]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/perf/builtin-sched.c
btrfs: remove unused headers, statfs.h
[mirror_ubuntu-bionic-kernel.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16
17 #include <subcmd/parse-options.h>
18 #include "util/trace-event.h"
19
20 #include "util/debug.h"
21
22 #include <sys/prctl.h>
23 #include <sys/resource.h>
24
25 #include <semaphore.h>
26 #include <pthread.h>
27 #include <math.h>
28 #include <api/fs/fs.h>
29 #include <linux/time64.h>
30
31 #define PR_SET_NAME 15 /* Set process name */
32 #define MAX_CPUS 4096
33 #define COMM_LEN 20
34 #define SYM_LEN 129
35 #define MAX_PID 1024000
36
37 struct sched_atom;
38
39 struct task_desc {
40 unsigned long nr;
41 unsigned long pid;
42 char comm[COMM_LEN];
43
44 unsigned long nr_events;
45 unsigned long curr_event;
46 struct sched_atom **atoms;
47
48 pthread_t thread;
49 sem_t sleep_sem;
50
51 sem_t ready_for_work;
52 sem_t work_done_sem;
53
54 u64 cpu_usage;
55 };
56
57 enum sched_event_type {
58 SCHED_EVENT_RUN,
59 SCHED_EVENT_SLEEP,
60 SCHED_EVENT_WAKEUP,
61 SCHED_EVENT_MIGRATION,
62 };
63
64 struct sched_atom {
65 enum sched_event_type type;
66 int specific_wait;
67 u64 timestamp;
68 u64 duration;
69 unsigned long nr;
70 sem_t *wait_sem;
71 struct task_desc *wakee;
72 };
73
74 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
75
76 enum thread_state {
77 THREAD_SLEEPING = 0,
78 THREAD_WAIT_CPU,
79 THREAD_SCHED_IN,
80 THREAD_IGNORE
81 };
82
83 struct work_atom {
84 struct list_head list;
85 enum thread_state state;
86 u64 sched_out_time;
87 u64 wake_up_time;
88 u64 sched_in_time;
89 u64 runtime;
90 };
91
92 struct work_atoms {
93 struct list_head work_list;
94 struct thread *thread;
95 struct rb_node node;
96 u64 max_lat;
97 u64 max_lat_at;
98 u64 total_lat;
99 u64 nb_atoms;
100 u64 total_runtime;
101 int num_merged;
102 };
103
104 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
105
106 struct perf_sched;
107
108 struct trace_sched_handler {
109 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 struct perf_sample *sample, struct machine *machine);
111
112 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 struct perf_sample *sample, struct machine *machine);
114
115 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
116 struct perf_sample *sample, struct machine *machine);
117
118 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
119 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
120 struct machine *machine);
121
122 int (*migrate_task_event)(struct perf_sched *sched,
123 struct perf_evsel *evsel,
124 struct perf_sample *sample,
125 struct machine *machine);
126 };
127
128 #define COLOR_PIDS PERF_COLOR_BLUE
129 #define COLOR_CPUS PERF_COLOR_BG_RED
130
131 struct perf_sched_map {
132 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
133 int *comp_cpus;
134 bool comp;
135 struct thread_map *color_pids;
136 const char *color_pids_str;
137 struct cpu_map *color_cpus;
138 const char *color_cpus_str;
139 struct cpu_map *cpus;
140 const char *cpus_str;
141 };
142
143 struct perf_sched {
144 struct perf_tool tool;
145 const char *sort_order;
146 unsigned long nr_tasks;
147 struct task_desc **pid_to_task;
148 struct task_desc **tasks;
149 const struct trace_sched_handler *tp_handler;
150 pthread_mutex_t start_work_mutex;
151 pthread_mutex_t work_done_wait_mutex;
152 int profile_cpu;
153 /*
154 * Track the current task - that way we can know whether there's any
155 * weird events, such as a task being switched away that is not current.
156 */
157 int max_cpu;
158 u32 curr_pid[MAX_CPUS];
159 struct thread *curr_thread[MAX_CPUS];
160 char next_shortname1;
161 char next_shortname2;
162 unsigned int replay_repeat;
163 unsigned long nr_run_events;
164 unsigned long nr_sleep_events;
165 unsigned long nr_wakeup_events;
166 unsigned long nr_sleep_corrections;
167 unsigned long nr_run_events_optimized;
168 unsigned long targetless_wakeups;
169 unsigned long multitarget_wakeups;
170 unsigned long nr_runs;
171 unsigned long nr_timestamps;
172 unsigned long nr_unordered_timestamps;
173 unsigned long nr_context_switch_bugs;
174 unsigned long nr_events;
175 unsigned long nr_lost_chunks;
176 unsigned long nr_lost_events;
177 u64 run_measurement_overhead;
178 u64 sleep_measurement_overhead;
179 u64 start_time;
180 u64 cpu_usage;
181 u64 runavg_cpu_usage;
182 u64 parent_cpu_usage;
183 u64 runavg_parent_cpu_usage;
184 u64 sum_runtime;
185 u64 sum_fluct;
186 u64 run_avg;
187 u64 all_runtime;
188 u64 all_count;
189 u64 cpu_last_switched[MAX_CPUS];
190 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
191 struct list_head sort_list, cmp_pid;
192 bool force;
193 bool skip_merge;
194 struct perf_sched_map map;
195 };
196
197 static u64 get_nsecs(void)
198 {
199 struct timespec ts;
200
201 clock_gettime(CLOCK_MONOTONIC, &ts);
202
203 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
204 }
205
206 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
207 {
208 u64 T0 = get_nsecs(), T1;
209
210 do {
211 T1 = get_nsecs();
212 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
213 }
214
215 static void sleep_nsecs(u64 nsecs)
216 {
217 struct timespec ts;
218
219 ts.tv_nsec = nsecs % 999999999;
220 ts.tv_sec = nsecs / 999999999;
221
222 nanosleep(&ts, NULL);
223 }
224
225 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
226 {
227 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
228 int i;
229
230 for (i = 0; i < 10; i++) {
231 T0 = get_nsecs();
232 burn_nsecs(sched, 0);
233 T1 = get_nsecs();
234 delta = T1-T0;
235 min_delta = min(min_delta, delta);
236 }
237 sched->run_measurement_overhead = min_delta;
238
239 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
240 }
241
242 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
243 {
244 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
245 int i;
246
247 for (i = 0; i < 10; i++) {
248 T0 = get_nsecs();
249 sleep_nsecs(10000);
250 T1 = get_nsecs();
251 delta = T1-T0;
252 min_delta = min(min_delta, delta);
253 }
254 min_delta -= 10000;
255 sched->sleep_measurement_overhead = min_delta;
256
257 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
258 }
259
260 static struct sched_atom *
261 get_new_event(struct task_desc *task, u64 timestamp)
262 {
263 struct sched_atom *event = zalloc(sizeof(*event));
264 unsigned long idx = task->nr_events;
265 size_t size;
266
267 event->timestamp = timestamp;
268 event->nr = idx;
269
270 task->nr_events++;
271 size = sizeof(struct sched_atom *) * task->nr_events;
272 task->atoms = realloc(task->atoms, size);
273 BUG_ON(!task->atoms);
274
275 task->atoms[idx] = event;
276
277 return event;
278 }
279
280 static struct sched_atom *last_event(struct task_desc *task)
281 {
282 if (!task->nr_events)
283 return NULL;
284
285 return task->atoms[task->nr_events - 1];
286 }
287
288 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
289 u64 timestamp, u64 duration)
290 {
291 struct sched_atom *event, *curr_event = last_event(task);
292
293 /*
294 * optimize an existing RUN event by merging this one
295 * to it:
296 */
297 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
298 sched->nr_run_events_optimized++;
299 curr_event->duration += duration;
300 return;
301 }
302
303 event = get_new_event(task, timestamp);
304
305 event->type = SCHED_EVENT_RUN;
306 event->duration = duration;
307
308 sched->nr_run_events++;
309 }
310
311 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
312 u64 timestamp, struct task_desc *wakee)
313 {
314 struct sched_atom *event, *wakee_event;
315
316 event = get_new_event(task, timestamp);
317 event->type = SCHED_EVENT_WAKEUP;
318 event->wakee = wakee;
319
320 wakee_event = last_event(wakee);
321 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
322 sched->targetless_wakeups++;
323 return;
324 }
325 if (wakee_event->wait_sem) {
326 sched->multitarget_wakeups++;
327 return;
328 }
329
330 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
331 sem_init(wakee_event->wait_sem, 0, 0);
332 wakee_event->specific_wait = 1;
333 event->wait_sem = wakee_event->wait_sem;
334
335 sched->nr_wakeup_events++;
336 }
337
338 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
339 u64 timestamp, u64 task_state __maybe_unused)
340 {
341 struct sched_atom *event = get_new_event(task, timestamp);
342
343 event->type = SCHED_EVENT_SLEEP;
344
345 sched->nr_sleep_events++;
346 }
347
348 static struct task_desc *register_pid(struct perf_sched *sched,
349 unsigned long pid, const char *comm)
350 {
351 struct task_desc *task;
352 static int pid_max;
353
354 if (sched->pid_to_task == NULL) {
355 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
356 pid_max = MAX_PID;
357 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
358 }
359 if (pid >= (unsigned long)pid_max) {
360 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
361 sizeof(struct task_desc *))) == NULL);
362 while (pid >= (unsigned long)pid_max)
363 sched->pid_to_task[pid_max++] = NULL;
364 }
365
366 task = sched->pid_to_task[pid];
367
368 if (task)
369 return task;
370
371 task = zalloc(sizeof(*task));
372 task->pid = pid;
373 task->nr = sched->nr_tasks;
374 strcpy(task->comm, comm);
375 /*
376 * every task starts in sleeping state - this gets ignored
377 * if there's no wakeup pointing to this sleep state:
378 */
379 add_sched_event_sleep(sched, task, 0, 0);
380
381 sched->pid_to_task[pid] = task;
382 sched->nr_tasks++;
383 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
384 BUG_ON(!sched->tasks);
385 sched->tasks[task->nr] = task;
386
387 if (verbose)
388 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
389
390 return task;
391 }
392
393
394 static void print_task_traces(struct perf_sched *sched)
395 {
396 struct task_desc *task;
397 unsigned long i;
398
399 for (i = 0; i < sched->nr_tasks; i++) {
400 task = sched->tasks[i];
401 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
402 task->nr, task->comm, task->pid, task->nr_events);
403 }
404 }
405
406 static void add_cross_task_wakeups(struct perf_sched *sched)
407 {
408 struct task_desc *task1, *task2;
409 unsigned long i, j;
410
411 for (i = 0; i < sched->nr_tasks; i++) {
412 task1 = sched->tasks[i];
413 j = i + 1;
414 if (j == sched->nr_tasks)
415 j = 0;
416 task2 = sched->tasks[j];
417 add_sched_event_wakeup(sched, task1, 0, task2);
418 }
419 }
420
421 static void perf_sched__process_event(struct perf_sched *sched,
422 struct sched_atom *atom)
423 {
424 int ret = 0;
425
426 switch (atom->type) {
427 case SCHED_EVENT_RUN:
428 burn_nsecs(sched, atom->duration);
429 break;
430 case SCHED_EVENT_SLEEP:
431 if (atom->wait_sem)
432 ret = sem_wait(atom->wait_sem);
433 BUG_ON(ret);
434 break;
435 case SCHED_EVENT_WAKEUP:
436 if (atom->wait_sem)
437 ret = sem_post(atom->wait_sem);
438 BUG_ON(ret);
439 break;
440 case SCHED_EVENT_MIGRATION:
441 break;
442 default:
443 BUG_ON(1);
444 }
445 }
446
447 static u64 get_cpu_usage_nsec_parent(void)
448 {
449 struct rusage ru;
450 u64 sum;
451 int err;
452
453 err = getrusage(RUSAGE_SELF, &ru);
454 BUG_ON(err);
455
456 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
457 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
458
459 return sum;
460 }
461
462 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
463 {
464 struct perf_event_attr attr;
465 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
466 int fd;
467 struct rlimit limit;
468 bool need_privilege = false;
469
470 memset(&attr, 0, sizeof(attr));
471
472 attr.type = PERF_TYPE_SOFTWARE;
473 attr.config = PERF_COUNT_SW_TASK_CLOCK;
474
475 force_again:
476 fd = sys_perf_event_open(&attr, 0, -1, -1,
477 perf_event_open_cloexec_flag());
478
479 if (fd < 0) {
480 if (errno == EMFILE) {
481 if (sched->force) {
482 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
483 limit.rlim_cur += sched->nr_tasks - cur_task;
484 if (limit.rlim_cur > limit.rlim_max) {
485 limit.rlim_max = limit.rlim_cur;
486 need_privilege = true;
487 }
488 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
489 if (need_privilege && errno == EPERM)
490 strcpy(info, "Need privilege\n");
491 } else
492 goto force_again;
493 } else
494 strcpy(info, "Have a try with -f option\n");
495 }
496 pr_err("Error: sys_perf_event_open() syscall returned "
497 "with %d (%s)\n%s", fd,
498 str_error_r(errno, sbuf, sizeof(sbuf)), info);
499 exit(EXIT_FAILURE);
500 }
501 return fd;
502 }
503
504 static u64 get_cpu_usage_nsec_self(int fd)
505 {
506 u64 runtime;
507 int ret;
508
509 ret = read(fd, &runtime, sizeof(runtime));
510 BUG_ON(ret != sizeof(runtime));
511
512 return runtime;
513 }
514
515 struct sched_thread_parms {
516 struct task_desc *task;
517 struct perf_sched *sched;
518 int fd;
519 };
520
521 static void *thread_func(void *ctx)
522 {
523 struct sched_thread_parms *parms = ctx;
524 struct task_desc *this_task = parms->task;
525 struct perf_sched *sched = parms->sched;
526 u64 cpu_usage_0, cpu_usage_1;
527 unsigned long i, ret;
528 char comm2[22];
529 int fd = parms->fd;
530
531 zfree(&parms);
532
533 sprintf(comm2, ":%s", this_task->comm);
534 prctl(PR_SET_NAME, comm2);
535 if (fd < 0)
536 return NULL;
537 again:
538 ret = sem_post(&this_task->ready_for_work);
539 BUG_ON(ret);
540 ret = pthread_mutex_lock(&sched->start_work_mutex);
541 BUG_ON(ret);
542 ret = pthread_mutex_unlock(&sched->start_work_mutex);
543 BUG_ON(ret);
544
545 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
546
547 for (i = 0; i < this_task->nr_events; i++) {
548 this_task->curr_event = i;
549 perf_sched__process_event(sched, this_task->atoms[i]);
550 }
551
552 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
553 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
554 ret = sem_post(&this_task->work_done_sem);
555 BUG_ON(ret);
556
557 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
558 BUG_ON(ret);
559 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
560 BUG_ON(ret);
561
562 goto again;
563 }
564
565 static void create_tasks(struct perf_sched *sched)
566 {
567 struct task_desc *task;
568 pthread_attr_t attr;
569 unsigned long i;
570 int err;
571
572 err = pthread_attr_init(&attr);
573 BUG_ON(err);
574 err = pthread_attr_setstacksize(&attr,
575 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
576 BUG_ON(err);
577 err = pthread_mutex_lock(&sched->start_work_mutex);
578 BUG_ON(err);
579 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
580 BUG_ON(err);
581 for (i = 0; i < sched->nr_tasks; i++) {
582 struct sched_thread_parms *parms = malloc(sizeof(*parms));
583 BUG_ON(parms == NULL);
584 parms->task = task = sched->tasks[i];
585 parms->sched = sched;
586 parms->fd = self_open_counters(sched, i);
587 sem_init(&task->sleep_sem, 0, 0);
588 sem_init(&task->ready_for_work, 0, 0);
589 sem_init(&task->work_done_sem, 0, 0);
590 task->curr_event = 0;
591 err = pthread_create(&task->thread, &attr, thread_func, parms);
592 BUG_ON(err);
593 }
594 }
595
596 static void wait_for_tasks(struct perf_sched *sched)
597 {
598 u64 cpu_usage_0, cpu_usage_1;
599 struct task_desc *task;
600 unsigned long i, ret;
601
602 sched->start_time = get_nsecs();
603 sched->cpu_usage = 0;
604 pthread_mutex_unlock(&sched->work_done_wait_mutex);
605
606 for (i = 0; i < sched->nr_tasks; i++) {
607 task = sched->tasks[i];
608 ret = sem_wait(&task->ready_for_work);
609 BUG_ON(ret);
610 sem_init(&task->ready_for_work, 0, 0);
611 }
612 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
613 BUG_ON(ret);
614
615 cpu_usage_0 = get_cpu_usage_nsec_parent();
616
617 pthread_mutex_unlock(&sched->start_work_mutex);
618
619 for (i = 0; i < sched->nr_tasks; i++) {
620 task = sched->tasks[i];
621 ret = sem_wait(&task->work_done_sem);
622 BUG_ON(ret);
623 sem_init(&task->work_done_sem, 0, 0);
624 sched->cpu_usage += task->cpu_usage;
625 task->cpu_usage = 0;
626 }
627
628 cpu_usage_1 = get_cpu_usage_nsec_parent();
629 if (!sched->runavg_cpu_usage)
630 sched->runavg_cpu_usage = sched->cpu_usage;
631 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
632
633 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
634 if (!sched->runavg_parent_cpu_usage)
635 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
636 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
637 sched->parent_cpu_usage)/sched->replay_repeat;
638
639 ret = pthread_mutex_lock(&sched->start_work_mutex);
640 BUG_ON(ret);
641
642 for (i = 0; i < sched->nr_tasks; i++) {
643 task = sched->tasks[i];
644 sem_init(&task->sleep_sem, 0, 0);
645 task->curr_event = 0;
646 }
647 }
648
649 static void run_one_test(struct perf_sched *sched)
650 {
651 u64 T0, T1, delta, avg_delta, fluct;
652
653 T0 = get_nsecs();
654 wait_for_tasks(sched);
655 T1 = get_nsecs();
656
657 delta = T1 - T0;
658 sched->sum_runtime += delta;
659 sched->nr_runs++;
660
661 avg_delta = sched->sum_runtime / sched->nr_runs;
662 if (delta < avg_delta)
663 fluct = avg_delta - delta;
664 else
665 fluct = delta - avg_delta;
666 sched->sum_fluct += fluct;
667 if (!sched->run_avg)
668 sched->run_avg = delta;
669 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
670
671 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
672
673 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
674
675 printf("cpu: %0.2f / %0.2f",
676 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
677
678 #if 0
679 /*
680 * rusage statistics done by the parent, these are less
681 * accurate than the sched->sum_exec_runtime based statistics:
682 */
683 printf(" [%0.2f / %0.2f]",
684 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
685 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
686 #endif
687
688 printf("\n");
689
690 if (sched->nr_sleep_corrections)
691 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
692 sched->nr_sleep_corrections = 0;
693 }
694
695 static void test_calibrations(struct perf_sched *sched)
696 {
697 u64 T0, T1;
698
699 T0 = get_nsecs();
700 burn_nsecs(sched, NSEC_PER_MSEC);
701 T1 = get_nsecs();
702
703 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
704
705 T0 = get_nsecs();
706 sleep_nsecs(NSEC_PER_MSEC);
707 T1 = get_nsecs();
708
709 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
710 }
711
712 static int
713 replay_wakeup_event(struct perf_sched *sched,
714 struct perf_evsel *evsel, struct perf_sample *sample,
715 struct machine *machine __maybe_unused)
716 {
717 const char *comm = perf_evsel__strval(evsel, sample, "comm");
718 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
719 struct task_desc *waker, *wakee;
720
721 if (verbose) {
722 printf("sched_wakeup event %p\n", evsel);
723
724 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
725 }
726
727 waker = register_pid(sched, sample->tid, "<unknown>");
728 wakee = register_pid(sched, pid, comm);
729
730 add_sched_event_wakeup(sched, waker, sample->time, wakee);
731 return 0;
732 }
733
734 static int replay_switch_event(struct perf_sched *sched,
735 struct perf_evsel *evsel,
736 struct perf_sample *sample,
737 struct machine *machine __maybe_unused)
738 {
739 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
740 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
741 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
742 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
743 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
744 struct task_desc *prev, __maybe_unused *next;
745 u64 timestamp0, timestamp = sample->time;
746 int cpu = sample->cpu;
747 s64 delta;
748
749 if (verbose)
750 printf("sched_switch event %p\n", evsel);
751
752 if (cpu >= MAX_CPUS || cpu < 0)
753 return 0;
754
755 timestamp0 = sched->cpu_last_switched[cpu];
756 if (timestamp0)
757 delta = timestamp - timestamp0;
758 else
759 delta = 0;
760
761 if (delta < 0) {
762 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
763 return -1;
764 }
765
766 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
767 prev_comm, prev_pid, next_comm, next_pid, delta);
768
769 prev = register_pid(sched, prev_pid, prev_comm);
770 next = register_pid(sched, next_pid, next_comm);
771
772 sched->cpu_last_switched[cpu] = timestamp;
773
774 add_sched_event_run(sched, prev, timestamp, delta);
775 add_sched_event_sleep(sched, prev, timestamp, prev_state);
776
777 return 0;
778 }
779
780 static int replay_fork_event(struct perf_sched *sched,
781 union perf_event *event,
782 struct machine *machine)
783 {
784 struct thread *child, *parent;
785
786 child = machine__findnew_thread(machine, event->fork.pid,
787 event->fork.tid);
788 parent = machine__findnew_thread(machine, event->fork.ppid,
789 event->fork.ptid);
790
791 if (child == NULL || parent == NULL) {
792 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
793 child, parent);
794 goto out_put;
795 }
796
797 if (verbose) {
798 printf("fork event\n");
799 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
800 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
801 }
802
803 register_pid(sched, parent->tid, thread__comm_str(parent));
804 register_pid(sched, child->tid, thread__comm_str(child));
805 out_put:
806 thread__put(child);
807 thread__put(parent);
808 return 0;
809 }
810
811 struct sort_dimension {
812 const char *name;
813 sort_fn_t cmp;
814 struct list_head list;
815 };
816
817 static int
818 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
819 {
820 struct sort_dimension *sort;
821 int ret = 0;
822
823 BUG_ON(list_empty(list));
824
825 list_for_each_entry(sort, list, list) {
826 ret = sort->cmp(l, r);
827 if (ret)
828 return ret;
829 }
830
831 return ret;
832 }
833
834 static struct work_atoms *
835 thread_atoms_search(struct rb_root *root, struct thread *thread,
836 struct list_head *sort_list)
837 {
838 struct rb_node *node = root->rb_node;
839 struct work_atoms key = { .thread = thread };
840
841 while (node) {
842 struct work_atoms *atoms;
843 int cmp;
844
845 atoms = container_of(node, struct work_atoms, node);
846
847 cmp = thread_lat_cmp(sort_list, &key, atoms);
848 if (cmp > 0)
849 node = node->rb_left;
850 else if (cmp < 0)
851 node = node->rb_right;
852 else {
853 BUG_ON(thread != atoms->thread);
854 return atoms;
855 }
856 }
857 return NULL;
858 }
859
860 static void
861 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
862 struct list_head *sort_list)
863 {
864 struct rb_node **new = &(root->rb_node), *parent = NULL;
865
866 while (*new) {
867 struct work_atoms *this;
868 int cmp;
869
870 this = container_of(*new, struct work_atoms, node);
871 parent = *new;
872
873 cmp = thread_lat_cmp(sort_list, data, this);
874
875 if (cmp > 0)
876 new = &((*new)->rb_left);
877 else
878 new = &((*new)->rb_right);
879 }
880
881 rb_link_node(&data->node, parent, new);
882 rb_insert_color(&data->node, root);
883 }
884
885 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
886 {
887 struct work_atoms *atoms = zalloc(sizeof(*atoms));
888 if (!atoms) {
889 pr_err("No memory at %s\n", __func__);
890 return -1;
891 }
892
893 atoms->thread = thread__get(thread);
894 INIT_LIST_HEAD(&atoms->work_list);
895 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
896 return 0;
897 }
898
899 static char sched_out_state(u64 prev_state)
900 {
901 const char *str = TASK_STATE_TO_CHAR_STR;
902
903 return str[prev_state];
904 }
905
906 static int
907 add_sched_out_event(struct work_atoms *atoms,
908 char run_state,
909 u64 timestamp)
910 {
911 struct work_atom *atom = zalloc(sizeof(*atom));
912 if (!atom) {
913 pr_err("Non memory at %s", __func__);
914 return -1;
915 }
916
917 atom->sched_out_time = timestamp;
918
919 if (run_state == 'R') {
920 atom->state = THREAD_WAIT_CPU;
921 atom->wake_up_time = atom->sched_out_time;
922 }
923
924 list_add_tail(&atom->list, &atoms->work_list);
925 return 0;
926 }
927
928 static void
929 add_runtime_event(struct work_atoms *atoms, u64 delta,
930 u64 timestamp __maybe_unused)
931 {
932 struct work_atom *atom;
933
934 BUG_ON(list_empty(&atoms->work_list));
935
936 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
937
938 atom->runtime += delta;
939 atoms->total_runtime += delta;
940 }
941
942 static void
943 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
944 {
945 struct work_atom *atom;
946 u64 delta;
947
948 if (list_empty(&atoms->work_list))
949 return;
950
951 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
952
953 if (atom->state != THREAD_WAIT_CPU)
954 return;
955
956 if (timestamp < atom->wake_up_time) {
957 atom->state = THREAD_IGNORE;
958 return;
959 }
960
961 atom->state = THREAD_SCHED_IN;
962 atom->sched_in_time = timestamp;
963
964 delta = atom->sched_in_time - atom->wake_up_time;
965 atoms->total_lat += delta;
966 if (delta > atoms->max_lat) {
967 atoms->max_lat = delta;
968 atoms->max_lat_at = timestamp;
969 }
970 atoms->nb_atoms++;
971 }
972
973 static int latency_switch_event(struct perf_sched *sched,
974 struct perf_evsel *evsel,
975 struct perf_sample *sample,
976 struct machine *machine)
977 {
978 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
979 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
980 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
981 struct work_atoms *out_events, *in_events;
982 struct thread *sched_out, *sched_in;
983 u64 timestamp0, timestamp = sample->time;
984 int cpu = sample->cpu, err = -1;
985 s64 delta;
986
987 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988
989 timestamp0 = sched->cpu_last_switched[cpu];
990 sched->cpu_last_switched[cpu] = timestamp;
991 if (timestamp0)
992 delta = timestamp - timestamp0;
993 else
994 delta = 0;
995
996 if (delta < 0) {
997 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
998 return -1;
999 }
1000
1001 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1002 sched_in = machine__findnew_thread(machine, -1, next_pid);
1003 if (sched_out == NULL || sched_in == NULL)
1004 goto out_put;
1005
1006 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1007 if (!out_events) {
1008 if (thread_atoms_insert(sched, sched_out))
1009 goto out_put;
1010 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1011 if (!out_events) {
1012 pr_err("out-event: Internal tree error");
1013 goto out_put;
1014 }
1015 }
1016 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1017 return -1;
1018
1019 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1020 if (!in_events) {
1021 if (thread_atoms_insert(sched, sched_in))
1022 goto out_put;
1023 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1024 if (!in_events) {
1025 pr_err("in-event: Internal tree error");
1026 goto out_put;
1027 }
1028 /*
1029 * Take came in we have not heard about yet,
1030 * add in an initial atom in runnable state:
1031 */
1032 if (add_sched_out_event(in_events, 'R', timestamp))
1033 goto out_put;
1034 }
1035 add_sched_in_event(in_events, timestamp);
1036 err = 0;
1037 out_put:
1038 thread__put(sched_out);
1039 thread__put(sched_in);
1040 return err;
1041 }
1042
1043 static int latency_runtime_event(struct perf_sched *sched,
1044 struct perf_evsel *evsel,
1045 struct perf_sample *sample,
1046 struct machine *machine)
1047 {
1048 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1049 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1050 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1051 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1052 u64 timestamp = sample->time;
1053 int cpu = sample->cpu, err = -1;
1054
1055 if (thread == NULL)
1056 return -1;
1057
1058 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1059 if (!atoms) {
1060 if (thread_atoms_insert(sched, thread))
1061 goto out_put;
1062 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1063 if (!atoms) {
1064 pr_err("in-event: Internal tree error");
1065 goto out_put;
1066 }
1067 if (add_sched_out_event(atoms, 'R', timestamp))
1068 goto out_put;
1069 }
1070
1071 add_runtime_event(atoms, runtime, timestamp);
1072 err = 0;
1073 out_put:
1074 thread__put(thread);
1075 return err;
1076 }
1077
1078 static int latency_wakeup_event(struct perf_sched *sched,
1079 struct perf_evsel *evsel,
1080 struct perf_sample *sample,
1081 struct machine *machine)
1082 {
1083 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1084 struct work_atoms *atoms;
1085 struct work_atom *atom;
1086 struct thread *wakee;
1087 u64 timestamp = sample->time;
1088 int err = -1;
1089
1090 wakee = machine__findnew_thread(machine, -1, pid);
1091 if (wakee == NULL)
1092 return -1;
1093 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1094 if (!atoms) {
1095 if (thread_atoms_insert(sched, wakee))
1096 goto out_put;
1097 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1098 if (!atoms) {
1099 pr_err("wakeup-event: Internal tree error");
1100 goto out_put;
1101 }
1102 if (add_sched_out_event(atoms, 'S', timestamp))
1103 goto out_put;
1104 }
1105
1106 BUG_ON(list_empty(&atoms->work_list));
1107
1108 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1109
1110 /*
1111 * As we do not guarantee the wakeup event happens when
1112 * task is out of run queue, also may happen when task is
1113 * on run queue and wakeup only change ->state to TASK_RUNNING,
1114 * then we should not set the ->wake_up_time when wake up a
1115 * task which is on run queue.
1116 *
1117 * You WILL be missing events if you've recorded only
1118 * one CPU, or are only looking at only one, so don't
1119 * skip in this case.
1120 */
1121 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1122 goto out_ok;
1123
1124 sched->nr_timestamps++;
1125 if (atom->sched_out_time > timestamp) {
1126 sched->nr_unordered_timestamps++;
1127 goto out_ok;
1128 }
1129
1130 atom->state = THREAD_WAIT_CPU;
1131 atom->wake_up_time = timestamp;
1132 out_ok:
1133 err = 0;
1134 out_put:
1135 thread__put(wakee);
1136 return err;
1137 }
1138
1139 static int latency_migrate_task_event(struct perf_sched *sched,
1140 struct perf_evsel *evsel,
1141 struct perf_sample *sample,
1142 struct machine *machine)
1143 {
1144 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1145 u64 timestamp = sample->time;
1146 struct work_atoms *atoms;
1147 struct work_atom *atom;
1148 struct thread *migrant;
1149 int err = -1;
1150
1151 /*
1152 * Only need to worry about migration when profiling one CPU.
1153 */
1154 if (sched->profile_cpu == -1)
1155 return 0;
1156
1157 migrant = machine__findnew_thread(machine, -1, pid);
1158 if (migrant == NULL)
1159 return -1;
1160 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1161 if (!atoms) {
1162 if (thread_atoms_insert(sched, migrant))
1163 goto out_put;
1164 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1165 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1166 if (!atoms) {
1167 pr_err("migration-event: Internal tree error");
1168 goto out_put;
1169 }
1170 if (add_sched_out_event(atoms, 'R', timestamp))
1171 goto out_put;
1172 }
1173
1174 BUG_ON(list_empty(&atoms->work_list));
1175
1176 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1177 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1178
1179 sched->nr_timestamps++;
1180
1181 if (atom->sched_out_time > timestamp)
1182 sched->nr_unordered_timestamps++;
1183 err = 0;
1184 out_put:
1185 thread__put(migrant);
1186 return err;
1187 }
1188
1189 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1190 {
1191 int i;
1192 int ret;
1193 u64 avg;
1194
1195 if (!work_list->nb_atoms)
1196 return;
1197 /*
1198 * Ignore idle threads:
1199 */
1200 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1201 return;
1202
1203 sched->all_runtime += work_list->total_runtime;
1204 sched->all_count += work_list->nb_atoms;
1205
1206 if (work_list->num_merged > 1)
1207 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1208 else
1209 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1210
1211 for (i = 0; i < 24 - ret; i++)
1212 printf(" ");
1213
1214 avg = work_list->total_lat / work_list->nb_atoms;
1215
1216 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1217 (double)work_list->total_runtime / NSEC_PER_MSEC,
1218 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1219 (double)work_list->max_lat / NSEC_PER_MSEC,
1220 (double)work_list->max_lat_at / NSEC_PER_SEC);
1221 }
1222
1223 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1224 {
1225 if (l->thread == r->thread)
1226 return 0;
1227 if (l->thread->tid < r->thread->tid)
1228 return -1;
1229 if (l->thread->tid > r->thread->tid)
1230 return 1;
1231 return (int)(l->thread - r->thread);
1232 }
1233
1234 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1235 {
1236 u64 avgl, avgr;
1237
1238 if (!l->nb_atoms)
1239 return -1;
1240
1241 if (!r->nb_atoms)
1242 return 1;
1243
1244 avgl = l->total_lat / l->nb_atoms;
1245 avgr = r->total_lat / r->nb_atoms;
1246
1247 if (avgl < avgr)
1248 return -1;
1249 if (avgl > avgr)
1250 return 1;
1251
1252 return 0;
1253 }
1254
1255 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1256 {
1257 if (l->max_lat < r->max_lat)
1258 return -1;
1259 if (l->max_lat > r->max_lat)
1260 return 1;
1261
1262 return 0;
1263 }
1264
1265 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1266 {
1267 if (l->nb_atoms < r->nb_atoms)
1268 return -1;
1269 if (l->nb_atoms > r->nb_atoms)
1270 return 1;
1271
1272 return 0;
1273 }
1274
1275 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1276 {
1277 if (l->total_runtime < r->total_runtime)
1278 return -1;
1279 if (l->total_runtime > r->total_runtime)
1280 return 1;
1281
1282 return 0;
1283 }
1284
1285 static int sort_dimension__add(const char *tok, struct list_head *list)
1286 {
1287 size_t i;
1288 static struct sort_dimension avg_sort_dimension = {
1289 .name = "avg",
1290 .cmp = avg_cmp,
1291 };
1292 static struct sort_dimension max_sort_dimension = {
1293 .name = "max",
1294 .cmp = max_cmp,
1295 };
1296 static struct sort_dimension pid_sort_dimension = {
1297 .name = "pid",
1298 .cmp = pid_cmp,
1299 };
1300 static struct sort_dimension runtime_sort_dimension = {
1301 .name = "runtime",
1302 .cmp = runtime_cmp,
1303 };
1304 static struct sort_dimension switch_sort_dimension = {
1305 .name = "switch",
1306 .cmp = switch_cmp,
1307 };
1308 struct sort_dimension *available_sorts[] = {
1309 &pid_sort_dimension,
1310 &avg_sort_dimension,
1311 &max_sort_dimension,
1312 &switch_sort_dimension,
1313 &runtime_sort_dimension,
1314 };
1315
1316 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1317 if (!strcmp(available_sorts[i]->name, tok)) {
1318 list_add_tail(&available_sorts[i]->list, list);
1319
1320 return 0;
1321 }
1322 }
1323
1324 return -1;
1325 }
1326
1327 static void perf_sched__sort_lat(struct perf_sched *sched)
1328 {
1329 struct rb_node *node;
1330 struct rb_root *root = &sched->atom_root;
1331 again:
1332 for (;;) {
1333 struct work_atoms *data;
1334 node = rb_first(root);
1335 if (!node)
1336 break;
1337
1338 rb_erase(node, root);
1339 data = rb_entry(node, struct work_atoms, node);
1340 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1341 }
1342 if (root == &sched->atom_root) {
1343 root = &sched->merged_atom_root;
1344 goto again;
1345 }
1346 }
1347
1348 static int process_sched_wakeup_event(struct perf_tool *tool,
1349 struct perf_evsel *evsel,
1350 struct perf_sample *sample,
1351 struct machine *machine)
1352 {
1353 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1354
1355 if (sched->tp_handler->wakeup_event)
1356 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1357
1358 return 0;
1359 }
1360
1361 union map_priv {
1362 void *ptr;
1363 bool color;
1364 };
1365
1366 static bool thread__has_color(struct thread *thread)
1367 {
1368 union map_priv priv = {
1369 .ptr = thread__priv(thread),
1370 };
1371
1372 return priv.color;
1373 }
1374
1375 static struct thread*
1376 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1377 {
1378 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1379 union map_priv priv = {
1380 .color = false,
1381 };
1382
1383 if (!sched->map.color_pids || !thread || thread__priv(thread))
1384 return thread;
1385
1386 if (thread_map__has(sched->map.color_pids, tid))
1387 priv.color = true;
1388
1389 thread__set_priv(thread, priv.ptr);
1390 return thread;
1391 }
1392
1393 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1394 struct perf_sample *sample, struct machine *machine)
1395 {
1396 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1397 struct thread *sched_in;
1398 int new_shortname;
1399 u64 timestamp0, timestamp = sample->time;
1400 s64 delta;
1401 int i, this_cpu = sample->cpu;
1402 int cpus_nr;
1403 bool new_cpu = false;
1404 const char *color = PERF_COLOR_NORMAL;
1405
1406 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1407
1408 if (this_cpu > sched->max_cpu)
1409 sched->max_cpu = this_cpu;
1410
1411 if (sched->map.comp) {
1412 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1413 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1414 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1415 new_cpu = true;
1416 }
1417 } else
1418 cpus_nr = sched->max_cpu;
1419
1420 timestamp0 = sched->cpu_last_switched[this_cpu];
1421 sched->cpu_last_switched[this_cpu] = timestamp;
1422 if (timestamp0)
1423 delta = timestamp - timestamp0;
1424 else
1425 delta = 0;
1426
1427 if (delta < 0) {
1428 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1429 return -1;
1430 }
1431
1432 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1433 if (sched_in == NULL)
1434 return -1;
1435
1436 sched->curr_thread[this_cpu] = thread__get(sched_in);
1437
1438 printf(" ");
1439
1440 new_shortname = 0;
1441 if (!sched_in->shortname[0]) {
1442 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1443 /*
1444 * Don't allocate a letter-number for swapper:0
1445 * as a shortname. Instead, we use '.' for it.
1446 */
1447 sched_in->shortname[0] = '.';
1448 sched_in->shortname[1] = ' ';
1449 } else {
1450 sched_in->shortname[0] = sched->next_shortname1;
1451 sched_in->shortname[1] = sched->next_shortname2;
1452
1453 if (sched->next_shortname1 < 'Z') {
1454 sched->next_shortname1++;
1455 } else {
1456 sched->next_shortname1 = 'A';
1457 if (sched->next_shortname2 < '9')
1458 sched->next_shortname2++;
1459 else
1460 sched->next_shortname2 = '0';
1461 }
1462 }
1463 new_shortname = 1;
1464 }
1465
1466 for (i = 0; i < cpus_nr; i++) {
1467 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1468 struct thread *curr_thread = sched->curr_thread[cpu];
1469 const char *pid_color = color;
1470 const char *cpu_color = color;
1471
1472 if (curr_thread && thread__has_color(curr_thread))
1473 pid_color = COLOR_PIDS;
1474
1475 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1476 continue;
1477
1478 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1479 cpu_color = COLOR_CPUS;
1480
1481 if (cpu != this_cpu)
1482 color_fprintf(stdout, cpu_color, " ");
1483 else
1484 color_fprintf(stdout, cpu_color, "*");
1485
1486 if (sched->curr_thread[cpu])
1487 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1488 else
1489 color_fprintf(stdout, color, " ");
1490 }
1491
1492 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1493 goto out;
1494
1495 color_fprintf(stdout, color, " %12.6f secs ", (double)timestamp / NSEC_PER_SEC);
1496 if (new_shortname) {
1497 const char *pid_color = color;
1498
1499 if (thread__has_color(sched_in))
1500 pid_color = COLOR_PIDS;
1501
1502 color_fprintf(stdout, pid_color, "%s => %s:%d",
1503 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1504 }
1505
1506 if (sched->map.comp && new_cpu)
1507 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1508
1509 out:
1510 color_fprintf(stdout, color, "\n");
1511
1512 thread__put(sched_in);
1513
1514 return 0;
1515 }
1516
1517 static int process_sched_switch_event(struct perf_tool *tool,
1518 struct perf_evsel *evsel,
1519 struct perf_sample *sample,
1520 struct machine *machine)
1521 {
1522 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1523 int this_cpu = sample->cpu, err = 0;
1524 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1525 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1526
1527 if (sched->curr_pid[this_cpu] != (u32)-1) {
1528 /*
1529 * Are we trying to switch away a PID that is
1530 * not current?
1531 */
1532 if (sched->curr_pid[this_cpu] != prev_pid)
1533 sched->nr_context_switch_bugs++;
1534 }
1535
1536 if (sched->tp_handler->switch_event)
1537 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1538
1539 sched->curr_pid[this_cpu] = next_pid;
1540 return err;
1541 }
1542
1543 static int process_sched_runtime_event(struct perf_tool *tool,
1544 struct perf_evsel *evsel,
1545 struct perf_sample *sample,
1546 struct machine *machine)
1547 {
1548 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1549
1550 if (sched->tp_handler->runtime_event)
1551 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1552
1553 return 0;
1554 }
1555
1556 static int perf_sched__process_fork_event(struct perf_tool *tool,
1557 union perf_event *event,
1558 struct perf_sample *sample,
1559 struct machine *machine)
1560 {
1561 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1562
1563 /* run the fork event through the perf machineruy */
1564 perf_event__process_fork(tool, event, sample, machine);
1565
1566 /* and then run additional processing needed for this command */
1567 if (sched->tp_handler->fork_event)
1568 return sched->tp_handler->fork_event(sched, event, machine);
1569
1570 return 0;
1571 }
1572
1573 static int process_sched_migrate_task_event(struct perf_tool *tool,
1574 struct perf_evsel *evsel,
1575 struct perf_sample *sample,
1576 struct machine *machine)
1577 {
1578 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579
1580 if (sched->tp_handler->migrate_task_event)
1581 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1582
1583 return 0;
1584 }
1585
1586 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1587 struct perf_evsel *evsel,
1588 struct perf_sample *sample,
1589 struct machine *machine);
1590
1591 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1592 union perf_event *event __maybe_unused,
1593 struct perf_sample *sample,
1594 struct perf_evsel *evsel,
1595 struct machine *machine)
1596 {
1597 int err = 0;
1598
1599 if (evsel->handler != NULL) {
1600 tracepoint_handler f = evsel->handler;
1601 err = f(tool, evsel, sample, machine);
1602 }
1603
1604 return err;
1605 }
1606
1607 static int perf_sched__read_events(struct perf_sched *sched)
1608 {
1609 const struct perf_evsel_str_handler handlers[] = {
1610 { "sched:sched_switch", process_sched_switch_event, },
1611 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1612 { "sched:sched_wakeup", process_sched_wakeup_event, },
1613 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1614 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1615 };
1616 struct perf_session *session;
1617 struct perf_data_file file = {
1618 .path = input_name,
1619 .mode = PERF_DATA_MODE_READ,
1620 .force = sched->force,
1621 };
1622 int rc = -1;
1623
1624 session = perf_session__new(&file, false, &sched->tool);
1625 if (session == NULL) {
1626 pr_debug("No Memory for session\n");
1627 return -1;
1628 }
1629
1630 symbol__init(&session->header.env);
1631
1632 if (perf_session__set_tracepoints_handlers(session, handlers))
1633 goto out_delete;
1634
1635 if (perf_session__has_traces(session, "record -R")) {
1636 int err = perf_session__process_events(session);
1637 if (err) {
1638 pr_err("Failed to process events, error %d", err);
1639 goto out_delete;
1640 }
1641
1642 sched->nr_events = session->evlist->stats.nr_events[0];
1643 sched->nr_lost_events = session->evlist->stats.total_lost;
1644 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1645 }
1646
1647 rc = 0;
1648 out_delete:
1649 perf_session__delete(session);
1650 return rc;
1651 }
1652
1653 static void print_bad_events(struct perf_sched *sched)
1654 {
1655 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1656 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1657 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1658 sched->nr_unordered_timestamps, sched->nr_timestamps);
1659 }
1660 if (sched->nr_lost_events && sched->nr_events) {
1661 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1662 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1663 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1664 }
1665 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1666 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1667 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1668 sched->nr_context_switch_bugs, sched->nr_timestamps);
1669 if (sched->nr_lost_events)
1670 printf(" (due to lost events?)");
1671 printf("\n");
1672 }
1673 }
1674
1675 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1676 {
1677 struct rb_node **new = &(root->rb_node), *parent = NULL;
1678 struct work_atoms *this;
1679 const char *comm = thread__comm_str(data->thread), *this_comm;
1680
1681 while (*new) {
1682 int cmp;
1683
1684 this = container_of(*new, struct work_atoms, node);
1685 parent = *new;
1686
1687 this_comm = thread__comm_str(this->thread);
1688 cmp = strcmp(comm, this_comm);
1689 if (cmp > 0) {
1690 new = &((*new)->rb_left);
1691 } else if (cmp < 0) {
1692 new = &((*new)->rb_right);
1693 } else {
1694 this->num_merged++;
1695 this->total_runtime += data->total_runtime;
1696 this->nb_atoms += data->nb_atoms;
1697 this->total_lat += data->total_lat;
1698 list_splice(&data->work_list, &this->work_list);
1699 if (this->max_lat < data->max_lat) {
1700 this->max_lat = data->max_lat;
1701 this->max_lat_at = data->max_lat_at;
1702 }
1703 zfree(&data);
1704 return;
1705 }
1706 }
1707
1708 data->num_merged++;
1709 rb_link_node(&data->node, parent, new);
1710 rb_insert_color(&data->node, root);
1711 }
1712
1713 static void perf_sched__merge_lat(struct perf_sched *sched)
1714 {
1715 struct work_atoms *data;
1716 struct rb_node *node;
1717
1718 if (sched->skip_merge)
1719 return;
1720
1721 while ((node = rb_first(&sched->atom_root))) {
1722 rb_erase(node, &sched->atom_root);
1723 data = rb_entry(node, struct work_atoms, node);
1724 __merge_work_atoms(&sched->merged_atom_root, data);
1725 }
1726 }
1727
1728 static int perf_sched__lat(struct perf_sched *sched)
1729 {
1730 struct rb_node *next;
1731
1732 setup_pager();
1733
1734 if (perf_sched__read_events(sched))
1735 return -1;
1736
1737 perf_sched__merge_lat(sched);
1738 perf_sched__sort_lat(sched);
1739
1740 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1741 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1742 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1743
1744 next = rb_first(&sched->sorted_atom_root);
1745
1746 while (next) {
1747 struct work_atoms *work_list;
1748
1749 work_list = rb_entry(next, struct work_atoms, node);
1750 output_lat_thread(sched, work_list);
1751 next = rb_next(next);
1752 thread__zput(work_list->thread);
1753 }
1754
1755 printf(" -----------------------------------------------------------------------------------------------------------------\n");
1756 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1757 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
1758
1759 printf(" ---------------------------------------------------\n");
1760
1761 print_bad_events(sched);
1762 printf("\n");
1763
1764 return 0;
1765 }
1766
1767 static int setup_map_cpus(struct perf_sched *sched)
1768 {
1769 struct cpu_map *map;
1770
1771 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1772
1773 if (sched->map.comp) {
1774 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
1775 if (!sched->map.comp_cpus)
1776 return -1;
1777 }
1778
1779 if (!sched->map.cpus_str)
1780 return 0;
1781
1782 map = cpu_map__new(sched->map.cpus_str);
1783 if (!map) {
1784 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
1785 return -1;
1786 }
1787
1788 sched->map.cpus = map;
1789 return 0;
1790 }
1791
1792 static int setup_color_pids(struct perf_sched *sched)
1793 {
1794 struct thread_map *map;
1795
1796 if (!sched->map.color_pids_str)
1797 return 0;
1798
1799 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
1800 if (!map) {
1801 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
1802 return -1;
1803 }
1804
1805 sched->map.color_pids = map;
1806 return 0;
1807 }
1808
1809 static int setup_color_cpus(struct perf_sched *sched)
1810 {
1811 struct cpu_map *map;
1812
1813 if (!sched->map.color_cpus_str)
1814 return 0;
1815
1816 map = cpu_map__new(sched->map.color_cpus_str);
1817 if (!map) {
1818 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
1819 return -1;
1820 }
1821
1822 sched->map.color_cpus = map;
1823 return 0;
1824 }
1825
1826 static int perf_sched__map(struct perf_sched *sched)
1827 {
1828 if (setup_map_cpus(sched))
1829 return -1;
1830
1831 if (setup_color_pids(sched))
1832 return -1;
1833
1834 if (setup_color_cpus(sched))
1835 return -1;
1836
1837 setup_pager();
1838 if (perf_sched__read_events(sched))
1839 return -1;
1840 print_bad_events(sched);
1841 return 0;
1842 }
1843
1844 static int perf_sched__replay(struct perf_sched *sched)
1845 {
1846 unsigned long i;
1847
1848 calibrate_run_measurement_overhead(sched);
1849 calibrate_sleep_measurement_overhead(sched);
1850
1851 test_calibrations(sched);
1852
1853 if (perf_sched__read_events(sched))
1854 return -1;
1855
1856 printf("nr_run_events: %ld\n", sched->nr_run_events);
1857 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1858 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1859
1860 if (sched->targetless_wakeups)
1861 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1862 if (sched->multitarget_wakeups)
1863 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1864 if (sched->nr_run_events_optimized)
1865 printf("run atoms optimized: %ld\n",
1866 sched->nr_run_events_optimized);
1867
1868 print_task_traces(sched);
1869 add_cross_task_wakeups(sched);
1870
1871 create_tasks(sched);
1872 printf("------------------------------------------------------------\n");
1873 for (i = 0; i < sched->replay_repeat; i++)
1874 run_one_test(sched);
1875
1876 return 0;
1877 }
1878
1879 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1880 const char * const usage_msg[])
1881 {
1882 char *tmp, *tok, *str = strdup(sched->sort_order);
1883
1884 for (tok = strtok_r(str, ", ", &tmp);
1885 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1886 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1887 usage_with_options_msg(usage_msg, options,
1888 "Unknown --sort key: `%s'", tok);
1889 }
1890 }
1891
1892 free(str);
1893
1894 sort_dimension__add("pid", &sched->cmp_pid);
1895 }
1896
1897 static int __cmd_record(int argc, const char **argv)
1898 {
1899 unsigned int rec_argc, i, j;
1900 const char **rec_argv;
1901 const char * const record_args[] = {
1902 "record",
1903 "-a",
1904 "-R",
1905 "-m", "1024",
1906 "-c", "1",
1907 "-e", "sched:sched_switch",
1908 "-e", "sched:sched_stat_wait",
1909 "-e", "sched:sched_stat_sleep",
1910 "-e", "sched:sched_stat_iowait",
1911 "-e", "sched:sched_stat_runtime",
1912 "-e", "sched:sched_process_fork",
1913 "-e", "sched:sched_wakeup",
1914 "-e", "sched:sched_wakeup_new",
1915 "-e", "sched:sched_migrate_task",
1916 };
1917
1918 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1919 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1920
1921 if (rec_argv == NULL)
1922 return -ENOMEM;
1923
1924 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1925 rec_argv[i] = strdup(record_args[i]);
1926
1927 for (j = 1; j < (unsigned int)argc; j++, i++)
1928 rec_argv[i] = argv[j];
1929
1930 BUG_ON(i != rec_argc);
1931
1932 return cmd_record(i, rec_argv, NULL);
1933 }
1934
1935 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1936 {
1937 const char default_sort_order[] = "avg, max, switch, runtime";
1938 struct perf_sched sched = {
1939 .tool = {
1940 .sample = perf_sched__process_tracepoint_sample,
1941 .comm = perf_event__process_comm,
1942 .lost = perf_event__process_lost,
1943 .fork = perf_sched__process_fork_event,
1944 .ordered_events = true,
1945 },
1946 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1947 .sort_list = LIST_HEAD_INIT(sched.sort_list),
1948 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1949 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1950 .sort_order = default_sort_order,
1951 .replay_repeat = 10,
1952 .profile_cpu = -1,
1953 .next_shortname1 = 'A',
1954 .next_shortname2 = '0',
1955 .skip_merge = 0,
1956 };
1957 const struct option latency_options[] = {
1958 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1959 "sort by key(s): runtime, switch, avg, max"),
1960 OPT_INCR('v', "verbose", &verbose,
1961 "be more verbose (show symbol address, etc)"),
1962 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1963 "CPU to profile on"),
1964 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1965 "dump raw trace in ASCII"),
1966 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1967 "latency stats per pid instead of per comm"),
1968 OPT_END()
1969 };
1970 const struct option replay_options[] = {
1971 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1972 "repeat the workload replay N times (-1: infinite)"),
1973 OPT_INCR('v', "verbose", &verbose,
1974 "be more verbose (show symbol address, etc)"),
1975 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1976 "dump raw trace in ASCII"),
1977 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1978 OPT_END()
1979 };
1980 const struct option sched_options[] = {
1981 OPT_STRING('i', "input", &input_name, "file",
1982 "input file name"),
1983 OPT_INCR('v', "verbose", &verbose,
1984 "be more verbose (show symbol address, etc)"),
1985 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1986 "dump raw trace in ASCII"),
1987 OPT_END()
1988 };
1989 const struct option map_options[] = {
1990 OPT_BOOLEAN(0, "compact", &sched.map.comp,
1991 "map output in compact mode"),
1992 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
1993 "highlight given pids in map"),
1994 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
1995 "highlight given CPUs in map"),
1996 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
1997 "display given CPUs in map"),
1998 OPT_END()
1999 };
2000 const char * const latency_usage[] = {
2001 "perf sched latency [<options>]",
2002 NULL
2003 };
2004 const char * const replay_usage[] = {
2005 "perf sched replay [<options>]",
2006 NULL
2007 };
2008 const char * const map_usage[] = {
2009 "perf sched map [<options>]",
2010 NULL
2011 };
2012 const char *const sched_subcommands[] = { "record", "latency", "map",
2013 "replay", "script", NULL };
2014 const char *sched_usage[] = {
2015 NULL,
2016 NULL
2017 };
2018 struct trace_sched_handler lat_ops = {
2019 .wakeup_event = latency_wakeup_event,
2020 .switch_event = latency_switch_event,
2021 .runtime_event = latency_runtime_event,
2022 .migrate_task_event = latency_migrate_task_event,
2023 };
2024 struct trace_sched_handler map_ops = {
2025 .switch_event = map_switch_event,
2026 };
2027 struct trace_sched_handler replay_ops = {
2028 .wakeup_event = replay_wakeup_event,
2029 .switch_event = replay_switch_event,
2030 .fork_event = replay_fork_event,
2031 };
2032 unsigned int i;
2033
2034 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
2035 sched.curr_pid[i] = -1;
2036
2037 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
2038 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2039 if (!argc)
2040 usage_with_options(sched_usage, sched_options);
2041
2042 /*
2043 * Aliased to 'perf script' for now:
2044 */
2045 if (!strcmp(argv[0], "script"))
2046 return cmd_script(argc, argv, prefix);
2047
2048 if (!strncmp(argv[0], "rec", 3)) {
2049 return __cmd_record(argc, argv);
2050 } else if (!strncmp(argv[0], "lat", 3)) {
2051 sched.tp_handler = &lat_ops;
2052 if (argc > 1) {
2053 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
2054 if (argc)
2055 usage_with_options(latency_usage, latency_options);
2056 }
2057 setup_sorting(&sched, latency_options, latency_usage);
2058 return perf_sched__lat(&sched);
2059 } else if (!strcmp(argv[0], "map")) {
2060 if (argc) {
2061 argc = parse_options(argc, argv, map_options, map_usage, 0);
2062 if (argc)
2063 usage_with_options(map_usage, map_options);
2064 }
2065 sched.tp_handler = &map_ops;
2066 setup_sorting(&sched, latency_options, latency_usage);
2067 return perf_sched__map(&sched);
2068 } else if (!strncmp(argv[0], "rep", 3)) {
2069 sched.tp_handler = &replay_ops;
2070 if (argc) {
2071 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
2072 if (argc)
2073 usage_with_options(replay_usage, replay_options);
2074 }
2075 return perf_sched__replay(&sched);
2076 } else {
2077 usage_with_options(sched_usage, sched_options);
2078 }
2079
2080 return 0;
2081 }