]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/builtin-timechart.c
67c0459dc325276dbf690889f07f580632f46ab5
[mirror_ubuntu-artful-kernel.git] / tools / perf / builtin-timechart.c
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/callchain.h"
25 #include "util/strlist.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include "util/parse-options.h"
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34
35 #define SUPPORT_OLD_POWER_EVENTS 1
36 #define PWR_EVENT_EXIT -1
37
38
39 static char const *input_name = "perf.data";
40 static char const *output_name = "output.svg";
41
42 static unsigned int numcpus;
43 static u64 min_freq; /* Lowest CPU frequency seen */
44 static u64 max_freq; /* Highest CPU frequency seen */
45 static u64 turbo_frequency;
46
47 static u64 first_time, last_time;
48
49 static bool power_only;
50
51
52 struct per_pid;
53 struct per_pidcomm;
54
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58
59 struct sample_wrapper;
60
61 /*
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
69 */
70
71 struct per_pid {
72 struct per_pid *next;
73
74 int pid;
75 int ppid;
76
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
81
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
84 };
85
86
87 struct per_pidcomm {
88 struct per_pidcomm *next;
89
90 u64 start_time;
91 u64 end_time;
92 u64 total_time;
93
94 int Y;
95 int display;
96
97 long state;
98 u64 state_since;
99
100 char *comm;
101
102 struct cpu_sample *samples;
103 };
104
105 struct sample_wrapper {
106 struct sample_wrapper *next;
107
108 u64 timestamp;
109 unsigned char data[0];
110 };
111
112 #define TYPE_NONE 0
113 #define TYPE_RUNNING 1
114 #define TYPE_WAITING 2
115 #define TYPE_BLOCKED 3
116
117 struct cpu_sample {
118 struct cpu_sample *next;
119
120 u64 start_time;
121 u64 end_time;
122 int type;
123 int cpu;
124 };
125
126 static struct per_pid *all_data;
127
128 #define CSTATE 1
129 #define PSTATE 2
130
131 struct power_event {
132 struct power_event *next;
133 int type;
134 int state;
135 u64 start_time;
136 u64 end_time;
137 int cpu;
138 };
139
140 struct wake_event {
141 struct wake_event *next;
142 int waker;
143 int wakee;
144 u64 time;
145 };
146
147 static struct power_event *power_events;
148 static struct wake_event *wake_events;
149
150 struct process_filter;
151 struct process_filter {
152 char *name;
153 int pid;
154 struct process_filter *next;
155 };
156
157 static struct process_filter *process_filter;
158
159
160 static struct per_pid *find_create_pid(int pid)
161 {
162 struct per_pid *cursor = all_data;
163
164 while (cursor) {
165 if (cursor->pid == pid)
166 return cursor;
167 cursor = cursor->next;
168 }
169 cursor = malloc(sizeof(struct per_pid));
170 assert(cursor != NULL);
171 memset(cursor, 0, sizeof(struct per_pid));
172 cursor->pid = pid;
173 cursor->next = all_data;
174 all_data = cursor;
175 return cursor;
176 }
177
178 static void pid_set_comm(int pid, char *comm)
179 {
180 struct per_pid *p;
181 struct per_pidcomm *c;
182 p = find_create_pid(pid);
183 c = p->all;
184 while (c) {
185 if (c->comm && strcmp(c->comm, comm) == 0) {
186 p->current = c;
187 return;
188 }
189 if (!c->comm) {
190 c->comm = strdup(comm);
191 p->current = c;
192 return;
193 }
194 c = c->next;
195 }
196 c = malloc(sizeof(struct per_pidcomm));
197 assert(c != NULL);
198 memset(c, 0, sizeof(struct per_pidcomm));
199 c->comm = strdup(comm);
200 p->current = c;
201 c->next = p->all;
202 p->all = c;
203 }
204
205 static void pid_fork(int pid, int ppid, u64 timestamp)
206 {
207 struct per_pid *p, *pp;
208 p = find_create_pid(pid);
209 pp = find_create_pid(ppid);
210 p->ppid = ppid;
211 if (pp->current && pp->current->comm && !p->current)
212 pid_set_comm(pid, pp->current->comm);
213
214 p->start_time = timestamp;
215 if (p->current) {
216 p->current->start_time = timestamp;
217 p->current->state_since = timestamp;
218 }
219 }
220
221 static void pid_exit(int pid, u64 timestamp)
222 {
223 struct per_pid *p;
224 p = find_create_pid(pid);
225 p->end_time = timestamp;
226 if (p->current)
227 p->current->end_time = timestamp;
228 }
229
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232 {
233 struct per_pid *p;
234 struct per_pidcomm *c;
235 struct cpu_sample *sample;
236
237 p = find_create_pid(pid);
238 c = p->current;
239 if (!c) {
240 c = malloc(sizeof(struct per_pidcomm));
241 assert(c != NULL);
242 memset(c, 0, sizeof(struct per_pidcomm));
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
246 }
247
248 sample = malloc(sizeof(struct cpu_sample));
249 assert(sample != NULL);
250 memset(sample, 0, sizeof(struct cpu_sample));
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 c->samples = sample;
257
258 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259 c->total_time += (end-start);
260 p->total_time += (end-start);
261 }
262
263 if (c->start_time == 0 || c->start_time > start)
264 c->start_time = start;
265 if (p->start_time == 0 || p->start_time > start)
266 p->start_time = start;
267 }
268
269 #define MAX_CPUS 4096
270
271 static u64 cpus_cstate_start_times[MAX_CPUS];
272 static int cpus_cstate_state[MAX_CPUS];
273 static u64 cpus_pstate_start_times[MAX_CPUS];
274 static u64 cpus_pstate_state[MAX_CPUS];
275
276 static int process_comm_event(union perf_event *event,
277 struct perf_sample *sample __used,
278 struct perf_session *session __used)
279 {
280 pid_set_comm(event->comm.tid, event->comm.comm);
281 return 0;
282 }
283
284 static int process_fork_event(union perf_event *event,
285 struct perf_sample *sample __used,
286 struct perf_session *session __used)
287 {
288 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289 return 0;
290 }
291
292 static int process_exit_event(union perf_event *event,
293 struct perf_sample *sample __used,
294 struct perf_session *session __used)
295 {
296 pid_exit(event->fork.pid, event->fork.time);
297 return 0;
298 }
299
300 struct trace_entry {
301 unsigned short type;
302 unsigned char flags;
303 unsigned char preempt_count;
304 int pid;
305 int lock_depth;
306 };
307
308 #ifdef SUPPORT_OLD_POWER_EVENTS
309 static int use_old_power_events;
310 struct power_entry_old {
311 struct trace_entry te;
312 u64 type;
313 u64 value;
314 u64 cpu_id;
315 };
316 #endif
317
318 struct power_processor_entry {
319 struct trace_entry te;
320 u32 state;
321 u32 cpu_id;
322 };
323
324 #define TASK_COMM_LEN 16
325 struct wakeup_entry {
326 struct trace_entry te;
327 char comm[TASK_COMM_LEN];
328 int pid;
329 int prio;
330 int success;
331 };
332
333 /*
334 * trace_flag_type is an enumeration that holds different
335 * states when a trace occurs. These are:
336 * IRQS_OFF - interrupts were disabled
337 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
338 * NEED_RESCED - reschedule is requested
339 * HARDIRQ - inside an interrupt handler
340 * SOFTIRQ - inside a softirq handler
341 */
342 enum trace_flag_type {
343 TRACE_FLAG_IRQS_OFF = 0x01,
344 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
345 TRACE_FLAG_NEED_RESCHED = 0x04,
346 TRACE_FLAG_HARDIRQ = 0x08,
347 TRACE_FLAG_SOFTIRQ = 0x10,
348 };
349
350
351
352 struct sched_switch {
353 struct trace_entry te;
354 char prev_comm[TASK_COMM_LEN];
355 int prev_pid;
356 int prev_prio;
357 long prev_state; /* Arjan weeps. */
358 char next_comm[TASK_COMM_LEN];
359 int next_pid;
360 int next_prio;
361 };
362
363 static void c_state_start(int cpu, u64 timestamp, int state)
364 {
365 cpus_cstate_start_times[cpu] = timestamp;
366 cpus_cstate_state[cpu] = state;
367 }
368
369 static void c_state_end(int cpu, u64 timestamp)
370 {
371 struct power_event *pwr;
372 pwr = malloc(sizeof(struct power_event));
373 if (!pwr)
374 return;
375 memset(pwr, 0, sizeof(struct power_event));
376
377 pwr->state = cpus_cstate_state[cpu];
378 pwr->start_time = cpus_cstate_start_times[cpu];
379 pwr->end_time = timestamp;
380 pwr->cpu = cpu;
381 pwr->type = CSTATE;
382 pwr->next = power_events;
383
384 power_events = pwr;
385 }
386
387 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388 {
389 struct power_event *pwr;
390 pwr = malloc(sizeof(struct power_event));
391
392 if (new_freq > 8000000) /* detect invalid data */
393 return;
394
395 if (!pwr)
396 return;
397 memset(pwr, 0, sizeof(struct power_event));
398
399 pwr->state = cpus_pstate_state[cpu];
400 pwr->start_time = cpus_pstate_start_times[cpu];
401 pwr->end_time = timestamp;
402 pwr->cpu = cpu;
403 pwr->type = PSTATE;
404 pwr->next = power_events;
405
406 if (!pwr->start_time)
407 pwr->start_time = first_time;
408
409 power_events = pwr;
410
411 cpus_pstate_state[cpu] = new_freq;
412 cpus_pstate_start_times[cpu] = timestamp;
413
414 if ((u64)new_freq > max_freq)
415 max_freq = new_freq;
416
417 if (new_freq < min_freq || min_freq == 0)
418 min_freq = new_freq;
419
420 if (new_freq == max_freq - 1000)
421 turbo_frequency = max_freq;
422 }
423
424 static void
425 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426 {
427 struct wake_event *we;
428 struct per_pid *p;
429 struct wakeup_entry *wake = (void *)te;
430
431 we = malloc(sizeof(struct wake_event));
432 if (!we)
433 return;
434
435 memset(we, 0, sizeof(struct wake_event));
436 we->time = timestamp;
437 we->waker = pid;
438
439 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440 we->waker = -1;
441
442 we->wakee = wake->pid;
443 we->next = wake_events;
444 wake_events = we;
445 p = find_create_pid(we->wakee);
446
447 if (p && p->current && p->current->state == TYPE_NONE) {
448 p->current->state_since = timestamp;
449 p->current->state = TYPE_WAITING;
450 }
451 if (p && p->current && p->current->state == TYPE_BLOCKED) {
452 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
455 }
456 }
457
458 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459 {
460 struct per_pid *p = NULL, *prev_p;
461 struct sched_switch *sw = (void *)te;
462
463
464 prev_p = find_create_pid(sw->prev_pid);
465
466 p = find_create_pid(sw->next_pid);
467
468 if (prev_p->current && prev_p->current->state != TYPE_NONE)
469 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470 if (p && p->current) {
471 if (p->current->state != TYPE_NONE)
472 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
474 p->current->state_since = timestamp;
475 p->current->state = TYPE_RUNNING;
476 }
477
478 if (prev_p->current) {
479 prev_p->current->state = TYPE_NONE;
480 prev_p->current->state_since = timestamp;
481 if (sw->prev_state & 2)
482 prev_p->current->state = TYPE_BLOCKED;
483 if (sw->prev_state == 0)
484 prev_p->current->state = TYPE_WAITING;
485 }
486 }
487
488
489 static int process_sample_event(union perf_event *event __used,
490 struct perf_sample *sample,
491 struct perf_session *session)
492 {
493 struct trace_entry *te;
494
495 if (session->sample_type & PERF_SAMPLE_TIME) {
496 if (!first_time || first_time > sample->time)
497 first_time = sample->time;
498 if (last_time < sample->time)
499 last_time = sample->time;
500 }
501
502 te = (void *)sample->raw_data;
503 if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
504 char *event_str;
505 #ifdef SUPPORT_OLD_POWER_EVENTS
506 struct power_entry_old *peo;
507 peo = (void *)te;
508 #endif
509 event_str = perf_header__find_event(te->type);
510
511 if (!event_str)
512 return 0;
513
514 if (sample->cpu > numcpus)
515 numcpus = sample->cpu;
516
517 if (strcmp(event_str, "power:cpu_idle") == 0) {
518 struct power_processor_entry *ppe = (void *)te;
519 if (ppe->state == (u32)PWR_EVENT_EXIT)
520 c_state_end(ppe->cpu_id, sample->time);
521 else
522 c_state_start(ppe->cpu_id, sample->time,
523 ppe->state);
524 }
525 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
526 struct power_processor_entry *ppe = (void *)te;
527 p_state_change(ppe->cpu_id, sample->time, ppe->state);
528 }
529
530 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
531 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
532
533 else if (strcmp(event_str, "sched:sched_switch") == 0)
534 sched_switch(sample->cpu, sample->time, te);
535
536 #ifdef SUPPORT_OLD_POWER_EVENTS
537 if (use_old_power_events) {
538 if (strcmp(event_str, "power:power_start") == 0)
539 c_state_start(peo->cpu_id, sample->time,
540 peo->value);
541
542 else if (strcmp(event_str, "power:power_end") == 0)
543 c_state_end(sample->cpu, sample->time);
544
545 else if (strcmp(event_str,
546 "power:power_frequency") == 0)
547 p_state_change(peo->cpu_id, sample->time,
548 peo->value);
549 }
550 #endif
551 }
552 return 0;
553 }
554
555 /*
556 * After the last sample we need to wrap up the current C/P state
557 * and close out each CPU for these.
558 */
559 static void end_sample_processing(void)
560 {
561 u64 cpu;
562 struct power_event *pwr;
563
564 for (cpu = 0; cpu <= numcpus; cpu++) {
565 pwr = malloc(sizeof(struct power_event));
566 if (!pwr)
567 return;
568 memset(pwr, 0, sizeof(struct power_event));
569
570 /* C state */
571 #if 0
572 pwr->state = cpus_cstate_state[cpu];
573 pwr->start_time = cpus_cstate_start_times[cpu];
574 pwr->end_time = last_time;
575 pwr->cpu = cpu;
576 pwr->type = CSTATE;
577 pwr->next = power_events;
578
579 power_events = pwr;
580 #endif
581 /* P state */
582
583 pwr = malloc(sizeof(struct power_event));
584 if (!pwr)
585 return;
586 memset(pwr, 0, sizeof(struct power_event));
587
588 pwr->state = cpus_pstate_state[cpu];
589 pwr->start_time = cpus_pstate_start_times[cpu];
590 pwr->end_time = last_time;
591 pwr->cpu = cpu;
592 pwr->type = PSTATE;
593 pwr->next = power_events;
594
595 if (!pwr->start_time)
596 pwr->start_time = first_time;
597 if (!pwr->state)
598 pwr->state = min_freq;
599 power_events = pwr;
600 }
601 }
602
603 /*
604 * Sort the pid datastructure
605 */
606 static void sort_pids(void)
607 {
608 struct per_pid *new_list, *p, *cursor, *prev;
609 /* sort by ppid first, then by pid, lowest to highest */
610
611 new_list = NULL;
612
613 while (all_data) {
614 p = all_data;
615 all_data = p->next;
616 p->next = NULL;
617
618 if (new_list == NULL) {
619 new_list = p;
620 p->next = NULL;
621 continue;
622 }
623 prev = NULL;
624 cursor = new_list;
625 while (cursor) {
626 if (cursor->ppid > p->ppid ||
627 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
628 /* must insert before */
629 if (prev) {
630 p->next = prev->next;
631 prev->next = p;
632 cursor = NULL;
633 continue;
634 } else {
635 p->next = new_list;
636 new_list = p;
637 cursor = NULL;
638 continue;
639 }
640 }
641
642 prev = cursor;
643 cursor = cursor->next;
644 if (!cursor)
645 prev->next = p;
646 }
647 }
648 all_data = new_list;
649 }
650
651
652 static void draw_c_p_states(void)
653 {
654 struct power_event *pwr;
655 pwr = power_events;
656
657 /*
658 * two pass drawing so that the P state bars are on top of the C state blocks
659 */
660 while (pwr) {
661 if (pwr->type == CSTATE)
662 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
663 pwr = pwr->next;
664 }
665
666 pwr = power_events;
667 while (pwr) {
668 if (pwr->type == PSTATE) {
669 if (!pwr->state)
670 pwr->state = min_freq;
671 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
672 }
673 pwr = pwr->next;
674 }
675 }
676
677 static void draw_wakeups(void)
678 {
679 struct wake_event *we;
680 struct per_pid *p;
681 struct per_pidcomm *c;
682
683 we = wake_events;
684 while (we) {
685 int from = 0, to = 0;
686 char *task_from = NULL, *task_to = NULL;
687
688 /* locate the column of the waker and wakee */
689 p = all_data;
690 while (p) {
691 if (p->pid == we->waker || p->pid == we->wakee) {
692 c = p->all;
693 while (c) {
694 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
695 if (p->pid == we->waker && !from) {
696 from = c->Y;
697 task_from = strdup(c->comm);
698 }
699 if (p->pid == we->wakee && !to) {
700 to = c->Y;
701 task_to = strdup(c->comm);
702 }
703 }
704 c = c->next;
705 }
706 c = p->all;
707 while (c) {
708 if (p->pid == we->waker && !from) {
709 from = c->Y;
710 task_from = strdup(c->comm);
711 }
712 if (p->pid == we->wakee && !to) {
713 to = c->Y;
714 task_to = strdup(c->comm);
715 }
716 c = c->next;
717 }
718 }
719 p = p->next;
720 }
721
722 if (!task_from) {
723 task_from = malloc(40);
724 sprintf(task_from, "[%i]", we->waker);
725 }
726 if (!task_to) {
727 task_to = malloc(40);
728 sprintf(task_to, "[%i]", we->wakee);
729 }
730
731 if (we->waker == -1)
732 svg_interrupt(we->time, to);
733 else if (from && to && abs(from - to) == 1)
734 svg_wakeline(we->time, from, to);
735 else
736 svg_partial_wakeline(we->time, from, task_from, to, task_to);
737 we = we->next;
738
739 free(task_from);
740 free(task_to);
741 }
742 }
743
744 static void draw_cpu_usage(void)
745 {
746 struct per_pid *p;
747 struct per_pidcomm *c;
748 struct cpu_sample *sample;
749 p = all_data;
750 while (p) {
751 c = p->all;
752 while (c) {
753 sample = c->samples;
754 while (sample) {
755 if (sample->type == TYPE_RUNNING)
756 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
757
758 sample = sample->next;
759 }
760 c = c->next;
761 }
762 p = p->next;
763 }
764 }
765
766 static void draw_process_bars(void)
767 {
768 struct per_pid *p;
769 struct per_pidcomm *c;
770 struct cpu_sample *sample;
771 int Y = 0;
772
773 Y = 2 * numcpus + 2;
774
775 p = all_data;
776 while (p) {
777 c = p->all;
778 while (c) {
779 if (!c->display) {
780 c->Y = 0;
781 c = c->next;
782 continue;
783 }
784
785 svg_box(Y, c->start_time, c->end_time, "process");
786 sample = c->samples;
787 while (sample) {
788 if (sample->type == TYPE_RUNNING)
789 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
790 if (sample->type == TYPE_BLOCKED)
791 svg_box(Y, sample->start_time, sample->end_time, "blocked");
792 if (sample->type == TYPE_WAITING)
793 svg_waiting(Y, sample->start_time, sample->end_time);
794 sample = sample->next;
795 }
796
797 if (c->comm) {
798 char comm[256];
799 if (c->total_time > 5000000000) /* 5 seconds */
800 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
801 else
802 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
803
804 svg_text(Y, c->start_time, comm);
805 }
806 c->Y = Y;
807 Y++;
808 c = c->next;
809 }
810 p = p->next;
811 }
812 }
813
814 static void add_process_filter(const char *string)
815 {
816 struct process_filter *filt;
817 int pid;
818
819 pid = strtoull(string, NULL, 10);
820 filt = malloc(sizeof(struct process_filter));
821 if (!filt)
822 return;
823
824 filt->name = strdup(string);
825 filt->pid = pid;
826 filt->next = process_filter;
827
828 process_filter = filt;
829 }
830
831 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
832 {
833 struct process_filter *filt;
834 if (!process_filter)
835 return 1;
836
837 filt = process_filter;
838 while (filt) {
839 if (filt->pid && p->pid == filt->pid)
840 return 1;
841 if (strcmp(filt->name, c->comm) == 0)
842 return 1;
843 filt = filt->next;
844 }
845 return 0;
846 }
847
848 static int determine_display_tasks_filtered(void)
849 {
850 struct per_pid *p;
851 struct per_pidcomm *c;
852 int count = 0;
853
854 p = all_data;
855 while (p) {
856 p->display = 0;
857 if (p->start_time == 1)
858 p->start_time = first_time;
859
860 /* no exit marker, task kept running to the end */
861 if (p->end_time == 0)
862 p->end_time = last_time;
863
864 c = p->all;
865
866 while (c) {
867 c->display = 0;
868
869 if (c->start_time == 1)
870 c->start_time = first_time;
871
872 if (passes_filter(p, c)) {
873 c->display = 1;
874 p->display = 1;
875 count++;
876 }
877
878 if (c->end_time == 0)
879 c->end_time = last_time;
880
881 c = c->next;
882 }
883 p = p->next;
884 }
885 return count;
886 }
887
888 static int determine_display_tasks(u64 threshold)
889 {
890 struct per_pid *p;
891 struct per_pidcomm *c;
892 int count = 0;
893
894 if (process_filter)
895 return determine_display_tasks_filtered();
896
897 p = all_data;
898 while (p) {
899 p->display = 0;
900 if (p->start_time == 1)
901 p->start_time = first_time;
902
903 /* no exit marker, task kept running to the end */
904 if (p->end_time == 0)
905 p->end_time = last_time;
906 if (p->total_time >= threshold && !power_only)
907 p->display = 1;
908
909 c = p->all;
910
911 while (c) {
912 c->display = 0;
913
914 if (c->start_time == 1)
915 c->start_time = first_time;
916
917 if (c->total_time >= threshold && !power_only) {
918 c->display = 1;
919 count++;
920 }
921
922 if (c->end_time == 0)
923 c->end_time = last_time;
924
925 c = c->next;
926 }
927 p = p->next;
928 }
929 return count;
930 }
931
932
933
934 #define TIME_THRESH 10000000
935
936 static void write_svg_file(const char *filename)
937 {
938 u64 i;
939 int count;
940
941 numcpus++;
942
943
944 count = determine_display_tasks(TIME_THRESH);
945
946 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
947 if (count < 15)
948 count = determine_display_tasks(TIME_THRESH / 10);
949
950 open_svg(filename, numcpus, count, first_time, last_time);
951
952 svg_time_grid();
953 svg_legenda();
954
955 for (i = 0; i < numcpus; i++)
956 svg_cpu_box(i, max_freq, turbo_frequency);
957
958 draw_cpu_usage();
959 draw_process_bars();
960 draw_c_p_states();
961 draw_wakeups();
962
963 svg_close();
964 }
965
966 static struct perf_event_ops event_ops = {
967 .comm = process_comm_event,
968 .fork = process_fork_event,
969 .exit = process_exit_event,
970 .sample = process_sample_event,
971 .ordered_samples = true,
972 };
973
974 static int __cmd_timechart(void)
975 {
976 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
977 0, false, &event_ops);
978 int ret = -EINVAL;
979
980 if (session == NULL)
981 return -ENOMEM;
982
983 if (!perf_session__has_traces(session, "timechart record"))
984 goto out_delete;
985
986 ret = perf_session__process_events(session, &event_ops);
987 if (ret)
988 goto out_delete;
989
990 end_sample_processing();
991
992 sort_pids();
993
994 write_svg_file(output_name);
995
996 pr_info("Written %2.1f seconds of trace to %s.\n",
997 (last_time - first_time) / 1000000000.0, output_name);
998 out_delete:
999 perf_session__delete(session);
1000 return ret;
1001 }
1002
1003 static const char * const timechart_usage[] = {
1004 "perf timechart [<options>] {record}",
1005 NULL
1006 };
1007
1008 #ifdef SUPPORT_OLD_POWER_EVENTS
1009 static const char * const record_old_args[] = {
1010 "record",
1011 "-a",
1012 "-R",
1013 "-f",
1014 "-c", "1",
1015 "-e", "power:power_start",
1016 "-e", "power:power_end",
1017 "-e", "power:power_frequency",
1018 "-e", "sched:sched_wakeup",
1019 "-e", "sched:sched_switch",
1020 };
1021 #endif
1022
1023 static const char * const record_new_args[] = {
1024 "record",
1025 "-a",
1026 "-R",
1027 "-f",
1028 "-c", "1",
1029 "-e", "power:cpu_frequency",
1030 "-e", "power:cpu_idle",
1031 "-e", "sched:sched_wakeup",
1032 "-e", "sched:sched_switch",
1033 };
1034
1035 static int __cmd_record(int argc, const char **argv)
1036 {
1037 unsigned int rec_argc, i, j;
1038 const char **rec_argv;
1039 const char * const *record_args = record_new_args;
1040 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1041
1042 #ifdef SUPPORT_OLD_POWER_EVENTS
1043 if (!is_valid_tracepoint("power:cpu_idle") &&
1044 is_valid_tracepoint("power:power_start")) {
1045 use_old_power_events = 1;
1046 record_args = record_old_args;
1047 record_elems = ARRAY_SIZE(record_old_args);
1048 }
1049 #endif
1050
1051 rec_argc = record_elems + argc - 1;
1052 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1053
1054 if (rec_argv == NULL)
1055 return -ENOMEM;
1056
1057 for (i = 0; i < record_elems; i++)
1058 rec_argv[i] = strdup(record_args[i]);
1059
1060 for (j = 1; j < (unsigned int)argc; j++, i++)
1061 rec_argv[i] = argv[j];
1062
1063 return cmd_record(i, rec_argv, NULL);
1064 }
1065
1066 static int
1067 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1068 {
1069 if (arg)
1070 add_process_filter(arg);
1071 return 0;
1072 }
1073
1074 static const struct option options[] = {
1075 OPT_STRING('i', "input", &input_name, "file",
1076 "input file name"),
1077 OPT_STRING('o', "output", &output_name, "file",
1078 "output file name"),
1079 OPT_INTEGER('w', "width", &svg_page_width,
1080 "page width"),
1081 OPT_BOOLEAN('P', "power-only", &power_only,
1082 "output power data only"),
1083 OPT_CALLBACK('p', "process", NULL, "process",
1084 "process selector. Pass a pid or process name.",
1085 parse_process),
1086 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1087 "Look for files with symbols relative to this directory"),
1088 OPT_END()
1089 };
1090
1091
1092 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1093 {
1094 argc = parse_options(argc, argv, options, timechart_usage,
1095 PARSE_OPT_STOP_AT_NON_OPTION);
1096
1097 symbol__init();
1098
1099 if (argc && !strncmp(argv[0], "rec", 3))
1100 return __cmd_record(argc, argv);
1101 else if (argc)
1102 usage_with_options(timechart_usage, options);
1103
1104 setup_pager();
1105
1106 return __cmd_timechart();
1107 }