]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/perf/builtin-sched.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4
5 #include "util/util.h"
6 #include "util/evlist.h"
7 #include "util/cache.h"
8 #include "util/evsel.h"
9 #include "util/symbol.h"
10 #include "util/thread.h"
11 #include "util/header.h"
12 #include "util/session.h"
13 #include "util/tool.h"
14 #include "util/cloexec.h"
15 #include "util/thread_map.h"
16 #include "util/color.h"
17 #include "util/stat.h"
18 #include "util/callchain.h"
19 #include "util/time-utils.h"
20
21 #include <subcmd/parse-options.h>
22 #include "util/trace-event.h"
23
24 #include "util/debug.h"
25
26 #include <linux/kernel.h>
27 #include <linux/log2.h>
28 #include <sys/prctl.h>
29 #include <sys/resource.h>
30 #include <inttypes.h>
31
32 #include <errno.h>
33 #include <semaphore.h>
34 #include <pthread.h>
35 #include <math.h>
36 #include <api/fs/fs.h>
37 #include <linux/time64.h>
38
39 #include "sane_ctype.h"
40
41 #define PR_SET_NAME 15 /* Set process name */
42 #define MAX_CPUS 4096
43 #define COMM_LEN 20
44 #define SYM_LEN 129
45 #define MAX_PID 1024000
46
47 struct sched_atom;
48
49 struct task_desc {
50 unsigned long nr;
51 unsigned long pid;
52 char comm[COMM_LEN];
53
54 unsigned long nr_events;
55 unsigned long curr_event;
56 struct sched_atom **atoms;
57
58 pthread_t thread;
59 sem_t sleep_sem;
60
61 sem_t ready_for_work;
62 sem_t work_done_sem;
63
64 u64 cpu_usage;
65 };
66
67 enum sched_event_type {
68 SCHED_EVENT_RUN,
69 SCHED_EVENT_SLEEP,
70 SCHED_EVENT_WAKEUP,
71 SCHED_EVENT_MIGRATION,
72 };
73
74 struct sched_atom {
75 enum sched_event_type type;
76 int specific_wait;
77 u64 timestamp;
78 u64 duration;
79 unsigned long nr;
80 sem_t *wait_sem;
81 struct task_desc *wakee;
82 };
83
84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
85
86 /* task state bitmask, copied from include/linux/sched.h */
87 #define TASK_RUNNING 0
88 #define TASK_INTERRUPTIBLE 1
89 #define TASK_UNINTERRUPTIBLE 2
90 #define __TASK_STOPPED 4
91 #define __TASK_TRACED 8
92 /* in tsk->exit_state */
93 #define EXIT_DEAD 16
94 #define EXIT_ZOMBIE 32
95 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96 /* in tsk->state again */
97 #define TASK_DEAD 64
98 #define TASK_WAKEKILL 128
99 #define TASK_WAKING 256
100 #define TASK_PARKED 512
101
102 enum thread_state {
103 THREAD_SLEEPING = 0,
104 THREAD_WAIT_CPU,
105 THREAD_SCHED_IN,
106 THREAD_IGNORE
107 };
108
109 struct work_atom {
110 struct list_head list;
111 enum thread_state state;
112 u64 sched_out_time;
113 u64 wake_up_time;
114 u64 sched_in_time;
115 u64 runtime;
116 };
117
118 struct work_atoms {
119 struct list_head work_list;
120 struct thread *thread;
121 struct rb_node node;
122 u64 max_lat;
123 u64 max_lat_at;
124 u64 total_lat;
125 u64 nb_atoms;
126 u64 total_runtime;
127 int num_merged;
128 };
129
130 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
131
132 struct perf_sched;
133
134 struct trace_sched_handler {
135 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
136 struct perf_sample *sample, struct machine *machine);
137
138 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
139 struct perf_sample *sample, struct machine *machine);
140
141 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
142 struct perf_sample *sample, struct machine *machine);
143
144 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
145 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
146 struct machine *machine);
147
148 int (*migrate_task_event)(struct perf_sched *sched,
149 struct perf_evsel *evsel,
150 struct perf_sample *sample,
151 struct machine *machine);
152 };
153
154 #define COLOR_PIDS PERF_COLOR_BLUE
155 #define COLOR_CPUS PERF_COLOR_BG_RED
156
157 struct perf_sched_map {
158 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
159 int *comp_cpus;
160 bool comp;
161 struct thread_map *color_pids;
162 const char *color_pids_str;
163 struct cpu_map *color_cpus;
164 const char *color_cpus_str;
165 struct cpu_map *cpus;
166 const char *cpus_str;
167 };
168
169 struct perf_sched {
170 struct perf_tool tool;
171 const char *sort_order;
172 unsigned long nr_tasks;
173 struct task_desc **pid_to_task;
174 struct task_desc **tasks;
175 const struct trace_sched_handler *tp_handler;
176 pthread_mutex_t start_work_mutex;
177 pthread_mutex_t work_done_wait_mutex;
178 int profile_cpu;
179 /*
180 * Track the current task - that way we can know whether there's any
181 * weird events, such as a task being switched away that is not current.
182 */
183 int max_cpu;
184 u32 curr_pid[MAX_CPUS];
185 struct thread *curr_thread[MAX_CPUS];
186 char next_shortname1;
187 char next_shortname2;
188 unsigned int replay_repeat;
189 unsigned long nr_run_events;
190 unsigned long nr_sleep_events;
191 unsigned long nr_wakeup_events;
192 unsigned long nr_sleep_corrections;
193 unsigned long nr_run_events_optimized;
194 unsigned long targetless_wakeups;
195 unsigned long multitarget_wakeups;
196 unsigned long nr_runs;
197 unsigned long nr_timestamps;
198 unsigned long nr_unordered_timestamps;
199 unsigned long nr_context_switch_bugs;
200 unsigned long nr_events;
201 unsigned long nr_lost_chunks;
202 unsigned long nr_lost_events;
203 u64 run_measurement_overhead;
204 u64 sleep_measurement_overhead;
205 u64 start_time;
206 u64 cpu_usage;
207 u64 runavg_cpu_usage;
208 u64 parent_cpu_usage;
209 u64 runavg_parent_cpu_usage;
210 u64 sum_runtime;
211 u64 sum_fluct;
212 u64 run_avg;
213 u64 all_runtime;
214 u64 all_count;
215 u64 cpu_last_switched[MAX_CPUS];
216 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
217 struct list_head sort_list, cmp_pid;
218 bool force;
219 bool skip_merge;
220 struct perf_sched_map map;
221
222 /* options for timehist command */
223 bool summary;
224 bool summary_only;
225 bool idle_hist;
226 bool show_callchain;
227 unsigned int max_stack;
228 bool show_cpu_visual;
229 bool show_wakeups;
230 bool show_next;
231 bool show_migrations;
232 bool show_state;
233 u64 skipped_samples;
234 const char *time_str;
235 struct perf_time_interval ptime;
236 struct perf_time_interval hist_time;
237 };
238
239 /* per thread run time data */
240 struct thread_runtime {
241 u64 last_time; /* time of previous sched in/out event */
242 u64 dt_run; /* run time */
243 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
244 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
245 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
246 u64 dt_delay; /* time between wakeup and sched-in */
247 u64 ready_to_run; /* time of wakeup */
248
249 struct stats run_stats;
250 u64 total_run_time;
251 u64 total_sleep_time;
252 u64 total_iowait_time;
253 u64 total_preempt_time;
254 u64 total_delay_time;
255
256 int last_state;
257 u64 migrations;
258 };
259
260 /* per event run time data */
261 struct evsel_runtime {
262 u64 *last_time; /* time this event was last seen per cpu */
263 u32 ncpu; /* highest cpu slot allocated */
264 };
265
266 /* per cpu idle time data */
267 struct idle_thread_runtime {
268 struct thread_runtime tr;
269 struct thread *last_thread;
270 struct rb_root sorted_root;
271 struct callchain_root callchain;
272 struct callchain_cursor cursor;
273 };
274
275 /* track idle times per cpu */
276 static struct thread **idle_threads;
277 static int idle_max_cpu;
278 static char idle_comm[] = "<idle>";
279
280 static u64 get_nsecs(void)
281 {
282 struct timespec ts;
283
284 clock_gettime(CLOCK_MONOTONIC, &ts);
285
286 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
287 }
288
289 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
290 {
291 u64 T0 = get_nsecs(), T1;
292
293 do {
294 T1 = get_nsecs();
295 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
296 }
297
298 static void sleep_nsecs(u64 nsecs)
299 {
300 struct timespec ts;
301
302 ts.tv_nsec = nsecs % 999999999;
303 ts.tv_sec = nsecs / 999999999;
304
305 nanosleep(&ts, NULL);
306 }
307
308 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
309 {
310 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
311 int i;
312
313 for (i = 0; i < 10; i++) {
314 T0 = get_nsecs();
315 burn_nsecs(sched, 0);
316 T1 = get_nsecs();
317 delta = T1-T0;
318 min_delta = min(min_delta, delta);
319 }
320 sched->run_measurement_overhead = min_delta;
321
322 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
323 }
324
325 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
326 {
327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
328 int i;
329
330 for (i = 0; i < 10; i++) {
331 T0 = get_nsecs();
332 sleep_nsecs(10000);
333 T1 = get_nsecs();
334 delta = T1-T0;
335 min_delta = min(min_delta, delta);
336 }
337 min_delta -= 10000;
338 sched->sleep_measurement_overhead = min_delta;
339
340 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
341 }
342
343 static struct sched_atom *
344 get_new_event(struct task_desc *task, u64 timestamp)
345 {
346 struct sched_atom *event = zalloc(sizeof(*event));
347 unsigned long idx = task->nr_events;
348 size_t size;
349
350 event->timestamp = timestamp;
351 event->nr = idx;
352
353 task->nr_events++;
354 size = sizeof(struct sched_atom *) * task->nr_events;
355 task->atoms = realloc(task->atoms, size);
356 BUG_ON(!task->atoms);
357
358 task->atoms[idx] = event;
359
360 return event;
361 }
362
363 static struct sched_atom *last_event(struct task_desc *task)
364 {
365 if (!task->nr_events)
366 return NULL;
367
368 return task->atoms[task->nr_events - 1];
369 }
370
371 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
372 u64 timestamp, u64 duration)
373 {
374 struct sched_atom *event, *curr_event = last_event(task);
375
376 /*
377 * optimize an existing RUN event by merging this one
378 * to it:
379 */
380 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
381 sched->nr_run_events_optimized++;
382 curr_event->duration += duration;
383 return;
384 }
385
386 event = get_new_event(task, timestamp);
387
388 event->type = SCHED_EVENT_RUN;
389 event->duration = duration;
390
391 sched->nr_run_events++;
392 }
393
394 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
395 u64 timestamp, struct task_desc *wakee)
396 {
397 struct sched_atom *event, *wakee_event;
398
399 event = get_new_event(task, timestamp);
400 event->type = SCHED_EVENT_WAKEUP;
401 event->wakee = wakee;
402
403 wakee_event = last_event(wakee);
404 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
405 sched->targetless_wakeups++;
406 return;
407 }
408 if (wakee_event->wait_sem) {
409 sched->multitarget_wakeups++;
410 return;
411 }
412
413 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
414 sem_init(wakee_event->wait_sem, 0, 0);
415 wakee_event->specific_wait = 1;
416 event->wait_sem = wakee_event->wait_sem;
417
418 sched->nr_wakeup_events++;
419 }
420
421 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
422 u64 timestamp, u64 task_state __maybe_unused)
423 {
424 struct sched_atom *event = get_new_event(task, timestamp);
425
426 event->type = SCHED_EVENT_SLEEP;
427
428 sched->nr_sleep_events++;
429 }
430
431 static struct task_desc *register_pid(struct perf_sched *sched,
432 unsigned long pid, const char *comm)
433 {
434 struct task_desc *task;
435 static int pid_max;
436
437 if (sched->pid_to_task == NULL) {
438 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
439 pid_max = MAX_PID;
440 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
441 }
442 if (pid >= (unsigned long)pid_max) {
443 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
444 sizeof(struct task_desc *))) == NULL);
445 while (pid >= (unsigned long)pid_max)
446 sched->pid_to_task[pid_max++] = NULL;
447 }
448
449 task = sched->pid_to_task[pid];
450
451 if (task)
452 return task;
453
454 task = zalloc(sizeof(*task));
455 task->pid = pid;
456 task->nr = sched->nr_tasks;
457 strcpy(task->comm, comm);
458 /*
459 * every task starts in sleeping state - this gets ignored
460 * if there's no wakeup pointing to this sleep state:
461 */
462 add_sched_event_sleep(sched, task, 0, 0);
463
464 sched->pid_to_task[pid] = task;
465 sched->nr_tasks++;
466 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
467 BUG_ON(!sched->tasks);
468 sched->tasks[task->nr] = task;
469
470 if (verbose > 0)
471 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
472
473 return task;
474 }
475
476
477 static void print_task_traces(struct perf_sched *sched)
478 {
479 struct task_desc *task;
480 unsigned long i;
481
482 for (i = 0; i < sched->nr_tasks; i++) {
483 task = sched->tasks[i];
484 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
485 task->nr, task->comm, task->pid, task->nr_events);
486 }
487 }
488
489 static void add_cross_task_wakeups(struct perf_sched *sched)
490 {
491 struct task_desc *task1, *task2;
492 unsigned long i, j;
493
494 for (i = 0; i < sched->nr_tasks; i++) {
495 task1 = sched->tasks[i];
496 j = i + 1;
497 if (j == sched->nr_tasks)
498 j = 0;
499 task2 = sched->tasks[j];
500 add_sched_event_wakeup(sched, task1, 0, task2);
501 }
502 }
503
504 static void perf_sched__process_event(struct perf_sched *sched,
505 struct sched_atom *atom)
506 {
507 int ret = 0;
508
509 switch (atom->type) {
510 case SCHED_EVENT_RUN:
511 burn_nsecs(sched, atom->duration);
512 break;
513 case SCHED_EVENT_SLEEP:
514 if (atom->wait_sem)
515 ret = sem_wait(atom->wait_sem);
516 BUG_ON(ret);
517 break;
518 case SCHED_EVENT_WAKEUP:
519 if (atom->wait_sem)
520 ret = sem_post(atom->wait_sem);
521 BUG_ON(ret);
522 break;
523 case SCHED_EVENT_MIGRATION:
524 break;
525 default:
526 BUG_ON(1);
527 }
528 }
529
530 static u64 get_cpu_usage_nsec_parent(void)
531 {
532 struct rusage ru;
533 u64 sum;
534 int err;
535
536 err = getrusage(RUSAGE_SELF, &ru);
537 BUG_ON(err);
538
539 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
540 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
541
542 return sum;
543 }
544
545 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
546 {
547 struct perf_event_attr attr;
548 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
549 int fd;
550 struct rlimit limit;
551 bool need_privilege = false;
552
553 memset(&attr, 0, sizeof(attr));
554
555 attr.type = PERF_TYPE_SOFTWARE;
556 attr.config = PERF_COUNT_SW_TASK_CLOCK;
557
558 force_again:
559 fd = sys_perf_event_open(&attr, 0, -1, -1,
560 perf_event_open_cloexec_flag());
561
562 if (fd < 0) {
563 if (errno == EMFILE) {
564 if (sched->force) {
565 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
566 limit.rlim_cur += sched->nr_tasks - cur_task;
567 if (limit.rlim_cur > limit.rlim_max) {
568 limit.rlim_max = limit.rlim_cur;
569 need_privilege = true;
570 }
571 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
572 if (need_privilege && errno == EPERM)
573 strcpy(info, "Need privilege\n");
574 } else
575 goto force_again;
576 } else
577 strcpy(info, "Have a try with -f option\n");
578 }
579 pr_err("Error: sys_perf_event_open() syscall returned "
580 "with %d (%s)\n%s", fd,
581 str_error_r(errno, sbuf, sizeof(sbuf)), info);
582 exit(EXIT_FAILURE);
583 }
584 return fd;
585 }
586
587 static u64 get_cpu_usage_nsec_self(int fd)
588 {
589 u64 runtime;
590 int ret;
591
592 ret = read(fd, &runtime, sizeof(runtime));
593 BUG_ON(ret != sizeof(runtime));
594
595 return runtime;
596 }
597
598 struct sched_thread_parms {
599 struct task_desc *task;
600 struct perf_sched *sched;
601 int fd;
602 };
603
604 static void *thread_func(void *ctx)
605 {
606 struct sched_thread_parms *parms = ctx;
607 struct task_desc *this_task = parms->task;
608 struct perf_sched *sched = parms->sched;
609 u64 cpu_usage_0, cpu_usage_1;
610 unsigned long i, ret;
611 char comm2[22];
612 int fd = parms->fd;
613
614 zfree(&parms);
615
616 sprintf(comm2, ":%s", this_task->comm);
617 prctl(PR_SET_NAME, comm2);
618 if (fd < 0)
619 return NULL;
620 again:
621 ret = sem_post(&this_task->ready_for_work);
622 BUG_ON(ret);
623 ret = pthread_mutex_lock(&sched->start_work_mutex);
624 BUG_ON(ret);
625 ret = pthread_mutex_unlock(&sched->start_work_mutex);
626 BUG_ON(ret);
627
628 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
629
630 for (i = 0; i < this_task->nr_events; i++) {
631 this_task->curr_event = i;
632 perf_sched__process_event(sched, this_task->atoms[i]);
633 }
634
635 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
636 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
637 ret = sem_post(&this_task->work_done_sem);
638 BUG_ON(ret);
639
640 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
641 BUG_ON(ret);
642 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
643 BUG_ON(ret);
644
645 goto again;
646 }
647
648 static void create_tasks(struct perf_sched *sched)
649 {
650 struct task_desc *task;
651 pthread_attr_t attr;
652 unsigned long i;
653 int err;
654
655 err = pthread_attr_init(&attr);
656 BUG_ON(err);
657 err = pthread_attr_setstacksize(&attr,
658 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
659 BUG_ON(err);
660 err = pthread_mutex_lock(&sched->start_work_mutex);
661 BUG_ON(err);
662 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
663 BUG_ON(err);
664 for (i = 0; i < sched->nr_tasks; i++) {
665 struct sched_thread_parms *parms = malloc(sizeof(*parms));
666 BUG_ON(parms == NULL);
667 parms->task = task = sched->tasks[i];
668 parms->sched = sched;
669 parms->fd = self_open_counters(sched, i);
670 sem_init(&task->sleep_sem, 0, 0);
671 sem_init(&task->ready_for_work, 0, 0);
672 sem_init(&task->work_done_sem, 0, 0);
673 task->curr_event = 0;
674 err = pthread_create(&task->thread, &attr, thread_func, parms);
675 BUG_ON(err);
676 }
677 }
678
679 static void wait_for_tasks(struct perf_sched *sched)
680 {
681 u64 cpu_usage_0, cpu_usage_1;
682 struct task_desc *task;
683 unsigned long i, ret;
684
685 sched->start_time = get_nsecs();
686 sched->cpu_usage = 0;
687 pthread_mutex_unlock(&sched->work_done_wait_mutex);
688
689 for (i = 0; i < sched->nr_tasks; i++) {
690 task = sched->tasks[i];
691 ret = sem_wait(&task->ready_for_work);
692 BUG_ON(ret);
693 sem_init(&task->ready_for_work, 0, 0);
694 }
695 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
696 BUG_ON(ret);
697
698 cpu_usage_0 = get_cpu_usage_nsec_parent();
699
700 pthread_mutex_unlock(&sched->start_work_mutex);
701
702 for (i = 0; i < sched->nr_tasks; i++) {
703 task = sched->tasks[i];
704 ret = sem_wait(&task->work_done_sem);
705 BUG_ON(ret);
706 sem_init(&task->work_done_sem, 0, 0);
707 sched->cpu_usage += task->cpu_usage;
708 task->cpu_usage = 0;
709 }
710
711 cpu_usage_1 = get_cpu_usage_nsec_parent();
712 if (!sched->runavg_cpu_usage)
713 sched->runavg_cpu_usage = sched->cpu_usage;
714 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
715
716 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
717 if (!sched->runavg_parent_cpu_usage)
718 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
719 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
720 sched->parent_cpu_usage)/sched->replay_repeat;
721
722 ret = pthread_mutex_lock(&sched->start_work_mutex);
723 BUG_ON(ret);
724
725 for (i = 0; i < sched->nr_tasks; i++) {
726 task = sched->tasks[i];
727 sem_init(&task->sleep_sem, 0, 0);
728 task->curr_event = 0;
729 }
730 }
731
732 static void run_one_test(struct perf_sched *sched)
733 {
734 u64 T0, T1, delta, avg_delta, fluct;
735
736 T0 = get_nsecs();
737 wait_for_tasks(sched);
738 T1 = get_nsecs();
739
740 delta = T1 - T0;
741 sched->sum_runtime += delta;
742 sched->nr_runs++;
743
744 avg_delta = sched->sum_runtime / sched->nr_runs;
745 if (delta < avg_delta)
746 fluct = avg_delta - delta;
747 else
748 fluct = delta - avg_delta;
749 sched->sum_fluct += fluct;
750 if (!sched->run_avg)
751 sched->run_avg = delta;
752 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
753
754 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
755
756 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
757
758 printf("cpu: %0.2f / %0.2f",
759 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
760
761 #if 0
762 /*
763 * rusage statistics done by the parent, these are less
764 * accurate than the sched->sum_exec_runtime based statistics:
765 */
766 printf(" [%0.2f / %0.2f]",
767 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
768 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
769 #endif
770
771 printf("\n");
772
773 if (sched->nr_sleep_corrections)
774 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
775 sched->nr_sleep_corrections = 0;
776 }
777
778 static void test_calibrations(struct perf_sched *sched)
779 {
780 u64 T0, T1;
781
782 T0 = get_nsecs();
783 burn_nsecs(sched, NSEC_PER_MSEC);
784 T1 = get_nsecs();
785
786 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
787
788 T0 = get_nsecs();
789 sleep_nsecs(NSEC_PER_MSEC);
790 T1 = get_nsecs();
791
792 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
793 }
794
795 static int
796 replay_wakeup_event(struct perf_sched *sched,
797 struct perf_evsel *evsel, struct perf_sample *sample,
798 struct machine *machine __maybe_unused)
799 {
800 const char *comm = perf_evsel__strval(evsel, sample, "comm");
801 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
802 struct task_desc *waker, *wakee;
803
804 if (verbose > 0) {
805 printf("sched_wakeup event %p\n", evsel);
806
807 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
808 }
809
810 waker = register_pid(sched, sample->tid, "<unknown>");
811 wakee = register_pid(sched, pid, comm);
812
813 add_sched_event_wakeup(sched, waker, sample->time, wakee);
814 return 0;
815 }
816
817 static int replay_switch_event(struct perf_sched *sched,
818 struct perf_evsel *evsel,
819 struct perf_sample *sample,
820 struct machine *machine __maybe_unused)
821 {
822 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
823 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
824 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
825 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
826 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
827 struct task_desc *prev, __maybe_unused *next;
828 u64 timestamp0, timestamp = sample->time;
829 int cpu = sample->cpu;
830 s64 delta;
831
832 if (verbose > 0)
833 printf("sched_switch event %p\n", evsel);
834
835 if (cpu >= MAX_CPUS || cpu < 0)
836 return 0;
837
838 timestamp0 = sched->cpu_last_switched[cpu];
839 if (timestamp0)
840 delta = timestamp - timestamp0;
841 else
842 delta = 0;
843
844 if (delta < 0) {
845 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
846 return -1;
847 }
848
849 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
850 prev_comm, prev_pid, next_comm, next_pid, delta);
851
852 prev = register_pid(sched, prev_pid, prev_comm);
853 next = register_pid(sched, next_pid, next_comm);
854
855 sched->cpu_last_switched[cpu] = timestamp;
856
857 add_sched_event_run(sched, prev, timestamp, delta);
858 add_sched_event_sleep(sched, prev, timestamp, prev_state);
859
860 return 0;
861 }
862
863 static int replay_fork_event(struct perf_sched *sched,
864 union perf_event *event,
865 struct machine *machine)
866 {
867 struct thread *child, *parent;
868
869 child = machine__findnew_thread(machine, event->fork.pid,
870 event->fork.tid);
871 parent = machine__findnew_thread(machine, event->fork.ppid,
872 event->fork.ptid);
873
874 if (child == NULL || parent == NULL) {
875 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
876 child, parent);
877 goto out_put;
878 }
879
880 if (verbose > 0) {
881 printf("fork event\n");
882 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
883 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
884 }
885
886 register_pid(sched, parent->tid, thread__comm_str(parent));
887 register_pid(sched, child->tid, thread__comm_str(child));
888 out_put:
889 thread__put(child);
890 thread__put(parent);
891 return 0;
892 }
893
894 struct sort_dimension {
895 const char *name;
896 sort_fn_t cmp;
897 struct list_head list;
898 };
899
900 static int
901 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
902 {
903 struct sort_dimension *sort;
904 int ret = 0;
905
906 BUG_ON(list_empty(list));
907
908 list_for_each_entry(sort, list, list) {
909 ret = sort->cmp(l, r);
910 if (ret)
911 return ret;
912 }
913
914 return ret;
915 }
916
917 static struct work_atoms *
918 thread_atoms_search(struct rb_root *root, struct thread *thread,
919 struct list_head *sort_list)
920 {
921 struct rb_node *node = root->rb_node;
922 struct work_atoms key = { .thread = thread };
923
924 while (node) {
925 struct work_atoms *atoms;
926 int cmp;
927
928 atoms = container_of(node, struct work_atoms, node);
929
930 cmp = thread_lat_cmp(sort_list, &key, atoms);
931 if (cmp > 0)
932 node = node->rb_left;
933 else if (cmp < 0)
934 node = node->rb_right;
935 else {
936 BUG_ON(thread != atoms->thread);
937 return atoms;
938 }
939 }
940 return NULL;
941 }
942
943 static void
944 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
945 struct list_head *sort_list)
946 {
947 struct rb_node **new = &(root->rb_node), *parent = NULL;
948
949 while (*new) {
950 struct work_atoms *this;
951 int cmp;
952
953 this = container_of(*new, struct work_atoms, node);
954 parent = *new;
955
956 cmp = thread_lat_cmp(sort_list, data, this);
957
958 if (cmp > 0)
959 new = &((*new)->rb_left);
960 else
961 new = &((*new)->rb_right);
962 }
963
964 rb_link_node(&data->node, parent, new);
965 rb_insert_color(&data->node, root);
966 }
967
968 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
969 {
970 struct work_atoms *atoms = zalloc(sizeof(*atoms));
971 if (!atoms) {
972 pr_err("No memory at %s\n", __func__);
973 return -1;
974 }
975
976 atoms->thread = thread__get(thread);
977 INIT_LIST_HEAD(&atoms->work_list);
978 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
979 return 0;
980 }
981
982 static char sched_out_state(u64 prev_state)
983 {
984 const char *str = TASK_STATE_TO_CHAR_STR;
985
986 return str[prev_state];
987 }
988
989 static int
990 add_sched_out_event(struct work_atoms *atoms,
991 char run_state,
992 u64 timestamp)
993 {
994 struct work_atom *atom = zalloc(sizeof(*atom));
995 if (!atom) {
996 pr_err("Non memory at %s", __func__);
997 return -1;
998 }
999
1000 atom->sched_out_time = timestamp;
1001
1002 if (run_state == 'R') {
1003 atom->state = THREAD_WAIT_CPU;
1004 atom->wake_up_time = atom->sched_out_time;
1005 }
1006
1007 list_add_tail(&atom->list, &atoms->work_list);
1008 return 0;
1009 }
1010
1011 static void
1012 add_runtime_event(struct work_atoms *atoms, u64 delta,
1013 u64 timestamp __maybe_unused)
1014 {
1015 struct work_atom *atom;
1016
1017 BUG_ON(list_empty(&atoms->work_list));
1018
1019 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1020
1021 atom->runtime += delta;
1022 atoms->total_runtime += delta;
1023 }
1024
1025 static void
1026 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1027 {
1028 struct work_atom *atom;
1029 u64 delta;
1030
1031 if (list_empty(&atoms->work_list))
1032 return;
1033
1034 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1035
1036 if (atom->state != THREAD_WAIT_CPU)
1037 return;
1038
1039 if (timestamp < atom->wake_up_time) {
1040 atom->state = THREAD_IGNORE;
1041 return;
1042 }
1043
1044 atom->state = THREAD_SCHED_IN;
1045 atom->sched_in_time = timestamp;
1046
1047 delta = atom->sched_in_time - atom->wake_up_time;
1048 atoms->total_lat += delta;
1049 if (delta > atoms->max_lat) {
1050 atoms->max_lat = delta;
1051 atoms->max_lat_at = timestamp;
1052 }
1053 atoms->nb_atoms++;
1054 }
1055
1056 static int latency_switch_event(struct perf_sched *sched,
1057 struct perf_evsel *evsel,
1058 struct perf_sample *sample,
1059 struct machine *machine)
1060 {
1061 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1062 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1063 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1064 struct work_atoms *out_events, *in_events;
1065 struct thread *sched_out, *sched_in;
1066 u64 timestamp0, timestamp = sample->time;
1067 int cpu = sample->cpu, err = -1;
1068 s64 delta;
1069
1070 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1071
1072 timestamp0 = sched->cpu_last_switched[cpu];
1073 sched->cpu_last_switched[cpu] = timestamp;
1074 if (timestamp0)
1075 delta = timestamp - timestamp0;
1076 else
1077 delta = 0;
1078
1079 if (delta < 0) {
1080 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1081 return -1;
1082 }
1083
1084 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1085 sched_in = machine__findnew_thread(machine, -1, next_pid);
1086 if (sched_out == NULL || sched_in == NULL)
1087 goto out_put;
1088
1089 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1090 if (!out_events) {
1091 if (thread_atoms_insert(sched, sched_out))
1092 goto out_put;
1093 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1094 if (!out_events) {
1095 pr_err("out-event: Internal tree error");
1096 goto out_put;
1097 }
1098 }
1099 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1100 return -1;
1101
1102 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1103 if (!in_events) {
1104 if (thread_atoms_insert(sched, sched_in))
1105 goto out_put;
1106 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1107 if (!in_events) {
1108 pr_err("in-event: Internal tree error");
1109 goto out_put;
1110 }
1111 /*
1112 * Take came in we have not heard about yet,
1113 * add in an initial atom in runnable state:
1114 */
1115 if (add_sched_out_event(in_events, 'R', timestamp))
1116 goto out_put;
1117 }
1118 add_sched_in_event(in_events, timestamp);
1119 err = 0;
1120 out_put:
1121 thread__put(sched_out);
1122 thread__put(sched_in);
1123 return err;
1124 }
1125
1126 static int latency_runtime_event(struct perf_sched *sched,
1127 struct perf_evsel *evsel,
1128 struct perf_sample *sample,
1129 struct machine *machine)
1130 {
1131 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1132 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1133 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1134 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1135 u64 timestamp = sample->time;
1136 int cpu = sample->cpu, err = -1;
1137
1138 if (thread == NULL)
1139 return -1;
1140
1141 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1142 if (!atoms) {
1143 if (thread_atoms_insert(sched, thread))
1144 goto out_put;
1145 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1146 if (!atoms) {
1147 pr_err("in-event: Internal tree error");
1148 goto out_put;
1149 }
1150 if (add_sched_out_event(atoms, 'R', timestamp))
1151 goto out_put;
1152 }
1153
1154 add_runtime_event(atoms, runtime, timestamp);
1155 err = 0;
1156 out_put:
1157 thread__put(thread);
1158 return err;
1159 }
1160
1161 static int latency_wakeup_event(struct perf_sched *sched,
1162 struct perf_evsel *evsel,
1163 struct perf_sample *sample,
1164 struct machine *machine)
1165 {
1166 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1167 struct work_atoms *atoms;
1168 struct work_atom *atom;
1169 struct thread *wakee;
1170 u64 timestamp = sample->time;
1171 int err = -1;
1172
1173 wakee = machine__findnew_thread(machine, -1, pid);
1174 if (wakee == NULL)
1175 return -1;
1176 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1177 if (!atoms) {
1178 if (thread_atoms_insert(sched, wakee))
1179 goto out_put;
1180 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1181 if (!atoms) {
1182 pr_err("wakeup-event: Internal tree error");
1183 goto out_put;
1184 }
1185 if (add_sched_out_event(atoms, 'S', timestamp))
1186 goto out_put;
1187 }
1188
1189 BUG_ON(list_empty(&atoms->work_list));
1190
1191 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1192
1193 /*
1194 * As we do not guarantee the wakeup event happens when
1195 * task is out of run queue, also may happen when task is
1196 * on run queue and wakeup only change ->state to TASK_RUNNING,
1197 * then we should not set the ->wake_up_time when wake up a
1198 * task which is on run queue.
1199 *
1200 * You WILL be missing events if you've recorded only
1201 * one CPU, or are only looking at only one, so don't
1202 * skip in this case.
1203 */
1204 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1205 goto out_ok;
1206
1207 sched->nr_timestamps++;
1208 if (atom->sched_out_time > timestamp) {
1209 sched->nr_unordered_timestamps++;
1210 goto out_ok;
1211 }
1212
1213 atom->state = THREAD_WAIT_CPU;
1214 atom->wake_up_time = timestamp;
1215 out_ok:
1216 err = 0;
1217 out_put:
1218 thread__put(wakee);
1219 return err;
1220 }
1221
1222 static int latency_migrate_task_event(struct perf_sched *sched,
1223 struct perf_evsel *evsel,
1224 struct perf_sample *sample,
1225 struct machine *machine)
1226 {
1227 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1228 u64 timestamp = sample->time;
1229 struct work_atoms *atoms;
1230 struct work_atom *atom;
1231 struct thread *migrant;
1232 int err = -1;
1233
1234 /*
1235 * Only need to worry about migration when profiling one CPU.
1236 */
1237 if (sched->profile_cpu == -1)
1238 return 0;
1239
1240 migrant = machine__findnew_thread(machine, -1, pid);
1241 if (migrant == NULL)
1242 return -1;
1243 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1244 if (!atoms) {
1245 if (thread_atoms_insert(sched, migrant))
1246 goto out_put;
1247 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1248 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1249 if (!atoms) {
1250 pr_err("migration-event: Internal tree error");
1251 goto out_put;
1252 }
1253 if (add_sched_out_event(atoms, 'R', timestamp))
1254 goto out_put;
1255 }
1256
1257 BUG_ON(list_empty(&atoms->work_list));
1258
1259 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1260 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1261
1262 sched->nr_timestamps++;
1263
1264 if (atom->sched_out_time > timestamp)
1265 sched->nr_unordered_timestamps++;
1266 err = 0;
1267 out_put:
1268 thread__put(migrant);
1269 return err;
1270 }
1271
1272 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1273 {
1274 int i;
1275 int ret;
1276 u64 avg;
1277 char max_lat_at[32];
1278
1279 if (!work_list->nb_atoms)
1280 return;
1281 /*
1282 * Ignore idle threads:
1283 */
1284 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1285 return;
1286
1287 sched->all_runtime += work_list->total_runtime;
1288 sched->all_count += work_list->nb_atoms;
1289
1290 if (work_list->num_merged > 1)
1291 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1292 else
1293 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1294
1295 for (i = 0; i < 24 - ret; i++)
1296 printf(" ");
1297
1298 avg = work_list->total_lat / work_list->nb_atoms;
1299 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1300
1301 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1302 (double)work_list->total_runtime / NSEC_PER_MSEC,
1303 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1304 (double)work_list->max_lat / NSEC_PER_MSEC,
1305 max_lat_at);
1306 }
1307
1308 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1309 {
1310 if (l->thread == r->thread)
1311 return 0;
1312 if (l->thread->tid < r->thread->tid)
1313 return -1;
1314 if (l->thread->tid > r->thread->tid)
1315 return 1;
1316 return (int)(l->thread - r->thread);
1317 }
1318
1319 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1320 {
1321 u64 avgl, avgr;
1322
1323 if (!l->nb_atoms)
1324 return -1;
1325
1326 if (!r->nb_atoms)
1327 return 1;
1328
1329 avgl = l->total_lat / l->nb_atoms;
1330 avgr = r->total_lat / r->nb_atoms;
1331
1332 if (avgl < avgr)
1333 return -1;
1334 if (avgl > avgr)
1335 return 1;
1336
1337 return 0;
1338 }
1339
1340 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1341 {
1342 if (l->max_lat < r->max_lat)
1343 return -1;
1344 if (l->max_lat > r->max_lat)
1345 return 1;
1346
1347 return 0;
1348 }
1349
1350 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1351 {
1352 if (l->nb_atoms < r->nb_atoms)
1353 return -1;
1354 if (l->nb_atoms > r->nb_atoms)
1355 return 1;
1356
1357 return 0;
1358 }
1359
1360 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1361 {
1362 if (l->total_runtime < r->total_runtime)
1363 return -1;
1364 if (l->total_runtime > r->total_runtime)
1365 return 1;
1366
1367 return 0;
1368 }
1369
1370 static int sort_dimension__add(const char *tok, struct list_head *list)
1371 {
1372 size_t i;
1373 static struct sort_dimension avg_sort_dimension = {
1374 .name = "avg",
1375 .cmp = avg_cmp,
1376 };
1377 static struct sort_dimension max_sort_dimension = {
1378 .name = "max",
1379 .cmp = max_cmp,
1380 };
1381 static struct sort_dimension pid_sort_dimension = {
1382 .name = "pid",
1383 .cmp = pid_cmp,
1384 };
1385 static struct sort_dimension runtime_sort_dimension = {
1386 .name = "runtime",
1387 .cmp = runtime_cmp,
1388 };
1389 static struct sort_dimension switch_sort_dimension = {
1390 .name = "switch",
1391 .cmp = switch_cmp,
1392 };
1393 struct sort_dimension *available_sorts[] = {
1394 &pid_sort_dimension,
1395 &avg_sort_dimension,
1396 &max_sort_dimension,
1397 &switch_sort_dimension,
1398 &runtime_sort_dimension,
1399 };
1400
1401 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1402 if (!strcmp(available_sorts[i]->name, tok)) {
1403 list_add_tail(&available_sorts[i]->list, list);
1404
1405 return 0;
1406 }
1407 }
1408
1409 return -1;
1410 }
1411
1412 static void perf_sched__sort_lat(struct perf_sched *sched)
1413 {
1414 struct rb_node *node;
1415 struct rb_root *root = &sched->atom_root;
1416 again:
1417 for (;;) {
1418 struct work_atoms *data;
1419 node = rb_first(root);
1420 if (!node)
1421 break;
1422
1423 rb_erase(node, root);
1424 data = rb_entry(node, struct work_atoms, node);
1425 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1426 }
1427 if (root == &sched->atom_root) {
1428 root = &sched->merged_atom_root;
1429 goto again;
1430 }
1431 }
1432
1433 static int process_sched_wakeup_event(struct perf_tool *tool,
1434 struct perf_evsel *evsel,
1435 struct perf_sample *sample,
1436 struct machine *machine)
1437 {
1438 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1439
1440 if (sched->tp_handler->wakeup_event)
1441 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1442
1443 return 0;
1444 }
1445
1446 union map_priv {
1447 void *ptr;
1448 bool color;
1449 };
1450
1451 static bool thread__has_color(struct thread *thread)
1452 {
1453 union map_priv priv = {
1454 .ptr = thread__priv(thread),
1455 };
1456
1457 return priv.color;
1458 }
1459
1460 static struct thread*
1461 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1462 {
1463 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1464 union map_priv priv = {
1465 .color = false,
1466 };
1467
1468 if (!sched->map.color_pids || !thread || thread__priv(thread))
1469 return thread;
1470
1471 if (thread_map__has(sched->map.color_pids, tid))
1472 priv.color = true;
1473
1474 thread__set_priv(thread, priv.ptr);
1475 return thread;
1476 }
1477
1478 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1479 struct perf_sample *sample, struct machine *machine)
1480 {
1481 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1482 struct thread *sched_in;
1483 int new_shortname;
1484 u64 timestamp0, timestamp = sample->time;
1485 s64 delta;
1486 int i, this_cpu = sample->cpu;
1487 int cpus_nr;
1488 bool new_cpu = false;
1489 const char *color = PERF_COLOR_NORMAL;
1490 char stimestamp[32];
1491
1492 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1493
1494 if (this_cpu > sched->max_cpu)
1495 sched->max_cpu = this_cpu;
1496
1497 if (sched->map.comp) {
1498 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1499 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1500 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1501 new_cpu = true;
1502 }
1503 } else
1504 cpus_nr = sched->max_cpu;
1505
1506 timestamp0 = sched->cpu_last_switched[this_cpu];
1507 sched->cpu_last_switched[this_cpu] = timestamp;
1508 if (timestamp0)
1509 delta = timestamp - timestamp0;
1510 else
1511 delta = 0;
1512
1513 if (delta < 0) {
1514 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1515 return -1;
1516 }
1517
1518 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1519 if (sched_in == NULL)
1520 return -1;
1521
1522 sched->curr_thread[this_cpu] = thread__get(sched_in);
1523
1524 printf(" ");
1525
1526 new_shortname = 0;
1527 if (!sched_in->shortname[0]) {
1528 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1529 /*
1530 * Don't allocate a letter-number for swapper:0
1531 * as a shortname. Instead, we use '.' for it.
1532 */
1533 sched_in->shortname[0] = '.';
1534 sched_in->shortname[1] = ' ';
1535 } else {
1536 sched_in->shortname[0] = sched->next_shortname1;
1537 sched_in->shortname[1] = sched->next_shortname2;
1538
1539 if (sched->next_shortname1 < 'Z') {
1540 sched->next_shortname1++;
1541 } else {
1542 sched->next_shortname1 = 'A';
1543 if (sched->next_shortname2 < '9')
1544 sched->next_shortname2++;
1545 else
1546 sched->next_shortname2 = '0';
1547 }
1548 }
1549 new_shortname = 1;
1550 }
1551
1552 for (i = 0; i < cpus_nr; i++) {
1553 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1554 struct thread *curr_thread = sched->curr_thread[cpu];
1555 const char *pid_color = color;
1556 const char *cpu_color = color;
1557
1558 if (curr_thread && thread__has_color(curr_thread))
1559 pid_color = COLOR_PIDS;
1560
1561 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1562 continue;
1563
1564 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1565 cpu_color = COLOR_CPUS;
1566
1567 if (cpu != this_cpu)
1568 color_fprintf(stdout, color, " ");
1569 else
1570 color_fprintf(stdout, cpu_color, "*");
1571
1572 if (sched->curr_thread[cpu])
1573 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1574 else
1575 color_fprintf(stdout, color, " ");
1576 }
1577
1578 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1579 goto out;
1580
1581 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1582 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1583 if (new_shortname || (verbose > 0 && sched_in->tid)) {
1584 const char *pid_color = color;
1585
1586 if (thread__has_color(sched_in))
1587 pid_color = COLOR_PIDS;
1588
1589 color_fprintf(stdout, pid_color, "%s => %s:%d",
1590 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1591 }
1592
1593 if (sched->map.comp && new_cpu)
1594 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1595
1596 out:
1597 color_fprintf(stdout, color, "\n");
1598
1599 thread__put(sched_in);
1600
1601 return 0;
1602 }
1603
1604 static int process_sched_switch_event(struct perf_tool *tool,
1605 struct perf_evsel *evsel,
1606 struct perf_sample *sample,
1607 struct machine *machine)
1608 {
1609 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1610 int this_cpu = sample->cpu, err = 0;
1611 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1612 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1613
1614 if (sched->curr_pid[this_cpu] != (u32)-1) {
1615 /*
1616 * Are we trying to switch away a PID that is
1617 * not current?
1618 */
1619 if (sched->curr_pid[this_cpu] != prev_pid)
1620 sched->nr_context_switch_bugs++;
1621 }
1622
1623 if (sched->tp_handler->switch_event)
1624 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1625
1626 sched->curr_pid[this_cpu] = next_pid;
1627 return err;
1628 }
1629
1630 static int process_sched_runtime_event(struct perf_tool *tool,
1631 struct perf_evsel *evsel,
1632 struct perf_sample *sample,
1633 struct machine *machine)
1634 {
1635 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1636
1637 if (sched->tp_handler->runtime_event)
1638 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1639
1640 return 0;
1641 }
1642
1643 static int perf_sched__process_fork_event(struct perf_tool *tool,
1644 union perf_event *event,
1645 struct perf_sample *sample,
1646 struct machine *machine)
1647 {
1648 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1649
1650 /* run the fork event through the perf machineruy */
1651 perf_event__process_fork(tool, event, sample, machine);
1652
1653 /* and then run additional processing needed for this command */
1654 if (sched->tp_handler->fork_event)
1655 return sched->tp_handler->fork_event(sched, event, machine);
1656
1657 return 0;
1658 }
1659
1660 static int process_sched_migrate_task_event(struct perf_tool *tool,
1661 struct perf_evsel *evsel,
1662 struct perf_sample *sample,
1663 struct machine *machine)
1664 {
1665 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1666
1667 if (sched->tp_handler->migrate_task_event)
1668 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1669
1670 return 0;
1671 }
1672
1673 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1674 struct perf_evsel *evsel,
1675 struct perf_sample *sample,
1676 struct machine *machine);
1677
1678 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1679 union perf_event *event __maybe_unused,
1680 struct perf_sample *sample,
1681 struct perf_evsel *evsel,
1682 struct machine *machine)
1683 {
1684 int err = 0;
1685
1686 if (evsel->handler != NULL) {
1687 tracepoint_handler f = evsel->handler;
1688 err = f(tool, evsel, sample, machine);
1689 }
1690
1691 return err;
1692 }
1693
1694 static int perf_sched__read_events(struct perf_sched *sched)
1695 {
1696 const struct perf_evsel_str_handler handlers[] = {
1697 { "sched:sched_switch", process_sched_switch_event, },
1698 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1699 { "sched:sched_wakeup", process_sched_wakeup_event, },
1700 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1701 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1702 };
1703 struct perf_session *session;
1704 struct perf_data data = {
1705 .file = {
1706 .path = input_name,
1707 },
1708 .mode = PERF_DATA_MODE_READ,
1709 .force = sched->force,
1710 };
1711 int rc = -1;
1712
1713 session = perf_session__new(&data, false, &sched->tool);
1714 if (session == NULL) {
1715 pr_debug("No Memory for session\n");
1716 return -1;
1717 }
1718
1719 symbol__init(&session->header.env);
1720
1721 if (perf_session__set_tracepoints_handlers(session, handlers))
1722 goto out_delete;
1723
1724 if (perf_session__has_traces(session, "record -R")) {
1725 int err = perf_session__process_events(session);
1726 if (err) {
1727 pr_err("Failed to process events, error %d", err);
1728 goto out_delete;
1729 }
1730
1731 sched->nr_events = session->evlist->stats.nr_events[0];
1732 sched->nr_lost_events = session->evlist->stats.total_lost;
1733 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1734 }
1735
1736 rc = 0;
1737 out_delete:
1738 perf_session__delete(session);
1739 return rc;
1740 }
1741
1742 /*
1743 * scheduling times are printed as msec.usec
1744 */
1745 static inline void print_sched_time(unsigned long long nsecs, int width)
1746 {
1747 unsigned long msecs;
1748 unsigned long usecs;
1749
1750 msecs = nsecs / NSEC_PER_MSEC;
1751 nsecs -= msecs * NSEC_PER_MSEC;
1752 usecs = nsecs / NSEC_PER_USEC;
1753 printf("%*lu.%03lu ", width, msecs, usecs);
1754 }
1755
1756 /*
1757 * returns runtime data for event, allocating memory for it the
1758 * first time it is used.
1759 */
1760 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1761 {
1762 struct evsel_runtime *r = evsel->priv;
1763
1764 if (r == NULL) {
1765 r = zalloc(sizeof(struct evsel_runtime));
1766 evsel->priv = r;
1767 }
1768
1769 return r;
1770 }
1771
1772 /*
1773 * save last time event was seen per cpu
1774 */
1775 static void perf_evsel__save_time(struct perf_evsel *evsel,
1776 u64 timestamp, u32 cpu)
1777 {
1778 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1779
1780 if (r == NULL)
1781 return;
1782
1783 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1784 int i, n = __roundup_pow_of_two(cpu+1);
1785 void *p = r->last_time;
1786
1787 p = realloc(r->last_time, n * sizeof(u64));
1788 if (!p)
1789 return;
1790
1791 r->last_time = p;
1792 for (i = r->ncpu; i < n; ++i)
1793 r->last_time[i] = (u64) 0;
1794
1795 r->ncpu = n;
1796 }
1797
1798 r->last_time[cpu] = timestamp;
1799 }
1800
1801 /* returns last time this event was seen on the given cpu */
1802 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1803 {
1804 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1805
1806 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1807 return 0;
1808
1809 return r->last_time[cpu];
1810 }
1811
1812 static int comm_width = 30;
1813
1814 static char *timehist_get_commstr(struct thread *thread)
1815 {
1816 static char str[32];
1817 const char *comm = thread__comm_str(thread);
1818 pid_t tid = thread->tid;
1819 pid_t pid = thread->pid_;
1820 int n;
1821
1822 if (pid == 0)
1823 n = scnprintf(str, sizeof(str), "%s", comm);
1824
1825 else if (tid != pid)
1826 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1827
1828 else
1829 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1830
1831 if (n > comm_width)
1832 comm_width = n;
1833
1834 return str;
1835 }
1836
1837 static void timehist_header(struct perf_sched *sched)
1838 {
1839 u32 ncpus = sched->max_cpu + 1;
1840 u32 i, j;
1841
1842 printf("%15s %6s ", "time", "cpu");
1843
1844 if (sched->show_cpu_visual) {
1845 printf(" ");
1846 for (i = 0, j = 0; i < ncpus; ++i) {
1847 printf("%x", j++);
1848 if (j > 15)
1849 j = 0;
1850 }
1851 printf(" ");
1852 }
1853
1854 printf(" %-*s %9s %9s %9s", comm_width,
1855 "task name", "wait time", "sch delay", "run time");
1856
1857 if (sched->show_state)
1858 printf(" %s", "state");
1859
1860 printf("\n");
1861
1862 /*
1863 * units row
1864 */
1865 printf("%15s %-6s ", "", "");
1866
1867 if (sched->show_cpu_visual)
1868 printf(" %*s ", ncpus, "");
1869
1870 printf(" %-*s %9s %9s %9s", comm_width,
1871 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1872
1873 if (sched->show_state)
1874 printf(" %5s", "");
1875
1876 printf("\n");
1877
1878 /*
1879 * separator
1880 */
1881 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1882
1883 if (sched->show_cpu_visual)
1884 printf(" %.*s ", ncpus, graph_dotted_line);
1885
1886 printf(" %.*s %.9s %.9s %.9s", comm_width,
1887 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1888 graph_dotted_line);
1889
1890 if (sched->show_state)
1891 printf(" %.5s", graph_dotted_line);
1892
1893 printf("\n");
1894 }
1895
1896 static char task_state_char(struct thread *thread, int state)
1897 {
1898 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1899 unsigned bit = state ? ffs(state) : 0;
1900
1901 /* 'I' for idle */
1902 if (thread->tid == 0)
1903 return 'I';
1904
1905 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1906 }
1907
1908 static void timehist_print_sample(struct perf_sched *sched,
1909 struct perf_evsel *evsel,
1910 struct perf_sample *sample,
1911 struct addr_location *al,
1912 struct thread *thread,
1913 u64 t, int state)
1914 {
1915 struct thread_runtime *tr = thread__priv(thread);
1916 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1917 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1918 u32 max_cpus = sched->max_cpu + 1;
1919 char tstr[64];
1920 char nstr[30];
1921 u64 wait_time;
1922
1923 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1924 printf("%15s [%04d] ", tstr, sample->cpu);
1925
1926 if (sched->show_cpu_visual) {
1927 u32 i;
1928 char c;
1929
1930 printf(" ");
1931 for (i = 0; i < max_cpus; ++i) {
1932 /* flag idle times with 'i'; others are sched events */
1933 if (i == sample->cpu)
1934 c = (thread->tid == 0) ? 'i' : 's';
1935 else
1936 c = ' ';
1937 printf("%c", c);
1938 }
1939 printf(" ");
1940 }
1941
1942 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1943
1944 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
1945 print_sched_time(wait_time, 6);
1946
1947 print_sched_time(tr->dt_delay, 6);
1948 print_sched_time(tr->dt_run, 6);
1949
1950 if (sched->show_state)
1951 printf(" %5c ", task_state_char(thread, state));
1952
1953 if (sched->show_next) {
1954 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
1955 printf(" %-*s", comm_width, nstr);
1956 }
1957
1958 if (sched->show_wakeups && !sched->show_next)
1959 printf(" %-*s", comm_width, "");
1960
1961 if (thread->tid == 0)
1962 goto out;
1963
1964 if (sched->show_callchain)
1965 printf(" ");
1966
1967 sample__fprintf_sym(sample, al, 0,
1968 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1969 EVSEL__PRINT_CALLCHAIN_ARROW |
1970 EVSEL__PRINT_SKIP_IGNORED,
1971 &callchain_cursor, stdout);
1972
1973 out:
1974 printf("\n");
1975 }
1976
1977 /*
1978 * Explanation of delta-time stats:
1979 *
1980 * t = time of current schedule out event
1981 * tprev = time of previous sched out event
1982 * also time of schedule-in event for current task
1983 * last_time = time of last sched change event for current task
1984 * (i.e, time process was last scheduled out)
1985 * ready_to_run = time of wakeup for current task
1986 *
1987 * -----|------------|------------|------------|------
1988 * last ready tprev t
1989 * time to run
1990 *
1991 * |-------- dt_wait --------|
1992 * |- dt_delay -|-- dt_run --|
1993 *
1994 * dt_run = run time of current task
1995 * dt_wait = time between last schedule out event for task and tprev
1996 * represents time spent off the cpu
1997 * dt_delay = time between wakeup and schedule-in of task
1998 */
1999
2000 static void timehist_update_runtime_stats(struct thread_runtime *r,
2001 u64 t, u64 tprev)
2002 {
2003 r->dt_delay = 0;
2004 r->dt_sleep = 0;
2005 r->dt_iowait = 0;
2006 r->dt_preempt = 0;
2007 r->dt_run = 0;
2008
2009 if (tprev) {
2010 r->dt_run = t - tprev;
2011 if (r->ready_to_run) {
2012 if (r->ready_to_run > tprev)
2013 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2014 else
2015 r->dt_delay = tprev - r->ready_to_run;
2016 }
2017
2018 if (r->last_time > tprev)
2019 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2020 else if (r->last_time) {
2021 u64 dt_wait = tprev - r->last_time;
2022
2023 if (r->last_state == TASK_RUNNING)
2024 r->dt_preempt = dt_wait;
2025 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2026 r->dt_iowait = dt_wait;
2027 else
2028 r->dt_sleep = dt_wait;
2029 }
2030 }
2031
2032 update_stats(&r->run_stats, r->dt_run);
2033
2034 r->total_run_time += r->dt_run;
2035 r->total_delay_time += r->dt_delay;
2036 r->total_sleep_time += r->dt_sleep;
2037 r->total_iowait_time += r->dt_iowait;
2038 r->total_preempt_time += r->dt_preempt;
2039 }
2040
2041 static bool is_idle_sample(struct perf_sample *sample,
2042 struct perf_evsel *evsel)
2043 {
2044 /* pid 0 == swapper == idle task */
2045 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2046 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2047
2048 return sample->pid == 0;
2049 }
2050
2051 static void save_task_callchain(struct perf_sched *sched,
2052 struct perf_sample *sample,
2053 struct perf_evsel *evsel,
2054 struct machine *machine)
2055 {
2056 struct callchain_cursor *cursor = &callchain_cursor;
2057 struct thread *thread;
2058
2059 /* want main thread for process - has maps */
2060 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2061 if (thread == NULL) {
2062 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2063 return;
2064 }
2065
2066 if (!symbol_conf.use_callchain || sample->callchain == NULL)
2067 return;
2068
2069 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2070 NULL, NULL, sched->max_stack + 2) != 0) {
2071 if (verbose > 0)
2072 pr_err("Failed to resolve callchain. Skipping\n");
2073
2074 return;
2075 }
2076
2077 callchain_cursor_commit(cursor);
2078
2079 while (true) {
2080 struct callchain_cursor_node *node;
2081 struct symbol *sym;
2082
2083 node = callchain_cursor_current(cursor);
2084 if (node == NULL)
2085 break;
2086
2087 sym = node->sym;
2088 if (sym) {
2089 if (!strcmp(sym->name, "schedule") ||
2090 !strcmp(sym->name, "__schedule") ||
2091 !strcmp(sym->name, "preempt_schedule"))
2092 sym->ignore = 1;
2093 }
2094
2095 callchain_cursor_advance(cursor);
2096 }
2097 }
2098
2099 static int init_idle_thread(struct thread *thread)
2100 {
2101 struct idle_thread_runtime *itr;
2102
2103 thread__set_comm(thread, idle_comm, 0);
2104
2105 itr = zalloc(sizeof(*itr));
2106 if (itr == NULL)
2107 return -ENOMEM;
2108
2109 init_stats(&itr->tr.run_stats);
2110 callchain_init(&itr->callchain);
2111 callchain_cursor_reset(&itr->cursor);
2112 thread__set_priv(thread, itr);
2113
2114 return 0;
2115 }
2116
2117 /*
2118 * Track idle stats per cpu by maintaining a local thread
2119 * struct for the idle task on each cpu.
2120 */
2121 static int init_idle_threads(int ncpu)
2122 {
2123 int i, ret;
2124
2125 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2126 if (!idle_threads)
2127 return -ENOMEM;
2128
2129 idle_max_cpu = ncpu;
2130
2131 /* allocate the actual thread struct if needed */
2132 for (i = 0; i < ncpu; ++i) {
2133 idle_threads[i] = thread__new(0, 0);
2134 if (idle_threads[i] == NULL)
2135 return -ENOMEM;
2136
2137 ret = init_idle_thread(idle_threads[i]);
2138 if (ret < 0)
2139 return ret;
2140 }
2141
2142 return 0;
2143 }
2144
2145 static void free_idle_threads(void)
2146 {
2147 int i;
2148
2149 if (idle_threads == NULL)
2150 return;
2151
2152 for (i = 0; i < idle_max_cpu; ++i) {
2153 if ((idle_threads[i]))
2154 thread__delete(idle_threads[i]);
2155 }
2156
2157 free(idle_threads);
2158 }
2159
2160 static struct thread *get_idle_thread(int cpu)
2161 {
2162 /*
2163 * expand/allocate array of pointers to local thread
2164 * structs if needed
2165 */
2166 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2167 int i, j = __roundup_pow_of_two(cpu+1);
2168 void *p;
2169
2170 p = realloc(idle_threads, j * sizeof(struct thread *));
2171 if (!p)
2172 return NULL;
2173
2174 idle_threads = (struct thread **) p;
2175 for (i = idle_max_cpu; i < j; ++i)
2176 idle_threads[i] = NULL;
2177
2178 idle_max_cpu = j;
2179 }
2180
2181 /* allocate a new thread struct if needed */
2182 if (idle_threads[cpu] == NULL) {
2183 idle_threads[cpu] = thread__new(0, 0);
2184
2185 if (idle_threads[cpu]) {
2186 if (init_idle_thread(idle_threads[cpu]) < 0)
2187 return NULL;
2188 }
2189 }
2190
2191 return idle_threads[cpu];
2192 }
2193
2194 static void save_idle_callchain(struct idle_thread_runtime *itr,
2195 struct perf_sample *sample)
2196 {
2197 if (!symbol_conf.use_callchain || sample->callchain == NULL)
2198 return;
2199
2200 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2201 }
2202
2203 /*
2204 * handle runtime stats saved per thread
2205 */
2206 static struct thread_runtime *thread__init_runtime(struct thread *thread)
2207 {
2208 struct thread_runtime *r;
2209
2210 r = zalloc(sizeof(struct thread_runtime));
2211 if (!r)
2212 return NULL;
2213
2214 init_stats(&r->run_stats);
2215 thread__set_priv(thread, r);
2216
2217 return r;
2218 }
2219
2220 static struct thread_runtime *thread__get_runtime(struct thread *thread)
2221 {
2222 struct thread_runtime *tr;
2223
2224 tr = thread__priv(thread);
2225 if (tr == NULL) {
2226 tr = thread__init_runtime(thread);
2227 if (tr == NULL)
2228 pr_debug("Failed to malloc memory for runtime data.\n");
2229 }
2230
2231 return tr;
2232 }
2233
2234 static struct thread *timehist_get_thread(struct perf_sched *sched,
2235 struct perf_sample *sample,
2236 struct machine *machine,
2237 struct perf_evsel *evsel)
2238 {
2239 struct thread *thread;
2240
2241 if (is_idle_sample(sample, evsel)) {
2242 thread = get_idle_thread(sample->cpu);
2243 if (thread == NULL)
2244 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2245
2246 } else {
2247 /* there were samples with tid 0 but non-zero pid */
2248 thread = machine__findnew_thread(machine, sample->pid,
2249 sample->tid ?: sample->pid);
2250 if (thread == NULL) {
2251 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2252 sample->tid);
2253 }
2254
2255 save_task_callchain(sched, sample, evsel, machine);
2256 if (sched->idle_hist) {
2257 struct thread *idle;
2258 struct idle_thread_runtime *itr;
2259
2260 idle = get_idle_thread(sample->cpu);
2261 if (idle == NULL) {
2262 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2263 return NULL;
2264 }
2265
2266 itr = thread__priv(idle);
2267 if (itr == NULL)
2268 return NULL;
2269
2270 itr->last_thread = thread;
2271
2272 /* copy task callchain when entering to idle */
2273 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2274 save_idle_callchain(itr, sample);
2275 }
2276 }
2277
2278 return thread;
2279 }
2280
2281 static bool timehist_skip_sample(struct perf_sched *sched,
2282 struct thread *thread,
2283 struct perf_evsel *evsel,
2284 struct perf_sample *sample)
2285 {
2286 bool rc = false;
2287
2288 if (thread__is_filtered(thread)) {
2289 rc = true;
2290 sched->skipped_samples++;
2291 }
2292
2293 if (sched->idle_hist) {
2294 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2295 rc = true;
2296 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2297 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2298 rc = true;
2299 }
2300
2301 return rc;
2302 }
2303
2304 static void timehist_print_wakeup_event(struct perf_sched *sched,
2305 struct perf_evsel *evsel,
2306 struct perf_sample *sample,
2307 struct machine *machine,
2308 struct thread *awakened)
2309 {
2310 struct thread *thread;
2311 char tstr[64];
2312
2313 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2314 if (thread == NULL)
2315 return;
2316
2317 /* show wakeup unless both awakee and awaker are filtered */
2318 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2319 timehist_skip_sample(sched, awakened, evsel, sample)) {
2320 return;
2321 }
2322
2323 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2324 printf("%15s [%04d] ", tstr, sample->cpu);
2325 if (sched->show_cpu_visual)
2326 printf(" %*s ", sched->max_cpu + 1, "");
2327
2328 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2329
2330 /* dt spacer */
2331 printf(" %9s %9s %9s ", "", "", "");
2332
2333 printf("awakened: %s", timehist_get_commstr(awakened));
2334
2335 printf("\n");
2336 }
2337
2338 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2339 union perf_event *event __maybe_unused,
2340 struct perf_evsel *evsel,
2341 struct perf_sample *sample,
2342 struct machine *machine)
2343 {
2344 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2345 struct thread *thread;
2346 struct thread_runtime *tr = NULL;
2347 /* want pid of awakened task not pid in sample */
2348 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2349
2350 thread = machine__findnew_thread(machine, 0, pid);
2351 if (thread == NULL)
2352 return -1;
2353
2354 tr = thread__get_runtime(thread);
2355 if (tr == NULL)
2356 return -1;
2357
2358 if (tr->ready_to_run == 0)
2359 tr->ready_to_run = sample->time;
2360
2361 /* show wakeups if requested */
2362 if (sched->show_wakeups &&
2363 !perf_time__skip_sample(&sched->ptime, sample->time))
2364 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2365
2366 return 0;
2367 }
2368
2369 static void timehist_print_migration_event(struct perf_sched *sched,
2370 struct perf_evsel *evsel,
2371 struct perf_sample *sample,
2372 struct machine *machine,
2373 struct thread *migrated)
2374 {
2375 struct thread *thread;
2376 char tstr[64];
2377 u32 max_cpus = sched->max_cpu + 1;
2378 u32 ocpu, dcpu;
2379
2380 if (sched->summary_only)
2381 return;
2382
2383 max_cpus = sched->max_cpu + 1;
2384 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2385 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2386
2387 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2388 if (thread == NULL)
2389 return;
2390
2391 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2392 timehist_skip_sample(sched, migrated, evsel, sample)) {
2393 return;
2394 }
2395
2396 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2397 printf("%15s [%04d] ", tstr, sample->cpu);
2398
2399 if (sched->show_cpu_visual) {
2400 u32 i;
2401 char c;
2402
2403 printf(" ");
2404 for (i = 0; i < max_cpus; ++i) {
2405 c = (i == sample->cpu) ? 'm' : ' ';
2406 printf("%c", c);
2407 }
2408 printf(" ");
2409 }
2410
2411 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2412
2413 /* dt spacer */
2414 printf(" %9s %9s %9s ", "", "", "");
2415
2416 printf("migrated: %s", timehist_get_commstr(migrated));
2417 printf(" cpu %d => %d", ocpu, dcpu);
2418
2419 printf("\n");
2420 }
2421
2422 static int timehist_migrate_task_event(struct perf_tool *tool,
2423 union perf_event *event __maybe_unused,
2424 struct perf_evsel *evsel,
2425 struct perf_sample *sample,
2426 struct machine *machine)
2427 {
2428 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2429 struct thread *thread;
2430 struct thread_runtime *tr = NULL;
2431 /* want pid of migrated task not pid in sample */
2432 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2433
2434 thread = machine__findnew_thread(machine, 0, pid);
2435 if (thread == NULL)
2436 return -1;
2437
2438 tr = thread__get_runtime(thread);
2439 if (tr == NULL)
2440 return -1;
2441
2442 tr->migrations++;
2443
2444 /* show migrations if requested */
2445 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2446
2447 return 0;
2448 }
2449
2450 static int timehist_sched_change_event(struct perf_tool *tool,
2451 union perf_event *event,
2452 struct perf_evsel *evsel,
2453 struct perf_sample *sample,
2454 struct machine *machine)
2455 {
2456 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2457 struct perf_time_interval *ptime = &sched->ptime;
2458 struct addr_location al;
2459 struct thread *thread;
2460 struct thread_runtime *tr = NULL;
2461 u64 tprev, t = sample->time;
2462 int rc = 0;
2463 int state = perf_evsel__intval(evsel, sample, "prev_state");
2464
2465
2466 if (machine__resolve(machine, &al, sample) < 0) {
2467 pr_err("problem processing %d event. skipping it\n",
2468 event->header.type);
2469 rc = -1;
2470 goto out;
2471 }
2472
2473 thread = timehist_get_thread(sched, sample, machine, evsel);
2474 if (thread == NULL) {
2475 rc = -1;
2476 goto out;
2477 }
2478
2479 if (timehist_skip_sample(sched, thread, evsel, sample))
2480 goto out;
2481
2482 tr = thread__get_runtime(thread);
2483 if (tr == NULL) {
2484 rc = -1;
2485 goto out;
2486 }
2487
2488 tprev = perf_evsel__get_time(evsel, sample->cpu);
2489
2490 /*
2491 * If start time given:
2492 * - sample time is under window user cares about - skip sample
2493 * - tprev is under window user cares about - reset to start of window
2494 */
2495 if (ptime->start && ptime->start > t)
2496 goto out;
2497
2498 if (tprev && ptime->start > tprev)
2499 tprev = ptime->start;
2500
2501 /*
2502 * If end time given:
2503 * - previous sched event is out of window - we are done
2504 * - sample time is beyond window user cares about - reset it
2505 * to close out stats for time window interest
2506 */
2507 if (ptime->end) {
2508 if (tprev > ptime->end)
2509 goto out;
2510
2511 if (t > ptime->end)
2512 t = ptime->end;
2513 }
2514
2515 if (!sched->idle_hist || thread->tid == 0) {
2516 timehist_update_runtime_stats(tr, t, tprev);
2517
2518 if (sched->idle_hist) {
2519 struct idle_thread_runtime *itr = (void *)tr;
2520 struct thread_runtime *last_tr;
2521
2522 BUG_ON(thread->tid != 0);
2523
2524 if (itr->last_thread == NULL)
2525 goto out;
2526
2527 /* add current idle time as last thread's runtime */
2528 last_tr = thread__get_runtime(itr->last_thread);
2529 if (last_tr == NULL)
2530 goto out;
2531
2532 timehist_update_runtime_stats(last_tr, t, tprev);
2533 /*
2534 * remove delta time of last thread as it's not updated
2535 * and otherwise it will show an invalid value next
2536 * time. we only care total run time and run stat.
2537 */
2538 last_tr->dt_run = 0;
2539 last_tr->dt_delay = 0;
2540 last_tr->dt_sleep = 0;
2541 last_tr->dt_iowait = 0;
2542 last_tr->dt_preempt = 0;
2543
2544 if (itr->cursor.nr)
2545 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2546
2547 itr->last_thread = NULL;
2548 }
2549 }
2550
2551 if (!sched->summary_only)
2552 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2553
2554 out:
2555 if (sched->hist_time.start == 0 && t >= ptime->start)
2556 sched->hist_time.start = t;
2557 if (ptime->end == 0 || t <= ptime->end)
2558 sched->hist_time.end = t;
2559
2560 if (tr) {
2561 /* time of this sched_switch event becomes last time task seen */
2562 tr->last_time = sample->time;
2563
2564 /* last state is used to determine where to account wait time */
2565 tr->last_state = state;
2566
2567 /* sched out event for task so reset ready to run time */
2568 tr->ready_to_run = 0;
2569 }
2570
2571 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2572
2573 return rc;
2574 }
2575
2576 static int timehist_sched_switch_event(struct perf_tool *tool,
2577 union perf_event *event,
2578 struct perf_evsel *evsel,
2579 struct perf_sample *sample,
2580 struct machine *machine __maybe_unused)
2581 {
2582 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2583 }
2584
2585 static int process_lost(struct perf_tool *tool __maybe_unused,
2586 union perf_event *event,
2587 struct perf_sample *sample,
2588 struct machine *machine __maybe_unused)
2589 {
2590 char tstr[64];
2591
2592 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2593 printf("%15s ", tstr);
2594 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2595
2596 return 0;
2597 }
2598
2599
2600 static void print_thread_runtime(struct thread *t,
2601 struct thread_runtime *r)
2602 {
2603 double mean = avg_stats(&r->run_stats);
2604 float stddev;
2605
2606 printf("%*s %5d %9" PRIu64 " ",
2607 comm_width, timehist_get_commstr(t), t->ppid,
2608 (u64) r->run_stats.n);
2609
2610 print_sched_time(r->total_run_time, 8);
2611 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2612 print_sched_time(r->run_stats.min, 6);
2613 printf(" ");
2614 print_sched_time((u64) mean, 6);
2615 printf(" ");
2616 print_sched_time(r->run_stats.max, 6);
2617 printf(" ");
2618 printf("%5.2f", stddev);
2619 printf(" %5" PRIu64, r->migrations);
2620 printf("\n");
2621 }
2622
2623 static void print_thread_waittime(struct thread *t,
2624 struct thread_runtime *r)
2625 {
2626 printf("%*s %5d %9" PRIu64 " ",
2627 comm_width, timehist_get_commstr(t), t->ppid,
2628 (u64) r->run_stats.n);
2629
2630 print_sched_time(r->total_run_time, 8);
2631 print_sched_time(r->total_sleep_time, 6);
2632 printf(" ");
2633 print_sched_time(r->total_iowait_time, 6);
2634 printf(" ");
2635 print_sched_time(r->total_preempt_time, 6);
2636 printf(" ");
2637 print_sched_time(r->total_delay_time, 6);
2638 printf("\n");
2639 }
2640
2641 struct total_run_stats {
2642 struct perf_sched *sched;
2643 u64 sched_count;
2644 u64 task_count;
2645 u64 total_run_time;
2646 };
2647
2648 static int __show_thread_runtime(struct thread *t, void *priv)
2649 {
2650 struct total_run_stats *stats = priv;
2651 struct thread_runtime *r;
2652
2653 if (thread__is_filtered(t))
2654 return 0;
2655
2656 r = thread__priv(t);
2657 if (r && r->run_stats.n) {
2658 stats->task_count++;
2659 stats->sched_count += r->run_stats.n;
2660 stats->total_run_time += r->total_run_time;
2661
2662 if (stats->sched->show_state)
2663 print_thread_waittime(t, r);
2664 else
2665 print_thread_runtime(t, r);
2666 }
2667
2668 return 0;
2669 }
2670
2671 static int show_thread_runtime(struct thread *t, void *priv)
2672 {
2673 if (t->dead)
2674 return 0;
2675
2676 return __show_thread_runtime(t, priv);
2677 }
2678
2679 static int show_deadthread_runtime(struct thread *t, void *priv)
2680 {
2681 if (!t->dead)
2682 return 0;
2683
2684 return __show_thread_runtime(t, priv);
2685 }
2686
2687 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2688 {
2689 const char *sep = " <- ";
2690 struct callchain_list *chain;
2691 size_t ret = 0;
2692 char bf[1024];
2693 bool first;
2694
2695 if (node == NULL)
2696 return 0;
2697
2698 ret = callchain__fprintf_folded(fp, node->parent);
2699 first = (ret == 0);
2700
2701 list_for_each_entry(chain, &node->val, list) {
2702 if (chain->ip >= PERF_CONTEXT_MAX)
2703 continue;
2704 if (chain->ms.sym && chain->ms.sym->ignore)
2705 continue;
2706 ret += fprintf(fp, "%s%s", first ? "" : sep,
2707 callchain_list__sym_name(chain, bf, sizeof(bf),
2708 false));
2709 first = false;
2710 }
2711
2712 return ret;
2713 }
2714
2715 static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2716 {
2717 size_t ret = 0;
2718 FILE *fp = stdout;
2719 struct callchain_node *chain;
2720 struct rb_node *rb_node = rb_first(root);
2721
2722 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2723 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2724 graph_dotted_line);
2725
2726 while (rb_node) {
2727 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2728 rb_node = rb_next(rb_node);
2729
2730 ret += fprintf(fp, " ");
2731 print_sched_time(chain->hit, 12);
2732 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2733 ret += fprintf(fp, " %8d ", chain->count);
2734 ret += callchain__fprintf_folded(fp, chain);
2735 ret += fprintf(fp, "\n");
2736 }
2737
2738 return ret;
2739 }
2740
2741 static void timehist_print_summary(struct perf_sched *sched,
2742 struct perf_session *session)
2743 {
2744 struct machine *m = &session->machines.host;
2745 struct total_run_stats totals;
2746 u64 task_count;
2747 struct thread *t;
2748 struct thread_runtime *r;
2749 int i;
2750 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2751
2752 memset(&totals, 0, sizeof(totals));
2753 totals.sched = sched;
2754
2755 if (sched->idle_hist) {
2756 printf("\nIdle-time summary\n");
2757 printf("%*s parent sched-out ", comm_width, "comm");
2758 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2759 } else if (sched->show_state) {
2760 printf("\nWait-time summary\n");
2761 printf("%*s parent sched-in ", comm_width, "comm");
2762 printf(" run-time sleep iowait preempt delay\n");
2763 } else {
2764 printf("\nRuntime summary\n");
2765 printf("%*s parent sched-in ", comm_width, "comm");
2766 printf(" run-time min-run avg-run max-run stddev migrations\n");
2767 }
2768 printf("%*s (count) ", comm_width, "");
2769 printf(" (msec) (msec) (msec) (msec) %s\n",
2770 sched->show_state ? "(msec)" : "%");
2771 printf("%.117s\n", graph_dotted_line);
2772
2773 machine__for_each_thread(m, show_thread_runtime, &totals);
2774 task_count = totals.task_count;
2775 if (!task_count)
2776 printf("<no still running tasks>\n");
2777
2778 printf("\nTerminated tasks:\n");
2779 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2780 if (task_count == totals.task_count)
2781 printf("<no terminated tasks>\n");
2782
2783 /* CPU idle stats not tracked when samples were skipped */
2784 if (sched->skipped_samples && !sched->idle_hist)
2785 return;
2786
2787 printf("\nIdle stats:\n");
2788 for (i = 0; i < idle_max_cpu; ++i) {
2789 t = idle_threads[i];
2790 if (!t)
2791 continue;
2792
2793 r = thread__priv(t);
2794 if (r && r->run_stats.n) {
2795 totals.sched_count += r->run_stats.n;
2796 printf(" CPU %2d idle for ", i);
2797 print_sched_time(r->total_run_time, 6);
2798 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2799 } else
2800 printf(" CPU %2d idle entire time window\n", i);
2801 }
2802
2803 if (sched->idle_hist && symbol_conf.use_callchain) {
2804 callchain_param.mode = CHAIN_FOLDED;
2805 callchain_param.value = CCVAL_PERIOD;
2806
2807 callchain_register_param(&callchain_param);
2808
2809 printf("\nIdle stats by callchain:\n");
2810 for (i = 0; i < idle_max_cpu; ++i) {
2811 struct idle_thread_runtime *itr;
2812
2813 t = idle_threads[i];
2814 if (!t)
2815 continue;
2816
2817 itr = thread__priv(t);
2818 if (itr == NULL)
2819 continue;
2820
2821 callchain_param.sort(&itr->sorted_root, &itr->callchain,
2822 0, &callchain_param);
2823
2824 printf(" CPU %2d:", i);
2825 print_sched_time(itr->tr.total_run_time, 6);
2826 printf(" msec\n");
2827 timehist_print_idlehist_callchain(&itr->sorted_root);
2828 printf("\n");
2829 }
2830 }
2831
2832 printf("\n"
2833 " Total number of unique tasks: %" PRIu64 "\n"
2834 "Total number of context switches: %" PRIu64 "\n",
2835 totals.task_count, totals.sched_count);
2836
2837 printf(" Total run time (msec): ");
2838 print_sched_time(totals.total_run_time, 2);
2839 printf("\n");
2840
2841 printf(" Total scheduling time (msec): ");
2842 print_sched_time(hist_time, 2);
2843 printf(" (x %d)\n", sched->max_cpu);
2844 }
2845
2846 typedef int (*sched_handler)(struct perf_tool *tool,
2847 union perf_event *event,
2848 struct perf_evsel *evsel,
2849 struct perf_sample *sample,
2850 struct machine *machine);
2851
2852 static int perf_timehist__process_sample(struct perf_tool *tool,
2853 union perf_event *event,
2854 struct perf_sample *sample,
2855 struct perf_evsel *evsel,
2856 struct machine *machine)
2857 {
2858 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2859 int err = 0;
2860 int this_cpu = sample->cpu;
2861
2862 if (this_cpu > sched->max_cpu)
2863 sched->max_cpu = this_cpu;
2864
2865 if (evsel->handler != NULL) {
2866 sched_handler f = evsel->handler;
2867
2868 err = f(tool, event, evsel, sample, machine);
2869 }
2870
2871 return err;
2872 }
2873
2874 static int timehist_check_attr(struct perf_sched *sched,
2875 struct perf_evlist *evlist)
2876 {
2877 struct perf_evsel *evsel;
2878 struct evsel_runtime *er;
2879
2880 list_for_each_entry(evsel, &evlist->entries, node) {
2881 er = perf_evsel__get_runtime(evsel);
2882 if (er == NULL) {
2883 pr_err("Failed to allocate memory for evsel runtime data\n");
2884 return -1;
2885 }
2886
2887 if (sched->show_callchain &&
2888 !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2889 pr_info("Samples do not have callchains.\n");
2890 sched->show_callchain = 0;
2891 symbol_conf.use_callchain = 0;
2892 }
2893 }
2894
2895 return 0;
2896 }
2897
2898 static int perf_sched__timehist(struct perf_sched *sched)
2899 {
2900 const struct perf_evsel_str_handler handlers[] = {
2901 { "sched:sched_switch", timehist_sched_switch_event, },
2902 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2903 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2904 };
2905 const struct perf_evsel_str_handler migrate_handlers[] = {
2906 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2907 };
2908 struct perf_data data = {
2909 .file = {
2910 .path = input_name,
2911 },
2912 .mode = PERF_DATA_MODE_READ,
2913 .force = sched->force,
2914 };
2915
2916 struct perf_session *session;
2917 struct perf_evlist *evlist;
2918 int err = -1;
2919
2920 /*
2921 * event handlers for timehist option
2922 */
2923 sched->tool.sample = perf_timehist__process_sample;
2924 sched->tool.mmap = perf_event__process_mmap;
2925 sched->tool.comm = perf_event__process_comm;
2926 sched->tool.exit = perf_event__process_exit;
2927 sched->tool.fork = perf_event__process_fork;
2928 sched->tool.lost = process_lost;
2929 sched->tool.attr = perf_event__process_attr;
2930 sched->tool.tracing_data = perf_event__process_tracing_data;
2931 sched->tool.build_id = perf_event__process_build_id;
2932
2933 sched->tool.ordered_events = true;
2934 sched->tool.ordering_requires_timestamps = true;
2935
2936 symbol_conf.use_callchain = sched->show_callchain;
2937
2938 session = perf_session__new(&data, false, &sched->tool);
2939 if (session == NULL)
2940 return -ENOMEM;
2941
2942 evlist = session->evlist;
2943
2944 symbol__init(&session->header.env);
2945
2946 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2947 pr_err("Invalid time string\n");
2948 return -EINVAL;
2949 }
2950
2951 if (timehist_check_attr(sched, evlist) != 0)
2952 goto out;
2953
2954 setup_pager();
2955
2956 /* setup per-evsel handlers */
2957 if (perf_session__set_tracepoints_handlers(session, handlers))
2958 goto out;
2959
2960 /* sched_switch event at a minimum needs to exist */
2961 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2962 "sched:sched_switch")) {
2963 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2964 goto out;
2965 }
2966
2967 if (sched->show_migrations &&
2968 perf_session__set_tracepoints_handlers(session, migrate_handlers))
2969 goto out;
2970
2971 /* pre-allocate struct for per-CPU idle stats */
2972 sched->max_cpu = session->header.env.nr_cpus_online;
2973 if (sched->max_cpu == 0)
2974 sched->max_cpu = 4;
2975 if (init_idle_threads(sched->max_cpu))
2976 goto out;
2977
2978 /* summary_only implies summary option, but don't overwrite summary if set */
2979 if (sched->summary_only)
2980 sched->summary = sched->summary_only;
2981
2982 if (!sched->summary_only)
2983 timehist_header(sched);
2984
2985 err = perf_session__process_events(session);
2986 if (err) {
2987 pr_err("Failed to process events, error %d", err);
2988 goto out;
2989 }
2990
2991 sched->nr_events = evlist->stats.nr_events[0];
2992 sched->nr_lost_events = evlist->stats.total_lost;
2993 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2994
2995 if (sched->summary)
2996 timehist_print_summary(sched, session);
2997
2998 out:
2999 free_idle_threads();
3000 perf_session__delete(session);
3001
3002 return err;
3003 }
3004
3005
3006 static void print_bad_events(struct perf_sched *sched)
3007 {
3008 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3009 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3010 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3011 sched->nr_unordered_timestamps, sched->nr_timestamps);
3012 }
3013 if (sched->nr_lost_events && sched->nr_events) {
3014 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3015 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3016 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3017 }
3018 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3019 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3020 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3021 sched->nr_context_switch_bugs, sched->nr_timestamps);
3022 if (sched->nr_lost_events)
3023 printf(" (due to lost events?)");
3024 printf("\n");
3025 }
3026 }
3027
3028 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3029 {
3030 struct rb_node **new = &(root->rb_node), *parent = NULL;
3031 struct work_atoms *this;
3032 const char *comm = thread__comm_str(data->thread), *this_comm;
3033
3034 while (*new) {
3035 int cmp;
3036
3037 this = container_of(*new, struct work_atoms, node);
3038 parent = *new;
3039
3040 this_comm = thread__comm_str(this->thread);
3041 cmp = strcmp(comm, this_comm);
3042 if (cmp > 0) {
3043 new = &((*new)->rb_left);
3044 } else if (cmp < 0) {
3045 new = &((*new)->rb_right);
3046 } else {
3047 this->num_merged++;
3048 this->total_runtime += data->total_runtime;
3049 this->nb_atoms += data->nb_atoms;
3050 this->total_lat += data->total_lat;
3051 list_splice(&data->work_list, &this->work_list);
3052 if (this->max_lat < data->max_lat) {
3053 this->max_lat = data->max_lat;
3054 this->max_lat_at = data->max_lat_at;
3055 }
3056 zfree(&data);
3057 return;
3058 }
3059 }
3060
3061 data->num_merged++;
3062 rb_link_node(&data->node, parent, new);
3063 rb_insert_color(&data->node, root);
3064 }
3065
3066 static void perf_sched__merge_lat(struct perf_sched *sched)
3067 {
3068 struct work_atoms *data;
3069 struct rb_node *node;
3070
3071 if (sched->skip_merge)
3072 return;
3073
3074 while ((node = rb_first(&sched->atom_root))) {
3075 rb_erase(node, &sched->atom_root);
3076 data = rb_entry(node, struct work_atoms, node);
3077 __merge_work_atoms(&sched->merged_atom_root, data);
3078 }
3079 }
3080
3081 static int perf_sched__lat(struct perf_sched *sched)
3082 {
3083 struct rb_node *next;
3084
3085 setup_pager();
3086
3087 if (perf_sched__read_events(sched))
3088 return -1;
3089
3090 perf_sched__merge_lat(sched);
3091 perf_sched__sort_lat(sched);
3092
3093 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3094 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3095 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3096
3097 next = rb_first(&sched->sorted_atom_root);
3098
3099 while (next) {
3100 struct work_atoms *work_list;
3101
3102 work_list = rb_entry(next, struct work_atoms, node);
3103 output_lat_thread(sched, work_list);
3104 next = rb_next(next);
3105 thread__zput(work_list->thread);
3106 }
3107
3108 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3109 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3110 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3111
3112 printf(" ---------------------------------------------------\n");
3113
3114 print_bad_events(sched);
3115 printf("\n");
3116
3117 return 0;
3118 }
3119
3120 static int setup_map_cpus(struct perf_sched *sched)
3121 {
3122 struct cpu_map *map;
3123
3124 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3125
3126 if (sched->map.comp) {
3127 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3128 if (!sched->map.comp_cpus)
3129 return -1;
3130 }
3131
3132 if (!sched->map.cpus_str)
3133 return 0;
3134
3135 map = cpu_map__new(sched->map.cpus_str);
3136 if (!map) {
3137 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3138 return -1;
3139 }
3140
3141 sched->map.cpus = map;
3142 return 0;
3143 }
3144
3145 static int setup_color_pids(struct perf_sched *sched)
3146 {
3147 struct thread_map *map;
3148
3149 if (!sched->map.color_pids_str)
3150 return 0;
3151
3152 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3153 if (!map) {
3154 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3155 return -1;
3156 }
3157
3158 sched->map.color_pids = map;
3159 return 0;
3160 }
3161
3162 static int setup_color_cpus(struct perf_sched *sched)
3163 {
3164 struct cpu_map *map;
3165
3166 if (!sched->map.color_cpus_str)
3167 return 0;
3168
3169 map = cpu_map__new(sched->map.color_cpus_str);
3170 if (!map) {
3171 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3172 return -1;
3173 }
3174
3175 sched->map.color_cpus = map;
3176 return 0;
3177 }
3178
3179 static int perf_sched__map(struct perf_sched *sched)
3180 {
3181 if (setup_map_cpus(sched))
3182 return -1;
3183
3184 if (setup_color_pids(sched))
3185 return -1;
3186
3187 if (setup_color_cpus(sched))
3188 return -1;
3189
3190 setup_pager();
3191 if (perf_sched__read_events(sched))
3192 return -1;
3193 print_bad_events(sched);
3194 return 0;
3195 }
3196
3197 static int perf_sched__replay(struct perf_sched *sched)
3198 {
3199 unsigned long i;
3200
3201 calibrate_run_measurement_overhead(sched);
3202 calibrate_sleep_measurement_overhead(sched);
3203
3204 test_calibrations(sched);
3205
3206 if (perf_sched__read_events(sched))
3207 return -1;
3208
3209 printf("nr_run_events: %ld\n", sched->nr_run_events);
3210 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3211 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3212
3213 if (sched->targetless_wakeups)
3214 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3215 if (sched->multitarget_wakeups)
3216 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3217 if (sched->nr_run_events_optimized)
3218 printf("run atoms optimized: %ld\n",
3219 sched->nr_run_events_optimized);
3220
3221 print_task_traces(sched);
3222 add_cross_task_wakeups(sched);
3223
3224 create_tasks(sched);
3225 printf("------------------------------------------------------------\n");
3226 for (i = 0; i < sched->replay_repeat; i++)
3227 run_one_test(sched);
3228
3229 return 0;
3230 }
3231
3232 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3233 const char * const usage_msg[])
3234 {
3235 char *tmp, *tok, *str = strdup(sched->sort_order);
3236
3237 for (tok = strtok_r(str, ", ", &tmp);
3238 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3239 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3240 usage_with_options_msg(usage_msg, options,
3241 "Unknown --sort key: `%s'", tok);
3242 }
3243 }
3244
3245 free(str);
3246
3247 sort_dimension__add("pid", &sched->cmp_pid);
3248 }
3249
3250 static int __cmd_record(int argc, const char **argv)
3251 {
3252 unsigned int rec_argc, i, j;
3253 const char **rec_argv;
3254 const char * const record_args[] = {
3255 "record",
3256 "-a",
3257 "-R",
3258 "-m", "1024",
3259 "-c", "1",
3260 "-e", "sched:sched_switch",
3261 "-e", "sched:sched_stat_wait",
3262 "-e", "sched:sched_stat_sleep",
3263 "-e", "sched:sched_stat_iowait",
3264 "-e", "sched:sched_stat_runtime",
3265 "-e", "sched:sched_process_fork",
3266 "-e", "sched:sched_wakeup",
3267 "-e", "sched:sched_wakeup_new",
3268 "-e", "sched:sched_migrate_task",
3269 };
3270
3271 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3272 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3273
3274 if (rec_argv == NULL)
3275 return -ENOMEM;
3276
3277 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3278 rec_argv[i] = strdup(record_args[i]);
3279
3280 for (j = 1; j < (unsigned int)argc; j++, i++)
3281 rec_argv[i] = argv[j];
3282
3283 BUG_ON(i != rec_argc);
3284
3285 return cmd_record(i, rec_argv);
3286 }
3287
3288 int cmd_sched(int argc, const char **argv)
3289 {
3290 const char default_sort_order[] = "avg, max, switch, runtime";
3291 struct perf_sched sched = {
3292 .tool = {
3293 .sample = perf_sched__process_tracepoint_sample,
3294 .comm = perf_event__process_comm,
3295 .namespaces = perf_event__process_namespaces,
3296 .lost = perf_event__process_lost,
3297 .fork = perf_sched__process_fork_event,
3298 .ordered_events = true,
3299 },
3300 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3301 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3302 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3303 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3304 .sort_order = default_sort_order,
3305 .replay_repeat = 10,
3306 .profile_cpu = -1,
3307 .next_shortname1 = 'A',
3308 .next_shortname2 = '0',
3309 .skip_merge = 0,
3310 .show_callchain = 1,
3311 .max_stack = 5,
3312 };
3313 const struct option sched_options[] = {
3314 OPT_STRING('i', "input", &input_name, "file",
3315 "input file name"),
3316 OPT_INCR('v', "verbose", &verbose,
3317 "be more verbose (show symbol address, etc)"),
3318 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3319 "dump raw trace in ASCII"),
3320 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3321 OPT_END()
3322 };
3323 const struct option latency_options[] = {
3324 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3325 "sort by key(s): runtime, switch, avg, max"),
3326 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3327 "CPU to profile on"),
3328 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3329 "latency stats per pid instead of per comm"),
3330 OPT_PARENT(sched_options)
3331 };
3332 const struct option replay_options[] = {
3333 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3334 "repeat the workload replay N times (-1: infinite)"),
3335 OPT_PARENT(sched_options)
3336 };
3337 const struct option map_options[] = {
3338 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3339 "map output in compact mode"),
3340 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3341 "highlight given pids in map"),
3342 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3343 "highlight given CPUs in map"),
3344 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3345 "display given CPUs in map"),
3346 OPT_PARENT(sched_options)
3347 };
3348 const struct option timehist_options[] = {
3349 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3350 "file", "vmlinux pathname"),
3351 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3352 "file", "kallsyms pathname"),
3353 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3354 "Display call chains if present (default on)"),
3355 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3356 "Maximum number of functions to display backtrace."),
3357 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3358 "Look for files with symbols relative to this directory"),
3359 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3360 "Show only syscall summary with statistics"),
3361 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3362 "Show all syscalls and summary with statistics"),
3363 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3364 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3365 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3366 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3367 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3368 OPT_STRING(0, "time", &sched.time_str, "str",
3369 "Time span for analysis (start,stop)"),
3370 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3371 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3372 "analyze events only for given process id(s)"),
3373 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3374 "analyze events only for given thread id(s)"),
3375 OPT_PARENT(sched_options)
3376 };
3377
3378 const char * const latency_usage[] = {
3379 "perf sched latency [<options>]",
3380 NULL
3381 };
3382 const char * const replay_usage[] = {
3383 "perf sched replay [<options>]",
3384 NULL
3385 };
3386 const char * const map_usage[] = {
3387 "perf sched map [<options>]",
3388 NULL
3389 };
3390 const char * const timehist_usage[] = {
3391 "perf sched timehist [<options>]",
3392 NULL
3393 };
3394 const char *const sched_subcommands[] = { "record", "latency", "map",
3395 "replay", "script",
3396 "timehist", NULL };
3397 const char *sched_usage[] = {
3398 NULL,
3399 NULL
3400 };
3401 struct trace_sched_handler lat_ops = {
3402 .wakeup_event = latency_wakeup_event,
3403 .switch_event = latency_switch_event,
3404 .runtime_event = latency_runtime_event,
3405 .migrate_task_event = latency_migrate_task_event,
3406 };
3407 struct trace_sched_handler map_ops = {
3408 .switch_event = map_switch_event,
3409 };
3410 struct trace_sched_handler replay_ops = {
3411 .wakeup_event = replay_wakeup_event,
3412 .switch_event = replay_switch_event,
3413 .fork_event = replay_fork_event,
3414 };
3415 unsigned int i;
3416
3417 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3418 sched.curr_pid[i] = -1;
3419
3420 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3421 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3422 if (!argc)
3423 usage_with_options(sched_usage, sched_options);
3424
3425 /*
3426 * Aliased to 'perf script' for now:
3427 */
3428 if (!strcmp(argv[0], "script"))
3429 return cmd_script(argc, argv);
3430
3431 if (!strncmp(argv[0], "rec", 3)) {
3432 return __cmd_record(argc, argv);
3433 } else if (!strncmp(argv[0], "lat", 3)) {
3434 sched.tp_handler = &lat_ops;
3435 if (argc > 1) {
3436 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3437 if (argc)
3438 usage_with_options(latency_usage, latency_options);
3439 }
3440 setup_sorting(&sched, latency_options, latency_usage);
3441 return perf_sched__lat(&sched);
3442 } else if (!strcmp(argv[0], "map")) {
3443 if (argc) {
3444 argc = parse_options(argc, argv, map_options, map_usage, 0);
3445 if (argc)
3446 usage_with_options(map_usage, map_options);
3447 }
3448 sched.tp_handler = &map_ops;
3449 setup_sorting(&sched, latency_options, latency_usage);
3450 return perf_sched__map(&sched);
3451 } else if (!strncmp(argv[0], "rep", 3)) {
3452 sched.tp_handler = &replay_ops;
3453 if (argc) {
3454 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3455 if (argc)
3456 usage_with_options(replay_usage, replay_options);
3457 }
3458 return perf_sched__replay(&sched);
3459 } else if (!strcmp(argv[0], "timehist")) {
3460 if (argc) {
3461 argc = parse_options(argc, argv, timehist_options,
3462 timehist_usage, 0);
3463 if (argc)
3464 usage_with_options(timehist_usage, timehist_options);
3465 }
3466 if ((sched.show_wakeups || sched.show_next) &&
3467 sched.summary_only) {
3468 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3469 parse_options_usage(timehist_usage, timehist_options, "s", true);
3470 if (sched.show_wakeups)
3471 parse_options_usage(NULL, timehist_options, "w", true);
3472 if (sched.show_next)
3473 parse_options_usage(NULL, timehist_options, "n", true);
3474 return -EINVAL;
3475 }
3476
3477 return perf_sched__timehist(&sched);
3478 } else {
3479 usage_with_options(sched_usage, sched_options);
3480 }
3481
3482 return 0;
3483 }