]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/builtin-sched.c
Merge branch 'for-5.4/hidraw-hiddev-epoll' into for-linus
[mirror_ubuntu-jammy-kernel.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 #include "util/stat.h"
17 #include "util/string2.h"
18 #include "util/callchain.h"
19 #include "util/time-utils.h"
20
21 #include <subcmd/parse-options.h>
22 #include "util/trace-event.h"
23
24 #include "util/debug.h"
25
26 #include <linux/kernel.h>
27 #include <linux/log2.h>
28 #include <linux/zalloc.h>
29 #include <sys/prctl.h>
30 #include <sys/resource.h>
31 #include <inttypes.h>
32
33 #include <errno.h>
34 #include <semaphore.h>
35 #include <pthread.h>
36 #include <math.h>
37 #include <api/fs/fs.h>
38 #include <linux/time64.h>
39
40 #include <linux/ctype.h>
41
42 #define PR_SET_NAME 15 /* Set process name */
43 #define MAX_CPUS 4096
44 #define COMM_LEN 20
45 #define SYM_LEN 129
46 #define MAX_PID 1024000
47
48 struct sched_atom;
49
50 struct task_desc {
51 unsigned long nr;
52 unsigned long pid;
53 char comm[COMM_LEN];
54
55 unsigned long nr_events;
56 unsigned long curr_event;
57 struct sched_atom **atoms;
58
59 pthread_t thread;
60 sem_t sleep_sem;
61
62 sem_t ready_for_work;
63 sem_t work_done_sem;
64
65 u64 cpu_usage;
66 };
67
68 enum sched_event_type {
69 SCHED_EVENT_RUN,
70 SCHED_EVENT_SLEEP,
71 SCHED_EVENT_WAKEUP,
72 SCHED_EVENT_MIGRATION,
73 };
74
75 struct sched_atom {
76 enum sched_event_type type;
77 int specific_wait;
78 u64 timestamp;
79 u64 duration;
80 unsigned long nr;
81 sem_t *wait_sem;
82 struct task_desc *wakee;
83 };
84
85 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
86
87 /* task state bitmask, copied from include/linux/sched.h */
88 #define TASK_RUNNING 0
89 #define TASK_INTERRUPTIBLE 1
90 #define TASK_UNINTERRUPTIBLE 2
91 #define __TASK_STOPPED 4
92 #define __TASK_TRACED 8
93 /* in tsk->exit_state */
94 #define EXIT_DEAD 16
95 #define EXIT_ZOMBIE 32
96 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
97 /* in tsk->state again */
98 #define TASK_DEAD 64
99 #define TASK_WAKEKILL 128
100 #define TASK_WAKING 256
101 #define TASK_PARKED 512
102
103 enum thread_state {
104 THREAD_SLEEPING = 0,
105 THREAD_WAIT_CPU,
106 THREAD_SCHED_IN,
107 THREAD_IGNORE
108 };
109
110 struct work_atom {
111 struct list_head list;
112 enum thread_state state;
113 u64 sched_out_time;
114 u64 wake_up_time;
115 u64 sched_in_time;
116 u64 runtime;
117 };
118
119 struct work_atoms {
120 struct list_head work_list;
121 struct thread *thread;
122 struct rb_node node;
123 u64 max_lat;
124 u64 max_lat_at;
125 u64 total_lat;
126 u64 nb_atoms;
127 u64 total_runtime;
128 int num_merged;
129 };
130
131 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
132
133 struct perf_sched;
134
135 struct trace_sched_handler {
136 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
137 struct perf_sample *sample, struct machine *machine);
138
139 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
140 struct perf_sample *sample, struct machine *machine);
141
142 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
143 struct perf_sample *sample, struct machine *machine);
144
145 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
146 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
147 struct machine *machine);
148
149 int (*migrate_task_event)(struct perf_sched *sched,
150 struct perf_evsel *evsel,
151 struct perf_sample *sample,
152 struct machine *machine);
153 };
154
155 #define COLOR_PIDS PERF_COLOR_BLUE
156 #define COLOR_CPUS PERF_COLOR_BG_RED
157
158 struct perf_sched_map {
159 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
160 int *comp_cpus;
161 bool comp;
162 struct thread_map *color_pids;
163 const char *color_pids_str;
164 struct cpu_map *color_cpus;
165 const char *color_cpus_str;
166 struct cpu_map *cpus;
167 const char *cpus_str;
168 };
169
170 struct perf_sched {
171 struct perf_tool tool;
172 const char *sort_order;
173 unsigned long nr_tasks;
174 struct task_desc **pid_to_task;
175 struct task_desc **tasks;
176 const struct trace_sched_handler *tp_handler;
177 pthread_mutex_t start_work_mutex;
178 pthread_mutex_t work_done_wait_mutex;
179 int profile_cpu;
180 /*
181 * Track the current task - that way we can know whether there's any
182 * weird events, such as a task being switched away that is not current.
183 */
184 int max_cpu;
185 u32 curr_pid[MAX_CPUS];
186 struct thread *curr_thread[MAX_CPUS];
187 char next_shortname1;
188 char next_shortname2;
189 unsigned int replay_repeat;
190 unsigned long nr_run_events;
191 unsigned long nr_sleep_events;
192 unsigned long nr_wakeup_events;
193 unsigned long nr_sleep_corrections;
194 unsigned long nr_run_events_optimized;
195 unsigned long targetless_wakeups;
196 unsigned long multitarget_wakeups;
197 unsigned long nr_runs;
198 unsigned long nr_timestamps;
199 unsigned long nr_unordered_timestamps;
200 unsigned long nr_context_switch_bugs;
201 unsigned long nr_events;
202 unsigned long nr_lost_chunks;
203 unsigned long nr_lost_events;
204 u64 run_measurement_overhead;
205 u64 sleep_measurement_overhead;
206 u64 start_time;
207 u64 cpu_usage;
208 u64 runavg_cpu_usage;
209 u64 parent_cpu_usage;
210 u64 runavg_parent_cpu_usage;
211 u64 sum_runtime;
212 u64 sum_fluct;
213 u64 run_avg;
214 u64 all_runtime;
215 u64 all_count;
216 u64 cpu_last_switched[MAX_CPUS];
217 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
218 struct list_head sort_list, cmp_pid;
219 bool force;
220 bool skip_merge;
221 struct perf_sched_map map;
222
223 /* options for timehist command */
224 bool summary;
225 bool summary_only;
226 bool idle_hist;
227 bool show_callchain;
228 unsigned int max_stack;
229 bool show_cpu_visual;
230 bool show_wakeups;
231 bool show_next;
232 bool show_migrations;
233 bool show_state;
234 u64 skipped_samples;
235 const char *time_str;
236 struct perf_time_interval ptime;
237 struct perf_time_interval hist_time;
238 };
239
240 /* per thread run time data */
241 struct thread_runtime {
242 u64 last_time; /* time of previous sched in/out event */
243 u64 dt_run; /* run time */
244 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
245 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
246 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
247 u64 dt_delay; /* time between wakeup and sched-in */
248 u64 ready_to_run; /* time of wakeup */
249
250 struct stats run_stats;
251 u64 total_run_time;
252 u64 total_sleep_time;
253 u64 total_iowait_time;
254 u64 total_preempt_time;
255 u64 total_delay_time;
256
257 int last_state;
258
259 char shortname[3];
260 bool comm_changed;
261
262 u64 migrations;
263 };
264
265 /* per event run time data */
266 struct evsel_runtime {
267 u64 *last_time; /* time this event was last seen per cpu */
268 u32 ncpu; /* highest cpu slot allocated */
269 };
270
271 /* per cpu idle time data */
272 struct idle_thread_runtime {
273 struct thread_runtime tr;
274 struct thread *last_thread;
275 struct rb_root_cached sorted_root;
276 struct callchain_root callchain;
277 struct callchain_cursor cursor;
278 };
279
280 /* track idle times per cpu */
281 static struct thread **idle_threads;
282 static int idle_max_cpu;
283 static char idle_comm[] = "<idle>";
284
285 static u64 get_nsecs(void)
286 {
287 struct timespec ts;
288
289 clock_gettime(CLOCK_MONOTONIC, &ts);
290
291 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
292 }
293
294 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
295 {
296 u64 T0 = get_nsecs(), T1;
297
298 do {
299 T1 = get_nsecs();
300 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
301 }
302
303 static void sleep_nsecs(u64 nsecs)
304 {
305 struct timespec ts;
306
307 ts.tv_nsec = nsecs % 999999999;
308 ts.tv_sec = nsecs / 999999999;
309
310 nanosleep(&ts, NULL);
311 }
312
313 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
314 {
315 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
316 int i;
317
318 for (i = 0; i < 10; i++) {
319 T0 = get_nsecs();
320 burn_nsecs(sched, 0);
321 T1 = get_nsecs();
322 delta = T1-T0;
323 min_delta = min(min_delta, delta);
324 }
325 sched->run_measurement_overhead = min_delta;
326
327 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
328 }
329
330 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
331 {
332 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
333 int i;
334
335 for (i = 0; i < 10; i++) {
336 T0 = get_nsecs();
337 sleep_nsecs(10000);
338 T1 = get_nsecs();
339 delta = T1-T0;
340 min_delta = min(min_delta, delta);
341 }
342 min_delta -= 10000;
343 sched->sleep_measurement_overhead = min_delta;
344
345 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
346 }
347
348 static struct sched_atom *
349 get_new_event(struct task_desc *task, u64 timestamp)
350 {
351 struct sched_atom *event = zalloc(sizeof(*event));
352 unsigned long idx = task->nr_events;
353 size_t size;
354
355 event->timestamp = timestamp;
356 event->nr = idx;
357
358 task->nr_events++;
359 size = sizeof(struct sched_atom *) * task->nr_events;
360 task->atoms = realloc(task->atoms, size);
361 BUG_ON(!task->atoms);
362
363 task->atoms[idx] = event;
364
365 return event;
366 }
367
368 static struct sched_atom *last_event(struct task_desc *task)
369 {
370 if (!task->nr_events)
371 return NULL;
372
373 return task->atoms[task->nr_events - 1];
374 }
375
376 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
377 u64 timestamp, u64 duration)
378 {
379 struct sched_atom *event, *curr_event = last_event(task);
380
381 /*
382 * optimize an existing RUN event by merging this one
383 * to it:
384 */
385 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
386 sched->nr_run_events_optimized++;
387 curr_event->duration += duration;
388 return;
389 }
390
391 event = get_new_event(task, timestamp);
392
393 event->type = SCHED_EVENT_RUN;
394 event->duration = duration;
395
396 sched->nr_run_events++;
397 }
398
399 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
400 u64 timestamp, struct task_desc *wakee)
401 {
402 struct sched_atom *event, *wakee_event;
403
404 event = get_new_event(task, timestamp);
405 event->type = SCHED_EVENT_WAKEUP;
406 event->wakee = wakee;
407
408 wakee_event = last_event(wakee);
409 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
410 sched->targetless_wakeups++;
411 return;
412 }
413 if (wakee_event->wait_sem) {
414 sched->multitarget_wakeups++;
415 return;
416 }
417
418 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
419 sem_init(wakee_event->wait_sem, 0, 0);
420 wakee_event->specific_wait = 1;
421 event->wait_sem = wakee_event->wait_sem;
422
423 sched->nr_wakeup_events++;
424 }
425
426 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
427 u64 timestamp, u64 task_state __maybe_unused)
428 {
429 struct sched_atom *event = get_new_event(task, timestamp);
430
431 event->type = SCHED_EVENT_SLEEP;
432
433 sched->nr_sleep_events++;
434 }
435
436 static struct task_desc *register_pid(struct perf_sched *sched,
437 unsigned long pid, const char *comm)
438 {
439 struct task_desc *task;
440 static int pid_max;
441
442 if (sched->pid_to_task == NULL) {
443 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
444 pid_max = MAX_PID;
445 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
446 }
447 if (pid >= (unsigned long)pid_max) {
448 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
449 sizeof(struct task_desc *))) == NULL);
450 while (pid >= (unsigned long)pid_max)
451 sched->pid_to_task[pid_max++] = NULL;
452 }
453
454 task = sched->pid_to_task[pid];
455
456 if (task)
457 return task;
458
459 task = zalloc(sizeof(*task));
460 task->pid = pid;
461 task->nr = sched->nr_tasks;
462 strcpy(task->comm, comm);
463 /*
464 * every task starts in sleeping state - this gets ignored
465 * if there's no wakeup pointing to this sleep state:
466 */
467 add_sched_event_sleep(sched, task, 0, 0);
468
469 sched->pid_to_task[pid] = task;
470 sched->nr_tasks++;
471 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
472 BUG_ON(!sched->tasks);
473 sched->tasks[task->nr] = task;
474
475 if (verbose > 0)
476 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
477
478 return task;
479 }
480
481
482 static void print_task_traces(struct perf_sched *sched)
483 {
484 struct task_desc *task;
485 unsigned long i;
486
487 for (i = 0; i < sched->nr_tasks; i++) {
488 task = sched->tasks[i];
489 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
490 task->nr, task->comm, task->pid, task->nr_events);
491 }
492 }
493
494 static void add_cross_task_wakeups(struct perf_sched *sched)
495 {
496 struct task_desc *task1, *task2;
497 unsigned long i, j;
498
499 for (i = 0; i < sched->nr_tasks; i++) {
500 task1 = sched->tasks[i];
501 j = i + 1;
502 if (j == sched->nr_tasks)
503 j = 0;
504 task2 = sched->tasks[j];
505 add_sched_event_wakeup(sched, task1, 0, task2);
506 }
507 }
508
509 static void perf_sched__process_event(struct perf_sched *sched,
510 struct sched_atom *atom)
511 {
512 int ret = 0;
513
514 switch (atom->type) {
515 case SCHED_EVENT_RUN:
516 burn_nsecs(sched, atom->duration);
517 break;
518 case SCHED_EVENT_SLEEP:
519 if (atom->wait_sem)
520 ret = sem_wait(atom->wait_sem);
521 BUG_ON(ret);
522 break;
523 case SCHED_EVENT_WAKEUP:
524 if (atom->wait_sem)
525 ret = sem_post(atom->wait_sem);
526 BUG_ON(ret);
527 break;
528 case SCHED_EVENT_MIGRATION:
529 break;
530 default:
531 BUG_ON(1);
532 }
533 }
534
535 static u64 get_cpu_usage_nsec_parent(void)
536 {
537 struct rusage ru;
538 u64 sum;
539 int err;
540
541 err = getrusage(RUSAGE_SELF, &ru);
542 BUG_ON(err);
543
544 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
545 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
546
547 return sum;
548 }
549
550 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
551 {
552 struct perf_event_attr attr;
553 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
554 int fd;
555 struct rlimit limit;
556 bool need_privilege = false;
557
558 memset(&attr, 0, sizeof(attr));
559
560 attr.type = PERF_TYPE_SOFTWARE;
561 attr.config = PERF_COUNT_SW_TASK_CLOCK;
562
563 force_again:
564 fd = sys_perf_event_open(&attr, 0, -1, -1,
565 perf_event_open_cloexec_flag());
566
567 if (fd < 0) {
568 if (errno == EMFILE) {
569 if (sched->force) {
570 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
571 limit.rlim_cur += sched->nr_tasks - cur_task;
572 if (limit.rlim_cur > limit.rlim_max) {
573 limit.rlim_max = limit.rlim_cur;
574 need_privilege = true;
575 }
576 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
577 if (need_privilege && errno == EPERM)
578 strcpy(info, "Need privilege\n");
579 } else
580 goto force_again;
581 } else
582 strcpy(info, "Have a try with -f option\n");
583 }
584 pr_err("Error: sys_perf_event_open() syscall returned "
585 "with %d (%s)\n%s", fd,
586 str_error_r(errno, sbuf, sizeof(sbuf)), info);
587 exit(EXIT_FAILURE);
588 }
589 return fd;
590 }
591
592 static u64 get_cpu_usage_nsec_self(int fd)
593 {
594 u64 runtime;
595 int ret;
596
597 ret = read(fd, &runtime, sizeof(runtime));
598 BUG_ON(ret != sizeof(runtime));
599
600 return runtime;
601 }
602
603 struct sched_thread_parms {
604 struct task_desc *task;
605 struct perf_sched *sched;
606 int fd;
607 };
608
609 static void *thread_func(void *ctx)
610 {
611 struct sched_thread_parms *parms = ctx;
612 struct task_desc *this_task = parms->task;
613 struct perf_sched *sched = parms->sched;
614 u64 cpu_usage_0, cpu_usage_1;
615 unsigned long i, ret;
616 char comm2[22];
617 int fd = parms->fd;
618
619 zfree(&parms);
620
621 sprintf(comm2, ":%s", this_task->comm);
622 prctl(PR_SET_NAME, comm2);
623 if (fd < 0)
624 return NULL;
625 again:
626 ret = sem_post(&this_task->ready_for_work);
627 BUG_ON(ret);
628 ret = pthread_mutex_lock(&sched->start_work_mutex);
629 BUG_ON(ret);
630 ret = pthread_mutex_unlock(&sched->start_work_mutex);
631 BUG_ON(ret);
632
633 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
634
635 for (i = 0; i < this_task->nr_events; i++) {
636 this_task->curr_event = i;
637 perf_sched__process_event(sched, this_task->atoms[i]);
638 }
639
640 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
641 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
642 ret = sem_post(&this_task->work_done_sem);
643 BUG_ON(ret);
644
645 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
646 BUG_ON(ret);
647 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
648 BUG_ON(ret);
649
650 goto again;
651 }
652
653 static void create_tasks(struct perf_sched *sched)
654 {
655 struct task_desc *task;
656 pthread_attr_t attr;
657 unsigned long i;
658 int err;
659
660 err = pthread_attr_init(&attr);
661 BUG_ON(err);
662 err = pthread_attr_setstacksize(&attr,
663 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
664 BUG_ON(err);
665 err = pthread_mutex_lock(&sched->start_work_mutex);
666 BUG_ON(err);
667 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
668 BUG_ON(err);
669 for (i = 0; i < sched->nr_tasks; i++) {
670 struct sched_thread_parms *parms = malloc(sizeof(*parms));
671 BUG_ON(parms == NULL);
672 parms->task = task = sched->tasks[i];
673 parms->sched = sched;
674 parms->fd = self_open_counters(sched, i);
675 sem_init(&task->sleep_sem, 0, 0);
676 sem_init(&task->ready_for_work, 0, 0);
677 sem_init(&task->work_done_sem, 0, 0);
678 task->curr_event = 0;
679 err = pthread_create(&task->thread, &attr, thread_func, parms);
680 BUG_ON(err);
681 }
682 }
683
684 static void wait_for_tasks(struct perf_sched *sched)
685 {
686 u64 cpu_usage_0, cpu_usage_1;
687 struct task_desc *task;
688 unsigned long i, ret;
689
690 sched->start_time = get_nsecs();
691 sched->cpu_usage = 0;
692 pthread_mutex_unlock(&sched->work_done_wait_mutex);
693
694 for (i = 0; i < sched->nr_tasks; i++) {
695 task = sched->tasks[i];
696 ret = sem_wait(&task->ready_for_work);
697 BUG_ON(ret);
698 sem_init(&task->ready_for_work, 0, 0);
699 }
700 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
701 BUG_ON(ret);
702
703 cpu_usage_0 = get_cpu_usage_nsec_parent();
704
705 pthread_mutex_unlock(&sched->start_work_mutex);
706
707 for (i = 0; i < sched->nr_tasks; i++) {
708 task = sched->tasks[i];
709 ret = sem_wait(&task->work_done_sem);
710 BUG_ON(ret);
711 sem_init(&task->work_done_sem, 0, 0);
712 sched->cpu_usage += task->cpu_usage;
713 task->cpu_usage = 0;
714 }
715
716 cpu_usage_1 = get_cpu_usage_nsec_parent();
717 if (!sched->runavg_cpu_usage)
718 sched->runavg_cpu_usage = sched->cpu_usage;
719 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
720
721 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
722 if (!sched->runavg_parent_cpu_usage)
723 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
724 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
725 sched->parent_cpu_usage)/sched->replay_repeat;
726
727 ret = pthread_mutex_lock(&sched->start_work_mutex);
728 BUG_ON(ret);
729
730 for (i = 0; i < sched->nr_tasks; i++) {
731 task = sched->tasks[i];
732 sem_init(&task->sleep_sem, 0, 0);
733 task->curr_event = 0;
734 }
735 }
736
737 static void run_one_test(struct perf_sched *sched)
738 {
739 u64 T0, T1, delta, avg_delta, fluct;
740
741 T0 = get_nsecs();
742 wait_for_tasks(sched);
743 T1 = get_nsecs();
744
745 delta = T1 - T0;
746 sched->sum_runtime += delta;
747 sched->nr_runs++;
748
749 avg_delta = sched->sum_runtime / sched->nr_runs;
750 if (delta < avg_delta)
751 fluct = avg_delta - delta;
752 else
753 fluct = delta - avg_delta;
754 sched->sum_fluct += fluct;
755 if (!sched->run_avg)
756 sched->run_avg = delta;
757 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
758
759 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
760
761 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
762
763 printf("cpu: %0.2f / %0.2f",
764 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
765
766 #if 0
767 /*
768 * rusage statistics done by the parent, these are less
769 * accurate than the sched->sum_exec_runtime based statistics:
770 */
771 printf(" [%0.2f / %0.2f]",
772 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
773 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
774 #endif
775
776 printf("\n");
777
778 if (sched->nr_sleep_corrections)
779 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
780 sched->nr_sleep_corrections = 0;
781 }
782
783 static void test_calibrations(struct perf_sched *sched)
784 {
785 u64 T0, T1;
786
787 T0 = get_nsecs();
788 burn_nsecs(sched, NSEC_PER_MSEC);
789 T1 = get_nsecs();
790
791 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
792
793 T0 = get_nsecs();
794 sleep_nsecs(NSEC_PER_MSEC);
795 T1 = get_nsecs();
796
797 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
798 }
799
800 static int
801 replay_wakeup_event(struct perf_sched *sched,
802 struct perf_evsel *evsel, struct perf_sample *sample,
803 struct machine *machine __maybe_unused)
804 {
805 const char *comm = perf_evsel__strval(evsel, sample, "comm");
806 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
807 struct task_desc *waker, *wakee;
808
809 if (verbose > 0) {
810 printf("sched_wakeup event %p\n", evsel);
811
812 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
813 }
814
815 waker = register_pid(sched, sample->tid, "<unknown>");
816 wakee = register_pid(sched, pid, comm);
817
818 add_sched_event_wakeup(sched, waker, sample->time, wakee);
819 return 0;
820 }
821
822 static int replay_switch_event(struct perf_sched *sched,
823 struct perf_evsel *evsel,
824 struct perf_sample *sample,
825 struct machine *machine __maybe_unused)
826 {
827 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
828 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
829 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
830 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
831 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
832 struct task_desc *prev, __maybe_unused *next;
833 u64 timestamp0, timestamp = sample->time;
834 int cpu = sample->cpu;
835 s64 delta;
836
837 if (verbose > 0)
838 printf("sched_switch event %p\n", evsel);
839
840 if (cpu >= MAX_CPUS || cpu < 0)
841 return 0;
842
843 timestamp0 = sched->cpu_last_switched[cpu];
844 if (timestamp0)
845 delta = timestamp - timestamp0;
846 else
847 delta = 0;
848
849 if (delta < 0) {
850 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
851 return -1;
852 }
853
854 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
855 prev_comm, prev_pid, next_comm, next_pid, delta);
856
857 prev = register_pid(sched, prev_pid, prev_comm);
858 next = register_pid(sched, next_pid, next_comm);
859
860 sched->cpu_last_switched[cpu] = timestamp;
861
862 add_sched_event_run(sched, prev, timestamp, delta);
863 add_sched_event_sleep(sched, prev, timestamp, prev_state);
864
865 return 0;
866 }
867
868 static int replay_fork_event(struct perf_sched *sched,
869 union perf_event *event,
870 struct machine *machine)
871 {
872 struct thread *child, *parent;
873
874 child = machine__findnew_thread(machine, event->fork.pid,
875 event->fork.tid);
876 parent = machine__findnew_thread(machine, event->fork.ppid,
877 event->fork.ptid);
878
879 if (child == NULL || parent == NULL) {
880 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
881 child, parent);
882 goto out_put;
883 }
884
885 if (verbose > 0) {
886 printf("fork event\n");
887 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
888 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
889 }
890
891 register_pid(sched, parent->tid, thread__comm_str(parent));
892 register_pid(sched, child->tid, thread__comm_str(child));
893 out_put:
894 thread__put(child);
895 thread__put(parent);
896 return 0;
897 }
898
899 struct sort_dimension {
900 const char *name;
901 sort_fn_t cmp;
902 struct list_head list;
903 };
904
905 /*
906 * handle runtime stats saved per thread
907 */
908 static struct thread_runtime *thread__init_runtime(struct thread *thread)
909 {
910 struct thread_runtime *r;
911
912 r = zalloc(sizeof(struct thread_runtime));
913 if (!r)
914 return NULL;
915
916 init_stats(&r->run_stats);
917 thread__set_priv(thread, r);
918
919 return r;
920 }
921
922 static struct thread_runtime *thread__get_runtime(struct thread *thread)
923 {
924 struct thread_runtime *tr;
925
926 tr = thread__priv(thread);
927 if (tr == NULL) {
928 tr = thread__init_runtime(thread);
929 if (tr == NULL)
930 pr_debug("Failed to malloc memory for runtime data.\n");
931 }
932
933 return tr;
934 }
935
936 static int
937 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
938 {
939 struct sort_dimension *sort;
940 int ret = 0;
941
942 BUG_ON(list_empty(list));
943
944 list_for_each_entry(sort, list, list) {
945 ret = sort->cmp(l, r);
946 if (ret)
947 return ret;
948 }
949
950 return ret;
951 }
952
953 static struct work_atoms *
954 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
955 struct list_head *sort_list)
956 {
957 struct rb_node *node = root->rb_root.rb_node;
958 struct work_atoms key = { .thread = thread };
959
960 while (node) {
961 struct work_atoms *atoms;
962 int cmp;
963
964 atoms = container_of(node, struct work_atoms, node);
965
966 cmp = thread_lat_cmp(sort_list, &key, atoms);
967 if (cmp > 0)
968 node = node->rb_left;
969 else if (cmp < 0)
970 node = node->rb_right;
971 else {
972 BUG_ON(thread != atoms->thread);
973 return atoms;
974 }
975 }
976 return NULL;
977 }
978
979 static void
980 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
981 struct list_head *sort_list)
982 {
983 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
984 bool leftmost = true;
985
986 while (*new) {
987 struct work_atoms *this;
988 int cmp;
989
990 this = container_of(*new, struct work_atoms, node);
991 parent = *new;
992
993 cmp = thread_lat_cmp(sort_list, data, this);
994
995 if (cmp > 0)
996 new = &((*new)->rb_left);
997 else {
998 new = &((*new)->rb_right);
999 leftmost = false;
1000 }
1001 }
1002
1003 rb_link_node(&data->node, parent, new);
1004 rb_insert_color_cached(&data->node, root, leftmost);
1005 }
1006
1007 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1008 {
1009 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1010 if (!atoms) {
1011 pr_err("No memory at %s\n", __func__);
1012 return -1;
1013 }
1014
1015 atoms->thread = thread__get(thread);
1016 INIT_LIST_HEAD(&atoms->work_list);
1017 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1018 return 0;
1019 }
1020
1021 static char sched_out_state(u64 prev_state)
1022 {
1023 const char *str = TASK_STATE_TO_CHAR_STR;
1024
1025 return str[prev_state];
1026 }
1027
1028 static int
1029 add_sched_out_event(struct work_atoms *atoms,
1030 char run_state,
1031 u64 timestamp)
1032 {
1033 struct work_atom *atom = zalloc(sizeof(*atom));
1034 if (!atom) {
1035 pr_err("Non memory at %s", __func__);
1036 return -1;
1037 }
1038
1039 atom->sched_out_time = timestamp;
1040
1041 if (run_state == 'R') {
1042 atom->state = THREAD_WAIT_CPU;
1043 atom->wake_up_time = atom->sched_out_time;
1044 }
1045
1046 list_add_tail(&atom->list, &atoms->work_list);
1047 return 0;
1048 }
1049
1050 static void
1051 add_runtime_event(struct work_atoms *atoms, u64 delta,
1052 u64 timestamp __maybe_unused)
1053 {
1054 struct work_atom *atom;
1055
1056 BUG_ON(list_empty(&atoms->work_list));
1057
1058 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1059
1060 atom->runtime += delta;
1061 atoms->total_runtime += delta;
1062 }
1063
1064 static void
1065 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1066 {
1067 struct work_atom *atom;
1068 u64 delta;
1069
1070 if (list_empty(&atoms->work_list))
1071 return;
1072
1073 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1074
1075 if (atom->state != THREAD_WAIT_CPU)
1076 return;
1077
1078 if (timestamp < atom->wake_up_time) {
1079 atom->state = THREAD_IGNORE;
1080 return;
1081 }
1082
1083 atom->state = THREAD_SCHED_IN;
1084 atom->sched_in_time = timestamp;
1085
1086 delta = atom->sched_in_time - atom->wake_up_time;
1087 atoms->total_lat += delta;
1088 if (delta > atoms->max_lat) {
1089 atoms->max_lat = delta;
1090 atoms->max_lat_at = timestamp;
1091 }
1092 atoms->nb_atoms++;
1093 }
1094
1095 static int latency_switch_event(struct perf_sched *sched,
1096 struct perf_evsel *evsel,
1097 struct perf_sample *sample,
1098 struct machine *machine)
1099 {
1100 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1101 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1102 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1103 struct work_atoms *out_events, *in_events;
1104 struct thread *sched_out, *sched_in;
1105 u64 timestamp0, timestamp = sample->time;
1106 int cpu = sample->cpu, err = -1;
1107 s64 delta;
1108
1109 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1110
1111 timestamp0 = sched->cpu_last_switched[cpu];
1112 sched->cpu_last_switched[cpu] = timestamp;
1113 if (timestamp0)
1114 delta = timestamp - timestamp0;
1115 else
1116 delta = 0;
1117
1118 if (delta < 0) {
1119 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1120 return -1;
1121 }
1122
1123 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1124 sched_in = machine__findnew_thread(machine, -1, next_pid);
1125 if (sched_out == NULL || sched_in == NULL)
1126 goto out_put;
1127
1128 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129 if (!out_events) {
1130 if (thread_atoms_insert(sched, sched_out))
1131 goto out_put;
1132 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1133 if (!out_events) {
1134 pr_err("out-event: Internal tree error");
1135 goto out_put;
1136 }
1137 }
1138 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1139 return -1;
1140
1141 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142 if (!in_events) {
1143 if (thread_atoms_insert(sched, sched_in))
1144 goto out_put;
1145 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1146 if (!in_events) {
1147 pr_err("in-event: Internal tree error");
1148 goto out_put;
1149 }
1150 /*
1151 * Take came in we have not heard about yet,
1152 * add in an initial atom in runnable state:
1153 */
1154 if (add_sched_out_event(in_events, 'R', timestamp))
1155 goto out_put;
1156 }
1157 add_sched_in_event(in_events, timestamp);
1158 err = 0;
1159 out_put:
1160 thread__put(sched_out);
1161 thread__put(sched_in);
1162 return err;
1163 }
1164
1165 static int latency_runtime_event(struct perf_sched *sched,
1166 struct perf_evsel *evsel,
1167 struct perf_sample *sample,
1168 struct machine *machine)
1169 {
1170 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1171 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1172 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1173 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1174 u64 timestamp = sample->time;
1175 int cpu = sample->cpu, err = -1;
1176
1177 if (thread == NULL)
1178 return -1;
1179
1180 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1181 if (!atoms) {
1182 if (thread_atoms_insert(sched, thread))
1183 goto out_put;
1184 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185 if (!atoms) {
1186 pr_err("in-event: Internal tree error");
1187 goto out_put;
1188 }
1189 if (add_sched_out_event(atoms, 'R', timestamp))
1190 goto out_put;
1191 }
1192
1193 add_runtime_event(atoms, runtime, timestamp);
1194 err = 0;
1195 out_put:
1196 thread__put(thread);
1197 return err;
1198 }
1199
1200 static int latency_wakeup_event(struct perf_sched *sched,
1201 struct perf_evsel *evsel,
1202 struct perf_sample *sample,
1203 struct machine *machine)
1204 {
1205 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1206 struct work_atoms *atoms;
1207 struct work_atom *atom;
1208 struct thread *wakee;
1209 u64 timestamp = sample->time;
1210 int err = -1;
1211
1212 wakee = machine__findnew_thread(machine, -1, pid);
1213 if (wakee == NULL)
1214 return -1;
1215 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216 if (!atoms) {
1217 if (thread_atoms_insert(sched, wakee))
1218 goto out_put;
1219 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1220 if (!atoms) {
1221 pr_err("wakeup-event: Internal tree error");
1222 goto out_put;
1223 }
1224 if (add_sched_out_event(atoms, 'S', timestamp))
1225 goto out_put;
1226 }
1227
1228 BUG_ON(list_empty(&atoms->work_list));
1229
1230 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1231
1232 /*
1233 * As we do not guarantee the wakeup event happens when
1234 * task is out of run queue, also may happen when task is
1235 * on run queue and wakeup only change ->state to TASK_RUNNING,
1236 * then we should not set the ->wake_up_time when wake up a
1237 * task which is on run queue.
1238 *
1239 * You WILL be missing events if you've recorded only
1240 * one CPU, or are only looking at only one, so don't
1241 * skip in this case.
1242 */
1243 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1244 goto out_ok;
1245
1246 sched->nr_timestamps++;
1247 if (atom->sched_out_time > timestamp) {
1248 sched->nr_unordered_timestamps++;
1249 goto out_ok;
1250 }
1251
1252 atom->state = THREAD_WAIT_CPU;
1253 atom->wake_up_time = timestamp;
1254 out_ok:
1255 err = 0;
1256 out_put:
1257 thread__put(wakee);
1258 return err;
1259 }
1260
1261 static int latency_migrate_task_event(struct perf_sched *sched,
1262 struct perf_evsel *evsel,
1263 struct perf_sample *sample,
1264 struct machine *machine)
1265 {
1266 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1267 u64 timestamp = sample->time;
1268 struct work_atoms *atoms;
1269 struct work_atom *atom;
1270 struct thread *migrant;
1271 int err = -1;
1272
1273 /*
1274 * Only need to worry about migration when profiling one CPU.
1275 */
1276 if (sched->profile_cpu == -1)
1277 return 0;
1278
1279 migrant = machine__findnew_thread(machine, -1, pid);
1280 if (migrant == NULL)
1281 return -1;
1282 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1283 if (!atoms) {
1284 if (thread_atoms_insert(sched, migrant))
1285 goto out_put;
1286 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1287 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1288 if (!atoms) {
1289 pr_err("migration-event: Internal tree error");
1290 goto out_put;
1291 }
1292 if (add_sched_out_event(atoms, 'R', timestamp))
1293 goto out_put;
1294 }
1295
1296 BUG_ON(list_empty(&atoms->work_list));
1297
1298 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1299 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1300
1301 sched->nr_timestamps++;
1302
1303 if (atom->sched_out_time > timestamp)
1304 sched->nr_unordered_timestamps++;
1305 err = 0;
1306 out_put:
1307 thread__put(migrant);
1308 return err;
1309 }
1310
1311 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1312 {
1313 int i;
1314 int ret;
1315 u64 avg;
1316 char max_lat_at[32];
1317
1318 if (!work_list->nb_atoms)
1319 return;
1320 /*
1321 * Ignore idle threads:
1322 */
1323 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1324 return;
1325
1326 sched->all_runtime += work_list->total_runtime;
1327 sched->all_count += work_list->nb_atoms;
1328
1329 if (work_list->num_merged > 1)
1330 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1331 else
1332 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1333
1334 for (i = 0; i < 24 - ret; i++)
1335 printf(" ");
1336
1337 avg = work_list->total_lat / work_list->nb_atoms;
1338 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1339
1340 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1341 (double)work_list->total_runtime / NSEC_PER_MSEC,
1342 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1343 (double)work_list->max_lat / NSEC_PER_MSEC,
1344 max_lat_at);
1345 }
1346
1347 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1348 {
1349 if (l->thread == r->thread)
1350 return 0;
1351 if (l->thread->tid < r->thread->tid)
1352 return -1;
1353 if (l->thread->tid > r->thread->tid)
1354 return 1;
1355 return (int)(l->thread - r->thread);
1356 }
1357
1358 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1359 {
1360 u64 avgl, avgr;
1361
1362 if (!l->nb_atoms)
1363 return -1;
1364
1365 if (!r->nb_atoms)
1366 return 1;
1367
1368 avgl = l->total_lat / l->nb_atoms;
1369 avgr = r->total_lat / r->nb_atoms;
1370
1371 if (avgl < avgr)
1372 return -1;
1373 if (avgl > avgr)
1374 return 1;
1375
1376 return 0;
1377 }
1378
1379 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1380 {
1381 if (l->max_lat < r->max_lat)
1382 return -1;
1383 if (l->max_lat > r->max_lat)
1384 return 1;
1385
1386 return 0;
1387 }
1388
1389 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1390 {
1391 if (l->nb_atoms < r->nb_atoms)
1392 return -1;
1393 if (l->nb_atoms > r->nb_atoms)
1394 return 1;
1395
1396 return 0;
1397 }
1398
1399 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1400 {
1401 if (l->total_runtime < r->total_runtime)
1402 return -1;
1403 if (l->total_runtime > r->total_runtime)
1404 return 1;
1405
1406 return 0;
1407 }
1408
1409 static int sort_dimension__add(const char *tok, struct list_head *list)
1410 {
1411 size_t i;
1412 static struct sort_dimension avg_sort_dimension = {
1413 .name = "avg",
1414 .cmp = avg_cmp,
1415 };
1416 static struct sort_dimension max_sort_dimension = {
1417 .name = "max",
1418 .cmp = max_cmp,
1419 };
1420 static struct sort_dimension pid_sort_dimension = {
1421 .name = "pid",
1422 .cmp = pid_cmp,
1423 };
1424 static struct sort_dimension runtime_sort_dimension = {
1425 .name = "runtime",
1426 .cmp = runtime_cmp,
1427 };
1428 static struct sort_dimension switch_sort_dimension = {
1429 .name = "switch",
1430 .cmp = switch_cmp,
1431 };
1432 struct sort_dimension *available_sorts[] = {
1433 &pid_sort_dimension,
1434 &avg_sort_dimension,
1435 &max_sort_dimension,
1436 &switch_sort_dimension,
1437 &runtime_sort_dimension,
1438 };
1439
1440 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1441 if (!strcmp(available_sorts[i]->name, tok)) {
1442 list_add_tail(&available_sorts[i]->list, list);
1443
1444 return 0;
1445 }
1446 }
1447
1448 return -1;
1449 }
1450
1451 static void perf_sched__sort_lat(struct perf_sched *sched)
1452 {
1453 struct rb_node *node;
1454 struct rb_root_cached *root = &sched->atom_root;
1455 again:
1456 for (;;) {
1457 struct work_atoms *data;
1458 node = rb_first_cached(root);
1459 if (!node)
1460 break;
1461
1462 rb_erase_cached(node, root);
1463 data = rb_entry(node, struct work_atoms, node);
1464 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1465 }
1466 if (root == &sched->atom_root) {
1467 root = &sched->merged_atom_root;
1468 goto again;
1469 }
1470 }
1471
1472 static int process_sched_wakeup_event(struct perf_tool *tool,
1473 struct perf_evsel *evsel,
1474 struct perf_sample *sample,
1475 struct machine *machine)
1476 {
1477 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1478
1479 if (sched->tp_handler->wakeup_event)
1480 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1481
1482 return 0;
1483 }
1484
1485 union map_priv {
1486 void *ptr;
1487 bool color;
1488 };
1489
1490 static bool thread__has_color(struct thread *thread)
1491 {
1492 union map_priv priv = {
1493 .ptr = thread__priv(thread),
1494 };
1495
1496 return priv.color;
1497 }
1498
1499 static struct thread*
1500 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1501 {
1502 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1503 union map_priv priv = {
1504 .color = false,
1505 };
1506
1507 if (!sched->map.color_pids || !thread || thread__priv(thread))
1508 return thread;
1509
1510 if (thread_map__has(sched->map.color_pids, tid))
1511 priv.color = true;
1512
1513 thread__set_priv(thread, priv.ptr);
1514 return thread;
1515 }
1516
1517 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1518 struct perf_sample *sample, struct machine *machine)
1519 {
1520 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1521 struct thread *sched_in;
1522 struct thread_runtime *tr;
1523 int new_shortname;
1524 u64 timestamp0, timestamp = sample->time;
1525 s64 delta;
1526 int i, this_cpu = sample->cpu;
1527 int cpus_nr;
1528 bool new_cpu = false;
1529 const char *color = PERF_COLOR_NORMAL;
1530 char stimestamp[32];
1531
1532 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1533
1534 if (this_cpu > sched->max_cpu)
1535 sched->max_cpu = this_cpu;
1536
1537 if (sched->map.comp) {
1538 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1539 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1540 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1541 new_cpu = true;
1542 }
1543 } else
1544 cpus_nr = sched->max_cpu;
1545
1546 timestamp0 = sched->cpu_last_switched[this_cpu];
1547 sched->cpu_last_switched[this_cpu] = timestamp;
1548 if (timestamp0)
1549 delta = timestamp - timestamp0;
1550 else
1551 delta = 0;
1552
1553 if (delta < 0) {
1554 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1555 return -1;
1556 }
1557
1558 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1559 if (sched_in == NULL)
1560 return -1;
1561
1562 tr = thread__get_runtime(sched_in);
1563 if (tr == NULL) {
1564 thread__put(sched_in);
1565 return -1;
1566 }
1567
1568 sched->curr_thread[this_cpu] = thread__get(sched_in);
1569
1570 printf(" ");
1571
1572 new_shortname = 0;
1573 if (!tr->shortname[0]) {
1574 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1575 /*
1576 * Don't allocate a letter-number for swapper:0
1577 * as a shortname. Instead, we use '.' for it.
1578 */
1579 tr->shortname[0] = '.';
1580 tr->shortname[1] = ' ';
1581 } else {
1582 tr->shortname[0] = sched->next_shortname1;
1583 tr->shortname[1] = sched->next_shortname2;
1584
1585 if (sched->next_shortname1 < 'Z') {
1586 sched->next_shortname1++;
1587 } else {
1588 sched->next_shortname1 = 'A';
1589 if (sched->next_shortname2 < '9')
1590 sched->next_shortname2++;
1591 else
1592 sched->next_shortname2 = '0';
1593 }
1594 }
1595 new_shortname = 1;
1596 }
1597
1598 for (i = 0; i < cpus_nr; i++) {
1599 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1600 struct thread *curr_thread = sched->curr_thread[cpu];
1601 struct thread_runtime *curr_tr;
1602 const char *pid_color = color;
1603 const char *cpu_color = color;
1604
1605 if (curr_thread && thread__has_color(curr_thread))
1606 pid_color = COLOR_PIDS;
1607
1608 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1609 continue;
1610
1611 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1612 cpu_color = COLOR_CPUS;
1613
1614 if (cpu != this_cpu)
1615 color_fprintf(stdout, color, " ");
1616 else
1617 color_fprintf(stdout, cpu_color, "*");
1618
1619 if (sched->curr_thread[cpu]) {
1620 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1621 if (curr_tr == NULL) {
1622 thread__put(sched_in);
1623 return -1;
1624 }
1625 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1626 } else
1627 color_fprintf(stdout, color, " ");
1628 }
1629
1630 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1631 goto out;
1632
1633 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1634 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1635 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1636 const char *pid_color = color;
1637
1638 if (thread__has_color(sched_in))
1639 pid_color = COLOR_PIDS;
1640
1641 color_fprintf(stdout, pid_color, "%s => %s:%d",
1642 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1643 tr->comm_changed = false;
1644 }
1645
1646 if (sched->map.comp && new_cpu)
1647 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1648
1649 out:
1650 color_fprintf(stdout, color, "\n");
1651
1652 thread__put(sched_in);
1653
1654 return 0;
1655 }
1656
1657 static int process_sched_switch_event(struct perf_tool *tool,
1658 struct perf_evsel *evsel,
1659 struct perf_sample *sample,
1660 struct machine *machine)
1661 {
1662 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1663 int this_cpu = sample->cpu, err = 0;
1664 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1665 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1666
1667 if (sched->curr_pid[this_cpu] != (u32)-1) {
1668 /*
1669 * Are we trying to switch away a PID that is
1670 * not current?
1671 */
1672 if (sched->curr_pid[this_cpu] != prev_pid)
1673 sched->nr_context_switch_bugs++;
1674 }
1675
1676 if (sched->tp_handler->switch_event)
1677 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1678
1679 sched->curr_pid[this_cpu] = next_pid;
1680 return err;
1681 }
1682
1683 static int process_sched_runtime_event(struct perf_tool *tool,
1684 struct perf_evsel *evsel,
1685 struct perf_sample *sample,
1686 struct machine *machine)
1687 {
1688 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1689
1690 if (sched->tp_handler->runtime_event)
1691 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1692
1693 return 0;
1694 }
1695
1696 static int perf_sched__process_fork_event(struct perf_tool *tool,
1697 union perf_event *event,
1698 struct perf_sample *sample,
1699 struct machine *machine)
1700 {
1701 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702
1703 /* run the fork event through the perf machineruy */
1704 perf_event__process_fork(tool, event, sample, machine);
1705
1706 /* and then run additional processing needed for this command */
1707 if (sched->tp_handler->fork_event)
1708 return sched->tp_handler->fork_event(sched, event, machine);
1709
1710 return 0;
1711 }
1712
1713 static int process_sched_migrate_task_event(struct perf_tool *tool,
1714 struct perf_evsel *evsel,
1715 struct perf_sample *sample,
1716 struct machine *machine)
1717 {
1718 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1719
1720 if (sched->tp_handler->migrate_task_event)
1721 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1722
1723 return 0;
1724 }
1725
1726 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1727 struct perf_evsel *evsel,
1728 struct perf_sample *sample,
1729 struct machine *machine);
1730
1731 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1732 union perf_event *event __maybe_unused,
1733 struct perf_sample *sample,
1734 struct perf_evsel *evsel,
1735 struct machine *machine)
1736 {
1737 int err = 0;
1738
1739 if (evsel->handler != NULL) {
1740 tracepoint_handler f = evsel->handler;
1741 err = f(tool, evsel, sample, machine);
1742 }
1743
1744 return err;
1745 }
1746
1747 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1748 union perf_event *event,
1749 struct perf_sample *sample,
1750 struct machine *machine)
1751 {
1752 struct thread *thread;
1753 struct thread_runtime *tr;
1754 int err;
1755
1756 err = perf_event__process_comm(tool, event, sample, machine);
1757 if (err)
1758 return err;
1759
1760 thread = machine__find_thread(machine, sample->pid, sample->tid);
1761 if (!thread) {
1762 pr_err("Internal error: can't find thread\n");
1763 return -1;
1764 }
1765
1766 tr = thread__get_runtime(thread);
1767 if (tr == NULL) {
1768 thread__put(thread);
1769 return -1;
1770 }
1771
1772 tr->comm_changed = true;
1773 thread__put(thread);
1774
1775 return 0;
1776 }
1777
1778 static int perf_sched__read_events(struct perf_sched *sched)
1779 {
1780 const struct perf_evsel_str_handler handlers[] = {
1781 { "sched:sched_switch", process_sched_switch_event, },
1782 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1783 { "sched:sched_wakeup", process_sched_wakeup_event, },
1784 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1785 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1786 };
1787 struct perf_session *session;
1788 struct perf_data data = {
1789 .path = input_name,
1790 .mode = PERF_DATA_MODE_READ,
1791 .force = sched->force,
1792 };
1793 int rc = -1;
1794
1795 session = perf_session__new(&data, false, &sched->tool);
1796 if (session == NULL) {
1797 pr_debug("No Memory for session\n");
1798 return -1;
1799 }
1800
1801 symbol__init(&session->header.env);
1802
1803 if (perf_session__set_tracepoints_handlers(session, handlers))
1804 goto out_delete;
1805
1806 if (perf_session__has_traces(session, "record -R")) {
1807 int err = perf_session__process_events(session);
1808 if (err) {
1809 pr_err("Failed to process events, error %d", err);
1810 goto out_delete;
1811 }
1812
1813 sched->nr_events = session->evlist->stats.nr_events[0];
1814 sched->nr_lost_events = session->evlist->stats.total_lost;
1815 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1816 }
1817
1818 rc = 0;
1819 out_delete:
1820 perf_session__delete(session);
1821 return rc;
1822 }
1823
1824 /*
1825 * scheduling times are printed as msec.usec
1826 */
1827 static inline void print_sched_time(unsigned long long nsecs, int width)
1828 {
1829 unsigned long msecs;
1830 unsigned long usecs;
1831
1832 msecs = nsecs / NSEC_PER_MSEC;
1833 nsecs -= msecs * NSEC_PER_MSEC;
1834 usecs = nsecs / NSEC_PER_USEC;
1835 printf("%*lu.%03lu ", width, msecs, usecs);
1836 }
1837
1838 /*
1839 * returns runtime data for event, allocating memory for it the
1840 * first time it is used.
1841 */
1842 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1843 {
1844 struct evsel_runtime *r = evsel->priv;
1845
1846 if (r == NULL) {
1847 r = zalloc(sizeof(struct evsel_runtime));
1848 evsel->priv = r;
1849 }
1850
1851 return r;
1852 }
1853
1854 /*
1855 * save last time event was seen per cpu
1856 */
1857 static void perf_evsel__save_time(struct perf_evsel *evsel,
1858 u64 timestamp, u32 cpu)
1859 {
1860 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1861
1862 if (r == NULL)
1863 return;
1864
1865 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1866 int i, n = __roundup_pow_of_two(cpu+1);
1867 void *p = r->last_time;
1868
1869 p = realloc(r->last_time, n * sizeof(u64));
1870 if (!p)
1871 return;
1872
1873 r->last_time = p;
1874 for (i = r->ncpu; i < n; ++i)
1875 r->last_time[i] = (u64) 0;
1876
1877 r->ncpu = n;
1878 }
1879
1880 r->last_time[cpu] = timestamp;
1881 }
1882
1883 /* returns last time this event was seen on the given cpu */
1884 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1885 {
1886 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1887
1888 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1889 return 0;
1890
1891 return r->last_time[cpu];
1892 }
1893
1894 static int comm_width = 30;
1895
1896 static char *timehist_get_commstr(struct thread *thread)
1897 {
1898 static char str[32];
1899 const char *comm = thread__comm_str(thread);
1900 pid_t tid = thread->tid;
1901 pid_t pid = thread->pid_;
1902 int n;
1903
1904 if (pid == 0)
1905 n = scnprintf(str, sizeof(str), "%s", comm);
1906
1907 else if (tid != pid)
1908 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1909
1910 else
1911 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1912
1913 if (n > comm_width)
1914 comm_width = n;
1915
1916 return str;
1917 }
1918
1919 static void timehist_header(struct perf_sched *sched)
1920 {
1921 u32 ncpus = sched->max_cpu + 1;
1922 u32 i, j;
1923
1924 printf("%15s %6s ", "time", "cpu");
1925
1926 if (sched->show_cpu_visual) {
1927 printf(" ");
1928 for (i = 0, j = 0; i < ncpus; ++i) {
1929 printf("%x", j++);
1930 if (j > 15)
1931 j = 0;
1932 }
1933 printf(" ");
1934 }
1935
1936 printf(" %-*s %9s %9s %9s", comm_width,
1937 "task name", "wait time", "sch delay", "run time");
1938
1939 if (sched->show_state)
1940 printf(" %s", "state");
1941
1942 printf("\n");
1943
1944 /*
1945 * units row
1946 */
1947 printf("%15s %-6s ", "", "");
1948
1949 if (sched->show_cpu_visual)
1950 printf(" %*s ", ncpus, "");
1951
1952 printf(" %-*s %9s %9s %9s", comm_width,
1953 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1954
1955 if (sched->show_state)
1956 printf(" %5s", "");
1957
1958 printf("\n");
1959
1960 /*
1961 * separator
1962 */
1963 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1964
1965 if (sched->show_cpu_visual)
1966 printf(" %.*s ", ncpus, graph_dotted_line);
1967
1968 printf(" %.*s %.9s %.9s %.9s", comm_width,
1969 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1970 graph_dotted_line);
1971
1972 if (sched->show_state)
1973 printf(" %.5s", graph_dotted_line);
1974
1975 printf("\n");
1976 }
1977
1978 static char task_state_char(struct thread *thread, int state)
1979 {
1980 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1981 unsigned bit = state ? ffs(state) : 0;
1982
1983 /* 'I' for idle */
1984 if (thread->tid == 0)
1985 return 'I';
1986
1987 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1988 }
1989
1990 static void timehist_print_sample(struct perf_sched *sched,
1991 struct perf_evsel *evsel,
1992 struct perf_sample *sample,
1993 struct addr_location *al,
1994 struct thread *thread,
1995 u64 t, int state)
1996 {
1997 struct thread_runtime *tr = thread__priv(thread);
1998 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1999 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2000 u32 max_cpus = sched->max_cpu + 1;
2001 char tstr[64];
2002 char nstr[30];
2003 u64 wait_time;
2004
2005 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2006 printf("%15s [%04d] ", tstr, sample->cpu);
2007
2008 if (sched->show_cpu_visual) {
2009 u32 i;
2010 char c;
2011
2012 printf(" ");
2013 for (i = 0; i < max_cpus; ++i) {
2014 /* flag idle times with 'i'; others are sched events */
2015 if (i == sample->cpu)
2016 c = (thread->tid == 0) ? 'i' : 's';
2017 else
2018 c = ' ';
2019 printf("%c", c);
2020 }
2021 printf(" ");
2022 }
2023
2024 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2025
2026 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2027 print_sched_time(wait_time, 6);
2028
2029 print_sched_time(tr->dt_delay, 6);
2030 print_sched_time(tr->dt_run, 6);
2031
2032 if (sched->show_state)
2033 printf(" %5c ", task_state_char(thread, state));
2034
2035 if (sched->show_next) {
2036 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2037 printf(" %-*s", comm_width, nstr);
2038 }
2039
2040 if (sched->show_wakeups && !sched->show_next)
2041 printf(" %-*s", comm_width, "");
2042
2043 if (thread->tid == 0)
2044 goto out;
2045
2046 if (sched->show_callchain)
2047 printf(" ");
2048
2049 sample__fprintf_sym(sample, al, 0,
2050 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2051 EVSEL__PRINT_CALLCHAIN_ARROW |
2052 EVSEL__PRINT_SKIP_IGNORED,
2053 &callchain_cursor, stdout);
2054
2055 out:
2056 printf("\n");
2057 }
2058
2059 /*
2060 * Explanation of delta-time stats:
2061 *
2062 * t = time of current schedule out event
2063 * tprev = time of previous sched out event
2064 * also time of schedule-in event for current task
2065 * last_time = time of last sched change event for current task
2066 * (i.e, time process was last scheduled out)
2067 * ready_to_run = time of wakeup for current task
2068 *
2069 * -----|------------|------------|------------|------
2070 * last ready tprev t
2071 * time to run
2072 *
2073 * |-------- dt_wait --------|
2074 * |- dt_delay -|-- dt_run --|
2075 *
2076 * dt_run = run time of current task
2077 * dt_wait = time between last schedule out event for task and tprev
2078 * represents time spent off the cpu
2079 * dt_delay = time between wakeup and schedule-in of task
2080 */
2081
2082 static void timehist_update_runtime_stats(struct thread_runtime *r,
2083 u64 t, u64 tprev)
2084 {
2085 r->dt_delay = 0;
2086 r->dt_sleep = 0;
2087 r->dt_iowait = 0;
2088 r->dt_preempt = 0;
2089 r->dt_run = 0;
2090
2091 if (tprev) {
2092 r->dt_run = t - tprev;
2093 if (r->ready_to_run) {
2094 if (r->ready_to_run > tprev)
2095 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2096 else
2097 r->dt_delay = tprev - r->ready_to_run;
2098 }
2099
2100 if (r->last_time > tprev)
2101 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2102 else if (r->last_time) {
2103 u64 dt_wait = tprev - r->last_time;
2104
2105 if (r->last_state == TASK_RUNNING)
2106 r->dt_preempt = dt_wait;
2107 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2108 r->dt_iowait = dt_wait;
2109 else
2110 r->dt_sleep = dt_wait;
2111 }
2112 }
2113
2114 update_stats(&r->run_stats, r->dt_run);
2115
2116 r->total_run_time += r->dt_run;
2117 r->total_delay_time += r->dt_delay;
2118 r->total_sleep_time += r->dt_sleep;
2119 r->total_iowait_time += r->dt_iowait;
2120 r->total_preempt_time += r->dt_preempt;
2121 }
2122
2123 static bool is_idle_sample(struct perf_sample *sample,
2124 struct perf_evsel *evsel)
2125 {
2126 /* pid 0 == swapper == idle task */
2127 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2128 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2129
2130 return sample->pid == 0;
2131 }
2132
2133 static void save_task_callchain(struct perf_sched *sched,
2134 struct perf_sample *sample,
2135 struct perf_evsel *evsel,
2136 struct machine *machine)
2137 {
2138 struct callchain_cursor *cursor = &callchain_cursor;
2139 struct thread *thread;
2140
2141 /* want main thread for process - has maps */
2142 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2143 if (thread == NULL) {
2144 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2145 return;
2146 }
2147
2148 if (!sched->show_callchain || sample->callchain == NULL)
2149 return;
2150
2151 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2152 NULL, NULL, sched->max_stack + 2) != 0) {
2153 if (verbose > 0)
2154 pr_err("Failed to resolve callchain. Skipping\n");
2155
2156 return;
2157 }
2158
2159 callchain_cursor_commit(cursor);
2160
2161 while (true) {
2162 struct callchain_cursor_node *node;
2163 struct symbol *sym;
2164
2165 node = callchain_cursor_current(cursor);
2166 if (node == NULL)
2167 break;
2168
2169 sym = node->sym;
2170 if (sym) {
2171 if (!strcmp(sym->name, "schedule") ||
2172 !strcmp(sym->name, "__schedule") ||
2173 !strcmp(sym->name, "preempt_schedule"))
2174 sym->ignore = 1;
2175 }
2176
2177 callchain_cursor_advance(cursor);
2178 }
2179 }
2180
2181 static int init_idle_thread(struct thread *thread)
2182 {
2183 struct idle_thread_runtime *itr;
2184
2185 thread__set_comm(thread, idle_comm, 0);
2186
2187 itr = zalloc(sizeof(*itr));
2188 if (itr == NULL)
2189 return -ENOMEM;
2190
2191 init_stats(&itr->tr.run_stats);
2192 callchain_init(&itr->callchain);
2193 callchain_cursor_reset(&itr->cursor);
2194 thread__set_priv(thread, itr);
2195
2196 return 0;
2197 }
2198
2199 /*
2200 * Track idle stats per cpu by maintaining a local thread
2201 * struct for the idle task on each cpu.
2202 */
2203 static int init_idle_threads(int ncpu)
2204 {
2205 int i, ret;
2206
2207 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2208 if (!idle_threads)
2209 return -ENOMEM;
2210
2211 idle_max_cpu = ncpu;
2212
2213 /* allocate the actual thread struct if needed */
2214 for (i = 0; i < ncpu; ++i) {
2215 idle_threads[i] = thread__new(0, 0);
2216 if (idle_threads[i] == NULL)
2217 return -ENOMEM;
2218
2219 ret = init_idle_thread(idle_threads[i]);
2220 if (ret < 0)
2221 return ret;
2222 }
2223
2224 return 0;
2225 }
2226
2227 static void free_idle_threads(void)
2228 {
2229 int i;
2230
2231 if (idle_threads == NULL)
2232 return;
2233
2234 for (i = 0; i < idle_max_cpu; ++i) {
2235 if ((idle_threads[i]))
2236 thread__delete(idle_threads[i]);
2237 }
2238
2239 free(idle_threads);
2240 }
2241
2242 static struct thread *get_idle_thread(int cpu)
2243 {
2244 /*
2245 * expand/allocate array of pointers to local thread
2246 * structs if needed
2247 */
2248 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2249 int i, j = __roundup_pow_of_two(cpu+1);
2250 void *p;
2251
2252 p = realloc(idle_threads, j * sizeof(struct thread *));
2253 if (!p)
2254 return NULL;
2255
2256 idle_threads = (struct thread **) p;
2257 for (i = idle_max_cpu; i < j; ++i)
2258 idle_threads[i] = NULL;
2259
2260 idle_max_cpu = j;
2261 }
2262
2263 /* allocate a new thread struct if needed */
2264 if (idle_threads[cpu] == NULL) {
2265 idle_threads[cpu] = thread__new(0, 0);
2266
2267 if (idle_threads[cpu]) {
2268 if (init_idle_thread(idle_threads[cpu]) < 0)
2269 return NULL;
2270 }
2271 }
2272
2273 return idle_threads[cpu];
2274 }
2275
2276 static void save_idle_callchain(struct perf_sched *sched,
2277 struct idle_thread_runtime *itr,
2278 struct perf_sample *sample)
2279 {
2280 if (!sched->show_callchain || sample->callchain == NULL)
2281 return;
2282
2283 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2284 }
2285
2286 static struct thread *timehist_get_thread(struct perf_sched *sched,
2287 struct perf_sample *sample,
2288 struct machine *machine,
2289 struct perf_evsel *evsel)
2290 {
2291 struct thread *thread;
2292
2293 if (is_idle_sample(sample, evsel)) {
2294 thread = get_idle_thread(sample->cpu);
2295 if (thread == NULL)
2296 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2297
2298 } else {
2299 /* there were samples with tid 0 but non-zero pid */
2300 thread = machine__findnew_thread(machine, sample->pid,
2301 sample->tid ?: sample->pid);
2302 if (thread == NULL) {
2303 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2304 sample->tid);
2305 }
2306
2307 save_task_callchain(sched, sample, evsel, machine);
2308 if (sched->idle_hist) {
2309 struct thread *idle;
2310 struct idle_thread_runtime *itr;
2311
2312 idle = get_idle_thread(sample->cpu);
2313 if (idle == NULL) {
2314 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2315 return NULL;
2316 }
2317
2318 itr = thread__priv(idle);
2319 if (itr == NULL)
2320 return NULL;
2321
2322 itr->last_thread = thread;
2323
2324 /* copy task callchain when entering to idle */
2325 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2326 save_idle_callchain(sched, itr, sample);
2327 }
2328 }
2329
2330 return thread;
2331 }
2332
2333 static bool timehist_skip_sample(struct perf_sched *sched,
2334 struct thread *thread,
2335 struct perf_evsel *evsel,
2336 struct perf_sample *sample)
2337 {
2338 bool rc = false;
2339
2340 if (thread__is_filtered(thread)) {
2341 rc = true;
2342 sched->skipped_samples++;
2343 }
2344
2345 if (sched->idle_hist) {
2346 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2347 rc = true;
2348 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2349 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2350 rc = true;
2351 }
2352
2353 return rc;
2354 }
2355
2356 static void timehist_print_wakeup_event(struct perf_sched *sched,
2357 struct perf_evsel *evsel,
2358 struct perf_sample *sample,
2359 struct machine *machine,
2360 struct thread *awakened)
2361 {
2362 struct thread *thread;
2363 char tstr[64];
2364
2365 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2366 if (thread == NULL)
2367 return;
2368
2369 /* show wakeup unless both awakee and awaker are filtered */
2370 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2371 timehist_skip_sample(sched, awakened, evsel, sample)) {
2372 return;
2373 }
2374
2375 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2376 printf("%15s [%04d] ", tstr, sample->cpu);
2377 if (sched->show_cpu_visual)
2378 printf(" %*s ", sched->max_cpu + 1, "");
2379
2380 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2381
2382 /* dt spacer */
2383 printf(" %9s %9s %9s ", "", "", "");
2384
2385 printf("awakened: %s", timehist_get_commstr(awakened));
2386
2387 printf("\n");
2388 }
2389
2390 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2391 union perf_event *event __maybe_unused,
2392 struct perf_evsel *evsel,
2393 struct perf_sample *sample,
2394 struct machine *machine)
2395 {
2396 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2397 struct thread *thread;
2398 struct thread_runtime *tr = NULL;
2399 /* want pid of awakened task not pid in sample */
2400 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2401
2402 thread = machine__findnew_thread(machine, 0, pid);
2403 if (thread == NULL)
2404 return -1;
2405
2406 tr = thread__get_runtime(thread);
2407 if (tr == NULL)
2408 return -1;
2409
2410 if (tr->ready_to_run == 0)
2411 tr->ready_to_run = sample->time;
2412
2413 /* show wakeups if requested */
2414 if (sched->show_wakeups &&
2415 !perf_time__skip_sample(&sched->ptime, sample->time))
2416 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2417
2418 return 0;
2419 }
2420
2421 static void timehist_print_migration_event(struct perf_sched *sched,
2422 struct perf_evsel *evsel,
2423 struct perf_sample *sample,
2424 struct machine *machine,
2425 struct thread *migrated)
2426 {
2427 struct thread *thread;
2428 char tstr[64];
2429 u32 max_cpus = sched->max_cpu + 1;
2430 u32 ocpu, dcpu;
2431
2432 if (sched->summary_only)
2433 return;
2434
2435 max_cpus = sched->max_cpu + 1;
2436 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2437 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2438
2439 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2440 if (thread == NULL)
2441 return;
2442
2443 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2444 timehist_skip_sample(sched, migrated, evsel, sample)) {
2445 return;
2446 }
2447
2448 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2449 printf("%15s [%04d] ", tstr, sample->cpu);
2450
2451 if (sched->show_cpu_visual) {
2452 u32 i;
2453 char c;
2454
2455 printf(" ");
2456 for (i = 0; i < max_cpus; ++i) {
2457 c = (i == sample->cpu) ? 'm' : ' ';
2458 printf("%c", c);
2459 }
2460 printf(" ");
2461 }
2462
2463 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2464
2465 /* dt spacer */
2466 printf(" %9s %9s %9s ", "", "", "");
2467
2468 printf("migrated: %s", timehist_get_commstr(migrated));
2469 printf(" cpu %d => %d", ocpu, dcpu);
2470
2471 printf("\n");
2472 }
2473
2474 static int timehist_migrate_task_event(struct perf_tool *tool,
2475 union perf_event *event __maybe_unused,
2476 struct perf_evsel *evsel,
2477 struct perf_sample *sample,
2478 struct machine *machine)
2479 {
2480 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2481 struct thread *thread;
2482 struct thread_runtime *tr = NULL;
2483 /* want pid of migrated task not pid in sample */
2484 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2485
2486 thread = machine__findnew_thread(machine, 0, pid);
2487 if (thread == NULL)
2488 return -1;
2489
2490 tr = thread__get_runtime(thread);
2491 if (tr == NULL)
2492 return -1;
2493
2494 tr->migrations++;
2495
2496 /* show migrations if requested */
2497 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2498
2499 return 0;
2500 }
2501
2502 static int timehist_sched_change_event(struct perf_tool *tool,
2503 union perf_event *event,
2504 struct perf_evsel *evsel,
2505 struct perf_sample *sample,
2506 struct machine *machine)
2507 {
2508 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2509 struct perf_time_interval *ptime = &sched->ptime;
2510 struct addr_location al;
2511 struct thread *thread;
2512 struct thread_runtime *tr = NULL;
2513 u64 tprev, t = sample->time;
2514 int rc = 0;
2515 int state = perf_evsel__intval(evsel, sample, "prev_state");
2516
2517
2518 if (machine__resolve(machine, &al, sample) < 0) {
2519 pr_err("problem processing %d event. skipping it\n",
2520 event->header.type);
2521 rc = -1;
2522 goto out;
2523 }
2524
2525 thread = timehist_get_thread(sched, sample, machine, evsel);
2526 if (thread == NULL) {
2527 rc = -1;
2528 goto out;
2529 }
2530
2531 if (timehist_skip_sample(sched, thread, evsel, sample))
2532 goto out;
2533
2534 tr = thread__get_runtime(thread);
2535 if (tr == NULL) {
2536 rc = -1;
2537 goto out;
2538 }
2539
2540 tprev = perf_evsel__get_time(evsel, sample->cpu);
2541
2542 /*
2543 * If start time given:
2544 * - sample time is under window user cares about - skip sample
2545 * - tprev is under window user cares about - reset to start of window
2546 */
2547 if (ptime->start && ptime->start > t)
2548 goto out;
2549
2550 if (tprev && ptime->start > tprev)
2551 tprev = ptime->start;
2552
2553 /*
2554 * If end time given:
2555 * - previous sched event is out of window - we are done
2556 * - sample time is beyond window user cares about - reset it
2557 * to close out stats for time window interest
2558 */
2559 if (ptime->end) {
2560 if (tprev > ptime->end)
2561 goto out;
2562
2563 if (t > ptime->end)
2564 t = ptime->end;
2565 }
2566
2567 if (!sched->idle_hist || thread->tid == 0) {
2568 timehist_update_runtime_stats(tr, t, tprev);
2569
2570 if (sched->idle_hist) {
2571 struct idle_thread_runtime *itr = (void *)tr;
2572 struct thread_runtime *last_tr;
2573
2574 BUG_ON(thread->tid != 0);
2575
2576 if (itr->last_thread == NULL)
2577 goto out;
2578
2579 /* add current idle time as last thread's runtime */
2580 last_tr = thread__get_runtime(itr->last_thread);
2581 if (last_tr == NULL)
2582 goto out;
2583
2584 timehist_update_runtime_stats(last_tr, t, tprev);
2585 /*
2586 * remove delta time of last thread as it's not updated
2587 * and otherwise it will show an invalid value next
2588 * time. we only care total run time and run stat.
2589 */
2590 last_tr->dt_run = 0;
2591 last_tr->dt_delay = 0;
2592 last_tr->dt_sleep = 0;
2593 last_tr->dt_iowait = 0;
2594 last_tr->dt_preempt = 0;
2595
2596 if (itr->cursor.nr)
2597 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2598
2599 itr->last_thread = NULL;
2600 }
2601 }
2602
2603 if (!sched->summary_only)
2604 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2605
2606 out:
2607 if (sched->hist_time.start == 0 && t >= ptime->start)
2608 sched->hist_time.start = t;
2609 if (ptime->end == 0 || t <= ptime->end)
2610 sched->hist_time.end = t;
2611
2612 if (tr) {
2613 /* time of this sched_switch event becomes last time task seen */
2614 tr->last_time = sample->time;
2615
2616 /* last state is used to determine where to account wait time */
2617 tr->last_state = state;
2618
2619 /* sched out event for task so reset ready to run time */
2620 tr->ready_to_run = 0;
2621 }
2622
2623 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2624
2625 return rc;
2626 }
2627
2628 static int timehist_sched_switch_event(struct perf_tool *tool,
2629 union perf_event *event,
2630 struct perf_evsel *evsel,
2631 struct perf_sample *sample,
2632 struct machine *machine __maybe_unused)
2633 {
2634 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2635 }
2636
2637 static int process_lost(struct perf_tool *tool __maybe_unused,
2638 union perf_event *event,
2639 struct perf_sample *sample,
2640 struct machine *machine __maybe_unused)
2641 {
2642 char tstr[64];
2643
2644 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2645 printf("%15s ", tstr);
2646 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2647
2648 return 0;
2649 }
2650
2651
2652 static void print_thread_runtime(struct thread *t,
2653 struct thread_runtime *r)
2654 {
2655 double mean = avg_stats(&r->run_stats);
2656 float stddev;
2657
2658 printf("%*s %5d %9" PRIu64 " ",
2659 comm_width, timehist_get_commstr(t), t->ppid,
2660 (u64) r->run_stats.n);
2661
2662 print_sched_time(r->total_run_time, 8);
2663 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2664 print_sched_time(r->run_stats.min, 6);
2665 printf(" ");
2666 print_sched_time((u64) mean, 6);
2667 printf(" ");
2668 print_sched_time(r->run_stats.max, 6);
2669 printf(" ");
2670 printf("%5.2f", stddev);
2671 printf(" %5" PRIu64, r->migrations);
2672 printf("\n");
2673 }
2674
2675 static void print_thread_waittime(struct thread *t,
2676 struct thread_runtime *r)
2677 {
2678 printf("%*s %5d %9" PRIu64 " ",
2679 comm_width, timehist_get_commstr(t), t->ppid,
2680 (u64) r->run_stats.n);
2681
2682 print_sched_time(r->total_run_time, 8);
2683 print_sched_time(r->total_sleep_time, 6);
2684 printf(" ");
2685 print_sched_time(r->total_iowait_time, 6);
2686 printf(" ");
2687 print_sched_time(r->total_preempt_time, 6);
2688 printf(" ");
2689 print_sched_time(r->total_delay_time, 6);
2690 printf("\n");
2691 }
2692
2693 struct total_run_stats {
2694 struct perf_sched *sched;
2695 u64 sched_count;
2696 u64 task_count;
2697 u64 total_run_time;
2698 };
2699
2700 static int __show_thread_runtime(struct thread *t, void *priv)
2701 {
2702 struct total_run_stats *stats = priv;
2703 struct thread_runtime *r;
2704
2705 if (thread__is_filtered(t))
2706 return 0;
2707
2708 r = thread__priv(t);
2709 if (r && r->run_stats.n) {
2710 stats->task_count++;
2711 stats->sched_count += r->run_stats.n;
2712 stats->total_run_time += r->total_run_time;
2713
2714 if (stats->sched->show_state)
2715 print_thread_waittime(t, r);
2716 else
2717 print_thread_runtime(t, r);
2718 }
2719
2720 return 0;
2721 }
2722
2723 static int show_thread_runtime(struct thread *t, void *priv)
2724 {
2725 if (t->dead)
2726 return 0;
2727
2728 return __show_thread_runtime(t, priv);
2729 }
2730
2731 static int show_deadthread_runtime(struct thread *t, void *priv)
2732 {
2733 if (!t->dead)
2734 return 0;
2735
2736 return __show_thread_runtime(t, priv);
2737 }
2738
2739 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2740 {
2741 const char *sep = " <- ";
2742 struct callchain_list *chain;
2743 size_t ret = 0;
2744 char bf[1024];
2745 bool first;
2746
2747 if (node == NULL)
2748 return 0;
2749
2750 ret = callchain__fprintf_folded(fp, node->parent);
2751 first = (ret == 0);
2752
2753 list_for_each_entry(chain, &node->val, list) {
2754 if (chain->ip >= PERF_CONTEXT_MAX)
2755 continue;
2756 if (chain->ms.sym && chain->ms.sym->ignore)
2757 continue;
2758 ret += fprintf(fp, "%s%s", first ? "" : sep,
2759 callchain_list__sym_name(chain, bf, sizeof(bf),
2760 false));
2761 first = false;
2762 }
2763
2764 return ret;
2765 }
2766
2767 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2768 {
2769 size_t ret = 0;
2770 FILE *fp = stdout;
2771 struct callchain_node *chain;
2772 struct rb_node *rb_node = rb_first_cached(root);
2773
2774 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2775 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2776 graph_dotted_line);
2777
2778 while (rb_node) {
2779 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2780 rb_node = rb_next(rb_node);
2781
2782 ret += fprintf(fp, " ");
2783 print_sched_time(chain->hit, 12);
2784 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2785 ret += fprintf(fp, " %8d ", chain->count);
2786 ret += callchain__fprintf_folded(fp, chain);
2787 ret += fprintf(fp, "\n");
2788 }
2789
2790 return ret;
2791 }
2792
2793 static void timehist_print_summary(struct perf_sched *sched,
2794 struct perf_session *session)
2795 {
2796 struct machine *m = &session->machines.host;
2797 struct total_run_stats totals;
2798 u64 task_count;
2799 struct thread *t;
2800 struct thread_runtime *r;
2801 int i;
2802 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2803
2804 memset(&totals, 0, sizeof(totals));
2805 totals.sched = sched;
2806
2807 if (sched->idle_hist) {
2808 printf("\nIdle-time summary\n");
2809 printf("%*s parent sched-out ", comm_width, "comm");
2810 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2811 } else if (sched->show_state) {
2812 printf("\nWait-time summary\n");
2813 printf("%*s parent sched-in ", comm_width, "comm");
2814 printf(" run-time sleep iowait preempt delay\n");
2815 } else {
2816 printf("\nRuntime summary\n");
2817 printf("%*s parent sched-in ", comm_width, "comm");
2818 printf(" run-time min-run avg-run max-run stddev migrations\n");
2819 }
2820 printf("%*s (count) ", comm_width, "");
2821 printf(" (msec) (msec) (msec) (msec) %s\n",
2822 sched->show_state ? "(msec)" : "%");
2823 printf("%.117s\n", graph_dotted_line);
2824
2825 machine__for_each_thread(m, show_thread_runtime, &totals);
2826 task_count = totals.task_count;
2827 if (!task_count)
2828 printf("<no still running tasks>\n");
2829
2830 printf("\nTerminated tasks:\n");
2831 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2832 if (task_count == totals.task_count)
2833 printf("<no terminated tasks>\n");
2834
2835 /* CPU idle stats not tracked when samples were skipped */
2836 if (sched->skipped_samples && !sched->idle_hist)
2837 return;
2838
2839 printf("\nIdle stats:\n");
2840 for (i = 0; i < idle_max_cpu; ++i) {
2841 t = idle_threads[i];
2842 if (!t)
2843 continue;
2844
2845 r = thread__priv(t);
2846 if (r && r->run_stats.n) {
2847 totals.sched_count += r->run_stats.n;
2848 printf(" CPU %2d idle for ", i);
2849 print_sched_time(r->total_run_time, 6);
2850 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2851 } else
2852 printf(" CPU %2d idle entire time window\n", i);
2853 }
2854
2855 if (sched->idle_hist && sched->show_callchain) {
2856 callchain_param.mode = CHAIN_FOLDED;
2857 callchain_param.value = CCVAL_PERIOD;
2858
2859 callchain_register_param(&callchain_param);
2860
2861 printf("\nIdle stats by callchain:\n");
2862 for (i = 0; i < idle_max_cpu; ++i) {
2863 struct idle_thread_runtime *itr;
2864
2865 t = idle_threads[i];
2866 if (!t)
2867 continue;
2868
2869 itr = thread__priv(t);
2870 if (itr == NULL)
2871 continue;
2872
2873 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2874 0, &callchain_param);
2875
2876 printf(" CPU %2d:", i);
2877 print_sched_time(itr->tr.total_run_time, 6);
2878 printf(" msec\n");
2879 timehist_print_idlehist_callchain(&itr->sorted_root);
2880 printf("\n");
2881 }
2882 }
2883
2884 printf("\n"
2885 " Total number of unique tasks: %" PRIu64 "\n"
2886 "Total number of context switches: %" PRIu64 "\n",
2887 totals.task_count, totals.sched_count);
2888
2889 printf(" Total run time (msec): ");
2890 print_sched_time(totals.total_run_time, 2);
2891 printf("\n");
2892
2893 printf(" Total scheduling time (msec): ");
2894 print_sched_time(hist_time, 2);
2895 printf(" (x %d)\n", sched->max_cpu);
2896 }
2897
2898 typedef int (*sched_handler)(struct perf_tool *tool,
2899 union perf_event *event,
2900 struct perf_evsel *evsel,
2901 struct perf_sample *sample,
2902 struct machine *machine);
2903
2904 static int perf_timehist__process_sample(struct perf_tool *tool,
2905 union perf_event *event,
2906 struct perf_sample *sample,
2907 struct perf_evsel *evsel,
2908 struct machine *machine)
2909 {
2910 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2911 int err = 0;
2912 int this_cpu = sample->cpu;
2913
2914 if (this_cpu > sched->max_cpu)
2915 sched->max_cpu = this_cpu;
2916
2917 if (evsel->handler != NULL) {
2918 sched_handler f = evsel->handler;
2919
2920 err = f(tool, event, evsel, sample, machine);
2921 }
2922
2923 return err;
2924 }
2925
2926 static int timehist_check_attr(struct perf_sched *sched,
2927 struct perf_evlist *evlist)
2928 {
2929 struct perf_evsel *evsel;
2930 struct evsel_runtime *er;
2931
2932 list_for_each_entry(evsel, &evlist->entries, node) {
2933 er = perf_evsel__get_runtime(evsel);
2934 if (er == NULL) {
2935 pr_err("Failed to allocate memory for evsel runtime data\n");
2936 return -1;
2937 }
2938
2939 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2940 pr_info("Samples do not have callchains.\n");
2941 sched->show_callchain = 0;
2942 symbol_conf.use_callchain = 0;
2943 }
2944 }
2945
2946 return 0;
2947 }
2948
2949 static int perf_sched__timehist(struct perf_sched *sched)
2950 {
2951 const struct perf_evsel_str_handler handlers[] = {
2952 { "sched:sched_switch", timehist_sched_switch_event, },
2953 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2954 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2955 };
2956 const struct perf_evsel_str_handler migrate_handlers[] = {
2957 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2958 };
2959 struct perf_data data = {
2960 .path = input_name,
2961 .mode = PERF_DATA_MODE_READ,
2962 .force = sched->force,
2963 };
2964
2965 struct perf_session *session;
2966 struct perf_evlist *evlist;
2967 int err = -1;
2968
2969 /*
2970 * event handlers for timehist option
2971 */
2972 sched->tool.sample = perf_timehist__process_sample;
2973 sched->tool.mmap = perf_event__process_mmap;
2974 sched->tool.comm = perf_event__process_comm;
2975 sched->tool.exit = perf_event__process_exit;
2976 sched->tool.fork = perf_event__process_fork;
2977 sched->tool.lost = process_lost;
2978 sched->tool.attr = perf_event__process_attr;
2979 sched->tool.tracing_data = perf_event__process_tracing_data;
2980 sched->tool.build_id = perf_event__process_build_id;
2981
2982 sched->tool.ordered_events = true;
2983 sched->tool.ordering_requires_timestamps = true;
2984
2985 symbol_conf.use_callchain = sched->show_callchain;
2986
2987 session = perf_session__new(&data, false, &sched->tool);
2988 if (session == NULL)
2989 return -ENOMEM;
2990
2991 evlist = session->evlist;
2992
2993 symbol__init(&session->header.env);
2994
2995 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996 pr_err("Invalid time string\n");
2997 return -EINVAL;
2998 }
2999
3000 if (timehist_check_attr(sched, evlist) != 0)
3001 goto out;
3002
3003 setup_pager();
3004
3005 /* setup per-evsel handlers */
3006 if (perf_session__set_tracepoints_handlers(session, handlers))
3007 goto out;
3008
3009 /* sched_switch event at a minimum needs to exist */
3010 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3011 "sched:sched_switch")) {
3012 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013 goto out;
3014 }
3015
3016 if (sched->show_migrations &&
3017 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018 goto out;
3019
3020 /* pre-allocate struct for per-CPU idle stats */
3021 sched->max_cpu = session->header.env.nr_cpus_online;
3022 if (sched->max_cpu == 0)
3023 sched->max_cpu = 4;
3024 if (init_idle_threads(sched->max_cpu))
3025 goto out;
3026
3027 /* summary_only implies summary option, but don't overwrite summary if set */
3028 if (sched->summary_only)
3029 sched->summary = sched->summary_only;
3030
3031 if (!sched->summary_only)
3032 timehist_header(sched);
3033
3034 err = perf_session__process_events(session);
3035 if (err) {
3036 pr_err("Failed to process events, error %d", err);
3037 goto out;
3038 }
3039
3040 sched->nr_events = evlist->stats.nr_events[0];
3041 sched->nr_lost_events = evlist->stats.total_lost;
3042 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043
3044 if (sched->summary)
3045 timehist_print_summary(sched, session);
3046
3047 out:
3048 free_idle_threads();
3049 perf_session__delete(session);
3050
3051 return err;
3052 }
3053
3054
3055 static void print_bad_events(struct perf_sched *sched)
3056 {
3057 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060 sched->nr_unordered_timestamps, sched->nr_timestamps);
3061 }
3062 if (sched->nr_lost_events && sched->nr_events) {
3063 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066 }
3067 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070 sched->nr_context_switch_bugs, sched->nr_timestamps);
3071 if (sched->nr_lost_events)
3072 printf(" (due to lost events?)");
3073 printf("\n");
3074 }
3075 }
3076
3077 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3078 {
3079 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3080 struct work_atoms *this;
3081 const char *comm = thread__comm_str(data->thread), *this_comm;
3082 bool leftmost = true;
3083
3084 while (*new) {
3085 int cmp;
3086
3087 this = container_of(*new, struct work_atoms, node);
3088 parent = *new;
3089
3090 this_comm = thread__comm_str(this->thread);
3091 cmp = strcmp(comm, this_comm);
3092 if (cmp > 0) {
3093 new = &((*new)->rb_left);
3094 } else if (cmp < 0) {
3095 new = &((*new)->rb_right);
3096 leftmost = false;
3097 } else {
3098 this->num_merged++;
3099 this->total_runtime += data->total_runtime;
3100 this->nb_atoms += data->nb_atoms;
3101 this->total_lat += data->total_lat;
3102 list_splice(&data->work_list, &this->work_list);
3103 if (this->max_lat < data->max_lat) {
3104 this->max_lat = data->max_lat;
3105 this->max_lat_at = data->max_lat_at;
3106 }
3107 zfree(&data);
3108 return;
3109 }
3110 }
3111
3112 data->num_merged++;
3113 rb_link_node(&data->node, parent, new);
3114 rb_insert_color_cached(&data->node, root, leftmost);
3115 }
3116
3117 static void perf_sched__merge_lat(struct perf_sched *sched)
3118 {
3119 struct work_atoms *data;
3120 struct rb_node *node;
3121
3122 if (sched->skip_merge)
3123 return;
3124
3125 while ((node = rb_first_cached(&sched->atom_root))) {
3126 rb_erase_cached(node, &sched->atom_root);
3127 data = rb_entry(node, struct work_atoms, node);
3128 __merge_work_atoms(&sched->merged_atom_root, data);
3129 }
3130 }
3131
3132 static int perf_sched__lat(struct perf_sched *sched)
3133 {
3134 struct rb_node *next;
3135
3136 setup_pager();
3137
3138 if (perf_sched__read_events(sched))
3139 return -1;
3140
3141 perf_sched__merge_lat(sched);
3142 perf_sched__sort_lat(sched);
3143
3144 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3145 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3146 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3147
3148 next = rb_first_cached(&sched->sorted_atom_root);
3149
3150 while (next) {
3151 struct work_atoms *work_list;
3152
3153 work_list = rb_entry(next, struct work_atoms, node);
3154 output_lat_thread(sched, work_list);
3155 next = rb_next(next);
3156 thread__zput(work_list->thread);
3157 }
3158
3159 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3160 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3161 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3162
3163 printf(" ---------------------------------------------------\n");
3164
3165 print_bad_events(sched);
3166 printf("\n");
3167
3168 return 0;
3169 }
3170
3171 static int setup_map_cpus(struct perf_sched *sched)
3172 {
3173 struct cpu_map *map;
3174
3175 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3176
3177 if (sched->map.comp) {
3178 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3179 if (!sched->map.comp_cpus)
3180 return -1;
3181 }
3182
3183 if (!sched->map.cpus_str)
3184 return 0;
3185
3186 map = cpu_map__new(sched->map.cpus_str);
3187 if (!map) {
3188 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3189 return -1;
3190 }
3191
3192 sched->map.cpus = map;
3193 return 0;
3194 }
3195
3196 static int setup_color_pids(struct perf_sched *sched)
3197 {
3198 struct thread_map *map;
3199
3200 if (!sched->map.color_pids_str)
3201 return 0;
3202
3203 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3204 if (!map) {
3205 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3206 return -1;
3207 }
3208
3209 sched->map.color_pids = map;
3210 return 0;
3211 }
3212
3213 static int setup_color_cpus(struct perf_sched *sched)
3214 {
3215 struct cpu_map *map;
3216
3217 if (!sched->map.color_cpus_str)
3218 return 0;
3219
3220 map = cpu_map__new(sched->map.color_cpus_str);
3221 if (!map) {
3222 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3223 return -1;
3224 }
3225
3226 sched->map.color_cpus = map;
3227 return 0;
3228 }
3229
3230 static int perf_sched__map(struct perf_sched *sched)
3231 {
3232 if (setup_map_cpus(sched))
3233 return -1;
3234
3235 if (setup_color_pids(sched))
3236 return -1;
3237
3238 if (setup_color_cpus(sched))
3239 return -1;
3240
3241 setup_pager();
3242 if (perf_sched__read_events(sched))
3243 return -1;
3244 print_bad_events(sched);
3245 return 0;
3246 }
3247
3248 static int perf_sched__replay(struct perf_sched *sched)
3249 {
3250 unsigned long i;
3251
3252 calibrate_run_measurement_overhead(sched);
3253 calibrate_sleep_measurement_overhead(sched);
3254
3255 test_calibrations(sched);
3256
3257 if (perf_sched__read_events(sched))
3258 return -1;
3259
3260 printf("nr_run_events: %ld\n", sched->nr_run_events);
3261 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3262 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3263
3264 if (sched->targetless_wakeups)
3265 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3266 if (sched->multitarget_wakeups)
3267 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3268 if (sched->nr_run_events_optimized)
3269 printf("run atoms optimized: %ld\n",
3270 sched->nr_run_events_optimized);
3271
3272 print_task_traces(sched);
3273 add_cross_task_wakeups(sched);
3274
3275 create_tasks(sched);
3276 printf("------------------------------------------------------------\n");
3277 for (i = 0; i < sched->replay_repeat; i++)
3278 run_one_test(sched);
3279
3280 return 0;
3281 }
3282
3283 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3284 const char * const usage_msg[])
3285 {
3286 char *tmp, *tok, *str = strdup(sched->sort_order);
3287
3288 for (tok = strtok_r(str, ", ", &tmp);
3289 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3290 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3291 usage_with_options_msg(usage_msg, options,
3292 "Unknown --sort key: `%s'", tok);
3293 }
3294 }
3295
3296 free(str);
3297
3298 sort_dimension__add("pid", &sched->cmp_pid);
3299 }
3300
3301 static int __cmd_record(int argc, const char **argv)
3302 {
3303 unsigned int rec_argc, i, j;
3304 const char **rec_argv;
3305 const char * const record_args[] = {
3306 "record",
3307 "-a",
3308 "-R",
3309 "-m", "1024",
3310 "-c", "1",
3311 "-e", "sched:sched_switch",
3312 "-e", "sched:sched_stat_wait",
3313 "-e", "sched:sched_stat_sleep",
3314 "-e", "sched:sched_stat_iowait",
3315 "-e", "sched:sched_stat_runtime",
3316 "-e", "sched:sched_process_fork",
3317 "-e", "sched:sched_wakeup",
3318 "-e", "sched:sched_wakeup_new",
3319 "-e", "sched:sched_migrate_task",
3320 };
3321
3322 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3323 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3324
3325 if (rec_argv == NULL)
3326 return -ENOMEM;
3327
3328 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3329 rec_argv[i] = strdup(record_args[i]);
3330
3331 for (j = 1; j < (unsigned int)argc; j++, i++)
3332 rec_argv[i] = argv[j];
3333
3334 BUG_ON(i != rec_argc);
3335
3336 return cmd_record(i, rec_argv);
3337 }
3338
3339 int cmd_sched(int argc, const char **argv)
3340 {
3341 static const char default_sort_order[] = "avg, max, switch, runtime";
3342 struct perf_sched sched = {
3343 .tool = {
3344 .sample = perf_sched__process_tracepoint_sample,
3345 .comm = perf_sched__process_comm,
3346 .namespaces = perf_event__process_namespaces,
3347 .lost = perf_event__process_lost,
3348 .fork = perf_sched__process_fork_event,
3349 .ordered_events = true,
3350 },
3351 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3352 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3353 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3354 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3355 .sort_order = default_sort_order,
3356 .replay_repeat = 10,
3357 .profile_cpu = -1,
3358 .next_shortname1 = 'A',
3359 .next_shortname2 = '0',
3360 .skip_merge = 0,
3361 .show_callchain = 1,
3362 .max_stack = 5,
3363 };
3364 const struct option sched_options[] = {
3365 OPT_STRING('i', "input", &input_name, "file",
3366 "input file name"),
3367 OPT_INCR('v', "verbose", &verbose,
3368 "be more verbose (show symbol address, etc)"),
3369 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3370 "dump raw trace in ASCII"),
3371 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3372 OPT_END()
3373 };
3374 const struct option latency_options[] = {
3375 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3376 "sort by key(s): runtime, switch, avg, max"),
3377 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3378 "CPU to profile on"),
3379 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3380 "latency stats per pid instead of per comm"),
3381 OPT_PARENT(sched_options)
3382 };
3383 const struct option replay_options[] = {
3384 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3385 "repeat the workload replay N times (-1: infinite)"),
3386 OPT_PARENT(sched_options)
3387 };
3388 const struct option map_options[] = {
3389 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3390 "map output in compact mode"),
3391 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3392 "highlight given pids in map"),
3393 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3394 "highlight given CPUs in map"),
3395 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3396 "display given CPUs in map"),
3397 OPT_PARENT(sched_options)
3398 };
3399 const struct option timehist_options[] = {
3400 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3401 "file", "vmlinux pathname"),
3402 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3403 "file", "kallsyms pathname"),
3404 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3405 "Display call chains if present (default on)"),
3406 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3407 "Maximum number of functions to display backtrace."),
3408 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3409 "Look for files with symbols relative to this directory"),
3410 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3411 "Show only syscall summary with statistics"),
3412 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3413 "Show all syscalls and summary with statistics"),
3414 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3415 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3416 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3417 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3418 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3419 OPT_STRING(0, "time", &sched.time_str, "str",
3420 "Time span for analysis (start,stop)"),
3421 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3422 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3423 "analyze events only for given process id(s)"),
3424 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3425 "analyze events only for given thread id(s)"),
3426 OPT_PARENT(sched_options)
3427 };
3428
3429 const char * const latency_usage[] = {
3430 "perf sched latency [<options>]",
3431 NULL
3432 };
3433 const char * const replay_usage[] = {
3434 "perf sched replay [<options>]",
3435 NULL
3436 };
3437 const char * const map_usage[] = {
3438 "perf sched map [<options>]",
3439 NULL
3440 };
3441 const char * const timehist_usage[] = {
3442 "perf sched timehist [<options>]",
3443 NULL
3444 };
3445 const char *const sched_subcommands[] = { "record", "latency", "map",
3446 "replay", "script",
3447 "timehist", NULL };
3448 const char *sched_usage[] = {
3449 NULL,
3450 NULL
3451 };
3452 struct trace_sched_handler lat_ops = {
3453 .wakeup_event = latency_wakeup_event,
3454 .switch_event = latency_switch_event,
3455 .runtime_event = latency_runtime_event,
3456 .migrate_task_event = latency_migrate_task_event,
3457 };
3458 struct trace_sched_handler map_ops = {
3459 .switch_event = map_switch_event,
3460 };
3461 struct trace_sched_handler replay_ops = {
3462 .wakeup_event = replay_wakeup_event,
3463 .switch_event = replay_switch_event,
3464 .fork_event = replay_fork_event,
3465 };
3466 unsigned int i;
3467
3468 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3469 sched.curr_pid[i] = -1;
3470
3471 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3472 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3473 if (!argc)
3474 usage_with_options(sched_usage, sched_options);
3475
3476 /*
3477 * Aliased to 'perf script' for now:
3478 */
3479 if (!strcmp(argv[0], "script"))
3480 return cmd_script(argc, argv);
3481
3482 if (!strncmp(argv[0], "rec", 3)) {
3483 return __cmd_record(argc, argv);
3484 } else if (!strncmp(argv[0], "lat", 3)) {
3485 sched.tp_handler = &lat_ops;
3486 if (argc > 1) {
3487 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3488 if (argc)
3489 usage_with_options(latency_usage, latency_options);
3490 }
3491 setup_sorting(&sched, latency_options, latency_usage);
3492 return perf_sched__lat(&sched);
3493 } else if (!strcmp(argv[0], "map")) {
3494 if (argc) {
3495 argc = parse_options(argc, argv, map_options, map_usage, 0);
3496 if (argc)
3497 usage_with_options(map_usage, map_options);
3498 }
3499 sched.tp_handler = &map_ops;
3500 setup_sorting(&sched, latency_options, latency_usage);
3501 return perf_sched__map(&sched);
3502 } else if (!strncmp(argv[0], "rep", 3)) {
3503 sched.tp_handler = &replay_ops;
3504 if (argc) {
3505 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3506 if (argc)
3507 usage_with_options(replay_usage, replay_options);
3508 }
3509 return perf_sched__replay(&sched);
3510 } else if (!strcmp(argv[0], "timehist")) {
3511 if (argc) {
3512 argc = parse_options(argc, argv, timehist_options,
3513 timehist_usage, 0);
3514 if (argc)
3515 usage_with_options(timehist_usage, timehist_options);
3516 }
3517 if ((sched.show_wakeups || sched.show_next) &&
3518 sched.summary_only) {
3519 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3520 parse_options_usage(timehist_usage, timehist_options, "s", true);
3521 if (sched.show_wakeups)
3522 parse_options_usage(NULL, timehist_options, "w", true);
3523 if (sched.show_next)
3524 parse_options_usage(NULL, timehist_options, "n", true);
3525 return -EINVAL;
3526 }
3527
3528 return perf_sched__timehist(&sched);
3529 } else {
3530 usage_with_options(sched_usage, sched_options);
3531 }
3532
3533 return 0;
3534 }