m = &session->machines.host;
2628 struct total_run_stats totals;
2629 u64 task_count;
2630 struct thread *t;
2631 struct thread_runtime *r;
2632 int i;
2633 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2634
2635 memset(&totals, 0, sizeof(totals));
2636
2637 if (sched->idle_hist) {
2638 printf("\nIdle-time summary\n");
2639 printf("%*s parent sched-out ", comm_width, "comm");
2640 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2641 } else {
2642 printf("\nRuntime summary\n");
2643 printf("%*s parent sched-in ", comm_width, "comm");
2644 printf(" run-time min-run avg-run max-run stddev migrations\n");
2645 }
2646 printf("%*s (count) ", comm_width, "");
2647 printf(" (msec) (msec) (msec) (msec) %%\n");
2648 printf("%.117s\n", graph_dotted_line);
2649
2650 machine__for_each_thread(m, show_thread_runtime, &totals);
2651 task_count = totals.task_count;
2652 if (!task_count)
2653 printf("<no still running tasks>\n");
2654
2655 printf("\nTerminated tasks:\n");
2656 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2657 if (task_count == totals.task_count)
2658 printf("<no terminated tasks>\n");
2659
2660 /* CPU idle stats not tracked when samples were skipped */
2661 if (sched->skipped_samples && !sched->idle_hist)
2662 return;
2663
2664 printf("\nIdle stats:\n");
2665 for (i = 0; i < idle_max_cpu; ++i) {
2666 t = idle_threads[i];
2667 if (!t)
2668 continue;
2669
2670 r = thread__priv(t);
2671 if (r && r->run_stats.n) {
2672 totals.sched_count += r->run_stats.n;
2673 printf(" CPU %2d idle for ", i);
2674 print_sched_time(r->total_run_time, 6);
2675 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2676 } else
2677 printf(" CPU %2d idle entire time window\n", i);
2678 }
2679
2680 if (sched->idle_hist && symbol_conf.use_callchain) {
2681 callchain_param.mode = CHAIN_FOLDED;
2682 callchain_param.value = CCVAL_PERIOD;
2683
2684 callchain_register_param(&callchain_param);
2685
2686 printf("\nIdle stats by callchain:\n");
2687 for (i = 0; i < idle_max_cpu; ++i) {
2688 struct idle_thread_runtime *itr;
2689
2690 t = idle_threads[i];
2691 if (!t)
2692 continue;
2693
2694 itr = thread__priv(t);
2695 if (itr == NULL)
2696 continue;
2697
2698 callchain_param.sort(&itr->sorted_root, &itr->callchain,
2699 0, &callchain_param);
2700
2701 printf(" CPU %2d:", i);
2702 print_sched_time(itr->tr.total_run_time, 6);
2703 printf(" msec\n");
2704 timehist_print_idlehist_callchain(&itr->sorted_root);
2705 printf("\n");
2706 }
2707 }
2708
2709 printf("\n"
2710 " Total number of unique tasks: %" PRIu64 "\n"
2711 "Total number of context switches: %" PRIu64 "\n",
2712 totals.task_count, totals.sched_count);
2713
2714 printf(" Total run time (msec): ");
2715 print_sched_time(totals.total_run_time, 2);
2716 printf("\n");
2717
2718 printf(" Total scheduling time (msec): ");
2719 print_sched_time(hist_time, 2);
2720 printf(" (x %d)\n", sched->max_cpu);
2721 }
2722
2723 typedef int (*sched_handler)(struct perf_tool *tool,
2724 union perf_event *event,
2725 struct perf_evsel *evsel,
2726 struct perf_sample *sample,
2727 struct machine *machine);
2728
2729 static int perf_timehist__process_sample(struct perf_tool *tool,
2730 union perf_event *event,
2731 struct perf_sample *sample,
2732 struct perf_evsel *evsel,
2733 struct machine *machine)
2734 {
2735 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2736 int err = 0;
2737 int this_cpu = sample->cpu;
2738
2739 if (this_cpu > sched->max_cpu)
2740 sched->max_cpu = this_cpu;
2741
2742 if (evsel->handler != NULL) {
2743 sched_handler f = evsel->handler;
2744
2745 err = f(tool, event, evsel, sample, machine);
2746 }
2747
2748 return err;
2749 }
2750
2751 static int timehist_check_attr(struct perf_sched *sched,
2752 struct perf_evlist *evlist)
2753 {
2754 struct perf_evsel *evsel;
2755 struct evsel_runtime *er;
2756
2757 list_for_each_entry(evsel, &evlist->entries, node) {
2758 er = perf_evsel__get_runtime(evsel);
2759 if (er == NULL) {
2760 pr_err("Failed to allocate memory for evsel runtime data\n");
2761 return -1;
2762 }
2763
2764 if (sched->show_callchain &&
2765 !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2766 pr_info("Samples do not have callchains.\n");
2767 sched->show_callchain = 0;
2768 symbol_conf.use_callchain = 0;
2769 }
2770 }
2771
2772 return 0;
2773 }
2774
2775 static int perf_sched__timehist(struct perf_sched *sched)
2776 {
2777 const struct perf_evsel_str_handler handlers[] = {
2778 { "sched:sched_switch", timehist_sched_switch_event, },
2779 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2780 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2781 };
2782 const struct perf_evsel_str_handler migrate_handlers[] = {
2783 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2784 };
2785 struct perf_data_file file = {
2786 .path = input_name,
2787 .mode = PERF_DATA_MODE_READ,
2788 .force = sched->force,
2789 };
2790
2791 struct perf_session *session;
2792 struct perf_evlist *evlist;
2793 int err = -1;
2794
2795 /*
2796 * event handlers for timehist option
2797 */
2798 sched->tool.sample = perf_timehist__process_sample;
2799 sched->tool.mmap = perf_event__process_mmap;
2800 sched->tool.comm = perf_event__process_comm;
2801 sched->tool.exit = perf_event__process_exit;
2802 sched->tool.fork = perf_event__process_fork;
2803 sched->tool.lost = process_lost;
2804 sched->tool.attr = perf_event__process_attr;
2805 sched->tool.tracing_data = perf_event__process_tracing_data;
2806 sched->tool.build_id = perf_event__process_build_id;
2807
2808 sched->tool.ordered_events = true;
2809 sched->tool.ordering_requires_timestamps = true;
2810
2811 symbol_conf.use_callchain = sched->show_callchain;
2812
2813 session = perf_session__new(&file, false, &sched->tool);
2814 if (session == NULL)
2815 return -ENOMEM;
2816
2817 evlist = session->evlist;
2818
2819 symbol__init(&session->header.env);
2820
2821 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2822 pr_err("Invalid time string\n");
2823 return -EINVAL;
2824 }
2825
2826 if (timehist_check_attr(sched, evlist) != 0)
2827 goto out;
2828
2829 setup_pager();
2830
2831 /* setup per-evsel handlers */
2832 if (perf_session__set_tracepoints_handlers(session, handlers))
2833 goto out;
2834
2835 /* sched_switch event at a minimum needs to exist */
2836 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2837 "sched:sched_switch")) {
2838 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2839 goto out;
2840 }
2841
2842 if (sched->show_migrations &&
2843 perf_session__set_tracepoints_handlers(session, migrate_handlers))
2844 goto out;
2845
2846 /* pre-allocate struct for per-CPU idle stats */
2847 sched->max_cpu = session->header.env.nr_cpus_online;
2848 if (sched->max_cpu == 0)
2849 sched->max_cpu = 4;
2850 if (init_idle_threads(sched->max_cpu))
2851 goto out;
2852
2853 /* summary_only implies summary option, but don't overwrite summary if set */
2854 if (sched->summary_only)
2855 sched->summary = sched->summary_only;
2856
2857 if (!sched->summary_only)
2858 timehist_header(sched);
2859
2860 err = perf_session__process_events(session);
2861 if (err) {
2862 pr_err("Failed to process events, error %d", err);
2863 goto out;
2864 }
2865
2866 sched->nr_events = evlist->stats.nr_events[0];
2867 sched->nr_lost_events = evlist->stats.total_lost;
2868 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2869
2870 if (sched->summary)
2871 timehist_print_summary(sched, session);
2872
2873 out:
2874 free_idle_threads();
2875 perf_session__delete(session);
2876
2877 return err;
2878 }
2879
2880
2881 static void print_bad_events(struct perf_sched *sched)
2882 {
2883 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2884 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
2885 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
2886 sched->nr_unordered_timestamps, sched->nr_timestamps);
2887 }
2888 if (sched->nr_lost_events && sched->nr_events) {
2889 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
2890 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
2891 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
2892 }
2893 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
2894 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
2895 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
2896 sched->nr_context_switch_bugs, sched->nr_timestamps);
2897 if (sched->nr_lost_events)
2898 printf(" (due to lost events?)");
2899 printf("\n");
2900 }
2901 }
2902
2903 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
2904 {
2905 struct rb_node **new = &(root->rb_node), *parent = NULL;
2906 struct work_atoms *this;
2907 const char *comm = thread__comm_str(data->thread), *this_comm;
2908
2909 while (*new) {
2910 int cmp;
2911
2912 this = container_of(*new, struct work_atoms, node);
2913 parent = *new;
2914
2915 this_comm = thread__comm_str(this->thread);
2916 cmp = strcmp(comm, this_comm);
2917 if (cmp > 0) {
2918 new = &((*new)->rb_left);
2919 } else if (cmp < 0) {
2920 new = &((*new)->rb_right);
2921 } else {
2922 this->num_merged++;
2923 this->total_runtime += data->total_runtime;
2924 this->nb_atoms += data->nb_atoms;
2925 this->total_lat += data->total_lat;
2926 list_splice(&data->work_list, &this->work_list);
2927 if (this->max_lat < data->max_lat) {
2928 this->max_lat = data->max_lat;
2929 this->max_lat_at = data->max_lat_at;
2930 }
2931 zfree(&data);
2932 return;
2933 }
2934 }
2935
2936 data->num_merged++;
2937 rb_link_node(&data->node, parent, new);
2938 rb_insert_color(&data->node, root);
2939 }
2940
2941 static void perf_sched__merge_lat(struct perf_sched *sched)
2942 {
2943 struct work_atoms *data;
2944 struct rb_node *node;
2945
2946 if (sched->skip_merge)
2947 return;
2948
2949 while ((node = rb_first(&sched->atom_root))) {
2950 rb_erase(node, &sched->atom_root);
2951 data = rb_entry(node, struct work_atoms, node);
2952 __merge_work_atoms(&sched->merged_atom_root, data);
2953 }
2954 }
2955
2956 static int perf_sched__lat(struct perf_sched *sched)
2957 {
2958 struct rb_node *next;
2959
2960 setup_pager();
2961
2962 if (perf_sched__read_events(sched))
2963 return -1;
2964
2965 perf_sched__merge_lat(sched);
2966 perf_sched__sort_lat(sched);
2967
2968 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
2969 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
2970 printf(" -----------------------------------------------------------------------------------------------------------------\n");
2971
2972 next = rb_first(&sched->sorted_atom_root);
2973
2974 while (next) {
2975 struct work_atoms *work_list;
2976
2977 work_list = rb_entry(next, struct work_atoms, node);
2978 output_lat_thread(sched, work_list);
2979 next = rb_next(next);
2980 thread__zput(work_list->thread);
2981 }
2982
2983 printf(" -----------------------------------------------------------------------------------------------------------------\n");
2984 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
2985 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
2986
2987 printf(" ---------------------------------------------------\n");
2988
2989 print_bad_events(sched);
2990 printf("\n");
2991
2992 return 0;
2993 }
2994
2995 static int setup_map_cpus(struct perf_sched *sched)
2996 {
2997 struct cpu_map *map;
2998
2999 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3000
3001 if (sched->map.comp) {
3002 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3003 if (!sched->map.comp_cpus)
3004 return -1;
3005 }
3006
3007 if (!sched->map.cpus_str)
3008 return 0;
3009
3010 map = cpu_map__new(sched->map.cpus_str);
3011 if (!map) {
3012 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3013 return -1;
3014 }
3015
3016 sched->map.cpus = map;
3017 return 0;
3018 }
3019
3020 static int setup_color_pids(struct perf_sched *sched)
3021 {
3022 struct thread_map *map;
3023
3024 if (!sched->map.color_pids_str)
3025 return 0;
3026
3027 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3028 if (!map) {
3029 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3030 return -1;
3031 }
3032
3033 sched->map.color_pids = map;
3034 return 0;
3035 }
3036
3037 static int setup_color_cpus(struct perf_sched *sched)
3038 {
3039 struct cpu_map *map;
3040
3041 if (!sched->map.color_cpus_str)
3042 return 0;
3043
3044 map = cpu_map__new(sched->map.color_cpus_str);
3045 if (!map) {
3046 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3047 return -1;
3048 }
3049
3050 sched->map.color_cpus = map;
3051 return 0;
3052 }
3053
3054 static int perf_sched__map(struct perf_sched *sched)
3055 {
3056 if (setup_map_cpus(sched))
3057 return -1;
3058
3059 if (setup_color_pids(sched))
3060 return -1;
3061
3062 if (setup_color_cpus(sched))
3063 return -1;
3064
3065 setup_pager();
3066 if (perf_sched__read_events(sched))
3067 return -1;
3068 print_bad_events(sched);
3069 return 0;
3070 }
3071
3072 static int perf_sched__replay(struct perf_sched *sched)
3073 {
3074 unsigned long i;
3075
3076 calibrate_run_measurement_overhead(sched);
3077 calibrate_sleep_measurement_overhead(sched);
3078
3079 test_calibrations(sched);
3080
3081 if (perf_sched__read_events(sched))
3082 return -1;
3083
3084 printf("nr_run_events: %ld\n", sched->nr_run_events);
3085 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3086 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3087
3088 if (sched->targetless_wakeups)
3089 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3090 if (sched->multitarget_wakeups)
3091 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3092 if (sched->nr_run_events_optimized)
3093 printf("run atoms optimized: %ld\n",
3094 sched->nr_run_events_optimized);
3095
3096 print_task_traces(sched);
3097 add_cross_task_wakeups(sched);
3098
3099 create_tasks(sched);
3100 printf("------------------------------------------------------------\n");
3101 for (i = 0; i < sched->replay_repeat; i++)
3102 run_one_test(sched);
3103
3104 return 0;
3105 }
3106
3107 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3108 const char * const usage_msg[])
3109 {
3110 char *tmp, *tok, *str = strdup(sched->sort_order);
3111
3112 for (tok = strtok_r(str, ", ", &tmp);
3113 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3114 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3115 usage_with_options_msg(usage_msg, options,
3116 "Unknown --sort key: `%s'", tok);
3117 }
3118 }
3119
3120 free(str);
3121
3122 sort_dimension__add("pid", &sched->cmp_pid);
3123 }
3124
3125 static int __cmd_record(int argc, const char **argv)
3126 {
3127 unsigned int rec_argc, i, j;
3128 const char **rec_argv;
3129 const char * const record_args[] = {
3130 "record",
3131 "-a",
3132 "-R",
3133 "-m", "1024",
3134 "-c", "1",
3135 "-e", "sched:sched_switch",
3136 "-e", "sched:sched_stat_wait",
3137 "-e", "sched:sched_stat_sleep",
3138 "-e", "sched:sched_stat_iowait",
3139 "-e", "sched:sched_stat_runtime",
3140 "-e", "sched:sched_process_fork",
3141 "-e", "sched:sched_wakeup",
3142 "-e", "sched:sched_wakeup_new",
3143 "-e", "sched:sched_migrate_task",
3144 };
3145
3146 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3147 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3148
3149 if (rec_argv == NULL)
3150 return -ENOMEM;
3151
3152 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3153 rec_argv[i] = strdup(record_args[i]);
3154
3155 for (j = 1; j < (unsigned int)argc; j++, i++)
3156 rec_argv[i] = argv[j];
3157
3158 BUG_ON(i != rec_argc);
3159
3160 return cmd_record(i, rec_argv, NULL);
3161 }
3162
3163 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
3164 {
3165 const char default_sort_order[] = "avg, max, switch, runtime";
3166 struct perf_sched sched = {
3167 .tool = {
3168 .sample = perf_sched__process_tracepoint_sample,
3169 .comm = perf_event__process_comm,
3170 .lost = perf_event__process_lost,
3171 .fork = perf_sched__process_fork_event,
3172 .ordered_events = true,
3173 },
3174 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3175 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3176 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3177 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3178 .sort_order = default_sort_order,
3179 .replay_repeat = 10,
3180 .profile_cpu = -1,
3181 .next_shortname1 = 'A',
3182 .next_shortname2 = '0',
3183 .skip_merge = 0,
3184 .show_callchain = 1,
3185 .max_stack = 5,
3186 };
3187 const struct option sched_options[] = {
3188 OPT_STRING('i', "input", &input_name, "file",
3189 "input file name"),
3190 OPT_INCR('v', "verbose", &verbose,
3191 "be more verbose (show symbol address, etc)"),
3192 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3193 "dump raw trace in ASCII"),
3194 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3195 OPT_END()
3196 };
3197 const struct option latency_options[] = {
3198 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3199 "sort by key(s): runtime, switch, avg, max"),
3200 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3201 "CPU to profile on"),
3202 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3203 "latency stats per pid instead of per comm"),
3204 OPT_PARENT(sched_options)
3205 };
3206 const struct option replay_options[] = {
3207 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3208 "repeat the workload replay N times (-1: infinite)"),
3209 OPT_PARENT(sched_options)
3210 };
3211 const struct option map_options[] = {
3212 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3213 "map output in compact mode"),
3214 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3215 "highlight given pids in map"),
3216 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3217 "highlight given CPUs in map"),
3218 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3219 "display given CPUs in map"),
3220 OPT_PARENT(sched_options)
3221 };
3222 const struct option timehist_options[] = {
3223 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3224 "file", "vmlinux pathname"),
3225 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3226 "file", "kallsyms pathname"),
3227 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3228 "Display call chains if present (default on)"),
3229 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3230 "Maximum number of functions to display backtrace."),
3231 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3232 "Look for files with symbols relative to this directory"),
3233 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3234 "Show only syscall summary with statistics"),
3235 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3236 "Show all syscalls and summary with statistics"),
3237 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3238 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3239 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3240 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3241 OPT_STRING(0, "time", &sched.time_str, "str",
3242 "Time span for analysis (start,stop)"),
3243 OPT_PARENT(sched_options)
3244 };
3245
3246 const char * const latency_usage[] = {
3247 "perf sched latency [<options>]",
3248 NULL
3249 };
3250 const char * const replay_usage[] = {
3251 "perf sched replay [<options>]",
3252 NULL
3253 };
3254 const char * const map_usage[] = {
3255 "perf sched map [<options>]",
3256 NULL
3257 };
3258 const char * const timehist_usage[] = {
3259 "perf sched timehist [<options>]",
3260 NULL
3261 };
3262 const char *const sched_subcommands[] = { "record", "latency", "map",
3263 "replay", "script",
3264 "timehist", NULL };
3265 const char *sched_usage[] = {
3266 NULL,
3267 NULL
3268 };
3269 struct trace_sched_handler lat_ops = {
3270 .wakeup_event = latency_wakeup_event,
3271 .switch_event = latency_switch_event,
3272 .runtime_event = latency_runtime_event,
3273 .migrate_task_event = latency_migrate_task_event,
3274 };
3275 struct trace_sched_handler map_ops = {
3276 .switch_event = map_switch_event,
3277 };
3278 struct trace_sched_handler replay_ops = {
3279 .wakeup_event = replay_wakeup_event,
3280 .switch_event = replay_switch_event,
3281 .fork_event = replay_fork_event,
3282 };
3283 unsigned int i;
3284
3285 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3286 sched.curr_pid[i] = -1;
3287
3288 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3289 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3290 if (!argc)
3291 usage_with_options(sched_usage, sched_options);
3292
3293 /*
3294 * Aliased to 'perf script' for now:
3295 */
3296 if (!strcmp(argv[0], "script"))
3297 return cmd_script(argc, argv, prefix);
3298
3299 if (!strncmp(argv[0], "rec", 3)) {
3300 return __cmd_record(argc, argv);
3301 } else if (!strncmp(argv[0], "lat", 3)) {
3302 sched.tp_handler = &lat_ops;
3303 if (argc > 1) {
3304 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3305 if (argc)
3306 usage_with_options(latency_usage, latency_options);
3307 }
3308 setup_sorting(&sched, latency_options, latency_usage);
3309 return perf_sched__lat(&sched);
3310 } else if (!strcmp(argv[0], "map")) {
3311 if (argc) {
3312 argc = parse_options(argc, argv, map_options, map_usage, 0);
3313 if (argc)
3314 usage_with_options(map_usage, map_options);
3315 }
3316 sched.tp_handler = &map_ops;
3317 setup_sorting(&sched, latency_options, latency_usage);
3318 return perf_sched__map(&sched);
3319 } else if (!strncmp(argv[0], "rep", 3)) {
3320 sched.tp_handler = &replay_ops;
3321 if (argc) {
3322 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3323 if (argc)
3324 usage_with_options(replay_usage, replay_options);
3325 }
3326 return perf_sched__replay(&sched);
3327 } else if (!strcmp(argv[0], "timehist")) {
3328 if (argc) {
3329 argc = parse_options(argc, argv, timehist_options,
3330 timehist_usage, 0);
3331 if (argc)
3332 usage_with_options(timehist_usage, timehist_options);
3333 }
3334 if (sched.show_wakeups && sched.summary_only) {
3335 pr_err(" Error: -s and -w are mutually exclusive.\n");
3336 parse_options_usage(timehist_usage, timehist_options, "s", true);
3337 parse_options_usage(NULL, timehist_options, "w", true);
3338 return -EINVAL;
3339 }
3340
3341 return perf_sched__timehist(&sched);
3342 } else {
3343 usage_with_options(sched_usage, sched_options);
3344 }
3345
3346 return 0;
3347 }